Undergraduate Commutative Algebra

Miles Reid University of Warwick

Contents

Fron	tispiece: let A be a ring and M an A-module \ldots	page iv
Illust	trations	xi
Prefa	ace	xiii
0	Hello!	1
0.1	Where we're going	1
0.2	Some definitions	2
0.3	The elementary theory of factorisation	2
0.4	A first view of the bridge	× 3
0.5	The geometric side – the case of a hypersurface	3
0.6	\mathbb{Z} versus $k[X]$	5
0.7	Examples	7
0.8	Reasons for studying commutative algebra	10
0.9	Discussion of contents	12
0.10	Who the book is for	13
0.11	What you're supposed to know	13
Exer	cises to Chapter 0	14
1	Basics	19
1.1	Convention	19
1.2	Ideals	19
1.3	Prime and maximal ideals, the definition of Spec A	20
1.4	Easy examples	21
1.5	Worked examples: Spec $k[X, Y]$ and Spec $\mathbb{Z}[X]$	22
1.6	The geometric interpretation	23
1.7	Zorn's lemma	25
1.8	Existence of maximal ideals	. 26

Contents	ì
----------	---

viii

1.9	Plenty of prime ideals	27
1.10	Nilpotents and the nilradical	27
1.11	Discussion of zerodivisors	28
1.12	Radical of an ideal	29
1.13	Local ring	31
1.14	First examples of local rings	31
1.15	Power series rings and local rings	32
Exerc	tises to Chapter 1	33
2	Modules	37
2.1	Definition of a module	37
2.2	Harmless formalism	37
2.3	The homomorphism and isomorphism theorems	38
2.4	Generators of a module	40
2.5	Examples	41
2.6	The Cayley–Hamilton theorem	41
2.7	The determinant trick	43
2.8	Corollaries – Nakayama's lemma	43
2.9	Exact sequences	44
2.10	Split exact sequences	45
Exerc	cises to Chapter 2	. 46
3	Noetherian rings	49
3.1	The ascending chain condition	49
3.2	Noetherian rings	50
3.3	Examples	51
3.4	Noetherian módules	52
3.5	Properties of Noetherian modules	∖ 53
3.6	The Hilbert basis theorem	54
Exerc	cises to Chapter 3	55
4	Finite extensions and Noether normalisation	58
4.1	Finite and integral A-algebras	59
4.2	Finite versus integral	60
4.3	Tower laws	61
4.4	Integral closure	61
4.5	Preview: nonsingularity and normal rings	62
4.6	Noether normalisation	63
4.7	Proof of Claim	64
4.8	Another proof of Noether normalisation	65
4.9	Field extensions	66

	Contents	ix	
4.10	The weak Nullstellensatz	67	
Exercises to Chapter 4		67	
5	The Nullstellensatz and Spec A	70	
5.1	Weak Nullstellensatz	70	
5.2	Maximal ideals of $k[X_1, \ldots, X_n]$ and points of k^n	70 [,]	
5.3	Definition of a variety	71	
5.4	Remark on algebraically nonclosed k	72	
5.5	The correspondences V and I	72	
5.6	The Nullstellensatz	73	
5.7	Irreducible varieties	74	
5.8	The Nullstellensatz and $\operatorname{Spec} A$	75	
5.9	The Zariski topology on a variety	75	
5.10	The Zariski topology on a variety is Noetherian	76	
5.11	Decomposition into irreducibles	76	
5.12	The Zariski topology on a general $\operatorname{Spec} A$	77	
5.13	Spec A for a Noetherian ring	78	
5.14	Varieties versus $\operatorname{Spec} A$	80	
Exerci	ises to Chapter 5	82	
6	Rings of fractions $S^{-1}A$ and localisation	. 84	
6.1	The construction of $S^{-1}A$	84	
6.2	Easy properties	× 86	
6.3	Ideals in A and $S^{-1}A$	87	
6.4	Localisation	88	
6.5	Modules of fractions	89	
6.6	Exactness of S^{-1}	90	
6.7	Localisation commutes with taking quotients	91	
6.8	Localise and localise again	92	
Exerc	ises to Chapter 6	92	
7	Primary decomposition	95	
7.1	The support of a module $\operatorname{Supp} M$	96	
7.2	Discussion	97	
7.3	Definition of Ass M	98	
7.4	Properties of Ass M	. 99	
7.5	Relation between Supp and Ass	100	
7.6	Disassembling a module	103	
7.7	The definition of primary ideal	103	
7.8	Primary ideals and Ass	105	
7.9	Primary decomposition	105	

•

0 C c	ontents
-------	---------

7.10	Discussion: motivation and examples	106
7.11	Existence of primary decomposition	108
7.12	Primary decomposition and $Ass(A/I)$	109
7.13	Primary ideals and localisation	109
Exerc	110	
8	DVRs and normal integral domains	112
8.1	Introduction	112
8.2	Definition of DVR	113
8.3	A first criterion	113
8.4	The Main Theorem on DVRs	114
8.5	General valuation rings	116
8.6	Examples of general valuation rings	117
8.7	Normal is a local condition	118
8.8	A normal ring is a DVR in codimension 1	119
8.9	Geometric picture	121
8.10	Intersection of DVRs	121
8.11	Finiteness of normalisation	122
8.12	Proof of Theorem 8.11	123
8.13	Appendix: Trace and separability	124
Exerc	ises to Chapter 8	126
9	Goodbye!	129
9.1	Where we've come from	129
9.2	Where to go from here	130
9.3	Tidying up some loose ends	132
9.4	Noetherian is not enough	135
9.5	Akizuki's example	· 139
9.6	Scheme theory	141
9.7	Abstract versus applied algebra	142
9.8	Sketch history	143
9.9	The problem of algebra in teaching	144
9.10	How the book came to be written	145
Exercises to Chapter 9		146
Bibliography		149
Index	· · · · · · · · · · · · · · · · · · ·	150

٨

x