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Abstract

The increasing threat of antimicrobial resistance has shed light on the interconnection between humans, animals, the

environment, and their roles in the exchange and spreading of resistance genes. In this review, we present evi-

dences that show that Staphylococcus species, usually referred to as harmless or opportunistic pathogens, repre-

sent a threat to human and animal health for acting as reservoirs of antimicrobial resistance genes. The capacity of

genetic exchange between isolates of different sources and species of the Staphylococcus genus is discussed with

emphasis on mobile genetic elements, the contribution of biofilm formation, and evidences obtained either experi-

mentally or through genome analyses. We also discuss the involvement of CRISPR-Cas systems in the limitation of

horizontal gene transfer and its suitability as a molecular clock to describe the history of genetic exchange between

staphylococci.
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Introduction

Every year, hundreds of thousands of deaths around
the world are attributed to the ever increasing problem of
antimicrobial resistance (Laxminarayan et al., 2016). It is
estimated that, if the issue is not properly addressed, by the
year of 2050, more than 10 million annual deaths will be
caused by antimicrobial-resistant microorganisms, surpas-
sing deaths by cancer (O’Neill, 2014). Although the accu-
racy of this frightening estimate is questioned by some
authors, since the future scenario of disease treatment may
be considerably different from the current one, the clinical,
economical, and public health burden associated with anti-
microbial resistance is undeniable (Kraker et al., 2016;
Robinson et al., 2016).

In the context of resistance dissemination, bacteria of
the Staphylococcus genus, residents of the normal micro-
biota of human beings and animals, play a central role.
Staphylococcus aureus is the main pathogen of the group,
responsible for a variety of clinical infections in humans
and a leading cause of bacteremia, endocarditis, and many
infections related to invasive medical devices (Tong et al.,
2015). Meanwhile, coagulase negative staphylococci
(CoNS), especially S. epidermidis and S. haemolyticus,

have emerged as recurrent causative agents of nosocomial
infections, mainly those related to indwelling devices (Be-
cker et al., 2014). They are a serious threat in the twilight of
the multidrug resistance era, for actively participating in the
horizontal transmission of resistance (Becker et al., 2014;
Czekaj et al., 2015).

Genomic analyses indicate that many of the genetic
determinants of resistance may have been exchanged be-
tween several staphylococcal species from different envi-
ronments and hosts (Rolo et al., 2017; Rossi et al., 2017a;
Kohler et al., 2018;). This includes species that are under-
studied and/or underestimated, either for having been re-
cently discovered, rarely involved with infectious diseases,
or for lacking canonical staphylococcal virulence factors.
However, recent evidence shows that these underrated spe-
cies, despite not being usual pathogens, may have an im-
portant role in the exchange of antimicrobial resistance
genes, by acting as gene-reservoirs for more pathogenic
species, such as S. aureus (Otto, 2013; Rossi et al., 2017a,
2019).

Given the increasing recognition of the importance of
previously overlooked Staphylococcus species, the goal of
this review was to present evidences that put these bacteria
in the front row of resistance dissemination and highlight
their potential threat to human and animal health.
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Antimicrobial resistance increase and the

interconnectedness of its spreading

In the past decade, consumption of antibiotic drugs
increased by 35%, with 76% of this growth concentrated in
Brazil, Russia, India, China, and South Africa (Van Boe-
ckel et al., 2014), with a projection of a rise in consumption
in the next 15 years of 67% (Van Boeckel et al., 2015). The
disturbing situation of antimicrobial resistance led the
World Health Organization to elaborate the “Global action
plan on antimicrobial resistance”, with goals that include:
(i) improving the understanding of the problem through
communication, education and training, (ii) increasing sur-
veillance and research, (iii) advancing in preventive actions
to reduce the incidence of infections, and (iv) optimizing
the use of antimicrobial drugs in human and veterinary
health (WHO, 2017). Tied to this worldwide concern to re-
strain the dispersion of resistance, the emerging engage-
ment of scientists and other professionals with the “One
Health” agenda increases the acknowledgement of the need
for global approaches as the only possible way to keep the
predicted disaster of 2050 of more than 10 million annual
deaths caused by resistant microorganisms from actually
happening.

Considered as a “new professional imperative”, One
Health is a collaborative and multidisciplinary effort to
achieve optimal health for people, animals and our environ-
ment from local to global scales (King et al., 2008). It rec-
ognizes that the welfare of these three domains is intercon-
nected and this link, ignored for so long, is crucial for the
spreading of antimicrobial resistance. The use of antimi-
crobial drugs in agriculture, for example, is the largest
worldwide, thus being a major driver of resistance for sev-
eral reasons, like exposure of bacteria to sub-therapeutic
doses of the antibiotics and the exposure of human and ani-
mals to those drugs and microorganisms, either via con-
sumption of products or environmental release (Silbergeld
et al., 2008). Studies also point out that the use of antimi-
crobial drugs, particularly to maintain health, productivity,
and promoting growth of food animals, contribute to the
dispersion of resistant bacteria in livestock and human be-
ings (Marshall and Levy, 2011; Van Boeckel et al., 2015).
In aquaculture, it is estimated that around 80% of antimi-
crobials used reach the environment with their activity in-
tact, thereby expanding the surroundings where selection of
resistant microorganisms will take place (Cabello et al.,
2013). Even insects commonly associated with food ani-
mals, like houseflies and cockroaches, are presumably ve-
hicles of microorganisms from the farms to urban centers
(and vice versa), as evidenced by multidrug-resistant clonal
lineages carried by them, that were also isolated from dif-
ferent environments (Zurek and Ghosh, 2014).

Pet animals have been shown to act as reservoirs of
resistant bacteria, which in turn act as reservoirs of mobile
genetic elements that carry antimicrobial resistance genes
(Guardabassi et al., 2004; Rossi et al., 2017a). In fact, the
relationship between the animals and their owners signifi-

cantly shapes the microbiota of both counterparts (Song et

al., 2013). For that reason, the indiscriminate use of anti-
microbials in veterinary practice represents a direct threat
to human beings. More aggravating is the fact that some
drugs that are either not recommended to be used in hu-
mans, or those that are considered as last resources, are
heavily used to treat animals. Some examples include the
polymixins and chloramphenicol and its derivatives, the
latter presenting several adverse effects that limit its em-
ployment (Cabello et al., 2013; Poirel et al., 2017).

Consistently, multidrug resistant strains, like methi-
cillin-resistant Staphylococcus aureus (MRSA) are ubiqui-
tous, being isolated from humans, pets, food, other animals
and the environment (Vanderhaeghen et al., 2010; Kock et

al., 2013; Rossi et al., 2017b). Due to local variations in
control practices and specific characteristics of circulating
clones, the overall geographic distribution of MRSA, for
example, can range from 1 to 5% of isolates in northeastern
Europe to more than 50% in certain Latin American coun-
tries (Brazil, Uruguay, Venezuela, Bolivia, Peru, and
Chile) and in Japan (Lee et al., 2018).

Variety and clinical significance of Staphylococcus
spp.

Although S. aureus is the major bacterium of its ge-
nus, more than 50 Staphylococcus species are registered in
the List of Prokaryotic Names with Standing in Nomencla-

ture database, available at http://www.bacterio.net (Parte,
2018). However, DNA sequencing of complete genomes or
housekeeping genes, phylogenetic analyses, DNA–DNA
hybridization, protein profiles, and genotyping techniques
have constantly led to reclassifications or proposals of new
species and subspecies (Sasaki et al., 2007; Fitzgerald,
2009; Taponen et al., 2012). As these techniques advance
and new sources of Staphylococcus are explored, especially
in different animals, new species are also discovered, such
as S. nepalensis, isolated from goats (Spergser et al., 2003),
S. stepanovicii, isolated from wild small animals (Haus-
child et al., 2010), S. pseudintermedius, isolated from sev-
eral domestic animals, such as dogs, cats, horses and par-
rots (Devriese et al., 2005), and S. agnetis, isolated from
bovines with subclinical and clinical mastitis (Taponen et

al., 2012).

In general, staphylococci are natural inhabitants of
skin and mucous membranes of human beings and animals,
while the prevalence of species widely varies according to
the host. S. felis, for example, is typically isolated from fe-
line, either healthy or presenting signs of lower urinary tract
disease, otitis externa, and ocular disease (Rossi et al.,
2017b; Worthing et al., 2018); S. pseudintermedius is prev-
alent in domestic dogs, healthy or related to diseases like
pyoderma and otitis externa (Ruscher et al., 2009; Rossi et

al., 2018); S. caprae is involved with intramammary infec-
tions in dairy goats (Moroni et al., 2005), among others.
Regardless of their source, infections caused by unusual
human pathogens are sporadically reported (Morfin-Otero
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et al., 2012; Novakova et al., 2006a,b), with special empha-
sis on those caused by S. pseudintermedius, with most cases
indicating the contact of domestic dogs with their owners as
the probable source of infection (Van Hoovels et al., 2006;
Riegel et al., 2011; Lozano et al., 2017). Given their great
adaptability to unfavorable conditions (Uribe-Alvarez et

al., 2016; Rossi et al., 2017c), staphylococci isolated from
the surrounding environment are also responsible for hu-
man acquisition of relevant pathogens, including MRSA
(Hardy et al., 2006; Sexton et al., 2006).

The production of coagulase and its plasma-clotting
activity is a central diagnostic feature to distinguish staphy-
lococcal strains in coagulase-positive staphylococci
(CoPS) and coagulase-negative staphylococci (CoNS) (Be-
cker et al., 2014). In addition to being key to diagnostics
and group differentiation of Staphylococcus in CoPS and
CoNS, coagulase is a virulence factor that leads to the
cleavage of soluble fibrinogen to produce a fibrin coat in
the surface of the bacteria, thus protecting it from phago-
cytosis and other host defenses (Powers and Wardenburg,
2014). Moreover, the polymorphisms of the coagulase-
coding gene, coa, allows it to be explored in molecular typ-
ing techniques (Salehzadeh et al., 2016; Javid et al., 2018).
However, because some populations of CoPS may not have
the coa gene, while some CoNS present this gene, the appli-
cations of these methods are limited (Almeida et al., 2018).
These coagulase-variable strains are more frequently found
in some species than others, but their misdiagnosis may
lead to unsuitable treatment of infections and control mea-
sures. This is especially significant when the detection of
the pathogenic S. aureus relies on coagulase production and
strains of these species do not produce coagulase, leading to
isolate misidentification (Sundareshan et al., 2017). Strains
of the CoNS S. chromogenes, S. xylosus, S. cohnii and S.

agnetis have been reported to clot plasma, leading to mis-
identification of the pathogens causing mastitis in dairy an-
imals (Taponen et al., 2012; Santos et al., 2016; Almeida et

al., 2018). For that reason, researchers have relied on more
accurate identification methods, including the sequencing
of the 16S rRNA and the housekeeping genes rpoB, encod-
ing the � subunit of RNA polymerase, as well as tuf, encod-
ing the EF-tu elongation factor (Ghebremedhin et al., 2008;
Li et al., 2012). Given its simplicity to perform and its cost
effectiveness, matrix assisted laser desorption ionization-
time of flight mass spectrometry (MALDI-TOF) is emerg-
ing as a potential tool for microbial identification and diag-
nosis (Singhal et al., 2015). MALDI-TOF identification of
staphylococci shows a good correlation with sequencing
results, although the lack of standards for uncommon and
recently identified species is still a bottleneck (Rossi et al.,
2017b).

CoPS, with a special emphasis on S. aureus, responsi-
ble for several clinical infections, from those in skin and
soft tissues to systemic disease processes like sepsis (Tong
et al., 2015), are considered to be more pathogenic than
CoNS. A plethora of virulence factors have been described

and extensively reviewed for S. aureus, comprising mole-
cules involved in tissue adhesion, immune evasion and host
cell injury (Powers and Wardenburg, 2014). Proteins cova-
lently anchored to the cell wall peptidoglycan may partici-
pate in not only biotic and abiotic surface adhesion, but also
in biofilm formation and iron acquisition, among other
functions (Foster et al., 2014). Moreover, a wide variety of
toxins can be secreted, aiming to evade the defense mecha-
nisms of the host (Otto, 2014). Other relevant pathogenic
CoPS belong in the Staphylococcus indermedius group
(SIG). This group includes zoonotic pathogens typically as-
sociated with dog bites, i.e., S. intermedius, S. pseudin-

termedius, the recently described S. cornubiensis (Murray
et al., 2018), and S. delphini, first isolated from skin lesions
of dolphins (Varaldo et al., 1988).

The increasing recognition of the importance of S.

pseudintermedius as a zoonotic pathogen has boosted in-
vestigations on virulence factors involving infections cau-
sed by this bacterium. Among them, pore-forming toxins
seem to play a pivotal role in the characteristic skin infec-
tions (Abouelkhair et al., 2018; Maali et al., 2018). Because
many of these virulence factors are encoded in mobile ge-
netic elements (MGE) with extensive variation in gene con-
tent, different strains strongly vary in their virulence arse-
nal (Otto, 2014; Moon et al., 2015).

The CoNS constitute the vast majority of staphylo-
cocci, comprising more than 80% of the species described
to date (Becker et al., 2014; Parte, 2018). Historically con-
sidered as harmless inhabitants of the human and animal
microbiota, in the past two decades CoNS have emerged as
the major nosocomial pathogens, mostly associated with
invasive medical devices (Becker et al., 2014), being par-
ticularly threatening to immunocrompromised individuals
(Morfin-Otero et al., 2012). Among these opportunistic
pathogens, S. epidermidis is the most frequent cause of
nosocomial infections (Gomes et al., 2014), followed by S.

haemolyticus (Czekaj et al., 2015). The infections caused
by these species are particularly important because they are
difficult to treat, since device colonization is usually related
to biofilm formation, which can lead to complications, in-
cluding sepsis, endocarditis, and a wide variety of local in-
fections derived from the bloodstream spreading of bacteria
(Chang et al., 2018; Oliveira et al., 2018).

Commensal and opportunistic staphylococci acting

as gene reservoirs

Staphylococcus species that are usually considered as
harmless inhabitants of the microbiota of animals and hu-
mans beings, like most CoNS, lack nearly all of the viru-
lence factors described for S. aureus and do not encode
many known specific factors, apart from a limited amount
of toxins and exoenzymes (Zhang et al., 2003). Their emer-
gent threat comes from the fact that these bacteria may
carry a huge amount of antimicrobial resistance genes lo-
cated in MGEs (Gomes et al., 2014; Czekaj et al., 2015;
Hosseinkhani et al., 2018).

Resistance exchange in staphylococci 3



Multidrug-resistant CoNS have been increasingly lin-
ked to infections outbreaks in healthcare units (Chang et

al., 2018; Li et al., 2018), including strains that are not only
isolated from patients, but also from healthcare workers,
and the environment (Widerstrom et al., 2016). Micro-
biome studies reveal clonal staphylococcal strains wide
ability to colonize diverse hosts and surrounding environ-
ments (Song et al., 2013; Lax et al., 2014). Their
widespreadness can lead to infections caused by multidrug
resistant strains in both humans and animals by species that
are atypical pathogens in one of the hosts. Dutta et al.

(2018), for example, have recently isolated Staphylococcus

pettenkoferi strains causing peritonitis from a domestic cat.
This species was discovered in 2002 in various human pa-
tients showing multiple clinical manifestations, but had
never been isolated from animals before. Likewise, as
aforementioned, the typical canine staphylococcal species
S. pseudintermedius can occasionally cause disease in hu-
man beings as well (Riegel et al., 2011; Lozano et al.,
2017).

This long overlooked exchange of microorganisms
and antimicrobial resistance between different hosts and
environments is now clear, and strains isolated from hu-
mans and domestic animals carry several resistance genes
in common (Schwarz et al., 2018). Even though some
antimicrobials have their use restricted to treat infections in
animals, many multidrug resistance genes in staphylococci
isolated from them confer resistance to antimicrobial
agents that are highly important in human medicine (Wen-
dlandt et al., 2015). Then, even if one staphylococcal spe-
cies is not a common pathogen, it can be a potential threat,
because it may be capable of transferring antimicrobial re-
sistance genes to more pathogenic species, such as S.

aureus, thereby enhancing its capacity to resist drug ther-
apy (Haaber et al., 2017). For that reason, some CoNS have
been suggested to act as antimicrobial genes reservoirs
within the Staphylococcus genus (Cafini et al., 2016; Rossi
et al., 2017a).

The acquisition of antimicrobial resistance genes is
mainly credited to the occurrence of conjugation and bac-
teriophage transduction and the presence of dozens of
insertion sequences in staphylococcal genomes, whose re-
arrangements contribute to genome plasticity and strains’
phenotypic diversification (Takeuchi et al., 2005; Haaber
et al., 2017). For a while, bacteriophage transduction was
perceived as the primary route of horizontal gene transfer
between staphylococci, while conjugation was believed to
play only a minor role in the evolution of this genus, given
the scarcity of mobilization and conjugation loci in staphy-
lococcal plasmids (Ramsay et al., 2016; Haaber et al.,
2017). In fact, only 5% of sequenced staphylococcal plas-
mids harbor genes required for autonomous transfer by
conjugation, which is contrasting with the abundant evi-
dences for horizontal transfer of plasmids between different
lineages and species of Staphylococcus (Ramsay et al.,
2016).

However, new mechanisms of transference of those
types of plasmids have been discovered and probably ex-
plain the extensive plasmid transfer within the genus. These
mechanisms include conjugation mediated by integrative
and conjugative elements (ICEs), also referred to as conju-
gative transposons (Lee et al., 2012), in trans recognition of
multiple variants of the canonic origin of transfer (oriT) by
some conjugative plasmids (O’Brien et al., 2015b), and the
activity of novel conjugative plasmids described in com-
munity isolates of S. aureus that are capable of mobilizing
unrelated non-conjugative plasmids (O’Brien et al.,
2015a).

The Staphylococcal Cassette Chromosome mec

(SCCmec), a genomic island that encodes resistance to
methicillin and nearly all other beta-lactam antibiotics, is
also a protagonist in the emergence of resistant strains.
Analyses of numerous SCCmec sequences indicate that this
mobile genetic element evolved by recombination and as-
sembly events involving an ancestral SCCmec III cassette
between strains of the S. sciuri group and the species S.

vitulinus and S. fleurettii, which were then transferred to S.

aureus and other species (Rolo et al., 2017), with CoNS
acting as their central reservoirs (Saber et al., 2017).

Our group has demonstrated the transference of high
molecular weight plasmids carrying the mupA gene for
mupirocin resistance from S. epidermidis, S. aureus, and S.

haemolyticus strains, from either human or canine origin, to
another S. aureus strain (Bastos et al., 1999; Rossi et al.,
2016, 2018). Mupirocin resistance spreading is alarming,
since this drug, which is used as an intranasal ointment by
healthcare workers, can significantly reduce the occurrence
of nosocomial infections caused by MRSA (Patel et al.,
2009). Similarly, Cafini et al. (2016) demonstrated the
transfer of linezolid resistance mediated by the cfr gene
through plasmids, between S. epidermidis, S. aureus, and
Enterococcus spp. isolates from Japan. Enterococcus spp.
is also a protagonist of nosocomial infections and has been
pointed out to participate in plasmid exchange with MRSA,
through which resistance to the last-resource antibiotic
vancomycin appears to be acquired (Kohler et al., 2018). A
study performed by Meric et al. (2015) with hundreds of
genomes of S. aureus and S. epidermidis showed that these
species share only about half of their pan genome, but there
was a considerable sharing of mobile genetic elements be-
tween the two species, in particular genes associated with
pathogenic islands and the SCCmec.

Biofilm formation, a characteristic feature of many
CoNS (Barros et al., 2015; Buttner et al., 2015), seems to
provide the ideal environment for the occurrence of hori-
zontal gene transfer (Madsen et al., 2012).

Biofilms as the perfect place for horizontal gene

transfer among staphylococci

Bacterial biofilms are dense surface-associated cellu-
lar communities embedded in a protective self-produced
matrix of exopolysaccharides, whose development confers
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new properties to its inhabitants (Black and Costerton,
2010, Flemming et al., 2016). Biofilms feature a social co-
operation between bacteria that enhances nutrient uptake
and distribution and, given its protective matrix, hinders the
exposure to antimicrobials and host defenses, thus increas-
ing survival (Flemming et al., 2016). Hence, biofilm for-
mation plays a fundamental role in virulence.

Although the biofilm mechanisms involved in resis-
tance to host defenses are not entirely understood, they in-
clude spatially limiting the access of leukocytes and their
products to the target cells, suppression of leukocyte effector
functions and cell-cell communication to increase resistance
(Leid, 2009). Reducing membrane permeability also con-
tributes to limit the entrance of antimicrobials (Liu et al.,
2000). However, the presence of antibiotics that affect the
Staphylococcus cell wall have been shown to modulate natu-
ral transformation in a process that seems to be dependent of
the alternative sigma fator H, SigH (Thi et al., 2016). In fact,
the expression of SigH-controlled genes makes S. aureus

cells competent for transformation by plasmids or chromo-
somal DNA (Morikawa et al., 2012), which in turn increases
the probability of plasmid exchange between the cells within
the biofilm. Liu et al. (2017) demonstrated that the presence
of many antibiotics induces the expression of the ccrC1

gene, involved with the excision of the SCCmec from the
bacterial chromosome, thus triggering its transfer.

Overall, the high cellular density of biofilms, in-
creased concentration of exogenous DNA, enhanced cell
competence, stabilization of cell-cell contact by the matrix
and even the biofilm architecture, that facilitates the disper-
sion of MGEs, may contribute to horizontal gene transfer
(Madsen et al., 2012; Savage et al., 2013). The fact that
more transconjugants are produced after filter-matings,
when compared with planktonic cells mating, indicates the
importance of biofilms for the transfer of MGEs (Madsen et

al., 2012). It has been shown that S. aureus biofilms can
drastically increase the rates of conjugation and transfor-
mation of plasmids containing resistance to multiple drugs
(Savage et al., 2013).

As observed for many bacteria, during biofilm matu-
ration S. aureus can suffer lysis and release its genomic
DNA, producing the so-called external DNA (eDNA),
which is a major component of the matrix of biofilms estab-
lished by this bacterium (Sugimoto et al., 2018). The eDNA
adsorbs to the surface of a single cell in long loop struc-
tures, which act as an adhesive substance that facilitates cell
attachment, in addition to influence the hydrophobicity of
the bacterial cell surface (Okshevsky and Meyer, 2015).
Furthermore, in S. epidermidis, eDNA production reduces
the depth of vancomycin penetration, as the matrix-embed
and negatively charged DNA interacts with positive char-
ges of the antimicrobials (Doroshenko et al., 2014). More-
over, the eDNA released by the cells to constitute the
biofilm matrix is also available for horizontal gene transfer
by transformation to competent cells in the community
(Hannan et al., 2010; Vorkapic et al., 2016).

The dispersion of MGEs and eDNA is likely facili-
tated by the empty spaces within biofilms, which also func-
tion as channels that allow the flowing of fluids and the
consequent dispersion of nutrients and oxygen to all cells.
Studies indicate that this biofilm architecture is influenced
by the production of biosurfactant compounds by the ad-
herent bacteria (Davey et al., 2003). Consistent with this,
we have recently shown that S. haemolyticus strains are ca-
pable of producing biosurfactants that affect biofilm forma-
tion on abiotic surfaces (Rossi et al., 2016). Likewise,
surfactant peptides produced by S. epidermidis control bio-
film maturation and detachment from colonized catheters
(Wang et al., 2011).

While, as abovementioned, CoNS lack most of the S.

aureus virulence factors, biofilm formation is a major fea-
ture of S. epidermidis and S. haemolyticus, as well as of
other CoNS, such as S. saprophyticus, S. hominis and S.

cohnii. This phenotype is positively correlated with wide-
spread antimicrobial resistance (Allori et al., 2006; Czekaj
et al., 2015).

The CRISPR paradox in gene-reservoirs’

staphylococci

Clustered regularly interspaced short palindromic re-
peats (CRISPRs), allegedly present in the genomes of close
to 90% of archaea and 50% of bacteria, are a prokaryotic
evolutionary defense response to the preponderance of bac-
teriophages in the biosphere, acting as an interference sys-
tem against foreign nucleic acids (Horvath and Barrangou,
2010). The CRISPR locus is composed of direct repeats of
palindromic sequences interspersed with small sequences
called spacers, which are fragments of exogenous sequen-
ces (Figure 1A). A functional CRISPR system has adjacent
proteins (CRISPR-associated proteins, Cas), responsible
for the process of recognition of foreign nucleic acids and
the interference against invasive genetic elements (Horvath
and Barrangou, 2010).

CRISPR interference begins with the entrance of an
exogenous DNA or RNA in the bacterial cell, which is pro-
cessed into small fragments by repair proteins, like those of
the RecBCD complex (Amitai and Sorek, 2016), and later
recognized by a complex of universal Cas1-2 proteins,
which incorporates a fragment of the invader nucleic acid
in the CRISPR locus as a new spacer (Figure 1B). The
CRISPR locus is expressed as a long transcript that is pro-
cessed, either by Cas proteins or intrinsic RNases, into
small RNAs referred to as CRISPR-RNAs (crRNAs). Each
crRNA is made of a fragment of the original direct repeat
and the spacer, whose complementarity to foreign mobile
genetic elements is the basis of the interference process,
fulfilled with the activity of another Cas protein (like Cas9),
or Cas complexes (van der Oost et al., 2014).

Marraffini and Sontheimer (2008) described a S. epi-

dermidis CRISPR containing a spacer whose sequence was
homologous to a region of the nes gene, coding a nickase
found in virtually every staphylococcal conjugative plas-

Resistance exchange in staphylococci 5



mid sequenced. Consistently, this CRISPR prevented con-
jugation and transformation from happening, while the
removal of the spacer allowed plasmid uptake. Later, Ha-
toum-Aslan et al. (2014) constructed mutants for all the
nine cas/csm genes of the type III-A system in Staphylococ-

cus epidermidis RP62a and showed that many mutations
affected interference by impacting the interference com-
plex formation or the crRNA biogenesis. At least 4% of the
spacers within staphylococcal CRISPRs are identical to
publicly available plasmid sequences, thus demonstrating
their antiplasmid activity (Rossi et al., 2017a). This per-
centage may be underrated due to under-sampling of mo-
bile genetic elements and, as a consequence, their relative
scarcity in public databases (Mojica et al., 2005).

Since CRISPR-Cas systems were believed to exist in
roughly 50% of bacteria, and given its antiplasmid activity,
it is supposed to highly impact horizontal gene transfer
among staphylococci. However, a study performed by Cao
et al. (2016) with hundreds of S. aureus clinical isolates
from China revealed that less than 1% of them harbored a
complete arrangement of cas genes. Later, our group ana-
lyzed the genomes of dozens of CoNS of 15 species and
also found that less than 15% of them carried CRISPRs and
cas genes (Rossi et al., 2017a). Regardless of how abundant
CRISPRs really are among Staphylococcus isolates, they
are clearly rarer than previously thought, which is consis-
tent with the role of staphylococcal as reservoirs of antimi-
crobial resistance genes.

Because spacers are incorporated in the CRISPR lo-
cus following an organized and thus chronological order
(van der Oost et al., 2014), their sequences can be explored
as molecular clocks to reveal the history of genetic invasion
of a given isolate, and even to study the epidemiologic con-
nection between different strains carrying a CRISPR of a
common origin. With that prerogative, we explored the
spacer sequences of CRISPRs located within SCCmec ele-
ments from different Staphylococcus species. As indicated
by the high sequence identity between the SCCmecs, the
identical sequence and organization of spacers evidenced
that the mobile genetic element had been transferred be-
tween strains of canine S. pseudintermedius and S.

schleiferi, and then to strains of S. capitis and S. aureus iso-
lated from humans (Rossi et al., 2017a; Rossi et al., 2019).

Concluding remarks

Most Staphylococcus species lack many of the S.

aureus virulence factors and, because they are less fre-
quently isolated from infectious processes, their impact in
pathogenesis is usually overlooked. However, sequence
and experimental evidences of horizontal transfer of anti-
microbial resistance genes between them, favored by their
capacity of forming biofilms and the scarcity of restrictive
CRISPR-systems, show that these bacteria participate ac-
tively in the process of drug resistance spreading. More-
over, the fact that we exchange microbiota with our
surroundings, makes it imperative that epidemiologic stud-
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Figure 1 - Features of CRISPR systems. (A) Main structure of a CRISPR system. For simplicity, a type II system, containing only the Cas9 protein as the
interference effector, is displayed. (B) Steps of a CRISPR system activity, from foreign nucleic acid recognition and spacer incorporation (a step called
adaptation) to interference.



ies and strategies to control the advance of antimicrobial re-
sistance consider the integrated nature of the relationship
between human beings, animals, and the environment.
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