AUTHOR TITLE	Matthews, Christine M. Underrepresented Minorities and Women in Science, Kathematics, and Enginsering: Problems and Issues for the 1990s. CRS Report for Congress.
INSTITUTION	Library of Congress, Washington, D.C. Congressional Research Service.
REPORT NO	91-26SPR
PUB DATE	5 Sep 90
NOTE	84p.
PUB TYPE	Reports - Research/Technical (143)
EDRS PRICE	MFO1/PC04 Plus Postage.
DESCRIPTORS	American Indians; Blacks; Demography; Educational
	Trends; Engineering Education; *Engineers; Federal
	Programs; Females; Higher Education; Hispanic
	Americans; Intervention; Labor Force;
	*Mathematicians; Mathematics Education; Minority
	Groups; Racial Bias; Science Careers; Sex Bias;
	State Programs; Student Recruitment

[^0]
CRS Report for Congress

25 O
12
∞
08

Underrepresented Minorities and Women in Science, Mathematics, and Engineering: Problems and Issues for the 1990s

Christine M. Matthews Analyst in Science and Technology
Science Policy Research Division

The Congressional Research Service works exclusively for the Congress, conducting research, analyzing legislation, and providing information at the request of committee Members, and their staff.

The Service makes such research available, withuut partisan bias, in many forms including studies, reports, compilations, digests, and background briefings. Upon requests, CRS assists comittees in analyzing legislative proposals and issues, and in assessing the possible effects of these proposals and their alternatives. The Service's senior specialists and subject analysts are also available for personal consultations in their respective fields of expertise.

UNDERRTCPRDSENTYOD MINORITIDS AND WOMEN IN SCLENCDE, MATEEMMATICS, AND ENGINEHERING: PROBLEMS AND ISSUES FOR THE 1890®

SUMDARY

The Bureau of the Census reports that the population base from which future scientists and engineers are taken will have a aignificantly different racial mixture from that of the past. By the year 2000, approximately 85 perceat of the new entrents to the U.S. Labor force are expected to be minoritias, women, handicappea, and immigrants, groupe which for the moat part have been historically underrepresented in ccience, mathematics, and enginoering. Presently, blaclse and Hispanics are 25 percent of the procollege level, and, by the year 2000, they will comprise 47 percent. Approximataly 23 of the 25 largest school systems in the United States are majority minority school systemssystems in which students from minority groups predominate.

As groups, minorities, particularly blacks, Hispanics, and women have traditionally been underrepresented in the ecience, mathematics, and engineering disciplines compared to their fraction of the total population. Asian Americans are not statistically underrepresented in science, mathematics, and engineering, and as a consequence, are excluded from this report. In 1888, blacks accounted for 2.6 percent of all employed scientints and engineers; Hispanics were 1.8 percent; and women were 16 percent. Poor preparation in science and mathematics is said to be a major factor limiting the appeal of and access to science and engineering for these groups and increasing the attrition among those who do study the sciences. In addition, data at the precollege level show that women take fewer years of science and mathematics coursework (including advanced studies) than men. However, not only are come minority students experiencing disparities in preparation, they also are given disparate levels of academic competition and deficient exposure and interaction with people who have attended or plan to attend college, and as a consequence, lack knowledge of the value of a college degree.

There has been positive movement in the performance of minority students in science proficiency. Educational Testing Service (ETS) data indicate that from 1977 to 1986, 9- and 13-year-old black and Hispanic atudents showed gains on science proficiency while the white atudent population evidenced only slight improvement. For the 17 -year-old population, a decline in ecience proficiency was recorded from 1977 to 1982 for black, white, and Hispanic students. However, these same groups witnessed increases from 1982 to 1986. For women, science proficiency showed gains for 9 -and 18 -yaar-olds from 1977-1986, but remained at the same level for 17 -year-olds. Additional data have found that, when the requisite quantitative ability was maintained in high school, minority students peraisted in science and mathematics at a level equal to or higher than comparable nonminority atudents.

These demographic phenomena may affect the development of the scientific and engineering workforce and, consequently, the conduct of research and development in the 21 st century. The role of minorities is no longer viewed just as an equity issue; the demands of a scientific and technical workforce must also be met.
INTRODUCTION 1
DEMOGRAPHICS AND THE SCIENCE AND ENGINEERDNG TALENT POOL 2
THE TOPOGRAPHY OF THE BDUCATIONAL PIPBLINE FOR MINORITY STUDENTS 6
Local School Syntame and Thair Curricula 6
Teachers Perceptions of Students 12
Students Attitudes 14
Performance of Minority Studenta in the Precollege Curriculum 14
ENROLLMENT IN SCIENCE AND ENGINEERDNG MINORITY GROUPS: TRENDS BY GENDER AND ETHNICITY 18
Blacks 18
Hispanics 19
Native Americans 20
Women 21
Engineering Manpower Commission Report 21
PARTICIPATION OF MINORITIES IN HIGHER EDUCATION 25
Factors Affecting Minority Participation 25
Shortage of Minority Faculty and Administrators 35
Historically Black Colleges and Universities 36
Major Research Universities 39
Liberal Arts Colleges 42
Community Colleges 43
PROGRAMS AND STRATEGIES FOR MINORITY STUDENT ENRICHMENT 44
Federal Involvement 45
State Involvement 47
University Sponsored Programs 48
Activities of Corporations, Foundations, and Profeasional Societies 51
POLICY ISSUES 58
APPENDIX 65

UNDERREPRESENTED MINORITLES AND WOMEN IN SCIENCE, MATEIEMATICS, AND FNGINESRNG: PROBLEMS AND ISSUES FOR THE 1980?

INTRODUCTION

What forces persist in the general culture, in the general valuas ayatem of American society, in the family, in the school aytam, and in the media that have failed to attract a signifficant number of minority women and atudente to the sciances? ${ }^{1}$ Minorities, who, historically, have been underrepresented in the sciences, are the ones who have had the least financial resources and support syateme. Many minoritien, alco, have had inequitable educational beckgrounds when compared with their nonminority counterparts. The underrepresented minorities discussed in this report includo blacke, Hispanics (Mexican Americans, Puerto Ricans, Cubans), Native Amaricans (Aleuty, Eskimos, Alaska Natives), and women. ${ }^{2}$ While Native Pecific Inlanders (Polyneainns and Micronesians) and the handicapped are underrepresented, thoy will not receive focus. Asian Americans are axcluded in this roport primarily because they are not statistically underrepresented in acience, mathomatica, and angineering. Data from the National Seience Poundation (NSF) for 1988 reveal that, while Asian Americans are approximately 2 percent of the U.S. workforce, they aceount for more than 5 percent of the total acience/enginearing workforce. Additional data show that Asian representation among doctoral scientiate and engiaeara is greater than their representation among all ecientist and engineers. ${ }^{8}$ Rigorous demands are now being placed on the U.S. educational aystem to broaden the pool of minority students at the precollege level so an to affect college

[^1]enrollment, college succoss, and college graduation. The ayntem noeds to focus on the largest tier of minority etudenta, those not mecessarily with the high standardized test scores, yet etill possessing the demonstrateyd ability from other measuree to areceed in acience, mathematics, and engineering. The problem of underrepresented minorities in the seiences is serious enough to compromise the United States ability to devalop and advance its traditional industrial base and to compato in international marketplecas. This report will discuss selected social, educational, and economic factors that influence the decisions of minorities and women to pursue careers in science, mathematics, and engineering along with policy options that contain provisions to address these areas of concerns.

DGMOGRAPHICS AND THE BCIENCE AND ENGINEERING TALDNT POOL

Any attempts by scientinta and educators to address the expected shortfall of more than 400,000 science and engineering personnel by the year 2000 (estimate of the National Science Foundation) would be expected to include recognizing the general demographic changes that are eroding the science and engineering workforce." The number of college age students is declining: this is expected to continue through 1996. After that time, the projections are for a rise back to the 1983 level by the year 2008. According to impending demographic realities, during the trough of the decline, 1994-1996, fewer people may be available to go into scientific and technical careers. Also, the number of students electing msjors in science and engineering is decreasing. It is thought that the talent pool reaches its maximum size prior to high school, however, migration into the pool is evident during grades 9 through 12. When migration does occur after high school, it is more likely to be out of, rather than into the pool.?

A survey conducted by the American Council on Education in conjunction with the Cooperative Institutional Research Program of the University of California, Los Angeles, found that in 1988, approximately 15.3 percent of entering freshmen selected sciences as majory (biological sciences, physical sciences, mathematics, and engineering), a decrease from 15.4 percent in 1987,

[^2]18.1 percent in 1980 , and 21.8 percent in $1966{ }^{\circ}$. Frashmen interest in computer science in the fall of 1988 was unchanged from its 1887 leval of 2.7 percent, but remsined below ite 1882 leval of 8.8 percent." It abould be noted that interest in engineering regintared a marginal inerease in 1888, to 8.6 percent from 8.5 percent in 1987, but well below its peak of 12 percent in 1977.

The sise of the population bece from which new scientists and engineers are taken yields come information about supply potentiale. The Bureau of the Cenme, US. Department of Commerce, reports that aince 1982, the population of 22 -year-olde has declined, and is farscested to continue in this direction through the year 2000. The Bureau projects that a mariced decline will occur during 1996-1998, at which time the number of 22 -year-olds will be approsimately 25 percent less than in 1882. Such future projections are cause for concern for some educators because of the otrength of past linicagas between the number of 22 -year-olds and undergraduate science and engineering degrees.

In addition to lower numbers, the prospective 22 -year-old pool will have a significantly different racial misture than the past. The Bureau of the Census reports that in 1975, 14 percent of the 22 -year-old population was composed of minorities; by 1995, the projected percentage will be 19 percent, and by the year 2005, 20 percent. ${ }^{10}$ Presently, blacke and Hispanics are 25 percent of the precollege level population, and, by the year 2000, they will comprise 47 percent (this change has already occurred in California, Texas, and New Mexico). ${ }^{11}$ If current trends continue, by the year 2020, today's minorities will become the

[^3]majority of atudents in the United States. ${ }^{18}$ Although there has been an increase in the participation of minorities in the science and engineering disciplines at the undergraduate lovel, it is ovar auch a mall base that the significance in muted. Questions are raised as to whother even the present low participation of non-Acian minorities in the sciences can be maintained, and, more importantly, can be increased in the coming yeare.

Demographic patterns will alter the size and composition of the high sechool graduating classes. Approximately 23 of the 25 largeat achool ayutems in the United States are majority minority echool eyatems-ayatems in which students from minority groupe predominate. ${ }^{18}$ The Hiepanic population growth is to be the fastent growing of all groupa, primarily due to immigration, with black population growth following as second. By the year 2000, minority groups are projected to constitute the majority of the population in 53 major cities. ${ }^{14}$ However, today, a amaller proportion of minoritias age 18 to 24 than of nonminorities has graduated from high achool, and the collega-going rates for those minorities who do graduate also is lower than those for non-minority high school graduates.

As a group, minorities, particularly blacke and Hispanica, have traditionally been underrepresented in the science and engineering disciplines compared to their fraction of the total population. Blacke are appromimately 12 percent of the U.S. population and constitute 2.6 percent of all employed scientists and engineers. Hispanics comprise 9 percent of the U.S. population, and represent less then 2 percent of all employed scientists and engineers. ${ }^{16}$ Black enrollment in science and engineering alone has declined 19.5 percent since 1981. Concomitant with the underrepresentation and the recent downturn, blacks' and Hispanics" "persistence rate" in the aciences (continuing in the program until graduation) has been 29 percent as compared to the national total of 79 percent. Poor preparation in science and mathematics is said to be a major factor limiting the appeal of and access to science and engineering for these

[^4]groupe and increaning the attrition among those who do study the sciences. However, not only are some minority atudente experioncing disparities in preparation, they also are given diaparate levele of academic competition and deficient expocure and interaction with people who heve attended or plan to attend college, and as a consequence, lack knowledge of the value of a college degree. Shirley M. Malcom, Head, Directorate of Education and Human Resources Programs, American Aseociation for the Advancement of Science, testified before the Sonate Committee on Labor and Human Resourcee that:

> Underreprosented minority students are less likely to be in the acadomic track in high achool, less likely to participate in programs for the gifted and tralented and are more likely to bo in romedial programs. . . Since lass in boing provided, atudents are denied the opportunity for axposure to more rigorous content and concepts which are usually precursors to more advanced work in high school. Evidence is emerging from studies by Jeannie Oakes of The Rand Corporation that schools which minority wtudents attend are more likely to have less able teachers and lese rich course offerings."

These issues coupled with demographic projections may affect the development of the scientific and engineering wortforce and, consequently, the conduct of research and development (R\&D) in the 21st century. The international competitiveness of many U.S. industries depends not only on macrooconomic policies but on building capable and acientific and technological workforce. Effective science and mathematics education is needed to prepare the students who will become the Nation's scientists and engineera, and greater technical literacy is needed by citizens generally in an incrassingly complex and competitive world. ${ }^{17}$ The U.S. technological position currently appears to be threatened by a possible shortage of acientisto and engineers, and even more important, by the lack of general scientific and mathematical literecy required by the people who are primarily responsible for quality and productivity gains. Even students pursuing nonscientific and nonmathematical specialtias are likely to require basic knowledge of ecientific and technological applications for effective participation in the workforce. There is likely to be a need to expand

[^5]and diversify the Nation's science and enginearing workforee at all levals. The role of minoritias is no longer viewed juat as an equity iscue; the demands of a scientific and technical workforce must also be mot. W. Ann Reynolds, former chancellor, California State Univervity, epesiding before the Committee on Science, Space, and Technology bearings on Women, MCinorities and the Disabled in Science and Technology stated thats
. . . [T]he role of minorities, women, people with disabilities, is not an equity iscue. The neod for womon, minoritien, in ecienco and engineering in quite cimply a nationwide worli fore incue. The Nation's leaderhip in science and angineering cannot be maintained, cannot aurvive, I would submit, unless our educntion pipeline receives the help it needs to create a more diverse croup of world-elens ecientinte and engineers. ${ }^{4}$

Some in the scientific conmunity, however, conclude that the projected shortages in science and engincering persomnel will not occur. They charge that career choices and market forces are more indicative of the future supply of scientists and engineers than are demographics determinants. They point out that past predictions of long-tarm ehortages and surpluses have failed to materialize. Alan Fechter, Erecutive Director, Omice of Scientific and Engineering Personnel, National Academy of Sciences, otated that debate should not focus on whether there is a projected shortage, but on the ". . . nonwhites and nonmales, the numbers of foreign nationale and the numbers of women and minorities in science and engineering. There is an excess of some and a scarcity of others. ${ }^{10}$

TEE TOPOGRAPEY OF TEE EDUCATIONAL PIPELINE FOR MINORITY STUDENTS

Local School Systeme and Their Curricula

The public schools are the critical determinant of otudents' preparation; however, for some minorities, the school experience can inhibit satisfactory academic achievement. Rigorous demands are boing placed on the approximately 16,000 school districts in the U.S. educational aystom. The education pipeline of today is more diverse than the past and presente more challenges for the school system. Data indicate that in the freshman clase of the year 2000, comprised of the children born in 1982, approximately 35 percent are black,

[^6]Hispanic, Native American or Acian, approximately 25 percent are in homes Inbeled impovariahed, more than 14 percent are the children from unmarried parenta, 10 percent have functionally illiterate parenta, 15 parcent are children who had English as a second langurge, 12.5 parcent are mentally or phynically handicapped, and approximately 50 percent are cetimated to live in a aingle parent household prior to the age of $18 .{ }^{20}$ Precently, appraximataly 50 percent of black children, 40 percent of Hiopanic youth, and approsimataly 70 percent of Native American children under the are of 18 yeart are raiced in families living at the poverty leval (the Federal poverty line for a fumily of three is $\$ 9,056)^{\text {. }}{ }^{11}$ The cobering reality in that some of these studente, specifically minority studenta, have experiensed moasurable amounts of negiect and indifference. This neglect and indifference is coupled with a fractionalized oducational nystem in which equal educational opportunities are nonexintent. A 1988 report of the Educational Trating Service etated that: Students do not arrive at the kindergarten door with equal opportunities and aspirations. Social and economic realities have begun to have an impact long before that time, and school does not eerve to eradicate these inequitien."2

There are stark differences between student performance in urban aystems with a large minority population, and suburban systems with leas of a minority population. One reason for lowar performance and achievement in urban areas is limited resources. Many urban achool diatricte apend less per capita on each student than suburban districte, and suburban studente are more often exposed to more educational opportunities than urban students. ${ }^{23}$ James Vasquez,

[^7]Superintendant of Edgawood school dintrict, San Antonio Texas, notes that, generally, the urban school systams ". . . have the moat kids, the moat pressing needs, and the parreat tax basea. ${ }^{\text {an }}$ In addition, while wome urban districts must do more with iean funding, all atudents are evaluatod on the same criteriaaimilarly Iowa Tent of Beric Sille, Stanford Achievement Tenta,California Teat of Basic Skill, Scholsatic Aptitude Tent, (SAT), the American College of Tenting (ACT), and the National Conlegiate Athletic Aevociation Proposal (NCAA) $48 .{ }^{26}$ In many urban areas, where minority atudente are concentrated, dropouts rates for minority atudente reportedly exceed 50 percent by the ninth grade. ${ }^{\text {a }}$

Suggestions have been made that local school aystems must make a conscious effort at curriculum restructuring, yat many school ayatems have failed to create a learning environment thrt is atructured and stratified to moet the diverse neods of the student population. The heightoned interest among educational researchers in curricula reiorm, especially in the areas of the sciences, has become very acute for minority atudents. School aystems could make ecience and mathematics more attractive to all studenta, including those members of minority groups with potential talent and inclination for technology-based careers. It has been proposed that systems support an educational model that will enlarge the population of students into science careers, that would "broaden the pool" rather than "akimming the cream." Bill G. Aldridge, Erecutive Director, National Science Teachers Association (NSTA), states that the pool of students in science would be expanded if the ecience curriculum focused resources and attention on all students to take more science courses. Such an approach would effect a more diverse group of acientists that presently exists. He constructs an analog between the need for including all atudents in the science education program and molecular motion.

The present state of secondary school science is like the first state of the gas. We select the young people who happen to be moving fastest in the "right" direction, and we ignore even faster

[^8]${ }^{28}$ Propasal 48 of the National Collegiate Athletic Association is defined by Bylaw 5-1-(j) partial qualifier. Propasal 48 requires that entering atudent athletes have a minimum of 2.0 grade point average in a core curriculum of 11 high achool courses, and a minimum combined SAT score of 700 or ACT of 15. Because of the order in which this proposal has been presented in the Association's annual meetings, it also carries the designation of Proposal 42 and Proposal 26 (the most recent).
${ }^{26}$ Wiley, Ed III. Tracking/Labelling Key Reasons for Declining College Pool, Researcher Suggests. Black Issues in Higher Education, v. 6, July 20, 1989. p. 1.
${ }^{27}$ Addrige, Bill G. Essential Changes in Secondary Science: Scope, Sequence and Coordination. Dec. 16, 1988. p. 1.
(more able) children who do not happen at that moment to be moving in the "right" direction. We give those selected studente the added puih (advantagy in the form of resources, tecechar attention, and recognition; and we ignore the rest of the studentm.

There is another way of maling fant molecules move toward the opening. If you heat the entire ample of molecules, all will move fantar. The fanteat will be evan fastor than before, and more moleculee will pass through the opening. And you've accomplished this without selecting certain molecules or giving only tham epecial anjatance.

Heating the gas is analogoun to providing more and better science education for all children so they can all move fastar. Many of them will move in the "right" direction, but not necessarily at the time we want them to do 80 . If we allow for this delay, we will reap a rich selection of students in ecience, just as we got a greater variety of molecules in the heated gas. ${ }^{23}$

The importance of restructuring schools was included on the agenda of the September 1989 education mummit at the University of Virginig with the Nation'e Governors, hosted by President Buah. The consensus of the mummit was that fundamental restructuring would be done at the State and local level. A January 1990 report of the Quality Education for Minorities Project at the Massachusetts Institute of Technology, Edecation That Worker An Action Plan for the Education of Minorities, supported fundamental reatructuring also, positing that it was vital relative to minorities. The report declared that:

Efforts at restructuring must value minority students; assume responsibility for their learning be sensitive to their backgrounds, language, and cultural values; and be adequately funded. Any national goals for education, such as those to be proposed by the governors in 1990, must include a vision to improve the education of our atudente. ${ }^{20}$

In addition, the report found that the bulk of minority students continue to attend schools that remain separate and unequal.

[^9]
Abstract

Forty-four years after Render v. Westminster School District, and thirty-IIve vears efter Delpado v. Bastmop Indenendent School District, and thirty-five yeare aftor Brourn v. The Boand of Education of Topeha-all cases that declared cegregated school unconstitutional-mont minority children remain in echoole that are separate and docidedly unequal. Educational opportunities for most minority youth lag behind thoce availeble to white studenta, and that leck of opportunity is reflected in the lower educational achievement of minority children. ${ }^{20}$

More recently, Lauro F. Cavazos, Secretary of the Department of Education, in the rolease of The Wrising Report Card, 1904옹 and The Reading Report Card, 1971-88, stated that the education reforms of the 1980s have failed to raise the achievement acores of the students, markedly. ${ }^{\text {at }}$ Both reports proposed major structural changes in the U.S. educational system.

One criticism of many achool systems has been their continued tracking of students. These mechanisms have been ineffectual.
... [r]esearch findinge consistently indicate that inflerible track placements and rigid ability groupings segregate, atigmatize, and deny those in the bottom tracks the same access to quality education those in the upper tracks receive . . . ${ }^{82}$

While minority high school completion rates have improved in the past years, minority students remsin significantly overrepresented in the vocational tracks and underrepresented in academic programs. Clifton R. Wharton, former chancellor, State University of New York, has argued that teachers and counselors have engaged in the frequent practice of counseling minority

[^10]students into trade and vocational curricule, with the tacit assumption that they are not capable of the more rigorous ecademic alternatives.s

The sequencing of science courses and traciong of atudenta preclude many students from later celecting scionce as a career while augmenting she advantagen for some ntudente. Minority stadents (primarily black and Hispanic) are disproportionately placed in the low-ability or non-college bound tracke, which meraly reinforces educational inequalitien. ${ }^{\text {a }}$ Such prectices are manifested even though '. . . [d]ifirerances in placament by race and eccial clase appear regariless of whathar teat ceores, counselor and tescher recommendations, or student and parent choicse are usod as the basis for placement. ${ }^{\text {at }}$ High school science courses are duplicated in many of the introductory college courses. Students who have taken high school science courses, are better in freshmen science courses and score higher on entrance ezams. They are percaived as having higher abilities by their profescora, and are given scholarshipe and opportunities to do research related work with the best faculty. Those students who did not take high school science courses are at a disadvantage. Aldridge of the NSTA stated that:

The present sequencing of courses and tracking of studente reinforce the accumulation of advantage for sorre studenta and effectively preclude othern from later selecting science as a career. A child who has not enrolled in algebra in the eighth or ninth grade and then not taken the other more advanced math courses in sequence is not ready for the series of advanced science courses required in high school. As a result, a student is ruled out from majoring in one of the physical sciences or engineering fields in college.

High school physics, chemistry, and biology course duplicate substantial portions of introductory college courses. Young people who take these high achool courses enter college with prior knowledge of the mubjecte, and they also score higher on entrance exams. They therefore are perceived as having higher ability. They are given echolarahipe and opportunities to study under the best faculty, so that their prior advantages are rewarded, leading them to continue in these acience fields.

[^11]
Abstract

Young people who did not take those courses in high school, but later ahow intereat, are at auch a disadvantage that without special assistance or extraordinary motivation and hence, they will never be able to compete ancesanfully with their more advantage peers. Since much disadvantace in the phywical sciences is ofton associated with women and minoritios, it is not aurprising that we find their numbers disproportionately low anong engineers and physical sciontinta. ${ }^{*}$

The economy requires a aignificantly largar number of highly akilled and educated workers. Experta says that chools must make the necessary changes to provide effective educational axperiences to a broader range of etudents, and this can be done without compromining quality. According to these experts, both informational and motivational experience need to be provided that will promote the prospects of post-secondary education for minority students and those students at risk. These groups of students need to be able to find success and positive learning experience in early grades that will enable them to move through a series of transitions resulting with multiple options at the secondary level. Policies and programs of local echool ayatems that are deaigord to keep all children in the pipeline for a longer period of time, benefit the Nation at large. Furthermore, any efforts at curriculum improvement must be sustained in order to assure lasting change and improvement.

Teachers Perceptions of Students

While such variables as ability, academic preparation, and level of motivation contribute significantly to educational achievement, classroom teaching and teacher expectation also serve as a significant detarminant in the quality of educational opportunity. However, some minorities receive discrimination and discouragement not only from their peers, but also from a predominant teacher population and the absence of role models. At present, approximately 16 percent of the Nation's elementary and socondary public school students are black, yet only 7 to 8 percent of the teachers in these public schools are black. ${ }^{87}$ In 1986, less than 5 percent of the 2,200 teachers hired in the Los Angeles Unified School district, a school district that is 52 percent Hispanic, were Hispanic.ss By the year 2000, approximately 40 percent of the Nation's pupils will be minorities,

[^12]while approximately 95 percent of their teachers will be white. ${ }^{50}$ A predominantly white female population will continue to teach this ineressingly plurelintic, challanging population. Frrold W. Stevenson, Chuanaheng Chen, and David H. UEtI, in a atudy of 3,000 first, third, and fith grade black, white, and Hispanic etudents anrolled in Chicago metropolitan area echools, found that minority studente did not get equal fcedback from thoir teachere as that which was given nonminority etudents.0

> They [teschers] praised the children for a modestly good performance instead of puahing tham to do even better. Thon, when the children onter high school, they find they are not prepared for the more difficult work. "

The researchers found that while the minority students received disparate feedback in the classroom, they were as equally enthusiastic about education and had equally high expectations about future success as the nonminority students.

A significant number of minority children attend achools in urban areas where the meeds of the students and the echools are greater and more immediate. In these urban communities, where racial isolation persista and assimilation into the majority culture is minimal, many of the students' learning troubles result from lack of "cultural aynchronization" with their middle class white teachers. Educational resuarchers and practitioners have atrongly urged that more minority teachers be trained and recruited to teach in these areas. ${ }^{2}$

For more than 20 years, educational research has shown a direct correlation between expectations for atudent achievement and the types of instruction and ccunseling provided to the students. Black and Hispanic and Native American students have received considerably less encouragement to pursue scientific and

[^13]technical caroers than white atudenta. © Wharton charges that increased efforts should be instituted to better pair minority atudente with supportive academirally oriented surrounsinge. He asserts thate

> We must also interdict the "cycle of avoidance," in which lack of preparation in basic science and mathematies leads to a lack of interent, anxiety, and ultimately non-anrollment in those fielde at the collego level. Indeed, high schools and colleges must cooperate to develop acsdamic and career pathe in science and technology for promising minority studente. To do that, we have to interent these youths during the early cocondary years in highdemand professional and technical fields and to provide both special atudy options and financial incentives to take advantage of them. ${ }^{4}$

Students' Attitudes

Science and mathematics have been described as unpleasant experiences by many students. Having failed on numerous occasions, many students lack the encouragement to continue and 50 quit. ${ }^{48}$ If a atudent cannot identify with success, often failure remains. Far too ofton, a students previous performance is the only criteria used to predetermine their level of auccess.

Performance of Minority Students in the Precollege Curriculum

Students" interest in high school science is not a "fixed notion." At each iuncture in the education syatem, a aignificant number of minority students are lost. The fundamental failures in elementary and secondary education are more pronounced for black males than any other subgroup of minorities. While black males constitute approximately 17 percent of the public achool population, they

[^14]represent 41 percent of the epecial education clascos." Thee black males get lost early and fill to get into the "pipaline." Incroesed efforte need to focus on retention by improving the rates of high sehool graduation for this cohort to enable them to have career choices.

Underproparation in ecionce and mathomatics is a porvanive problem for minority studente, with minority studente ensolling in fewer science and math courses than their white counterparts. Revearch has found that aarly preparation and commitment to ecience and mathematics is very important, especially for minority studenta. ${ }^{17}$ In a atudy by Thomas L. Hilton and Valerie E. Lee, it was found that:

> . . WJortifying high school mathomatics and science preparation, while introducing young people to the intrincic intereat of these fields above and beyond the drudgery which typifies their perception, would have better social payoff than subequent eforts to ontice undergraduates into [science,mathematics, and engineering]. Our evidence is that more atudents move into sciences earlier than later, when curricula options are otill available and mobility is not discouraged either by inatitutiona, stringent curricular requirements, parents, or peers. At later stope in the educational pipeline, science attracts few newromers and mainly battles to hold old adherents. ${ }^{4}$

There has been positive movement in the performance of minority otudents in scientific proficiency. ETS data indicate that from 1977 to 1986, 9- and 13-year-old black and Hispanic atudents ahowed gains on acience proticiency while white students population evidenced only alight improvement. ${ }^{99}$ For the 17-year-old population, a decline in science proficiency was recorded from 197\% to 1982 for black, whites, and Hispanic otudents. A reverse was noted for all

[^15]subgroupe from 1982 to 1986, with black students recording a significant incresse. Bocsuse of the importance for blacke, black students actually surpassed their 1977 performance in 1986 while white and Hiapanic studenta failed to equal such performance. While blacks and Fispanics narrowed their performance gaps, there remained disparity relstive to white otudente. Data compiled for the report showed that the average science proficiency of 18 - and 17-yarr old black and Fispanic studenta was approximately four years behind that of their white counterparta ${ }^{10}$

There have been othor gains in procollege preparation of minority students for saience and enginearing carcars as evidenced by the avarage ccorss on the SAT. From 1978 to 1988, black ctudente average combined scores (mathematics and ecience) on the SAT increased 61 pointe, from 686 to 737; Hirpanic students avarage combined scores incressed 29 pointa, from 755 to 784; Native American students combined scores incressed 22 pointa, from 806 to 828 , and white students combined average score during that same time period increased by 4 poiste, from 931 to $935 .{ }^{\circ 1}$ While the statistical validity and relisbility of the instruments continues to be been mired in controveray, average scores on the SAT have increased for virtually all minorities in the period 1978 to 1988 (both verbal and mathematics). ${ }^{62}$

In an ETS study of the Persistence in Science of Migh-Ability Minority Students," it was found that when the requisite quantitative ability was maintained in high school, minority studente persisted in ecience, math and engineering majors at a level equal to or higher than comparable nonminority students. ${ }^{68}$ The cohort was from the population of students taling the SAT in 1984-1985 and also completing a 63-item questionnaire (Student Descriptive Questionnaire). The sample was limited to thase atudents receiving a minimum of 550 on the math section, with no minimum SAT-verbal ecore. The discriminate function analyais employed by the atudy found that the minority students were high in science motivation, advanced in mathematics achievement, and relatively high in quantitative ability. Concurrent with these findings, it was concluded that these students were influenced more by their associations

[^16]with other minarity acientists (through eummer jobe and part-time work) than by parenta, teachers, or friends.

The ETS atudy was in agreamant with assartions made previoualy by many in the academic and scientific community that minority otudents muat be put in the pipeline at the earlieat gradea, and enarey and resources munt be provided to them in order to keep them thers. The educational climate should be created that would focus not merely on the high-parforming etudent, but on the bulk of the students who are the average and who can bocome the above-average. Expanded programs are needed at the precollege level targeted for the average ctudents.

Many students are mercurisl about their carcer plans in high school and even the beginning years of college. The tranition period from elementary achool to junior high school has been found to be a critical time for intervention aimed at preventing disillusionment and subsequent decline in the motivation of many minority students. Secondary school science should focus on providing minority students with the necessary skills and motivation to become qualified for science and mathematics majors in undergraduate school. Programs should be structured to correct high sehool deficiencies and gaps in the course prerequisites for entry into these field. Both developmental components, coupled with effective tutoring would enable leas woll-prepared students to compete at a higher level in order to meet rigorous standards at the undergraduate laval without special dispenastion. Richard C. Richardson, Jr., associate director, National Center for Post-secondary Governance, cited fundamentals important to enabling minority students to earn degrees:
(1) Early intervention in the public schools to strengthen and improve students' educational planning;
(2) Summer "bridge" programs to accustom minority students to college-level course work and the campus atmosphere before they begin college;
(3) Special orientation programs and help with choice of courses and registration;
(4) Tailored financial-aid programs, including policies that recognize students may not be able to contribute as much in summer earnings to their aid packages if they participate in the bridge programs;
(5) Strong academic programs, coupled with courses designed to offset gaps in preparation;
(6) Adequate tutoring services, learning laboratories, and organized "mentoring programs;"
(7) Intrusive academic advising to guide selection of courses and to intervene before small problems become major; and
(8) Carser guidance to translate nonspecific educational goals into programs of atudy where course work and desired outcomes are clearly linked. ${ }^{*}$

ENROLLMENT DN SCIENCE AND ENGDNEERING BY MTNORITY GROUPS: TRENDS BY GENDER AND ETEDICITY

The number of minorities in scientific careers is of course a direct function of the number of minorities obtaining an undergraduate or graduate degree in the sciences. While there has been an increase in the participation of minorities in the science and engineering disciplines at the undergraduate level, it is over such a amall base that the agonificance is muted. A 1990 report of the National Academy of Sciences, On TYme to the Doctorater A Study of the Increased Tine to Complete Doctorates in Science and Engineering, found that, at the doctorate level, black and Hispanic atudente took more time to earn a doctorate degree than whites, and women were enrolled longer than men. ${ }^{\text {as }}$ Differences were evident depending on discipline, yet blacks consistently took a longer time to earn their degree than any other group.

Blacks

While blacks are approximately 12 percent of the U.S. population, their numbers comprise a amall percentage of the scientific and engineering personnel. Data from the Bureau of Labor Statistics indicate that in 1988, the 139,000 employed black ecientists and engineers constituted 2.6 percent of all employed scientist and engineers, up from the previously recorded 1.8 percent in $1978 .{ }^{66}$ In 1987, 6,359 (1.5 percent) of the 419,118 doctoral science and engineering workforce were black, an increase from the 2,709 (1 percent) in 1977. ${ }^{57}$ A January 1990 report of the NSF found that blacks earned 5.1 percent of the bachelors degrees in ecience and ongineering in 1887 (4.7 percent earned in 1985), and 3.4 percent of the science and engineering degrees at the master level in 1987 (down from 3.2 percent in 1985). At At doctoral level, blanks earned 1.8 percent (266) of the science and engineering degrees in 1988, a slight

[^17]increase from the 1.7 percent earned in 1987.50 In 1978, the percentage of science and engineering degrees earned by blecks at the doctoral level was 1.9 percent.

Eispanica

The diverse cultures of the Hispsnic community have witnessed the fantent population growth of all minority groupe. The education and eocial problems in this group are multiple. Four out of every 10 Hispanics, 16 to 24 years old, do not have a high school diploma; 60 percent of this population did not attend achool beyond the ninth grade; and 88 percent never complete the eeventh grade. ${ }^{50}$ Approximately 40 percant of Hispanic children live in poverty. ${ }^{61}$ These children, living at or below the poverty level, attend achoole that provide inadequate education, and as a corollary, deficient instriction in acience and mathematics. Hispanica studente who do choose to pursue the sciences only recently have had networking provided to them with the expansion of the Hispanic Association of Colleges and Universities (HACU). ${ }^{*}$

Data on the participation of Hispanics in the ecientific disciplines do not disaggregate this ethnic group, but rather treat them an a monolith. As a consequence, the data are limited because the underrepresentation variea among the groups (Mexican Americans and Puerto Ricans most often are relegated to lower sociocconomic groups and Cubans are most often found in the middle class). Presently, Hispanics comprise 9 percent of the U.S. population, yet represented less than 2 percent of all employed scientists and engineers. ${ }^{69}$ In 1988, the approximately 96,000 Hispanic scientists and engineers represented only 1.8 percent of all scientists and engineers. ${ }^{\text {a }}$ Hispanics earned 3.9 percent of the bachelors degrees in science and engineering in 1987 (verrus 2.9 percent earned in 1985); 3 percent at the masters level (versus 2.4 percent earned in
${ }^{50}$ Ibid., p. 149-150.
${ }^{60}$ Wiley, Ed, III. Education Dilemma Result of Tendency to Ignore Latino Family Problems. Black Issues in Higher Education, v. 7, Mar. 5, 1990. p. 6.
${ }^{61}$ Changing America: The New Face of Science and Engineering. Final Report, The Task Force on Women, Minorities, and the Handicapped in Science and Technology. Washington, Dec. 1989. p. 22.

6 The HACU was formed in 1986 and now has a membership of 128 institutions. Any institution with at least a 25 percent Hispanic etudent population is eligible for membership. Thirty institutions have gained membership in the past year. Salazar, Guadalupe. Black, Hispanic Colleges Vow to Work Together. Black Issues in Higher Education, v. 7, Oct. 11, 1990. p. 1, 4.
${ }^{65}$ Ibid., p. 22.
${ }^{64}$ Women and Minorities in Science and Engineering, p. 32.
1985). Hispanic males earn alightly more bacholors degrees in acience than Hispanic femsles. Of all ceience and engineering doctorate degree recipients in 1988, Hispanics aarned 8.5 percant, a alight increase from the 8.2 percent regintered in 1987. ${ }^{\text {. }}$ Ten yeart carlier, in 1978, the percentage at the doctoral level was 2.6 percent.

Native Amerteans

There is a paucity of date on Native Americans in the educational ayntem and, as a consequence, on their participation in the acience and engineering disciplines." Statiatically, Native Americans have been aither ignored or subsumed under "other" in national databases. Data that are available show that Native Americans have the highent dropout rate of all minorities, and are disproportionately placed in learning-disabled programs. Reaulte from the 1980 census indicated that 7.9 percent of Native Americans, above the age of 25, had completed a four-year institution. Analogous to other ethnic groupa, Native Americans have a multiplicity of educational and social problems. About 70 percent of native American families live below the poverty level. ${ }^{67}$ Unemployment for urban Native Americans under the age of 22 has been recorded at 80 percent. The muicide rate for Native Americap youth is 280 percent higher than for U.S. youth in general. ${ }^{\text {es }}$ By the age of 15.5 (10th yrade), approximately 50 percent of Native Americans atudente do not attend high school. By the age of 18, more than 62 percent of this group's young adult population are not attending achool. ${ }^{\text {ap }}$

Native Americans are not a single entity, but rather constitute approximately 300 tribes in the continental U.S. and Alaska. Contrary to popular belief, less than 25 percent of this ethnic group live on reservations. ${ }^{70}$ Presently, Native Americans total approximately 0.6 percent (1.4 million) of the U.S. population,

[^18]and are 0.5 parcent of all employed ccientints and engineers. ${ }^{11}$ A 1990 report of the NSF revealed that, at the bechelors levol, Native Americans earned approximataly 0.4 percent of the science and engineering degrees in 1887, a level they equaled in 1985; at the manter's leval, Native Americans earned 0.8 percent (an increase of 0.1 from 1985). ${ }^{\text {n }}$ Native American women earned two-thirds as many bachalon degrees in the acionces as their male counterparts and approximately ono-sixth as many bacholor dogrees in engineering. Data for 1988 revaled that at the doctorate leval, Native Americans earned a mors 0.2 percent (27 out of a total of 14,620) of the degreen in science and engineering, a proportion that nearly equaled that regietered in 1987. In 1978, the proportion was 0.1 parcent. ${ }^{24}$ For degree attainment for all ethnic groups at the bachelore, masters, and doctoral level, wee figure 1 below.

Women

Presently, women constitute 45 percent of the U.S. workforce, yet comprise approximately 16 percent of all scientista and engineers. ${ }^{74}$ The percentage of women engineers is significantly less than the parcentage of scientista. Data for 1988 revealed that women comprised 4 percent of the engineering population and 30 percent of the scientific population. ${ }^{76}$ An even amaller percentage of the women scientiots and engineers are minorities. In 1986, approximately 5 percent of the female scientiste and engineers were black, less than 1 percent were Native Americans, and 3 percent were Hispanic. ${ }^{78}$ (See table 1 for degree attainment by women in science and engineering.)

Engineering Manpower Commisoton Report

The 1989 report of the Engineering Manpower Commission (EMC) of the American Associstion of Engineering Societies (AABS) reported that black student enrollment in engineering programs in 1988 increased 15 percent over the previous year, while total first-year enrollment for all students increased 3 percent (see table A1 in the appendix for total enrollment data; for total

[^19]
CRS-22

FIGURE 1.
Science and Engineering Bachelor Degrees

Source: U.S. National Sclence Foundation. Women and Minorities in Sclence and Engineering Washington, D.C., Jan. 1980. p. 136, 137.

Science and Engineering Master Degrees
Awarded by Ethnicity: 1987

Source: U.S. Natlonal Sclence Foundation. Women and Minorities in Science and Engineering Washington, D.C., Jan. 1990 . p. 144, 145

Science and Engineering Master Degrees
Awarded by Ethnicity: 1987

Source: U.S. National Science Foundation Women and Minorities in Science and Engineering Washington. D.C., Jan. 1990 p 144. 145

table 2 Degren Attainmeat by Wocmen in Sciacos and Easingaring by Lavale and Piold Eor Ealacted Ycars						
Fiold	Bechelor's Degreme1088		Mester's Dequan1989		$\begin{aligned} & \text { Doetorstee } \\ & 1088 \end{aligned}$	
	No. of Women	Parcentars ct Totel	No. of Women	Percentage of Total	No. α Women	Percentage of Total
Total	128,057	38.0	10,182	50.7	6,352	28.8
Sctence, toial	111,857	45.3	16,711	40.5	8,098	31.7
Phynical	4,098	29.7	917	24.9	869	18.8
Mathomatical	7,618	48.5	1,118	35.2	121	16.2
Camputar	15,228	35.8	2412	29.9	56	10.9
Environmental	1,354	22.8	517	23.1	144	29.8
Life	24,822	44.0	3,650	41.4	1,687	82.9
Paychology	28,246	69.0	6,428	64.9	1,675	64.8
Social	29,894	48.4	2773	38.9	854	33.1
Engineering Total	11,203	14.6	2471	11.6	286	6.8
Ampanatical/ Astronautical	248	8.5	43	6.9	-	6.0
Chemical	1,469	24.7	214	15.7	60	9.6
Civil	1,146	13.1	300	10.2	25	5.1
Electrical	2,856	120	S66	10.0	98	4.3
Industrial	1,281	50.1	279	16.9	19	15.0
Mechanical	1,677	10.3	297	7.7	28	4.9
Other	2628	16.8	842	13.7	109	8.4

SOURCE: U.S. National Science Foundation. Women and Minorities in Science and Engineering. Washington, Jan. 1990. p. 20, 22.
engineering degrees awarded, see table $\mathbf{A 2}$ in the appendir). This participption eversed the recorded decline of the previous five years. ${ }^{71}$

Data compiled by the BMC show also that engineering enrollment for women increased at evary level from fall 1987 to fall 1888 (bachelors, masters and doctoral level). The incresse in fresbrnen enrollment for women (from 19871988) exceeded that of freahmen as a whole, increaning from 15.7 percent to 16.2 percent ${ }^{73}$ Enrollments for women at the masters and doctorate levals increased a percent point, to 18.9 percent and 10.7 percent respectively. ${ }^{78}$

For all the ethnic groups tracked by the FMC, blacke, Hiepanies, Pacific Islanders, and Native Americans witnessed a aignificant increase in onrollments for fall 1988. ${ }^{\text {.0 }}$ The increases were aharp enough to register growth in total full-time undergraduate enrollment for these minuritise, except for Hispanics (Hispanic enrollment dropped by 0.6 percent). ${ }^{11}$ Enrollment increases for blacks were found to be the most salient. ${ }^{12}$ Engineering enrollments for blacks increased also at the masters level and at the doctoral level. Increased enrollments were recorded for Hispanics and American Indians (Hispanic enrollment did not increase at the masters level). However, total freshmen

[^20]enrollment in angineering programs is axpectod to decline again in the fall of 1990, primarily because of the declining pool of potential college studenta. ${ }^{24}$

PARTICIPATION OF MINORITIES DN BIGEIOR EDUCATION

Factors Affecting Minority Participation

While the quantitative aspecte of the dipproportionate participation of minorities and women in higher education have been well documented, the variables which underlie that problem have not been sufficiently understood and/or analyzed, resulting in a data gap affecting the devalopment and implementation of intervention atrategies donigned to incrase the minority higher education pool, and subsequently, the science and engineering pool. Donald Stewart, president of the College Board, has asserted that: The idea that a child who is simply amart or able or hard working will somehow get accepted to and complete college is a myth. Race, oconomic background, and financial ability now atand between a student and a college degree. ${ }^{\text {dh }}$

Richand Richardson, of Arizona State's National Center for Posteecondary Governance and Finance, has posited that higher education is seeking to attract three varying levels of minority students. Richardson describes them as being:
(1) Well prepared students from middle class families, the most highly recruited group in the country today. "Schools and colleges need do little more to guarantee the auccess of these atudents;"
(2) The classic, first-generation college students, with low-income, upwardly aspiring parents, likely to have attended relatively segregated public schools and to lack sequaintances who know about collage. "Colleges must intervene early to reinforce their aspirations and to guide their curriculum so that science and math are not neglected;" and
(3) Studente from cegregated communities and schools, negative and unsure of themselves in high achool, who have not perceived college as a way of gaining status. . . The same services and activities that are successful with athlete recruits will serve these

[^21]studenta. Our failure to sarve them as well as we merve athletes is a failure of will and not of understanding or knowledge. ${ }^{\text {T }}$

However, often, colleges and universities aggressively compete for the academic superatars while ignoring the average studenta with modest credentials who are very capable of rigorous academic work.

The absence of minorities in highor education is significant. A report prepared by the American Ansociation of Collegas for Teacher Education reported that 33 States have elementary and cecondary minority enrollments of approximately 24 percent, while only six Statee have a higher education institution with minority enrollment greatar than 15 percent." The Department of Education 1988 college enrollment data (the iateat year for which figures are available) reveal that olacke were 8.7 percent of the total (two-and four-year institutiona) college population (a 10 percent increase from 1986), Hispanics were 5.2 percent (a 10 percent increase from 1986), and Native Americans were less than one percent, 0.7 percant (a 3.3 percent increase from 1986). (A disaggregation of enrollment by ethnicity and type of institution is contained in figure 2 below). For bleck studenta in particular, the increased enrollment was attributed to the increased attendance of women. From 1986 to 1988, enrollment of black men increased 1.6 percent, while enrollment of black women increased 6.3 percent. ${ }^{17}$ While these minority groups have witnessed increased enrollment, chey continue to lag far behind that of whites relative to their percentage of the total population (white atudents were 78.8 percent of the total college population). Additional data indicate that approximately 10 percent of the atudents in the average college of education are minorities. However, in some institutions, minority representation is only about 1 percent or 2 percent. ${ }^{\circ \rho}$

While many minorities enter the educational pipeline, the pipeline, constricts at various places along the way. In general, minority students attrition rate in higher education is greater than that for white students, and they are more
${ }^{\omega 5}$ Forum. The Holmes Group, Fall 1988, v. 3. p. 24.
${ }^{2}$ American Association of Colleges for Teacher Education. Teacher Education Pipeline: Schools, Colleges and Departments of Education Enrollments by Race and Ethnicity. Washington, 1988. p. 33-34 and 41-42.
${ }^{77}$ Ibid., p. A37.
ω U.S. Dept. of Education. Office of Educational Research and Improvement. National Center for Education Statistics. Trends in Racial/Ethnic Enrollment in Higher Education: Fall 1978 through Fall 1988. NCES 90-370. p. 3.
${ }^{89}$ Ibid.

FIGURE 2.
1988 COLLEGE ENROLLMENT BY ETHNICITY AND TYPES OF INSTITUTION

SOURCE: Evangetauf, Jean. 1988 Enrollment of All Racial Group Hit Record Level. The Chronicle of Higher Education, v. 35, Apr. 11, 1990. p. A 36.
likely to leave the educational pipeline altogether.0 For those freshmen minority students declaring science as a major, an estimated 40 percent "leak" from the ecience and engineering pipeline by the and of their cophomore year in college." In addition, fewer students "leak" into the science pipeline once they began their undergraduate education. The net loss is a concern not only to science, but also to higher educetion.

Some institutions of higher education have employed screening mechanisms (competency/akill testing) from all entering studenta. The emergence of these programe requiring akill teating has been extremely controveraial and believed to hurt minoritise diaproportionately. For axample, the Tezas Academic Skills Program which all entering frashmen and tranaferring ctudenta in the State's public colleges and universities are required to pass prior to entering upper level courses, is said to impact negatively on minoritias, specifically blacks and Hispanics. ${ }^{8}$ It has been estimated that, though 50 percent of the atudents who take it will fail sections of the axam, it will eventually serve to improve retention rates and over all level of sophistication of the students in the university aystem. While officiale charge that the program is designed to improve retention rates, some educators msintain that because of deficiencies in some minority etudents' educational backgrounds, they will fail at a significantly higher rate. ${ }^{\text {a }}$ The task force that constructed the test projected that the failure rate would indeed be higher for minorities than nonminorities. It was estimated that 72 percent of the blacke and 59 percent of the Hispanics would fail the reading section; 74 percent of the blacks and 63 percent of the Hispanies would fail the mathematice section; and 59 percent of the blacks and 27 percent of the Hispanics would fail the writing section. ${ }^{\circ 8}$ Students who fail the test initially, would be required to take non-credit remedial courses and retake the test until they pass it. However, one of the many countercharges by

[^22]black and Hisponic officials is that ramodial cournes to be offered to the atudents who fail would not be available because of budgetary constraints.

Science in higher education attempts to approximate meritocracy in which all individuale anjoy equal righte and opportunities. However, dieparity exists in the university science community batween minorities and nonminoritias. Minority ecience atudents are not always provided with mentors, and, consequently, are not provided with equal axponure in describing their seientific work at conferances. Aleo for minarity mientists, there is not equal aceass to graduate education, receipt of echolarahipa, promotion to higher ranks, receipt of recearch funds, accean to outatanding research collaboratore, and coauthorehip of papers and other outlets for ccientific publications. Data compiled by the NSF reveal that the underrepresented minorities receive a fraction of univernity support in U.S. graduate schools. Of the total 8,181 doctorate recipients in 1988 receiving eupport (teaching assistantships, research assistantships, fellowships, and other), blacks received 2.2 percent of the support, Hispanics received 2.8 percent, and Native Americans received approximately 0.1 percent. ${ }^{97}$ This level of support is in sharp contrast to that received by Aeians and whites, 25.1 percent and 66.8 percent respectively. ${ }^{\text {s }}$ (See figure 3 below.) The differences and pattern of aupport have been continued over the years. Howard G. Adam, executive director, National Consortium for Graduate Degrees for Minorities in Engineering, Inc., has stated that:

If . . . minority students have to rely almost exclusively on financial support from sources external to the university, this places them peripherally in department activities that leave the added burden of finding an advisor, research topic, supportive colleagues, and faculty mentors to guide the Ph.D. dissertation. Minus the critical experiences that one gains through departmental associations, far too many minority students terminate their graduate studies as ABD's (all but the dissertation completed), a status that many minority students attribute to their inability to identify an acceptable dissertation topic and/or a mentor to guide their research activities.

This is a bothersome phenomena and one that demands immediate attention of academic leaders charged with equitable distribution of graduate atudy financial aid. . . . It is essential that all universities move to atop short-changing U.S. minority studencs and provide the financial and mentoring vehicles

[^23]
FIGURE 3.

Total 1988 Sclence and Engineering Doctorates Receiving Support from the University by Type and Ethnicity

Souroe: U.s. Metlonal Botenoe Foundetion, Women and Minotifie: in scionce and Enghoorlag. Washingtona, DC. Jan. 7990. p. 238-158, paceln.
necessary to assist this group in acquiring doctoral trajning. The nation's success in meeting the technological challenges of the twenty-first century depends on this. ${ }^{\text {pe }}$

Women continue to be circumscribed in their admission to certain programs in higher education. ${ }^{100}$ One problem limiting the number of women acceptable for enrollment in engineering achool is the reliance on the SAT, adopted by many engineering schools in the early 1980s. ${ }^{101}$ The College Board reports that approximately 23 percent of men and less than 11 percent of
${ }^{09}$ Adams, Howard G. Minority Students Short-Changed. Black Issues in Higher Education, v. 5, Feb. 2, 1989. p. 25.
${ }^{100}$ Pearson, Carol S., Donna L. Shavlik, and Judith G. Touchton. Educating the Majority: Women Challenge Tradition in Higher Education. American Council on Education. New York, 1989. p. 294-306.
${ }^{101}$ Scientific, Engineering, Technical Manpower Comments. Commission on Professionals in Science and Technology, v. 25. Dec. 1988. p. 18.
women score 600 or higher on the SAT mathematice portion. ${ }^{102}$ While the Committse on Ability Tenting bas questioned uaing SAT scorse as a aingle criterion, many ongineering departmente have continued to require relatively high SAT mathomatice score for entrance. Also, collegial relationahips (mentors) are critical to profemional devalopment in engineering. ${ }^{103}$ In addition to having a predominantly white mala faculty, a significant number of the teaching assistanta in ongineering schools are from cultures that plece women in a aubsarvient role and fail to value the quality of the women entering the discipline. ${ }^{104}$

While the propensity has been to examine the cultural backerrounds of minority groupe in their participation in highar education, less attention has been focused on the economic or atructural factors. ${ }^{105}$ Economics has and continues to be the most pervasive modifying factor in the minority community. Prohibitive conts, funding uncertaintien, and questionable benefite have discouraged many minorities from entering undergraduate and graduate programs and continued economic and pernonal constraints prevent many minority studenta from graduating after gaining entrance. ${ }^{105}$ When a minority student has to weigh the seemingly enormous amount of time and money to pursue a college education, she/he cometimes opta for the burgeoning number of proprietary achools that will provide a certificate within a year.

The financial aituation of minority studenta has been compounded by the limited number of student grants-in-aid made available by Federal and State governments. During the 1960 s and 1970s, Federal, State, and private funding were provided to insure equal educational opportunities for minorities and women. Policies existed to expand educational opportunities for these groups

[^24]at virtually all levals of the educational system. ${ }^{107}$ However, a change from grants-in-aid to loans for atudents, especially minority atudenta, has discouraged some from the prospects of sequiring more debt. A study conducted by Alezander W. Atin, researcher, Univernity of California, Loe Angeles, The Black Undergraduaties Current Statue and Trenct in the Characteristics of Freshmen found that the proportion of black students receiving Pell Grants declined from approximately 55 percent in 1978 to 41.1 percent in 1889, while the proportion of black etudents recoiving Stafford loans increased from 10 percent to approximately 28 percent. ${ }^{104}$ In addition, some States, faced with budget constraints, have curtailed their eupport for equity in higher education while, cimultaneoualy, the U.S. Department of Education's Office for Civil Bighte has diminished its overaight of equity issuse in higher education. ${ }^{100}$

Since fiscal year 1980, Federal aid for students in selected programs has decreased. Between fiscal year 1980 and fiscal year 1990 (and adjusting for inflation) funding for the Supplemental Education Opportunity Grant program has declined by 19.1 percent; Perkins loan funding has decined by 66 percent; work atudy support has declined by 28.6 percent; and TRIO programs for the disadvantaged (upward bound, talent search, and special support programs) have declined by approximately 9.2 percent. ${ }^{110}$ However, other programs have increased. Since fiscal year 1980, Pell Grants have increased by 28.5 percent and Guaranteed Student Loans have increased by 48.8 percent (again adjusted for inflation). ${ }^{111}$

The policy of a shift to loans as a primary method of atudent su: , ,ort will have a disproportionate negative impact on minorities and women. The replacement of grants for education by student loans has caused many minority students to engage in self-screening out of an undergraduate education when

[^25]they face asuming loans that exceed their family incomes. ${ }^{118}$ Approximately 38 percent of entering black atudents are from families with annun incomes below $\$ 20,000$ compared with 12 percent for their white counterparts. ${ }^{111}$ Loans to be ansumed by these students could range from \$20,000 to \$30,000 for graduate school, and, in the case of medienal saboole, 880,000 to $\$ 90,000$. Upon graduation, many minarity students opt for high paying jobs, rather than those such an teaching.

Presently, the Administration's FY1991 budgat proposal would cut aid for appraximately $\mathbf{8 0 0 , 0 0 0}$ studente in 1891-1892. The decline in the number of students eligible for financial asaintance would include the programs of State Student Incentive Grante, Perivins Student Loans, and the College Work-Study Awards. The decrasse in funding for the Guaranteed Student Loan Program has been proposed at $\$ 730$ million. The proposed budget would aliminate a $\$ 59$ million Federal contribution to the Federal/State partnerahip which has provided grants to more thin 197,000 studenta asch year. ${ }^{114}$ The proposed budget also would eliminate the Federal contribution of $\$ 135$ million to the Perkins Student Loan program. ${ }^{11 /}$ In addition, approximately 5,000 tudents would lose College Work-Study awards. These decreases in support as proposed in the FY1991 budget would hurt those studentes and families moat in need of Inancial aid. The budget does, however, propose a 11.6 percent increase for the TRIO programs and a 71.8 percent increase for a relatively amall program that provides awards to minority students. The drop in financial aid at colleges and universities could impact more on minorities and the poor, denying them a chance at higher education. ${ }^{116}$

An argument has been that the financial needs evaluation required by Federal and State authorities, designed to assess the financial circumstances of the majority, typically assumes a nuclear family structure. These guidelines axclude

[^26]many minority students, especially blaciss and Hispanics, and only strengthens class disparity.

While there has been a decrease in the percentage of black males enrolled in institutions of higher education, there has been a corresponding increase in the percentage of black males enlinting in the armed sorvices. ${ }^{117}$ Current research has found that the armed servicas have been able to attract the highly skilled, middle to upper-income-leval bleck who would have otherwise entered undergraduate school. ${ }^{120}$ The military's increased pay and more generous GI Bill benefite may be more palatable than the ropayment of a $\$ 20,000$ student loan. Approximately 27 percent of Army enlistees are black, a percentage that is more than double their representation in the U.S. population as a whole. ${ }^{119}$ In addition, approximately $\mathbf{4 2}$ percent of black males qualifying for entrance into the Army enlisted; comparative data for white males revealed that approximately 14 percent of those qualified actually enlisted. ${ }^{150}$ William Cox and Catherine Tobe, writing in the Educational Record, put it succinctly when they stated that 'It shouldn't be true that minorities bear a greater defense burden because they don't believe they will be treated as well in academia or induatry as in the military." ${ }^{121}$

[^27]
Shortage of Minority Faculty and Adminiotrators

There is a national ahortage of minority faculty and adminiatrators in higher education. A March 1990 report of the Department of Education found that, across all inatitutions (public and privata, two-year and four-year), blecke comprised approximataly 3 parcent of the full-time faculty positiona and 3 percent of the part-time faculty poaitions; Hispanics were 2 percent of faculty positions at both full-time and partmime faculty positions; and Native Americans were 1 percent of the faculty positions for both full-time and parttime. ${ }^{122}$ The participation of whitss mecounted for 89 percent of full-time faculty and 90 percent of part-time faculty at all institutions. ${ }^{13}$ Women accounted for 27 percent of full-time faculty across all institutions, yet 44 percent of part-time faculty.

The report revealed considerable variation in department program areas for minorities. Data for full-time faculty show that, in fail 1987, black comprised 1 percent of the engineering faculty, Hispanics, 1 percent, and whites, 83 percent (no faculty were recorded for Native Americans). ${ }^{141}$ In the natural sciences, blacke were again 1 percent of the faculty, Hispanica were 2 percent, and Native Americans were 1 percent, while whites were 89 percent. In the health aciences, blacks were recorded at 3 percent, Hispanics at 1 percent, and Native Americans at 1 percent, while whites were 88 percent. ${ }^{185}$ Women were 3 percent of the full-time faculty in engineering departments, and 15 percent of the faculty in the natural sciences. In contrast, women were 38 percent of the full-time faculty in education. ${ }^{128}$

The part-time faculty percentage distribution yielded alightly different results. In the natural sciences, blacks comprised 1 percent of the part-time faculty, Hispanics were 1 percent, and Native Americans 1 percent, while whites were 89 percent. 187 In the health sciencea, blacke recorded their highest percentage distribution, 13 percent; Hispanice were 4 percent (this was the highest for this group tying with the humanities); Native Americans were 1 percent, while

122 U.S. Dept. of Education. Ofice of Educational Research and Improvement. National Center for Education Statistics. Faculty in Higher Education Institutions, 1988. NCES 90-365, Mar. 1990. p. 5.

128 Ibid.
124 Ibid., p. 11.
${ }^{125}$ Ibid. The largest percentage diatribution for blaciss was in education, at 7 percent, the largest for Hispanics was in the humanities, at 4 percent, and the largest for Native Americans was in agriculture and home economics, recorded at 2 percent (agriculture and home economics were also the largest for whites).
${ }^{125}$ Ibid., p. 6.
127 Ibid., p. 12.
whites recorded a 72 percent participation. For expanded data on the participation of minorities and women in higher education see tables A3, A4, and A5 in the appendix. ${ }^{180}$

Minority feculty serve as role models and provide academic advising and student-faculty interaction that contribute to retantion of many minority studenta. The declining participation of minoritiee, eopocielly blackn, Hispanics, and Native Americans, in higher education could tramalate into further declines in black college enrollmente and graduation rates, and axacerhate the current minority feculty shortage.

Historically Blaci Colleges and Univendtice

The historically bleck collegas and univeraitias (HBCUB), which have traditionally educated a significant number of the Nation's blacks, have had the perennial problem of attempting to enhance their academic, and research capabilities and developing programs to compete with other institutions of higher education in science and technology (see table A6 in the appendix for enrollment data in HBCUs). ${ }^{120}$ These black institutions have a plethora of problems-inadequate support for student aid, deteriorating physical infrastructure, obsolete equipment, low salary structures, and limited funds for faculty development and new acsdemic programs for atudents. While these problems exist in other institutions, they are chronic and magnified in HBCUs.

The HBCUs have not shared in distribution of Federal obligations to colleges and universities. Although funding to HBCUs has increased in the past 10 years in absolute terms, it decreased as a proportion of the total awanded to all U.S. colleges and universities. The NSF report, Federal Support to Unideraities, Colleges and Selected Nonprofit Institutiona: Fiscal Year 1988, indicates that HBCUs received only 8.1 percent of Federal research and development cupport to institutions of higher education in fiscal year 1988, down from 8.6 percent in fiscal year 1987 and 8.8 percent in fiscal year 1986. (A high of 9.8 percent was recorded in fiscal year 1983. See table A7 in the appendix. ${ }^{180}$ Additional support has been provided to HBCUs by Federal departments and agencies in the amount of $\$ 45.3$ million for training, $\$ 37.4$

[^28]million for facilities and equipment, $\$ 28.3$ million for fellowabips and recruitment under the Intergovernmental Persomen Act, and $\$ 245.8$ million for student tuition ancintanes, echolarabips, and other aid. ${ }^{131}$

Amid criticism by officials and representatives of HBCUs concerning the otark disparity in their receipt of Federal support, the Bush Administration has proposed a plan to marahal support for these institutions. The program would:

1. Strengthen an executive order, originally signed by Preaident Reagan, directing Federal agencies to award more grant and contract money to black inatitutions;
2. Create the President's Board of Advisors on Historically Black Colleges and Universities;
3. Work with businesses to encourage support of black colleges;
4. Develop a new program that will allow more studenta at black colleges to serve in part-time and summer jobs in the Federal Government; and
5. Provide $\$ 10$ million for a competitive program to help increase the endowment of black colleges. ${ }^{182}$

Black colleges also have not been able to achieve parity in private endowments. Only recently have philanthropic organizations begun to increase their cupport for minority education, after withdrawing in the mid-1970s. Their private efforts have increased simultaneously with the programmatic retreat by Federal and State Governments. However, philanthropic aupport to minority institutions is limited and the shortcomings are magnified for those atudents in attendance who are economically disadvantaged. The Council for Aid to Education reported that in 1987-1988, private contributions to U.S. colleges and universities totalled $\$ 8.2$ billion. During that same time period, private support to black institutions totalled $\$ 56.2$ million ($\$ 46.2$ million to the United Negro

[^29]College Fund (UNCF) and $\$ 10$ million to public black institutions), less than one percent (0.7 percent) of the private eupport to all U.S. institutions. ${ }^{188}$

Recent support was provided to selected minority institutions by Waiter H. Annenberg, former Ambassador to Great Britain, who gave $\$ 50$ million to the UNCF. However, the majority of the HBCUs do not recoive funding from the UNCF. ${ }^{18}$ There are approximately 104 HBCUn, yat only 41 of the private institutions have membership in the UNCF and will gain directly from this contribution. ${ }^{185}$ Additional gift, much at the $\$ 20$ million given to Spelman College by William and Camille Coaby, are needed to increase endowments and contribute to annual operating budgata not only of UNCF institutions, but all HBCUs.

There have been other in the Federal funding of colleges and institutions. Only recently have HBCUs imbalances been listed with any frequency among those institutions receiving congressionally "earmarked" funds. ${ }^{186}$

Betty M. Vetter, Frecutive Director of the Commission on Professionals in Science and Technology, has acknowledged that some of the most auccessful programs designed to attract underrepresented minorities into the sciences have been initiated at HBCUs. Supporting data from the National Research Council indicate that a significant number of these atudents graduating from bachelor and masters programs at HBCUs further their studies in doctoral programs at predominantly white universities. Reginald Wilson, former director of the American Council on Education's Office of Minority Concerns, atated that this preparation of minority scientists is: ". . . [A] tribute to the black colleges'

[^30]unique capacity to instill confidence in etudenta, and to their special dedication to nurturing talent through methods like mantoring. ${ }^{187}$

Major Resenrch Universities

Promoting plaralism is a major challenge for higher education, and specifically maior rasearch univarsitien. While both the black and Hispanic populations undergo exponential growth, the rate of black and Hispanic enrollment and retention in major research institutions in all disciplines continues to lag far behind that of thoir white counterparte. A cosiluence of admistion policies, academic oflaringa, funding practices, and the racial composition of the feculty and administration at major research inatitutione all perpetuate a etigma of "less than" (La, inferior) for some minority students. Solomon Arbaiter, Ascociste Director of Research and Development at the College Board, states that: ". . . [A]a the white teenage pool declines into the early 1990 m , ingtitutional survival will dictate that the outreach for minorities and other nontraditional students grow etronger. ${ }^{183}$ Experts agree that not only must these institutions recruit minorities and women into their science and engineering programs, they must alco develop retention programs to ensure that the atudents complete their degree. The absence of minority academic advisors and minority role modele at predominantly white institutions contributes to the high attrition of minority studenta, many of n'jom are basically underprepared. A supportive climate and academic tutoring (when needed) have ensured high retention and graduation rates among blacks and Hispanics. ${ }^{180}$ In addition, research has ahown that a positive correlation exista between a high degree of student involvement and retention; as a result, emphasis should be place on interactions that maximize the chances for atudent involvement. ${ }^{140}$ However, the existing tenure and promotion syatems at most universities do not reward

[^31]${ }^{140}$ Minorities On Campus: A Handbook for Enhancing Diversity. American Council on Education ed., Madeleine F. Green. Washington, 1989. p. 29-54, and 113-130.

CRS-40

professors to be involved in mentorship program, especially for minorities, in a substantive way.

Another issus is the racial climste in major research universities. A Massachusetts Institute of Technology (MIT) aurvay conducted in the fall of 1985 found that many of the black alumni interviewed reported that their professors had had low expectations for them and that prejudicial attitudes abounded, not only by faculty, but also by the atudents. In the release of this survey, The Racial Climate on the MIT Campue, Paul Gray, former MIT President, Paul Gray, acknowledged that the report carried a distrassing message in that minority students would encounter a myriad of problems. ${ }^{111}$ A recent report of the California Postsocondary Education Commission (CPEC) Toward An Understanding of Campue Climate found similar charges of alienation and overt and aubtle racism and diacrimination by minority students. ${ }^{142}$ The report resulted from interviews with approximately 480 students and faculty and staff at eight universities and community colleges in the California system. Penny Edgert, Specialist with the CPEC, observed that:

Institutions are atill oriented to serve, in the main, white male students. . . You are going to find students of color and womenparticularly in math and science-based programs-consistently and permanently, irrespective of campus, feel alienatod, feel that the campus doesn't worl for them. No matter what campus you are on, it always feels that way. ${ }^{143}$

Jacqueline Fleming, adjunct professor, Barnard College, found that in various studies of minority students in predominantly white institutions, high achieving white students received more attention from faculty members than high achieving black students. ${ }^{144}$ Marie L. Johnson, Assistant Professor of Education, and W. Clarke Douglas, Assistant Professor of History, University of Ilinois argued that:

[^32]Faculty treat ctudents more favorably and obtain better performance whan their expectations are positive. What is sometimes noted but not always conceded at the university lovel is that expectations of atudents who are "different" from the instructor tand to be more nagative and often lead to differential treatment which in turn reduces the likelihood of "euccoes." When this "epecial treatment" is based on recial stereotypes about minorities" ability to learn and perform, it is especially damaging. ${ }^{14}$

Richand Richardson charges that some research universities are "inhospitable environments" for students who are not the best-prepared or highly motivated. There are some minority atudente who are unable to deal with their marginal status, cultural isolation and the impersonality ondemic to all students. He states that:

> Most universities will not, however, be able to achieve proportional participation by concentrating on well-prepared minority studenta. There are simply not enough to go around. They will need to admit minority students who are less wellprepared on several criteria than thair majority colleagues. To insure that the access provided by differential admissions standards does not result in diminished quality, teaching strategies must accommodate its strengths and weaknesses of more diversely prepared students. ${ }^{146}$

In yet another examination of minority students on predominantly white campuses, the American Council on Education reported that:

More frequently, the problems are subtle. Minority atudents often feel marginal, conspicuous, and isolated from the mainstream of the institution. The scarcity of minority students, faculty and administrators is 'perceived as institutional indifference to minority issues. The absence of a minority focus in the curriculum is interpreted as a devaluation of diversity. These environmental problems may compound any academic difficulties experienced by minority atudents. Thus, minority

[^33]students often find it doubly difficult to feel comfortable in the campus majority culture. ${ }^{107}$

Some univeraities have improved thair retention rates of moderately prepared minorities by atearing them to much disciplines as ethnic atudies, and other liberal-arts majors that do not require aignificant acience and mathematics programs. Richardson etates that auch institutions are ". . . guilty of academic fraud if they do not provide the assessment, academic support, and learning strategies necessary to encourage minority achievement in mainstream, high academic fields." ${ }^{100}$

Liberal Arts Colleges

A March 1987 report, Maintaining America's Scientific Productivity: The Necessity of the Liberal Arts Colleges, focused on the "science active" liberal arts colleges and universities and their sbility to conduct basic scientific research. ${ }^{109}$ The report was a result of a atudy conducted by Oberlin College in which 50 science active liberal arts colleges were identified as conducting effective, meaningful, basic research in the absence of doctoral level departments. The report also observed that these liberal arts colleges appeared to be doing a better job of addressing the needs of historically underrepresented groups in the sciencas-women and minorities-than major research universities. Approximately 15.2 percent of the women enrolled at these particular colleges majored in the sciences, as compared to 11.1 percent at the top 20 research universities. ${ }^{100}$ Preliminary data indicated that 39.8 percent of the minority students enrolled at these liberal arts colleges choose acience as a major, the proportion for non-minority students was 28.1 percent. ${ }^{161}$ While the report cited the need for additional data and analyuis of trends in patterns of freshmen minority enrollment, but it was quite evident that these institutions were attracting a larger proportion of minority students than non-minority students to major in the sciences. The liberal arts institutions have been shown to compete with leading institutions, and to exceed some of them both in the quality of science graduates (as measured by career distinction), and in their quantity (as a proportion of all graduates).

[^34]
Community Collegras

A significant number of minority students who attend collega, enroll at twoyear (community colleges) rather than four-year inetitutions, primarily because of finsncial limitations. Those community colleges have been very instrumental in enabling minority etudents to make the tronsition from cecondary sehool to institutions of higher education. Department of Education 1988 data indicate that approximately 41.9 percent of black etudenta, 66.5 parcant of Eispanics, and 54.3 perce si of Native Americans attended two-year institutions. ${ }^{16 s}$ In comparison, 30 percent of white atudenta attended these same institutions during 1988.

Community colleges unquestionably provide entrance opportunities for the minority population, but after secses, their continuation in bigher education is less certain. While many minority community college studente articulate a desire to transfer to a bachelor's program at a four-year institution, in actuality, they enter an undergraduate program at a proportionately lower rate than nonminority etudents. Data indicate that while 75 percent of community college students indicate a dease to transer to four-year institutions to continue their education, only 15 percent to 25 percent actually trander. ${ }^{14}$ Many of these students terminate their education when they find they are unable to transfer earned credite to a four-year inatitution, and in those infrequent cames when transfer is possible, the process is found to be cumbersome. James C. Palmer, Aseociate Director of the Center for Community College Education at George Mason University, has described the transfer process as a "tough bureaucratic task. ${ }^{\text {"185 }}$ He further atated that:

Community college atudents can go buckety-buck through their courses thinking they will all transfer to a four-year institution, and maybe they do. But what these students may not know is that the courses are accepted for elective credit, pot for credit toward the major. . . . In come cases this ctudent will . . . take

[^35]more courses in upper division. In other cases, the student will get discouraged and drop out. ${ }^{126}$

In a recently released report of the California Postsecondary Education Commission on community college tranafers, it was found that while emphasis had been pleced on increasing the transfer rate for studente from community colleges to four-year institutiona, few black and Hiopanic students setually tranaferred. ${ }^{157}$ Instead, the tranfer programe and trannfer centers cotablished by the California system had served to only further increase the number of students who traditionally had recorded significant transfer rates-whites and Hispanica.

Administrators at community colleges charge that omicials at four-year institutions are not responsive to improving the complex transfer of atudents from community colleges. Martin Haberman, Professor of Education at the University of Wisconsin, Milwaukee, like many other educators, suggesta that community colleges form a cooperative recruitment program between two- and four-year institutions to enable students to transfer with more facility. Agreemeate have been reached between community and four-year inatitutions in approximately 30 States to make the transfer process less obscure and more palpable, but they are not always offective and they represent only a fraction of institutions. The sheer number of students who begin their higher education at community colleges is indicative of the need to expand and reform the transfer process.

PROGRAMS AND STRATEGIES FOR MINORITY STUDENT ENRICHMENT

Considerable efforts have been made to address the problem of the underrepresented minorities in science, mathematica, and engineering, through mentoring programs, curriculum development programs, university-industry alliances, and effective partnerships between predominantly minority institutions and departments of acience and engineering at major research universities. Many of the programs and alliances by the various eectors-Federal, State, university, and private sector-provide effective intervention strategies. Following is a discussion of such programs and strategies. There has been no attempt to make this an exhsustive or definitive compilation, but merely to illustrate the various efforts to address the cumulative effects of minority underrepresentation.
${ }^{166}$ Ibid.
${ }^{157}$ Tachibana, Judy. Minority Two-Year Transfer Rates Not Making the Grade in California. Black Issues in Higher Education, v. 7, Aug. 30, 1990. p. 18-19.

Fedaral Involvament

The NSF has established Comprehenaive Regional Centers for Minorities (CRCMs) in California, Floridn, Miscouri, Pennsylvania, and Terse, to provide support for minoritias atudents anrolled in science programs from tindergarten through the undergraduate program. The CRCME are located at the Califoraia State University, Los Angelea; Floride A\&M University; University of Miscouri, St. Louis; Philadelphin Alliance for Teaching Humanities: Philadelphia Renaisaance in Science and Mathomatica (PATHS/PRISMD; and the Univernity of Terss, El Paso. Thase centars are in addition to the three eatabliabed in 1888 in Atlanta, New York City, and Puarto Rico. Combined, the exinting centers are located in States and areas that oncompass approximately 40 percent of the black atudent population and 70 percent of the Nation's Hispanic atudent population. ${ }^{168}$

The NSF proposes to establish an additional 7 centers which would eventually address the needs of more than half of ail minority students in the United States. Grants for this program have been designed to foster alliances among colleges and universities, local and State governments, and community groups. The efforts from this alliance are intended to develop a syatematic method for addressing the nationsl problem of underrepresentation of minoritiea in the scientific and technology disciplines. The progress of the Centers will be monitored by the NSF in order to identify activities that are most successful for possible duplication. Annual assessments will determine level of funding for subsequent years.

The NSF, as part of their Institutional Infrastructure Program, has awarded $\$ 50,000$ each to 6 HBCUs in an effort to promote increased participation of women and minorities in acience and engineering education. The initial funding will be targeted for developing five-year plans to upgrade computer facilities, increase technical research, and improve computer science curricula.

In 1989, the NSF initiated a three-year cooperative program, designed to ". . . impart the skills of a nationally-known master teacher to others in his field. ${ }^{1150}$ The program, named the Jaime Escalante Math and Science Program, will enroll certified teachers of mathematics, phyaica, chemiatry, computer acience, and English, and approximately 400 junior and senior high

168 U.S. National Science Foundation News. NSF Creates Centers to Promote Local Efforts for Future Minority Scientists and Engineers. NSF 8965. Sept. 15, 1989. p. 2.

169 U.S. National Science Foundation. National Science Foundation News. Jaime Escalante Receives NSF Award, NSF-PR-89-45. p. 1.
students. ${ }^{150}$ Escalante, along with other master teachers, will apply techniques Escalante developed in hie succeseful Advanced Placement Program in Calculus, to other science subjects. Based in Fest Los Angeles, a low-income area comprised chielly of Hispanics, the program is aimed at attracting urban and other disedvantaged youth to careare in acience, mathematics, and ongineering. The approximately $\$ 1.5$ million project will receive $\$ 457,033$ from the NSF, 8150,000 from Areo Foundation, and 8900,720 from the Los Angeles Community College Sytem. ${ }^{131}$

The U.S. Department of Energy has funded a university consortium, composed of 15 institutions, to focus on the training of minority students for careers in the environmental sciences. Membership is composed of both HBCUs and other collegas and universities with a aignificant minority population. The Department of Energy has provided \$250,000 for undergraduate fellowships in the related fields of toxic-waste management and environmental restoration.

The NSF has awarded North Carolina A\&T State University a grant of $\$ 2.5$ million to increase the number of black doctorates in communications related technology disciplines. For more than a decade, U. S. institutions have graduated an average of Ave blacks with doctoratea in electrical enginearing and computer science. For whites, approximately 400 a year have graduated in the same disciplines. North Carolina A\&T hopes to graduate four students each year who will enter doctora, rrograms at the four participating universitiesDuke, Stanford, Michigan, and Michigan State. ${ }^{162}$

In July 1989, the National Aeronautics and Space Administration (NASA) announced the establishment of the Strategic Preparedness Advancing Careers in Engineering (SPACE) Scholars Program at Morehouse College. NASA will provide $\$ 6.5$ million over a period of eight years to the historically black institution to increase the number the studenta, especially black malea, pursuing doctoral degrees and teaching and researching in the fields of chemistry, mathematics, physics, engineering, and computer sciences. An analogous program is operating at Spellman College. ${ }^{165}$ Students will take acience

[^36]courses for three yeare at Morehouse and more rigorous courses at participating graduate institutions. The 20 otudents selected each year for the scholarships, on the basis of GPA, SAT/ACT scores, and intended majort, would also engage in research at one of the 10 NASA research centors. The scholarshipe would include tuition, room and board, booka and suppliea, and travel for summer research asaignments.

NASA's Human Resource Services and the Society of Women Engineers have ontered into an interorganisational program to intersat more women in engineering. The main focus of the program is to identify, recruit, and retain larger numbers of women in engineering.

The Minority High School Student Research Apprentice Program (MHSSRAP), aponsored by the National Institutes of Health (NIH), Diviaion of Research Resources, is dosigned to stimulate increased interest among minority high echool atudents in the biomedical sciences and the health professions. Developed in 1980 by Frank Press, then Director of the Omice of Science and Technology Policy, the program has expanded from 45 participating institutions to more than $320 .{ }^{164}$ The institutions are awarded $\$ 1,500$ per high echool student to cover the cost of student salaries and enrichment programs. ${ }^{165}$ Since its inception, the program has supported approximately 7,000 atudents.

A Minority Access to Research Careers and Minority Biomedical Research support program, sponsored by the NIH, has been eatablished at Hunter Collage. The program trains minority undergraduates and master's level students for careers in the eciences. Outreach and recruitment of promising students interested in the sciences is conducted also.

State Involvement

Mathematics, Engineering, Science Achievement (MDSA), a California-based program, provides both personal and academic support servicea to minority students, beginning in the eeventh grade. MFSA receives total funding of approximately $\$ 2$ million annually from State, private cector, and philanthropic organizations. At the precollege level, MESA provides junior and eenior high students the support and services (incentives for academic performance, tutoring and study groups, course placement and advising, summer enrichment programs) to ensure them success in undergraduate school. In 1987, MESA eupported approximately 4,500 black, Hispanic, and Native American students firom more than 170 junior and senior high schools. ${ }^{166}$

[^37]The Iowa General Assembly has approved a $\$ 1$ million program to increase the participation of minority students and faculty members in their State colleges and universities. The legialation appropriates $\$ 550,000$ for financial aid to minority atudents, $\$ 200,000$ for recruiting minority faculty, and $\$ 300,000$ for college-bound voucher programs. The voucher program allows junior and cenior high atudents to earn vouchers by attending college activitios and seminara. These vouchers are then submitted to a atate ingtitution when applying for financial add. Preference is given to those studente with vouchers.

Univeraity-Sponsored Programs

Syracuse University's L. C. Smith College of Engineering received an endowment of $\$ 1$ million from the Corning Class Works Foundation to award scholarshipe to minority studenta. ${ }^{10}$ Included in the endowment will be scholarships (partial tuition) for three engineering students each year (sophomore, junior, and senior levels), with the first students selected in the spring of 1990.

In 1978, Northwestern University's Technological Institute established a Minority Opportunities in Engineering Program. The program assigns incoming freshmen with a minority tutor and provides five weeks of orientation, including intensive classes in mathematics, chemistry, computer science, and writing and speaking akills. Counseling and tutorial services are provided to these students through their undergraduate program. The program has improved the retention rate for the atudents who have participated.

The Institute for Science, Space and Technology at Howard University, School of Engineering was established in 1987 to cerve as a stimulus for increasing and expanding the academic participation and preparation of minority atudents in science, engineering, and technology. The Institute provides technical assistance to minority institutions and organizations for atrengthening science ar 3 engineering programs, disseminates data and information for policymakers in developing and evaluating programs, and conducts local and national forums for leaders in science and technology to discuss current issues and opportunities. During the first year of its activities, the Institute accomplished the following:

1. Organized a national symposium on science, engineering, and technology issues for the Congressional Black Caucus;
2. Provided technical assistance and aupport for science and engineering faculty at HBCUs seeking scientific partnerships; and
${ }^{167}$ Biumenstyk, Goldie. Iowa Starts \$1-Million Plan for Minority Students. The Chronicle of Higher Education, May 24, 1989. p. A25.
${ }^{168}$ Scholarship Fund Established by Corning for Black Engineers. Black Issues in Higher Education, v. 6, June 8, 1989. p. 21.
3. Asuisted school syatems in developing linkages with colleges and univeruitios to implement atrategies and programs that strengthen minority intersat and education in science and mathematics for careers in acience and engineering education. ${ }^{160}$

The Institute has moved beyond these initial atepe and has also:
4. Identifiad major and emerging research opportunities for minority scientiats;
5. Explored employment, human resources and professional development;
6. Developed atrategies and approaches for informing the minority community about the values of science, engineering, and technology; and
7. Assessed minority undergraduate and graduate science and engineering education. ${ }^{170}$

Xavier Univergity's "Can Do Campaign" is targeted toward attracting and retaining more underrepresented minorities in acience, mathematics, and engineering. This program provides intervention while the student is still in high school-improving problem solving skills and self confidence and motivation. The program stresses remedial courses, not watered down material.

The Center for Precollege Programs at the New Jersey Institute of Technology (NJTT) has developed a curriculum to intereat and prepare minority students for carsers in science, engineering and technical fields. The programs have served, also, to develop and improve the etudents' self-confidence and selfestoem about learning in general. Approximately 80 percent to 90 percent of the students participating in NJIT's summer programs are urban youth. ${ }^{171}$ Follow up on the participants revealed that approximately 20 percent to 25 percent of the etudents matriculate at NJIT with nearly 70 percent electing science- and mathematics-based majors.

Programs of tine American Indian Science and Engineering Society, (AISES) and the Native American engineering program at the University of Colorado and the Univeraity of Oklahoma have produced an increase in enrollment of Native

[^38]American atudents in the discipline aince $1982{ }^{172}$ The efforts of these programs, alone, have contributed significantly to the participation of Native Americans in engineering.

Native Amarican Engineering and Science Program ©NAMFS) at the New Mexico Institute of Mining and Technology, providee intensive summer programs for precollege atudents in science, mathematies, writing, and college survival akille.

Phillip Uri Treisman, Director of the Charlea A. Dana Ceas: . for Innovation in Mathematice and Science, Univenuity of California, Berkeley, developed a program for minorities and women that atresses academic axcellence rather than remediation. ${ }^{178}$ It is considered an anti-ramediation program because it focuses on strengths rather than weaknesces. The atudente are given work that is at a higher level, rather than at a lower level, than they receive in regular mathematica class, and are simultaneously urged to excel rather than to avoid failure. The program was initially designed for calculus, which is a prerequisite not only for science and engineering majors, but aleo for architecture, business, and other professional degrees. ${ }^{174}$ Since the beginning of the prograyi in 1978, the failure rate for calculus for the underrepresented groups has dropped form 60 percent to 4 percent, compared to a failure rate of 15 percent for the total freshmen class. ${ }^{176}$ Data from fall 1988 indicate that of the 89 students participating in the intensive mathematics sections, only two failed. Of the 123 blacks and Hispanics who were not enrolled in the intenaive sessions, 66 failed.

The Berkeley program has served a dual role for the atudents. In addition to improving their proficiency in mathematics, it has improved their general academic performance. In addition to improved grade point averages, the collaborative nature of the workshops has improved their communication skills.

[^39]A apecial commission comprised of regional organization of collegas and univergitios in New York State is to help axpand the pool of minority participation in higher education. This partnership between the institutions of higher doducation and the communitios is ceoking to increse minority participation on college campusen. The commiasion's purpose is to extend beyond just attracting more minority 12 th graders into undergraduate school, to "attacking the broader problem of why the nationwide pool of auch students is so emall.i'ite The plan has three beaic componenta. The firat is to focus on students in kindergarten through 6th grade. It will attempt to identify etudents "at risk" and to implement intarvention atrategien which include tutorial services, out-of-achool enrichmant programs and mantoringfole models. The second component is to provide aimilar services for atudents in gredes 7 through 12. Services will not be relegated to acience and mathematics, but will include all skill levels. The third component has as its locus to attract more minority students into teaching at all levels, precollege through graduate achool. It will provide special scholarship assistance and research opportunities with college faculty and other specialists in Ω atudent's particular interest.

Activities of Corporations, Foundations, and Profesional Societies

The Colonial Penn Group, Incorporated awarded an Apple computer to each of the 11 members of the academic excellence team at Robert Veux Junior High School, Philadelphia, Pa. The members were all black male youchs. ${ }^{177}$

The Clare Booth Luce Fund has a trust of $\mathbf{\$ 7 0}$ million to support the advancement of womea in science and engineering. ${ }^{173}$ The fund will provide $\$ 3.5$ million a year for professorships, scholarships, and fellowships for women students and faculty. Sixty percent of the trust has been designated to 14 selective institutions, with the balance of the trust awarded to other institutions invited by the foundation to submit proposals. ${ }^{178}$

[^40]The Bush Foundation provides $\$ 1$ million annually to encourage women at the precollege level to puraue science as a career. ${ }^{10}$

The Eleanor Roosevalt Fund of the American Association of University Women Educational Foundation provides approximately 50 "eabbatical fellowships" annually to teschers at the precollege level to develop programs encouraging their famole atudents to continue and expand their etudies in acience, mathematics, and technology. ${ }^{\text {isI }}$

In Auguat 1989, the Kellogg Foundation made a \$225,000 grant to the Southern Education Foundation to assist HBCUs improve their science education curriculum and to increase the number of minority science teachers. ${ }^{122}$ The funding supports a research network among aix HBCUs and Columbia, Harvard, and Vanderbilt Univeraitiea. ${ }^{106}$

Linkages is a program of the American Association for the Advancement of Science (AAAS) in its Office of Opportunities in Science program designed to aid community organizations expand the pool of minorities, women, and the disabled in ecientific and tachnical careers. Linkages works very closely with community organizations and provides initial funding (seed grants) for beginning programs or for expanding existing ones.

In 1980, the National Action Council for Minorities in Engineering (NACME) was formed to increase the pool of minorities with engineering degrees. NACME's success is due primarily to partnership among teachers, business people, groups serving minorities and science centers. The Incentives Program is one of many atrategies employed by NACME to increase the number of minorities who earn bachelor degrees in engineering. The incentive program has provided approximately $\$ 13$ million to more than 7,000 students to pursue degrees in the sciences. ${ }^{14}$

[^41]The National Urban League has been active in encouraging minoritien to participate in ceience since the 1840e with its Tomorrow's Sciontint Today. The program, aince changed to Tomorrow's Scientiota, Technicians and Managere (TSTM), provides axtensive tutorial earvice, career counseling and on-aite visits to inductrial and scientific institutions to observe professionale at work. All of the atudente onrolled in TSTM are strongly oncouraged to select accelerated classes in mathomatics, aciance, and Englinh. Minority role models apeak with the atudents about their educational backgrounds and carear options. In addition to the TSTM program, the 118 affiliates of the Urban League have many programs to promote ecionce and math literacy. ${ }^{\text {w }}$

In 1985, the Girls Clubs of Amarica began Operation SMART (Science, Mathematics and Relevant Technology) to devalop girls' interset in sciance and mathematica. The Girls Club formation of the programs reaulted from the serious underrepresentation of women in the scientific and technical fields as a result of impediments faced early in childhood. In addition to providing eupport to the girls involved in SMART, the leaders have formed linkagas with other groups promoting science education-the Boston Children's Museum, AAAS, and the Children's Television Workohop.

The Westinghouse Steering Committee for Minority Communications is composed of a corporate-wide group whose purpose is to develop communications and atrangthen relationships between the corporation and the minority community throughout the United States. Central to the Committee is to appraise minority youth of career opportunities in science, engineering and technology. Since its beginnings in 1978, the various campaigns of the Committee have communicated opportunities to potentially 211 million people. ${ }^{16}$ The company's black and Hispanic engineers and high technology professionals serve as credible role models for technical careers.

The American Indian in Science and Engineering Society (AISES) was formed in 1977 to increase the representation of Native Americans in ceience and engineering education and to provided a cadre of technically trained native Americans to work with and advise the tribal elders. ${ }^{107}$ The programs of AISES are expansive, and include echolarahip programs; precollege, undergraduate and graduate, and professional training and support components; and a comprahensive communications network among Native Americans tribes,

[^42]schools and universities, agencies and organizations, and educators, both Native American and non-native American. The organization has funded more than $\$ 200,000$ in scholarships and has developed more than 45 chapters on college campuses.

The Center for the Advancement of Science, Engineering, and Technology (CASET), with cupport from the Depertment of Labor, NASA'n Johneon Space Center, and with technical overaight from the Army Research Center for the Behavioral and Social Sciences, is researching the needs of the underrepresented minority groups in ecience, engineering, and technology (SET). The objectives of the research-'A Study to Determine and Teet Factors Impacting on the Supply of Minority and Women Scientists, Engineern, and Technologists for Defense Industries and Inatallations"-are multifaceted, but have as ite prime objectives to:
(1) Design, develop, and pilot-test Intervention Modular Unit Packages (IMUPs) to enhance the recruitment, melection, performance, and retention of American Indians, blacks, Hispanics, and women, in SET careers with DOD and defense contractors;
(2) Recommend policy options for the period 1990-2010 when serious shortages may appear, impacting on defense preparedness, national security, immigration, and international technological competitiveness;
(3) Provided the knowledge base to improve recruitment and retention of American women and minorities for DOD civilian personnel, ROTC science/engineering programs, and uniformed Active, Reserve, and National Guard professionals and to provide new ways which defense contractors may intervene to increase the SET pool;
(4) Establishment of a National databses and network using a collaborative approach to share information and reinforce efforts to increase the pool of qualified, professional minority and female SETs. ${ }^{186}$

Preliminary data from this study indicate that middle class atatus has a positive effect for science and engineering careers, regardless of race or ethnicity. However, when class was not used as a control, approximately 60 percent of Asian American students elected and persisted in science and mathematics as

[^43]opposed to leas than 2 percent of the underrepresented minorities. Additional analysic revealed that approximately 50 percent of black and Fiepanic youth with mathamatice SAT mcores of 550 and above, who declared science, engineering or math as a major, changed their discipline prior to their junior year in colleg. The study will attempt to identify intervention mothods that have a ponitive effect on the cultural, economic, educational, eareer, and personal factors while aimultaneoualy being cont-aficctive. Of the approximately 800 interventions that have been identified to date, more than half have aupport mechaniams ralating to factors other than financial or educational. The policy goal is to expand the ecience, engineering, and technology pool by including more of the underrepresented minoritise.

The Reginald F. Lewis Foundation, donated $\$ 1$ million to Howard University for scholarship aid to disedvantaged etudents. The gift from the foundation will be matched by a $\$ 1$ million grant from the Federal Government. In addition to the donation to Howard Univeraity, the Lewis Foundation awarded 825,000 each to Virginia State University, Morgan State Univeraity, and Hampton University. ${ }^{100}$

Fairchild Industries and the Tektronix Corporation have established a SHARP (Summer High School Apprenticeship Research Program) program to provide expanded opportunities for minority studenta interested in acience, electronics, engineering, computer acience, and upace technology. This program has created, also, scholarships for minority students to defray college expenses and reduce the reliance on student loan programs.

The General Electric Foundation has pledged $\$ 35$ million to be used over a 10 -year period to help increase the participation of women and minorities in univeraity faculty and to help increase the number of minority inner-city students attending college. Approximately $\$ 15$ million is to be expanded on faculty-development program to encourage minorities to puraus advanced degrees and to teach at the university level in areas such as science, engineering and business. The other program will be directed toward increasing the number of college-bound high school graduates from urban areas by providing them with Saturday programs, preparation classes for college entrance araminations, and training courses for teachers and parents to better assiat thase atudents in science, mathemstics, and communication akills. ${ }^{\text {s0 }}$ The foundation proposes to spend $\$ 1.5$ million annually to finance full-tuition fellowahipe for 60 first-year doctoral students, renewable $\$ 5,000$ loans for second-year doctoral candidates that will be forgiven if the students enter teaching, and three-year, $\mathbf{8 6 0 , 0 0 0}$ grants to assist young faculty members in their research.

[^44]The Amoco Foundation will make granta totaling $\$ 2$ million over the next six years to help improve science and mathematics programs at eeven historically black colleges and univarsities (HBCUs) and to halp attract more students to thase institutions. Also included in this grant is an award of approximately $\$ 425,000$ to the Atlantic Univarsity Center, Inc., to admininter Amoco's Historically Black Science Advancement Program. ${ }^{191}$

The Florids Endowment Fund in Higher Education is a public-private partnership providing seholarahipe to increase the number of blacls in higher education. The fund awardis acholarihips up to $\$ 5,000$ for tuition and a $\$ 10,000$ stipend each year for a period of three yeare of doctoral study at one of 11 participating Florida institutions. The majority of the awards have been in disciplines where blacis have hintorically been underrepresented-science, engineering, and mathematics. Unlike many other programs, those recaiving these awards are not indentured to the system following completion of their program. This program and other similar ones (National Consortium for Graduate Degrees for Minorities in Engineering and the Committee on Institutional Cooperation Fellowship Program) provide minorities the opportunity to increase their presence in academis by increasing access for blacks to all levels of higher education. It is expected that, by the year 2000, appraximately 33 percent of the Nation's current faculty in colleges and universities will retire. ${ }^{183}$

The Andrew W. Mellon Foundation has awarded a total of $\$ 2.6$ million to the United Negro College Fund to establish programe targeted at increasing the number of minority faculty in the arts and sciences. The programs will support 20 fellowships every year for a period of three years to undergraduate students attending colleges and universities participating in the UNCF. For those students electing to continue through graduate school, stipends will be provided and a portion of their undergraduate loans will be forgiven. The program also will provide fellowships each year for a three year period to minority faculty members at member institutions of the UNCF and the American Indian College Fund. Each fellow will receive $\$ 24,000$ for research or dissertation completion, which will in turn help to etrengthen the member institutions arts and ecience programs.

[^45]The American Geological Institute's Minority Participation Program sponsors scholarahipe for geoscience majors who are members of the underrepresented groups in the geosciences-blacis, Hippanics, and Native Amaricana. Since itn beginning in 1870, the program has awarded more than 8500,000 to geoseience majors (reolopy, geophyties, spochomintry, hydrology, moteorology, oceanography, planstary geology, and earth science education. Awards range from $\$ 500$ to $\$ 2,000$. In the 1888-1989 school year, 35 scholarahipe were awarded, totaling 928,750 . Whils the AGI does not offer ccholanhipe to address underrepresentation of women, epecifically, approximately $30-40$ percent of the recipients of these awards in recent years have gone to women.

The Charles Stewart Mott Foundation awarded $\$ 6$ million to eight HBCUs for capital improvements, faculty-development programs, and financial aid to students. ${ }^{185}$ The Mott Foundation hat provided a total of $\$ 20$ million to these institutions over the past 10 yearn. ${ }^{105}$

Rockwell Internstional's Science Center has formulated and promoted innovative programs in higher education to increase representation of minorities in the scientific and engineering professionals.

Excon Research and Engineering Company has created an alliance with five New Jersey high schools. Exron donates laboratory equipment to the schools in exchange for the names of those minority studente gifted in science and mathematics. These atudents are selected to work in Excon's laboratories during the summer, paired with a researcher, and permitted to work on a research project. The cost of Excon's summer program exceeds $\$ 50,000$.

Dow Chemical's "Touch Tech" program is expansive. Approximately 40,000 precollege etudents visit its museum chemistry laboratory annually. In addition, the company provides yearly workshops for more than 60 classroom teachers to work with researchers and devise improved methods for teaching science to children. ${ }^{19}$ In addition, Dow Chemical has a Touch Tech Mentors Program with a predominantly black high achool. Each summer, Dow admits 10 to 15 of the highest achieving students from this school to its laboratories, and provides them with a salary, mentor, food, lodging, and a summer job in research.

[^46]
POLCY ISSUES

The discrepancy between minority participation in science, mathematics, and engineering and overall minority population trende is one of the moat critical iscues currently confronting the educational ayetam. Previous challanges in education have been met with the establinhment of land-grant collagae, the G.I. Bill, the Vocational Pducation Act, the National Defonse Education Act, and the Elementary and Secondary Education Act. The Task Force on Women, Minorities, and the Handicapped in Science and Technology croposed that the issue of underrepresented minorities in the sciences be addressed with the same fervor that was accorded science education following the launch of Sputnik in 1957.

Por the most part, past and currant policien have been inefficient and ineffective in recognizing and attempting to sddress the problems of minority students in science, mathematics, and engineering as evidenced by earollment and graduation data. The role of the NSF might be heightened by making its efforts more congruent with those of the National needs. The NEF could assist minority precollege efforts by examining the process of science, engineering, and mathematics education in underrepresented groupa. There is a paucity of information on understanding the problems of minority students at the precollege level. Available minority data collection at the precollege level often doss not distinguish between blacke and Hiapanics or between Puerto Ricans or Chicanos. Not all the education problems of the underrepresented groups are parallel, nor are they the same in rural areas or urhan areas. The NSF would not be in the position to solve the problems, but could support research that might help to define them. In addition, rellable data concerning precollege seience and mathematics course-taking are nonexistent for minorities and nonminorities. As a result, it is difincult for practitioners and policy makers to focus on problems and discontinuities in the underrepresented groups. The NSF could initiate a regular data collection effort which utilizes the resources of the National Center for Education Statistica, and various national ethnic organizations to compile an accurate picture of the participation of minorities in science, engineering, and mathematics.

Many of the information-sharing programs of the NSF are reactive rather than proactive, stimulating information flow within an area or locality, but not between the NSF and its constituents. Primarily at the precollege level, there is a great need that the resulte of operational and meritorious projects reach others quickly and in a manner which gets the information directly to the practitioner. The NSF should provide national leadership for minority ecience, engineering, and mathematics efforts by providing a national clearinghouse similar to the model of Educational Resources Information Center (ERIC). A national clearinghouse could provide a comprehensive national collection and distribution point for data, instructional materials, and methodologies for successful precollege models. In addition, the clearinghouse could establish a national register of corporations interested in interacting with school systems to improve science, engineering, and mathematics capabilities of all students. An expansion to the clearinghouse could not only receive information from
different consortia and Federal agencies but also disseminate the materials throughout the United States by maans of an electronic bulletin board nystem.

The Deparement of Education's cupport of sciance and mathematics education has not approximated that of the NSF. The D opartmest of Education supporta acience and mathomatice mainly through Iitle II of the Elementary and Secondary Education Act, as amended by P.L. 100-297 (prior S77). Programs of the Departmont that contribute aignificantly to the ecience education efforts, with components targeting minorities and women, include thoe of the Dwight D. Bisenhowar Mathematics and Science Education program and the Upward Bound Program. While there has been a 62.2 percent incresce in the Department for programs directly affecting science and mathomatics education in fiecal year 1991 from fiscal year 1990, it has been proposed that the efforts of the Department of Education be furthered increased and enhanced through collaboration with the NSF. It is the opinion of agency officials that collaboration could stretch resources and extend the effectiveness of all involved. Successful collaboration with schools, school systems and atates is a critical component to any efforts. Collaborative efforts proposed by the two agencies include:
(1) Establishment of stronger liaison between the two agencies, including joint public appearances and joint statements on appropriste matters by the Secretary of Education and the Director of the National Science Foundation;
(2) Closer and more stable working and funding arrangements;
(3) Joint programs with the States and programs targeted at urban education;
(4) Expansion and improvement of National Assessments of student achievements in the aciences and mathematics; and
(5) Increased dissemination of high quality projects sponsored by the National Science Foundation and expanded distribution by the Department of Education ${ }^{199}$

While the focus to address the needs of science education has been given mainly to the NSF, and to a lesser degree, to the Department of Education,

[^47]other Federal agencies could expand their efforts in addressing the needs of underrepresented minoritios. (For a partial listing of the aupport by Federal agencies see table A8 in the appendix). The programs in the agencies have gone from a "few in number and amall in scope" to a "llood of support."300 However, few of the programs oparating for a period of time have been analyzed or evaluated. In the absence of evaluation componente or empirical data, it is not discernible if the programe warrant replication or how they should be restructured. Joseph Danok, Director of the Division of Research and Improvement, NSF, itated that: We see so few minority scientists and engineers that whatever we've been doing inn't giving us the desired results. 201

The Department of Energy (DOE) as a consumer and patron of a aignificant fraction of the Nation's scientists, mathematicians, and engineers, has had a long tradition of support for and involvement in science education. Primarily through its network of national laboratories and research facilities, DOE has expanded its role in the national effort to improve the science education aystem, including overall science literacy and the participation of minorities and women in the sciences. The efforts of the DOE are designed to complement those of the NSF, the Department of Education, State and local governments, and the education community as a whole. DOE is seeking to expand its efforts at the precollege level, to intervene during the early years of education before students, primarily minorities and women, foreclose their chances of entering the science and engineering pipeline. The effort of the DOE could serve as models for other agencies with limited involvement. DOE initiated 11 new partnerships in fiscal year 1991 to address the needs.

The Department of Defense (DOD) also is a consumer of ecientists, mathematicians, and engineers. Presently, there are a number of education programs in DOD which are designed at attract, train, and advance a sufficient supply of fully qualified individuals in scientific and technical fields. Some of these programs are directed at mincities and women who are proportionally underrepresented in DOD's scientific and technical workforce. (For an expanded discussion of programs at the precollege, undergraduate and graduate levels, see CRS Report 89-256-Science and Engineering Education: The Role of the Department of Defense. ${ }^{302}$ At issue is whether or not there is a further role for DOD in science and education. How should DOD mobilize the resources and professional participation required to affect science education significantly over a period of time? What programs should be implemented to broaden the pipeline of minority youth pursuing science, engineering and technology careers?

[^48]At present, ecience education efforta in DOD are characterized by considerable delegation to the Services and agancies. Congress may wioh to consider, in its fiscal year 1991 arthorization bill for DOD, including language to require the Undercocretary of Defense for Acquisition to put the Director of Defense, Research, and Engineering (DDBAB) in charge of all DOD ecience and engineering education programs (precollege, undergraduate, and graduate). One individual could be delegatod with full authority for these programs and could take a procective role in facilitating interservice coordination. Having the responsibility of science education programs placed with one individual might might help to prevent duplication of afforts while simultancouly guarding against inedequacy of funding in any particular area. A centralized point of unified leaderehip and authority for science program in the DDR\&D could be expected to foster improved coordination with the Services and DOD components by etrongthening and maintaining intervantion methode and placing less of a burden on any one agency's constrained resources. In addition, increased aystematic coordination may permit the Services and the DOD comprinents to eatablish complementary goals and objectives for science and orgineering education at all lovela. Equally imprortant, during the DOD authorization process, one person would be able to present to Congress a DODwide integrated picture of its various ecience education activities. On the other hand, the current system's multiplieity of inputa from the various services and agencies has certain advantages, auch as allowing a wide range of expertise in program design so as to represent the various interests involved.

A aecond action that could occur before implementing or expanding any intervention programs would be a comprehensive review of all current DOD science and engineering programs. The review could include: (1) the amount of funding by the Services and the DOD componente for all acience and engineering programs; (2) the gaale and objectives of the programs; and (3) coordination mechanisms currently in use (including documentation and evaluation of existing mechanisms). The review could also determine posible mechanisms for optimum coordination of the various programs. Centralization and increased coordination of science education efforts could enable the DOD to place its current and newly initiated programs in the contest of broader national concerns.

Coupled with the discussion of improving the participation of blacks, Hispanics, Native Americans, and women in the sciences is the discussion of improving the entire science education aystem for all atudonts. It has been suggested by various Federal administrators of acience and engineering programs, academicians, and precollege level officials that coordinated interagency efforts would eerve to guarantee the most effective use of limited funding sources. Each ageney could be cognizant of the others programs so that duplication of efforts could be avoided. Coordinated efforts are in evidenced by the formation of a committee convened by the Federal Coordinating Council for Science, Enginearing and Technology. An additional intra-agency coordination science and technology group hes been formed by the White House Initiative on Historically Blact Colleges.

Collaboration is needed between colleges and universities and public school officials to design progroms and curricula to expand the pool of minority students interested and able to qualify to enroll in the sciencea. More colleges and universities ahould expand thair policies by entabliahing partnerahips with local schools, particularly urbse achoole that most often have the least resources. Public colleges and univeraitios could be required to enroll and greduate minorities in proportion to their representation in the State population (or could at least approach representation). In addition, the States could provide financial assistance that factors in minority studente' lower economic resources and the protracted period of time required for graduation.

In addition to recruiting more atudenta to enlarge the pool of scientists, engineers, and mathematicians, efforte also should be directed at retaining student interast in acience and engineering and thereby reducing the attrition from the talent pool. Research has found waye to create a more positive environment for encouraging and retaining minorities and women in science, mathematics, and engineering-the introduction of role models, use of intervention programs, familiarizing teachers with their subtle forms of discrimination and exclusion by ethnicity and gender, and creation of classrooms which foster high expectations and efficacity. No matter how successful precollege remediation atrategies, carly identification programs, and programs to ensure undergraduate recruitment, without retention of a significant number of atudents, a critical shortage of minority scientists, mathematicians, and engineers will continue for the foreseeable future.

The education of scudents is not the monopoly of the schools. The business community is a segment of the economy that depends on the effectiveness of the schools. Increased partnerships between business and education, between scientists and educators, between educational institutions at different levels, between atate and local governments and business, and between the Federal Government and all the other sectors would help. There is an economic argument for public investment in education in general, and for science, engineering and mathematics in particular, when examining the country's productivity decline.

The needs are great and immediate; the problem of underrepresented minorities in the sciences requires multiple colutions applied systematically to guarantee that limited resources are used effectively. In a position paper prepared for the Congressional Black Caucus Symposium on Opportunities and Challenges for Minorities in Science and Technology, David Johnson, Executive Director, Federation of Behavioral, Psychological and Cognitive Sciences, wrote that:

More of everything is needed: more Federal attention to erasing inequity, more effort to negate the obstacles to academic achievement that often accompany a childhood spent in poverty, more intimate involvement of parents in the education of their children, more community participation in reinforcement and enrichment of the learning environment, more minority teachers
teaching ecience and mathamatics in better ways, more atiention to the quality of the school environment, more minority students otaying in cehool and taling ecience and mathematice cources at a more advanced level, more leaning of the arganizational and intellectual procesces that underly scientific inquiry at the came time that factual information from sciance and mathematies is being conveyed, more improvement in minority scores on the indicators of readinese for college atudy, and more financial resources committed earlier to assure that every minority utudent who has the desire and ability to pursue postsecondary atudy in ecience or engineering can do so. Every button needs to be pushed. ${ }^{208}$

If population trends continue as expected and if the participation of minorities in the cciences remains \&bnormally akewed, then the availability of an educated, ecientifically literate workforce needed to meet tha challenge of a highly competitive internal economy will continued to be at risk. Walter E. Massey, vice-prenident for research at the University of Chicago, and for the Argonne National Laboratory and recent nominee of President George Bush to be the Director of NSF, noted that this is an opportune time for groups involved in equity issuss to promote science education among minorities, women and the handicapped. He posited that if the underrepresented in the aciences cannot be expanded, universities and private industries will fill the needed positions with foreign talent. 204 There should be two goals in science education, (1) to guarantee a high level of scientific and technical literacy for all studenta, and (2) to develop the talents of those who demonstrate the aptitude who are femsles and members of a minority group. These two goals should be pursued in concert.

The 101st Congress has introduced various legislation to respond to the Nation's need for trained scientific and technical personnel and the need for scientific literacy of the workforce and general citizenry. (For discussion of the legislation, see Congressional Research Service, Issue Brief-Science, Engineering, and Mathematics Precollege and College Education). ${ }^{206}$ In

[^49]sddition, much of the legislation has components that would contribute to the recruitment of minorities and women in the sciences. Congress might consider expanding its role by developing programs in Federal agencies and forming alliances with the private sector to further incresee the number of students choosing science, mathematics, and ongineering as a career. Because of the number of years it takes to "grow' a scientint, mathematician, or engineer, programs need to be proposed at all levels of the educational system--precollege, undergraduate, and graduate level.

CRS-65

APPENDIX

TABLE A1. Women Minoritica, and Forvign Nationala Enrolled in Engineering 1887-1988												
	Women		Blache		Hiapanics		American Indiane		$\begin{aligned} & \text { Acian/ } \\ & \text { Pactfic } \end{aligned}$		Foreign/ National	
	1987	1988	1987	1888	1987	1988	1987	1988	1887	1888	1887	2888
FULL TIME UNDERGRADUATES:												
Firet Year	15,004	15,887	6,145	7,075	4,465	4,872	354	438	7,074	7,610	8,890	S,848
Second Year	11,820	11,465	8,777	8,011	3,424	3,221	215	209	6,016	0,174	4,402	8,817
Thind Year	11,775	11,356	3,298	3,357	8,890	3,315	228	212	6,984	7,101	6,688	6,148
Fourth Year	16,640	16,011	3,892	8,097	4,468	4,228	525	302	9,441	0,287	7,881	7,685
Firth Year	1,292	1,108	188	187	1,590	1,391	14	8	816	840	498	327
Total Pull Time Unciergrmianten	65,471	64,772	17,300	18,227	17,181	17,027	1,186	1,164	\$0,150	30,352	24.23	20,736
Part Time Undergraduatee	4,810	5,616	1,842	2,178	1,122	1,678	109	120	2685	2,000	1,781	2,828
FULL TTME GRADUATE ETUDENTE:												
M.S. or Prof. Engineering	6,646	5,813	628	651	878	762	68	70	2,818	2,875	14,097	16,690
Doctorate	2,533	2,960	165	215	254	310	25	31	1,497	1,769	12,201	18,867
Total Frull Thmo Graduatee	8,079	8,773	791	866	1,182	1,062	91	101	4,815	4,604	28,948	20,657
Part Time Oraduate Students	5,856	6,645	888	899	700	697	66	70	8,590	2,645	5,221	6,871

"Includee 4,150 full-time undergraduatea, 118 part-time undergraduatee, 113 full-time graduate atudentr, and two part-time graduate atudente at the Univaraity of Puerto Rico in 1987, and 3,889 full-tims undergraduates, 99 part-time undergraduatee, 102 full-time graduates atudenta, and one part-time greduate atudent at the same institution in 1988.

SOURCE: American Amociation of Engineering Societiee. Engineering Manpowar Bulletin. Wachington, May 1989. p. 3.

CRS-68

Table AL Engincering Degrees Awarded to Wamen, Ethnic Minorition, and Foenion Nationale 1088-1088								
	Under-Ropromoted Minartion							
LovalDiscipline		$\underset{\text { Woman }}{\text { All }}$	Blacte	Hispenice"	Amarican Indian	Subtotal	Asian Americana	Foreign Nationals
All B.S. Degreen:	1986	12,284	2.114	1,884	129	4,107	4,824	6,276
	2987	21.675	2.182	1,840	149	4,171	5,056	6,048
	1988	10,940	2211	1,920	187	4,318	6,691	5,763
Electrical	1936	2.755	806	698	4	1,448	2,948	2,165
	1987	8,178	859	615	54	1,522	2,674	2,251
	1988	3,177	850	640	64	1,644	2887	2,229
Mechanical	1888	1,727	430	328	21	779	671	942
	1987	1,724	389	574	28	785	701	855
	1888	1,772	421	578	32	828	821	873
Civil	1988	1,091	168	255	14	437	352	1,425
	1987	1,096	200	228	18	444	954	1,194
	1988	1,072	179	243	36	458	369	950
Chemical	1988	1,483	194	102	13	309	297	281
	1887	1,879	182	106	10	298	231	287
	1988	1,079	164	99	11	274	234	261

TABLE A2 Enginearing Degrees Awarded to Women, Ethnic Miporition, and Foralgn Nationale 1088-1088								
	Under-Roproconted Minorition							
LevelDiscipline		$\begin{array}{r} \text { All } \\ \text { Women } \end{array}$	Blacks	Hispanice*	Americen Indians	Subtotal	Asinn Amaricans	Faraion National
Computar	1985	1,045	91	117	10	218	482	881
	1097	2,072	188	124	12	969	450	448
	1888	797	117	109	15	241	438	422
Industriol	1886	1,286	168	164	7	359	179	578
	1897	1,888	180	122	8	815	181	369
	1888	1,288	223	148	8	874	183	988
All Others	1988	1,897	257	800	20	577	485	703
	1887	1,848	241	278	24	588	466	698
	1888	1,760	257	808	86	601	689	645
M.S.JProf. Engineer	1886	2,745	845	522	27	694	1,704	6,786
	1987	8,119	888	852	38	781	1,774	6,316
	1888	8,578	865	469	32	886	1,785	7,829
Doctorates	1888	246	17	38	4	69	229	1,441
	1887	298	18	25	6	49	234	1,800
	1988	813	29	38	8	68	275	2,038

- Excludes degrees from the Univeraity of Puerto Rico, in order to reatrict data on the 50 etatee and the District of Columbia.

SOURCE: American Association of Engineers Societies. Engineering Manpower Bulletin. Washington, Mar. 1939. p. 5.

TABLE AS.
Parcontage Distribution of Full-Time Roguler Faculty, by Ethnicity and Dopartment Propram Area: Fall 1887

NOTE: Detaile may not add due to sounding.
SOURCE: U.S. Dept. of Education. Office of Educational Research and Improvement. National Center for Educational Statistics. Faculty in Higher Education Institutions, 1988. NCES 90-365, Mar. 1990. p. 11.

TABLS A.
Pereantage Distributice of Part-Time Regular Paculty, by Ethnieity and Department Prouram Area: Fall 1087

Forry Inotitution	Pembtine Reguiar Piounly		\% \% \% \% \% \% 				
			Amarican Indins	Arinn	Bluat	Hirpanic	Whice
	Number	Parant	Pencent	Persent	Percent	Pareant	Percent
	80,877	100	2	5	4	2	87
By Program Aran							
Agriculture and Home Eeonomice	-	-	-	-	-	-	-
Businoes	6,219	100	0	0	1	0	99
Education	4,293	100	8	4	\bigcirc	9	81
Engincoring	-	\sim	-	-	-	-	-
Firse Arts	8,606	100	0	6	2	4	89
Health Sciences	17,214	100	1	10	18	4	72
Humanities	8,588	100	0	8	8	2	88
Natural Sciencer	10,078	100	1	8	1	1	89
Social Sciences	6,698	100	14	7	5	0	74
Other Fiolds	18,657	100	1	0	1	1	97

-'Coo few easee for a reliable entimate.
NOTE: Dotaile may not add due to rounding.
SOURCE: U.S. Dept. of Education. Office of Educational Research and Improvement. National Center for Educational Statistics. Faculty in Higher Education Institutions, 1988. NCES 90-365, Mar. 1990. p. 12.

TABLE AG. Percmatapy Dictribution of Pull. avd Part-Time Regular Faculty, by Gaoder and Departmeat Program Asea: Fall 1007								
			$\frac{\text { Mab }}{\text { Mat }}$	Promic				Fomer
	Number	Pensoat	Pacome	Pecount	Number	Parcma:	Pucomat	Perceat
$\square \angle$	s78,782	100	75	25	80,677	100	64	46
By Prograna Area								
Apriculturs and Frome Foconomice	10,012	100	cs	57	-	-	-	-
Suminome	24,520	100	78	22	6,219	200	ω	81
Education	21,464	100	62	38	4,235	100	45	67
Rnginomiag	. 28,682	100	97	3	-	-	-	-
Fine Arte	24,769	100	78	24	8,608	100	30	70
Health Sciopece	78,927	100	68	$s 2$	17,214	100	67	4
Hummaities	47,423	100	70	50	8,598	100	33	67
Natural Scinose	00,347	100	85	16	10,07s	100	60	41
Sociel Scimace	40,399	100	77	23	8,008	100	61	39
Other Plulde	40,488	100	77	23	10,677	100	00	41

- Too fow canee for roliable entimato.

NOTE: Dotail may not add due to rounding.
SOURCE: U.S. Dopt. of Pducation. Olliee of Pducational Remearch and Improvement. National Center for Education

Race/Ethnicity	TABLE A6. Enrollment in Historically Black Colleges and University by Race/Ethnicity Fall 1976 to Fall 1987							
							Percentago	
	1976	1980	1982	1984	1986	1987	$\begin{aligned} & 1986- \\ & 1987 \end{aligned}$	$\begin{aligned} & 1976- \\ & 1987 \end{aligned}$
Number of HBCUs	105	102	100	104	104	100		2.5
	-105	222202		216,050	213,093	217,367	2.0	
Total	212,120	222,220	216,570	216,060	176,596	182,019	3.1	-2.0
Black, nonHispanic	185,820.	185,780	177,000	175,110				
		21,480	23,040	23,450	22,651	23,225	2.5	26.3
White, nonHispanic	18,390							84.6
Asian	610	1,340	1,050	1,350	1,237	1,187	0	
	460	1,030	1,070	1,560	1,485	1,688	6.9	245.2
Hispanic	460	1,030	670	240	552	619	-6.0	187.2
American Indian	180			14.340	10,572	8,829	-16.5	32.6
Nonresident Alien	6,660	12,200	13,840	14,340				

NOTE: Detaila may not add to total because of rounding.
SOURCE: American Council on Education. Office of Minority Concerns. Minorities in Higher Education. Seventh Annual Status Report, 1988. Washington, Oct. 17, 1988. p. 27.

TABLE AT.

Total Federal Obligations for Research and Development to Higher Education Institutions (HIs) and Historically Black Colleges and Universities (HBCUs) 1978-1988

a/ Data are not available.

SOURCE: US. National Science Foundation. Federal Support to Universities Colleges, and Selected Nonprofit Institutions: Fiscal Year 1988. Detailed Statistical Tables NSF 89-325. Washington, 1989. p. 23, 77; and Federal Support to Universities, Colleges, and Selected Nonprofit Institutions: Fiscal Year 1985. Detailed Statistical Tables. Washington, 1987. p. 61.

TABLE A8.
Federal Ageney Programs Targated at Minorities and Women (continued)

NATIONAL AEBONAUTICG AND SPACE ADMINISTRATION

- Summar High Sehool Apprenticeship Program (SHARP). FY91 (proposed): $\$ 510,000$.
- Undergraduate Student Researchers Program. FY90: $\$ 1$ million.
- Graduate Student Researchern Program. FY90: $\$ 2.2$ million.

NATIONAL SCIENCE FOUNDATION

- Career Access Opportunities in Science and Technology for Women, Minorities and the Disabled (ACCESS): FY91 (proposed): 815 million. Alliances for Minority Participation (AMP). FY91 (proposed): $\$ 10$ million.
- Research Careers for Minority Scholars (RCMS). FY91 (proposed): $\$ 8.8$ million.

DEPARTMENT OF DEFENSE

Science and Engineering Apprenticeship Program (gummer).

- Historically Black Colleges and Universities/Minority Institutions Program.

ENVIRONMENTAL PROTECTION AGENCY

Minority Research Grants. FY91 (proposed): $\mathbf{\$ 9 0 0 , 0 0 0}$.

- Minortty Fellowships. FY91 (proposed): $\$ 115,000$.
. Minority Summer Internships. FY91 (proposed): $\$ 140,000$.

TABLE 18.
Federal Agency Programs Targeted at Minorities and Women ${ }^{*}$

ALCOHOL, DRUGABUSE, AND MIFNTALHEALTHADMINISTRATION

- Minority Access to Research Carears (MARC). FY89: $\$ 1.3$ million.
- Minority Fellowahip Program (MFP). FY89 $\$ 1.7$ million.
. Minority Institutions Recearch and Development Program (MIRDP). FY89: \$950,000.

DEPARTMIENT OF ENERGY

- High School Student Research Apprenticeship Program. FY91 (proposed). \$400,000.
- Prefreshman Enrichment Program (PREP). FY91 (proposed): $\$ 1.4$ million.
Minority Honors Training and Industrial Assistance Program. FY91 (proposed): \$431,000.

NATIONAL INSTITUTES OF HEALTH

. Minority Biomedical Research Support(MBRS). FY91 (proposed): $\$ 32.3$ million.
. Minority Access to Research Careers (MARC). FY91 (proposed): $\$ 13.4$ million.

- Research Centers in Minority Institutions (RCMI). FY91 (proposed): $\$ 25.8$ million.

DEPARTMENT OF INTERIOR

- Kistorically Black Colleges and Universities Initiative (large science and engineering component) FY90-92: \$15 million.

DEPARTMIENT OF AGRICULTURE

. USDA1890 Summer Intern Progran FY91 (proposed): $\$ 1.5$ million.

- USDA/1890 Liaison Officer Program. FY91 (proposed): \$2 million.
. USDA/1890 Capacity Building Grants Program. FY91 (proposed): \$11 million.

[^50]
[^0]:

 * Reproductions supplied Dy EDRS are the best that can be made

[^1]: ${ }^{1}$ The terms science; science, mathematics and engineering; and science and technology, are used interchangeably in this report to describe a taxonomy of degree fields. The aubfields of acience, as defined by the National Science Foundation, are the physical sciences, earth, atmospheric and marine sciences, life sciences, biological sciencea, social sciences, peychology, mathematics, and computerfinformational sciences. When noted, selected subfields, of the sciences will be discussed.
 ${ }^{2}$ Women are included and are treated in this report because they are subject to the same protection against discrimination under Title 7 of the 1964 Civil Rights Law (42 USC, section 2,000 et eeq).
 ${ }^{2}$ According to one writer as a minority group, Asian Americans are: '.. . funneled into science out of all proportion to any other ethnic group-pressured to go there by a combination of forces including family and societal preconceptions about what Asian can axcel in, as well as university hiring policies that have failed to provide Aeian American role models in non-science discipii zes." Buderi, Robert. Berkeley's Changing Student Population. Science, v. 245, Aug. 18, 1989. p. 694.
 ${ }^{4}$ U.S. National Science Foundation. Women and Minorities in Science and Engineering. Jan. 1990. NSF 90-301. p. 30.
 ${ }^{6}$ Ibid.

[^2]: ${ }^{3}$ Atkinson, Richard C. Ominous Statistics Foretell Drastic Shortage Or Scientists. Tbe Scientist, v. 4, June 25, 1990. p. 11.
 ${ }^{7}$ Berryman, Sue E. Who Will Do Science? Columbia University. National Center on Education and Employment. An occasional paper with the support of the Rockefeller Foundation. New York, 1983. p. 7.

[^3]: ${ }^{3}$ Astin, Alexander W., Kenneth C. Green, William S. Korn, Marilyn Schalit, and Ellyne R. Berz. The American Freabmen Norm: National Norms for Fall 1988. Prepared by the Cooperative Inititutional Research Program, and sponeored by the Higher Education Research Institute, Graduate School of Education, University of California, Los Angeles, and the American Council on Education, Dec. 1988. p. 6.
 ${ }^{9}$ Ibid.
 ${ }^{10}$ Between the years 1980 and 1989, the Hispanic population grew by 39 percent, the Native American population grew by 22 percent, the black population grew by 14 percent, while the white population grew by only 7 percent. Center for Demographic Policy. Demographics for Education Neweletter, v. 1, June 1990. p. 1.
 "The Challenge to the Business Community. Congressional Testimony on Its Stake in the Education of At-Risk Children. The Institute for Educational Leadership, Inc. Washington, 1987. p. 6.

[^4]: ${ }^{12}$ Presently blacks are the majority of the population in Atlanta, Baltimore, Detroit, and Washington, D.C. The dominant population in the cities of El Paso, Miami, and San Antonio is Hispanic. In less than 20 years, whites will no longer claim a state-wide majority in Texas and California. Hodgkinson, Harold L. Director. Center for Demographic Policy, Institute for Educational Leadership, Inc. Speech given before Carnegie Foundation sponsored conference on The Generational Contract: Educating All Our Youngsters for the 1990s. Washington, June 26-28, 1989.
 is Woodside, William S. Corporate Leadership for Public Education. The Institute for Educational Leadership, Inc. Washington, May 1986. p. 6.
 ${ }^{14}$ U.S. Dept. of Labor. Workforce 2000. Prepared by the Hudson Institute for the Dept. of Labor. Washington, U.S. Govt. Print. Off., 1987. p. 95.
 ${ }^{16}$ Women and Minorities in Science and Engineering Education, p. 28, 149150.

[^5]: 16 U.S. Congress. Senate. Committee on Labor and Human Resources. Crisis in American Math, Science and Engineering Education. Hearings, 101st Cong., 1st Sess., Nov. 14, 1989. Washington, U.S. Govt. Print. Off., 1990. p. 3536.
 ${ }^{17}$ U.S. Congress. House. Committee on Science, Space, and Technology. Subcommittee on Science, Research, and Technology. Scientific, Technical and Literacy Education and Training and H.R. 3122, the Science and Technological Literacy Act. Teatimony of Raymond J. Uhalde, Deputy Administrator, Omice of Strategic Planning and Policy Development, Employment and Training Administration. U.S. Dept. of Labor. Hearings, 101st Cong., 1st Sess., Oct. 31, 1989. Washington, U.S. Govt. Print. Off., 1990. p. 100.

[^6]: ${ }^{16}$ U.S. Congress. House. Committee on Science, Space, and Technology. Women, Minorities, and the Disabled in Science and Technology, Hearing, 100th Cong., 2d Sess. Washington, U.S. Govt. Print. Off., 1988. p. 14.
 ${ }^{19}$ U.S. National Science Foundation. Education and the Professional Workforce. Mosaic, v. 18, Spring 1987. p. 15.

[^7]: ${ }^{20}$ Vetter, Betty M. Recruiting Doctoral Scientiste and Engineers: Today and Tomorrow. Occasional Paper 89-2. Commission on Profesaionals in Science and Technology. Adapted from a presentation on Sept. 19, 1988, to General Electric Doctoral Recruiters, General Electric Company. p. 16; and Demographics for Education. Center for Demographic Policy. CDP Newsletter. The Demographics of School Reform: A Look at the Children, v. 1, Mar. 1990. p. 12.
 ${ }^{21}$ Educating Black Youth Means Addressing a Range of Concerns. Southern Education Foundation News. Jan. 1990, v. 4, p. 4; Changing America: The New Face of Science and Engineering. Final Report. The Task Force on Women, Minorities, and the Handicapped in Science and Technology, Dec. 1889. p. 22; and Locke, Patricia. American Indian and Alaska Native Education Isoues. Prepared for the Rural Education Conference "The Rural Agenda of Educating All Children for the 1990s." May 12, 1989.
 ${ }^{22}$ Educational Teating Service. The Science Report Card: Elements of Risk and Recovery. Trends and Achievements Based on the 1986 National Assessment. Report No: 17-S-01, Sept. 1988. p. 7.
 ${ }^{29}$ Baker, Peter. Poor Schools Grow Poorer, Va. Study Says. The Washington Post, Jan. 26, 1990. p. C6; and Maraniss, David. Texas Schools' Financing Ruled Unconstitutional-Court Orders Lawmakers to Find Alternative. The Washington Post, Oct. 3, 1989. p. Al4.

[^8]: ${ }^{24}$ Maraniss, David. Texas Schools' Financing Ruled Unconstitutional-Court Orders Lawmakers to Find Alternative. Washington Post, Oct. 3, 1989. p. A14.

[^9]: ${ }^{23}$ Aldridge, Bill G. Drastic Changes Needed in Secondary School Science Education. The Generational Journal, v. 2, Apr. 30, 1989. p. 21.
 ${ }^{29}$ Quality Education for Minorities Project. Massachusetts Institute of Technology. Education That Woriss: An Action Plan for the Education of Minorities. Cambridge, MA., Jan. 1990. p. 3.

[^10]: ${ }^{30}$ Ibid., p. 1.
 ${ }^{31}$ Educational Teating Service. The Writing Report Card, 1984-88: Findings from the Nation's Report Card. The National Assessment of Educational Progress. Prepared under a grant from The National Center for Education Statistics. Princeton, NJ., Jan. 1990. 110 p.; and The Reading Report Card, 1971-88: Trends from the Nation's Report Card. The National Assessment of Educational Progress. Prepared under a grant from the National Center for Education Statistics. Princeton, N.J., Jan. 1990. 67 p.
 ${ }^{22}$ Visions of a Better Way: A Black Appraisal of Public Schooling. Committee on Policy for Racial Justice. Joint Center for Political Studies. Washington, 1989. p. 36.

[^11]: ${ }^{5 s}$ Wharton, Clifton R. The Minority Student Challenge. Science, v. 224. June 1, 1984. p. 937.
 st Shaping Higher Education's Future: Demographic Realities and Opportunities, 1990-2000. Arthur Levine and Associates. San Francisco, 1939. p. 65.
 ${ }^{25}$ Oakes, Jeannie. Keeping Track, Part 1: The Policy and Practice of Curriculum Inequality. Phi Delta Kappan, Sept. 1986. p. 14.

[^12]: ${ }^{85}$ Bid.
 ${ }^{27}$ Visions of a Better Way: A Black Appraisal of Public Schooling, p. 14.
 ${ }^{36}$ Haberman, Martin. Alliances Between 4Year Institutions and 2-Year Colleges Can Help Recruit More Minority Students into Teaching. The Chronicle of Higher Education, July 27, 1988. p. A28.

[^13]: ${ }^{80}$ Watking, Beverly. Colleges Urged to Train Future Schoolteachers to Deal with Expected Influx of Immigrants. The Chronicle of Higher Education, v. 36, Dec. 13, 1989. p. A42.
 ${ }^{40}$ Stevenson, Harold W., Chuansheng Chen, and David H. Uttal. Beliefs and Achievement: A Study of Black, White and Hispanic Children, University of Michigan, 1989. 36 p . [unpublished]
 ${ }^{41}$ Behavior Today, Mar. 20, 1389, p. 6.
 42 Watkins, Beverly. p. A42; and Conciatore, Jacqueline. Shortage of Minority Teachers Leads Some to Look to Majority. Black Issues in Higher Education, v. 7, July 19, 1990. p. 8-9.

[^14]: ${ }^{45}$ Thomas, Gail E. The Access and Success of Blacke and Hispanics in U.S. Graduate and Professional Education. A working paper prepared for the Office of Scientific and Engineering Personnel, National Research Council. Washington, 1986. p. 31.
 ${ }^{4}$ Wharton, Clifton R., Jr. The Minority Student Challenge. Science, June 1984. p. 1.
 ${ }^{45}$ Pearson, Willie Jr. and H. Kenneth Bechtel. Blacks, Science, and American Education. Rutgers, the State Univerity. New Brunswick, N.J., 1989. p. 23-25, 45-48, and Brown, S. A Sturly of Losses in the Educational Pipeline and Scientific Talent Pool: A Report to the Government-UniversityIndustry Research Roundtable. National Reseus ch Council, Office of Scientific and Engineering Personnel. Weshington, 1986.

[^15]: ${ }^{46}$ Gregg, Sandra. Paucity of Black Men Stymies Collegiate Environment. Black Issues in Higher Education, v. 5, Feb. 2, 1989. p. 2.
 ${ }^{47}$ Berryman, S. E. Who Will Do Science? Minority and Female Attainment of Science and Mathematics Degreea: Trends and Causes. New York: The Rockefeller Foundation, 1983. Ramist, L. and S. Aeiotar. Profilaa. CollegeBound Seniorn, 1985. New York College Entrance Eramination Board, 1966. Thomas, Gail E. The Access and Success of Blacks and Hiepanics in U.S. Graduate and Professional Education.
 ${ }^{4}$ Hiiton, Thomas L. and Valerie E. Lee. Student Interest and Persistence in Science: Changas in the Educational Pipeline in the Last Decade. Journal of Higher Education, v. 59, Sept. Oct. 1988. p. 623.
 ${ }^{60}$ The Science Report Card: Elements of Risk and Recovery. Trends and Achievements Based on the 1986 National Assessment. Educetional Testing Service. Report No: 17-S-01, Sept. 1988. p. 28.

[^16]: ${ }^{80}$ Ibid., p. 29.
 ${ }^{81}$ Women and Minorities in Science and Engineering Education, p. 125. The score for the Hispanics resulted from combining the reported scores for Mexican Americans and Puerto Ricans.
 ${ }^{62}$ Crouse, James and Trusheim, Dale. The Case Against the SAT. Public Interest, Fall 1988. p. 97-110.
 ${ }^{*}$ The minority students defined by this study were black, Hispanic, and Native Americans. Hilton, Thomas L., Jayjia Haia, Daniel G. Solorzano, and Nancy L. Benton. Persistence in Science Of High-Ability Minority Students. A Project supported by the National Science Foundation and the Educational Testing Service. Princeton, N.J., 1988. p. 163.

[^17]: ${ }^{*}$ Richardson, Richard C., Jr. If Minority Students are to Succeed in Higher Education, Every Rung of the Educational Ladder Must be in Place. The Chronicle of Higher Education, v. 35, Jan. 11, 1989. p. A48.
 is U.S. National Academy of Sciences. On Time to the Doctorate. A Study of the Increased Time to Complete Doctorates in Science and Engineering. Washington, 1990. 177 p .
 ${ }^{66}$ Women and Minorities in Science and Engineering, p. 28.
 ${ }^{67}$ U.S. National Science Foundation. Science and Engineering Personnel: A National Overview. Washington, 1990. Special Rept. NSF 90-310. p. 78.
 ${ }^{65}$ Women and Minorities in Science and Engineering, p. 144-145.

[^18]: ${ }^{6}$ Ibid., p. 149-150.
 ${ }^{6}$ A 1990 report of the NSF states that data for Native Americans should be examined with some caution. As a result of the amall sample sive for Native Americans, the statistical reliability is considerably lower for this group than for other groups. Women and Minorities in Science and Engineering, p. 31.
 ${ }^{07}$ Locke, Patricia. American Indian and Alaska Native Education Issues. Prepared for the Rural Education Conference The Rural Agenda of Educating All Children for the 1990s." May 12, 1989. New Approaches: Educating the Next Generation, June 26-28, 1989. p. 3.
 ${ }^{\omega}$ Ibid., p. 3.
 ${ }^{69}$ Ibid., p. 5.
 ${ }^{70}$ O'Brien, Eileen M. The Demise of Native American Education. Black Issues in Higher Education, v. 7, Mar. 15, 1990. p. 16.

[^19]: ${ }^{71}$ Changing America: The New Face of Science and Engineering, Final Report, p. 24.
 ${ }^{72}$ Women and Minorities in Science and Engineering Education. p. 136-145, passim. Data for degrees earned in psychology and the social sciences were extracted prior to calculations.
 ${ }^{73}$ Ibid., p. 149-150.
 ${ }^{74}$ Ibid., p. 3.
 ${ }^{75} \mathrm{Ibid}$.
 ${ }^{76}$ Ibid.

[^20]: ${ }^{77}$ Data from the Institute of Electrical and Electronics Engineers reveal that approximately 90 percent of students enrolled in engineering programs have a family member employed in a mathematics or science discipline or a mathematics-and science- related profession.
 ${ }^{72}$ Engineering Manpower Bulletin. Engineering Enrollment Highlights: Fall 1988, no. 95, May 1989. p. 2.
 ${ }^{79}$ Ibid.
 ${ }^{10}$ It is possible that EMC's statistics cotsld exaggerate the gains experienced by these minority groups. [EMC] studies count total numbers of students of each type-first year, all master's candidates, etc.-but do not explicitly identify the number of those students who are new. To the extent that atudents remain in a given group for more than one year, some may be counted twice. Furthermore, stress by EMC an obtaining complete date may have led to improved counts and better reporting. Engineerinag Enrollment Highlights: Fall 1988. p. 3.
 ${ }^{81}$ Ibid.
 ${ }^{* 8}$ These increases occur at various schools throughout the United States, at both historically black colleges-Prairie View University, Howard University, Tuskegee University, and those institutions with a significant number of black engineering students, such as City college of New York, Georgia Tech, the University of Texas, Austin, and California State, Long Beach. Engineering Enrollment Highlights: Fall 1988. p. 2.

[^21]: ${ }^{85}$ There wes a temporary increase in births during 1969 and 1970, resulting in an increased number of potential college atudents now. After 1970, the trend of declining births continued, decreasing more than 15 percent in a three year period. Engineering Manpower Bulletin. Engineering Enrollment Highlights: Fall 1988, no. 6, May 1989. p. 1.

 - Education That Works: An Action Plan for the Education of Minorities. Quality Education for Minorities Project. Massachusetts Institute of Technology. Cambridge, MA., Jan. 1990. p. 40.

[^22]: ${ }^{50}$ Persistence data are sometimes spurious in that many minority students do not necessarily drop out, but "stop out" for a period of time and sometimes even enroll at other institutions.
 ${ }^{91}$ Hilton, Thomas L., Jayjia Hsia, Daniel G. Solorzano, and Nancy L. Benton. Persistence in Science of High-Ability Minority Students. A project sponsored by the National Science Foundation Grant No. MDR-8652096 and the Educational Testing Service. Dec. 1988. p. 175.
 ${ }^{02}$ Mangan, Katherine S. Debate Intensifies Over Skills Teat for Entering Students in Texas: Critics Call It a Barrier to Minority Groups. The Chronicle of Higher Education, v. 35, Mar. 8, 1989. p. A19, A20.
 ${ }^{0 s}$ Ibid.
 ${ }^{04}$ Texas is one of approximately 12 States requiring standardized testing for entry into public colleges and universities.
 ${ }^{05}$ Ibid., p. A20.

[^23]: ${ }^{\infty}$ Widnall, Sheila E. AAAS Presidential; Lecture: Voices From the Pipeline. Science, v. 241, Sept. 30, 1988. p. 1744.
 ${ }^{97}$ Women and Minorities in Science and Engineering, p. 157-159.
 ${ }^{2}$ Ibid.

[^24]: 102 Ibid.
 ${ }^{105}$ Ibid.
 104 U.S. National Academy of Sciences. Committee on the International Exchange and Movement of Engineers. Omice of Scientific and Engiseering Personnel. Foreign and Foreign-Born Engineers in the United States: Infusing Talent, Raising Issues. Washington, 1988. p. 4.

 105 Tracey, T. and W. Sedlacek. The Relationship of Noncognitive Variables to Academic Success: A Longitudinal Comparison by Race. Journal of College Student Personnel, v. 38. p. 405-410.

 108 Between 1980 and 1987, the average tuition and room and board at private colleges and universities increased 43 percent; public colleges and universities costs increased 27 percent. During that same time period, median income for families with children 6 to 17 yeare of age increase 3.1 percent. Council on Competitiveness. Snap Shot. Human Resources. Washington, Aug. 1990. p. 2.

[^25]: ${ }^{107}$ Mortenson, Thomas G. The Impact of Increased Loan Utilization Among Low Family Income Students. The American College Testing Program. Student Financial Aid Research Report Series 90-1, Feb 1990. p. 1-9.
 ${ }^{108}$ Astin, Aleasander W. Higher Education Research Institute. University of California, Los Angeles, Graduate School of Education. The Black Undergraduate: Current Status and Trends in the Characteristics of Freshmen. June 1990. p. 56.
 ${ }^{109}$ Jaschik, Scott. Faced With a Shortage of Funds, Office for Civil Rights Has Cut Back on Many of Its Enforcement Activities. The Chronicle of Higher Education, v. 36, May 30, 1990. p. A17-A18.

 110 U.S. Library of Congress. Congressional Research Service. Higher Education: Reauthorization of the Higher Education Act, by Margot A. Schenet, Coordinator. CRS Issue Brief No. IB90028, July 20, 1990. p. 11. [continuously updated]
 ${ }^{111}$ Ibid.

[^26]: 112 Approximately 38 percent of entering black students are from families with annual incomes below $\$ 20,000$ compared with 12 percent for their white counterparts. Astin, Alezander W. The Black Undergraduate: Current Status and Trends in the Characteristics of Freshmen. p. 38.
 ${ }^{118}$ Astin, p. 38.
 ${ }^{114}$ Many States provide more funding for this program than is required to match the Federal contribution. If Federal funds were to be cut, it is likely that aid would continue to be available to many of the currently reported students.
 ${ }^{116}$ DeLoughry, Thomas J. Bush's Budget Would Slash Aid to 300,000 Students in 1991-1992. The Chronicle of Higher Education, v. 36, Feb. 7, 1990. p. A29.
 ${ }^{116}$ Wilson, Reginald and Justiz Manuel. Minorities in Migher Education: Confronting a Time Bomb. Educational Record, v. 68, Fall 1987-Winter 1988. p. 13-14.

[^27]: 117 The percentage distribution of black males enrolled in institutions of higher education has also been described as leveling off. In 1978, 4 percent of the total enrollment institutions of higher education were black males; 3.8 percent of the total were recorded in 1980, 3.7 percent in 1982, 3.6 percent in 1984, 3.5 percent in 1986, and 3.4 percent in 1988. U.S. Dept. of Education. Trends in Racial/Ethnic Enrollment in Higher Education: Fall 1978 through Fall 1988. p. 4.
 ${ }^{118}$ Recent data indicate that the decline in college enrollment by blacks was primarily among middle- and upper-income blacks, not low income blacks as previously thought. Those black etudents in the middle to upper economic level are more than twice as likely to enlist in the armed services as opposed to black students living in the lowest income areas.' Additional data reveal that in 1987, 44 percent of black males in the armed services were from areas with the lowest incomes for blacks, while 55 percent of the white males in the services were from the lowest incomes areas for whites. Wiley, Ed III. Advocates Call for Strategy to Stem Military Brain Drain of Blacks. Black Isoues in Higher Education, v. 7, Apr. 26, 1990. p. 20.
 ${ }^{119}$ Wiley, Ed III. Advocates Call for Strategy to Stem Military Brain Drain of Blacks. Black Issues in Higher Education, v. 7, Apr. 26, 1990. p. 16.
 ${ }^{120}$ Moskos, Andrew. Black Exceptionalism: Making It In The Military. Black Issues in Higher Education, v. 7, Apr. 26, 1990. p. 76.
 ${ }^{121}$ Cox, William E. and Tobe, Catherine. Recruiting Wars: Can Higher Education Compete with the Military? Educational Record, Fall 1987-Winter 1988. p. 66.

[^28]: ${ }^{123}$ Ibid. The highest percentage distribution of Native American was in the social sciences, recorded at 14 percent.

 129 Data compiled in 1988 revealed that undergraduate programs at historically black colleges and universities (HBCUs) had graduated approximately 75 percent of all black doctorates, approximately 75 percent of all black army officers, more than 80 percent of all black Federal judges, and 85 percent of all black medical doctors. Jordan, Vernon E., Jr. Blacks and Higher Education-Some Reflections. Daedalus, v. 117, Summer 1988. p. 281.
 ${ }^{130}$ U.S. National Science Foundation. Federal Support to Universities, Colleges, and Selected Nonprofit Institutions: Fiscal Year 1988. Detailed Statistical Tables, NSF 89-325. Washington, 1989. p. 23, 77.

[^29]: ${ }^{181}$ U.S. Dept. of Education. Fiscal Year 1988 Annual Federal Periormance Report on Executive Agency Actions to Assist Historically Black Coileges and Universities. Prepared by The White House Initiative on Historically Black Colleges and Universities in accordance with Erecutive Order 12320. Washington, 1989. p. 17-28, passim.

 182 Wilson, Robin. Black-College Officials Applaud Bush Plan, but Some Say It Ignores Most-Pressing Issues. The Chronicle of Higher Education, v. 35, May 10, 1989. p. A1, A23.

[^30]: ${ }^{1 s}$ Sudarkasa, Niara. All 117 Black Colleges and Universities Require Dramatic New Levels of Philantrophic Support. The Chronicle of Higher Education, v. 36, Mar. 28, 1990. p. B2.
 ${ }^{134}$ A condition of the gift requires matching funds.
 ${ }^{155}$ The UNCF was established in 1944 to raise funds for private black colleges. As a consequence, public institutions are not eligible for membership in the UNCF. In addition, the UNCF excludes those private institutions established after 1954. This date is used as a terminal date for "historically" black institutions because it was synonymous with the Supreme Court's landmark decision in Brown v. Bpand of Education which onded legal segregation in public schools. The rational for the exclusion was that public black institutions would receive the necessary support from State governments. However, these public black institutions are atate-assisted and not statesupported and must still obtain 30 percent to 60 percent of their funding from non-State sources.
 ${ }^{188}$ Cordes, Colleen. Congress Earmarks $\$ 270$ Million for Specific Projects at Universities. The Chronicle of Higher Education, v. 36, May 9, 1990. p. A28A30.

[^31]: ${ }^{187}$ Wycliff, Don. Blacks Advance Slow in Science Career. New Yorlz Times, June 8, 1990. p. A14.
 ${ }^{18}$ Arbeiter, Solomon. Black Enrollments: The Case of the Missing Students. Change, v. 19, May/June 1987. p. 19.
 ${ }^{159}$ Clewell, B. C., M. E. Thrope, and B. T. Anderson. Intervention Programs in Math, Science, and Computer Science for Minority and Female Students in Grades Four Through Eight. Educational Testing Service. Princeton, NJ., 1987, Clewell B.C. Intervention Programs: Three Case Studies. (Blacks, Science and American Education, edited by Pearnon, Willie, Jr. and H. Kenneth Bechtel. Rutgers, The State Univernity, 1989. p. 105-122, and Carmichsel, J. W., Jacqueline T. Hunter, Deidre D. Labat, John P. Sevenair, and Joanne Baver, Sr. An Educational Pathway into Biology-and Chemistry-Based Careers for Black Americans. Journal of College Science Teaching, v. 17, Mar JApr. 1988. p. 370-371.

[^32]: ${ }^{141}$ Dean, Shirley M. McBay. The Racial Climate on the MIT Campus. A Report of the Minority Student Issues Group. Massachusetts Institute of Technology. Office of the Dean of Student Affairs, Sept. 1986. 22 p.

 12 California Postsecondary Education Commission. Toward an Understanding of Campus Climate. A Report to the Legislature in Response to Assembly Bill 4071 (Chapter 690, Statues of 19898). Commission Report 90-19. June 1990. 69 p.

 14 Tachibana, Judy. Campus Climate Often Hostile to Women, Minorities, Report Shows. Black Issues in Higher Education, v. 7, Aug. 16, 1990. p. 6-7.
 ${ }^{14}$ For Teachers of Minority Students. Factors Stimulate Success for Black Colleges, Spring 1989. p. 2.

[^33]: ${ }^{145}$ Johnson, Marie, L., and Douglas, W. Clarke. The Classroom Experience: The Missing Link in Minority Retention Efforts. Black lssues in Higher Education, v. 5, Feb. 2, 1989. p. 24.
 ${ }^{146}$ Richardson, Richard C., Jr., p. A48.

[^34]: ${ }^{147}$ Minorities on Campus: A handbook for Enhancing Diversity. American Council of Education edited by Madelpine F. Green. Washington, 1989. p. 114.
 ${ }^{148}$ Richardson, Richard C., Jr., p. A48.
 149 Carrier, Sam C. and David Davis-Van Atta. Maintaining America's Scientific Productivity: The Necessity of the Liberal Arts Colleges. A report of the second conference on "The Future of Science at Liberal Arts Colleges," held at Oberlin College. Oberlin, Ohio, Mar. 1987. 140 p.
 ${ }^{160}$ Ibid., p. 16.
 ${ }^{161}$ Ibid., p. 18.

[^35]: 162 U.S. National Science Foundation. Report on the National Science Foundation Workshop on Science, Engineering, and Mathematics Education in Two-Year Colleges. Division of Undergraduate Science, Engineering, and Mathematice Education. Two-Year College Workshop, Robert E. Parilla, Chairman. Washington, Oct. 31-Nov. 1, 1988. 12 p.
 ${ }^{165}$ Evangelauf, Jean. 1988 Enrollment of All Races Hit Record Level. p. A36.

 164 Watkins, Beverly T. Two-Year Institutions Under Pressure to Ease Transfers. The Chronicle of Higher Education, v. 36, Feb. 7, 1990. p. A37.
 ${ }^{155}$ Ibid.

[^36]: 160 Jaime Escalante received national racognition for his work in preparing his high school students to take advanced calculus standard tests. In addition to having been given the title of Master Teacher in the California educational system, he also received the Medallion of Eacellence from the congressional Hispanic Caucus, and Presidential recognition from George Bush as being an "American hero" for his work in grass-roots education.
 ${ }^{161}$ Ibid., p. 3.
 162 Presently, North Carolina A\&T does not have a doctoral program in computer acience but does have joint doctoral degree programs with North Carolina State University.

 165 NASA Gives Morehouse $\$ 6.5$ Million to Establish Project SPACE Program. Black Issues in Higher Education, v. 6, Aug. 17, 1989. p. 12.

[^37]: ${ }^{164}$ Weinstock, Cberyl P. Program Sparks Students' Interest in Science Careers. Research Resources Reporter, v. 7, Oct. 1988. p. 3.
 ${ }^{185}$ Ibid.
 ${ }^{168}$ Attracting More Minorities to the Sciences. Educational Record, v. 68/69. Fall 1987/Winter 1988. p. 62.

[^38]: 169 The Intitute for Science, Space and Technology Newsletter. Howard University, School of Engineering. Fall, 1988. p. 2.
 ${ }^{170}$ Ibid.
 ${ }^{171}$ Kimmel, Howard, Nancy Martino, and Reginald Tomkins. An Approach to Increasing the Representation of Minorities in Engineering and Science. ingineering Education, Dec. 1988. p. 186.

[^39]: ${ }^{172}$ Harris Tierrina, Kathryn and Paul Phillip Biemer. The Dance of Indian Higher Education: One Step Forward, Twio Steps Back. Educational Record, Fall 1987/Winter 1988. p. 91.
 ${ }^{178}$ Remedial courses have the propensity to cause studenta to fall further behind, rather than bringing them to grade level bocause such courses often proceed at a slower pace than "mainstream" courses. Remedial classes may also result in isolation of minority students from the mainstream of campus life.
 ${ }^{174}$ This program has been replicated at other colleges and universities, and is most often referred to as the Emerging Scholars Program. In addition to mathematics, similar programs have been designed for physics, chemistry, and biology.
 ${ }^{175}$ Watkins, Beverly T. Many Campuses Now Challenging Minority Students to Excel in Math and Science. The Chronicle of Higher Education, v. 35, June 14, 1989. p. A16.

[^40]: ${ }^{176}$ Commission of New York Colleges Develops Plan to Improve Minority Access. Black Issues in Higher Education, v. 6, Feb. 2, 1989. p. 26.

 177 Innovative Approach to Reaching Out to Black Youth. Black Isaues in Higher Education, v. 6, Aug. 31, 1989. p. 32.
 ${ }^{178}$ MeMillen, Liz. Clare Boothe Luce Fund to Spend 83.5 Million a Year to Encourage Women to Study and Teach Science. The Chronicle of Higher Education, v. 35, July 5, 1989. p. A23.
 ${ }^{179}$ The 14 institutions are Colby College, Mount Holyoke College, Mundelein College, Trinity College (Washington, D.C.), Boston, Creighton, Fordham, Georgetown, Marymount, Santa Clara, St. John's, Seton Hall Univeraity, the University of Notre Dame, and Villanova School in California.

[^41]: ${ }^{180}$ Ibid.
 ${ }^{181}$ Ibid.
 142 Producing More Black Science Teachers is Goal of New SEE Project. Southern Education Foundation News. v. 4, Jan. 1990. p. 2.

 15 Participating institutions include: Albany State College; BethuneCookman College; Grambling University; Harvard University Graduate School of Education; Johnson C. Smith University; Peabody College of Vanderbuilt Univeraity, Teachers College, Columbia University, Tuskegee University, and Xavier University.
 ${ }^{14}$ Association of Science-Technology Centers. Natural Partners: How Science Centers and Community Groups Can Team Up to Increase Science Literacy. Washingtom, July 1987. p. 7.

[^42]: ${ }^{126}$ Ibid., p. 8.
 ${ }^{115}$ Springer, Cecile. M. Director. Contributions and Community Affairs. Westinghouse Electric Corporation. Pre-College Education of Minorities in Science and Engineering: Conference Proceedings. New Jersey Institute of Technology, Newark, iN.J., May 22-25, 1988. p. 117.
 ${ }^{107}$ Ramsey, J. N. Educating American Indian Youth, as Supported by the American Indian Science and Engineering Society. PreCollege Education of Minorities in Science and Engineering: Conference Proceedings. New Jersey Institute of Technology, Newark, N.J., May 22-25, 1988. p. 137.

[^43]: ${ }^{14}$ Internal Document. Center for the Advancement of Science, Engineering, and Technology of Houston-Tillotson College. NASA, Johnson Space Center. A Study to Determine and Test Factors Impacting on the Supply of Minority and Women Scientists, Engineers, and Technologists for Defense Industries and Installations.

[^44]: 109 Howard University Receives $\$ 1$ Million. Black Issues in Higher Education, v. 5, Feb. 2, 1989. p. 32.

 190 Fuchsberg, Gilbert. General Electric Pledges \$35-Million for Minority Effort. The Chronicle of Higher Education, v. 35, Dec. 7, 1988. p. A27.

[^45]: ${ }^{191}$ Hartley, Charles J. Amoco Foundation: $\$ 2$ Million to Black Colleges. The Chronicle of Figher Education, v. 35, Dec. 7, 1988. p. A27.

 102 Collison, Michele N-K. Public-Private Alliance in Florida Provides Scholarships to Enable More Blacks to Seel Doctoral Degrees. The Chronicle of Higher Education, July 29, 1988. p. A27.
 ${ }^{19 s}$ Ibid.
 ${ }^{194}$ McMillen, Liz. Mellon Foundation Gives United Negro College Fund $\$ 2.6$ Million to Recruit New Faculty Members. The Chronicle of Higher Education, v. 36, Jan. 17, 1990. p. A31-A32.

[^46]: ${ }^{198}$ The participating collegas are Benedict College, Bennett College, Dillard University, Johnson C. Smith University, Morehouse College, Spelman College, Tuskegee University, and Xavier University.
 ${ }^{198}$ Bailey, Anne Lowrey. Mott Foundation: $\$ 6$ Million for 8 Black Colleges, v. 34, July 20, 1988. p. A29.
 ${ }^{197}$ Katauskas, Ted. Industry Cultivates Minorities. R\&D Magazine, Feb. 1990. p. 69.

[^47]: 184 U.S. Congress. House. Committee on Science, Space, and Technology. Subcommittee on Science, Research and Technology. Precollege Science and Mathematics Education. Testimony of Erich Bloch, former director, National Science Foundation. p. 63-64. Teatimony of Lauro Cavaroa, Secretary of Education. p. 35-48. Hearings, 101st Cong., 2d Sess. Washington, U.S. Govt. Print. Off., 1990.
 ${ }^{199}$ Ibid., p. 59.

[^48]: ${ }^{200}$ McIntosh, Hugh. New Series of Federal Programs Aims at Attracting Minorities. The Scientist, May 28, 1990. p. 10.

 ## ${ }^{201}$ Ibid.

 202 U.S. Library of Congress. Congressional Research Service. Science and Engineering Education: The Role of the Department of Defense. CRS Report 89-256 SPR, by Christine M. Matthews. Washington, Apr. 1989. 30 p.

[^49]: ${ }^{205}$ Johnson, David. Strengthening and Enlarging the Pool of Minority High School Graduates Prepared for Science and Engineering Career Options. Prepared for the Black Caucus Legislative Weekend Symposium on Opportunities and Challenges for Minorities in Science and Technology: Preparing for the Year 2000. Sept. 16, 1988. p. 4.

 204 U.S. Dept. of Energy. Math/Science Education Action Conference. Presentation of Walter E. Massey. Lawrence Berkeley Laboratory. Berkeley, Ca., Oct. 8-10, 1989.

 205 U.S. Library of Congress. Congressional Research Service. Science, Engineering, and Mathematics Precollege and College Education, by Christine M. Matthews. CRS Issue Brief No. IB88078, July 26, 1980. p. 15. [continously updated]

[^50]: - McIntosh, Hugh. New Series of Federal Programs Aims at Attracting Minorities. The Scientist, v. 4, May 28, 1990. p. 10.

