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Abstract—Canonical correlation analysis is employed as a mul-
tiaspect feature extraction method for underwater target classifi-
cation. The method exploits linear dependence or coherence be-
tween two consecutive sonar returns, at different aspect angles.
This is accomplished by extracting the dominant canonical corre-
lations between the two sonar returns and using them as features
for classifying mine-like objects from nonmine-like objects. The
experimental results on a wideband acoustic backscattered data
set, which contains sonar returns from several mine-like and non-
mine-like objects in two different environmental conditions, show
the promise of canonical correlation features for mine-like versus
nonmine-like discrimination. The results also reveal that in a fixed
bottom condition, canonical correlation features are relatively in-
variant to changes in aspect angle.

Index Terms—Canonical correlations, linear dependence and co-
herence, multiaspect feature extraction, underwater target classi-
fication.

I. INTRODUCTION

THE problem of classifying underwater targets using active
sonar has attracted a lot of attention in recent years, e.g.,

see [1]–[6]. This problem involves discrimination between tar-
gets and nontargets. Some of the factors that complicate this
process include the following: nonrepeatability and variation of
target signatures with aspect angle, range, and grazing angle; di-
verse sizes, shapes, and scattering properties of the targets; pres-
ence of natural and man-made clutter; and a highly variable and
reverberant operating environment. The problem is even more
complicated when bottom targets are encountered, especially if
they are buried or obscured by bottom features.

Due to the aforementioned factors, it is often difficult to de-
tect and classify objects of interest based on the measurement
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from a single object-sensor orientation. There are often orienta-
tions at which different objects may look nearly identical. Con-
sequently, in real-life situations, the decision about the presence
and type of an object is generally made based upon observations
of the received signals at several aspect angles.

In recent years, several multiaspect-based methods for de-
tection and classification of underwater targets from acoustic
backscattered signals have been developed, e.g., see [1]–[6]. A
detailed review of these methods is provided in [1]. However, in
all these methods, multiaspect classification is performed using
different classification fusion methods, namely, decision-level
fusion [3] or feature-level fusion [1], [2], [4], [5]. In decision-
level fusion, an intermediate decision about the presence and
type of the object (target or nontarget) is made for every sonar
return. The final decision is then made at the fusion center by op-
timally combining several single-aspect intermediate decisions.
In feature-level fusion, feature vectors extracted from multiple
sonar returns are simultaneously given to a decision making
system to generate the final classification decision.

In [7]–[10], a different approach for multiaspect detection
and classification of underwater objects is reported. In this ap-
proach, multiaspect detection and classification is performed by
exploring the correlation between two backscattered signals at
different aspects and analyzing the variations in the so-called
angular correlation function. The angular correlation methods
reported in [7]–[10] have been shown to provide better clutter
suppression and finer resolution than conventional field imaging
methods. The reader is referred to [7]–[10] and the references
therein for more details.

The approach taken in this paper is similar to that in [7]–[10]
in the sense that we also explore the correlation or similarities
between two backscattered signals. However, we use a different
method for the analysis of correlation. We exploit the linear de-
pendence (or coherence) between two sonar returns, with cer-
tain aspect separation, to extract features that capture common
target/nontarget attributes in these two returns. The idea is that
linear dependence between the sonar returns is an indication of
the presence of a common signature, whereas linear indepen-
dence indicates the absence of a common signature. This is the
basic idea behind multichannel tests for linear dependence [11]
and the multiple coherence test of [12] and [13].

The linear dependence between two data channels is mea-
sured by the canonical correlations [11], [14]–[16] of the chan-
nels. This implies that canonical correlations can be viewed as
features that capture linear dependence or coherence between
the two data channels, and hence may be used for detection and
classification purposes. We intend to exploit this idea for classi-
fying underwater mine-like objects (targets) from nonmine-like
objects (nontargets). In this approach, the channels correspond
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to acoustic backscattered signals at two aspect angles, as we de-
scribe in Section IV.

Using canonical correlations, we exploit the linear depen-
dence (coherence) between two backscattered signals or sonar
returns to determine the presence of common signatures asso-
ciated with targets or nontargets. Owing to the differences in
shape, size, and composition of the mine-like and nonmine-like
objects, we hypothesize that the level of coherence between the
sonar returns at different pings/aspects for a mine-like object is
different than that of a nonmine-like object. Therefore, the dom-
inant canonical correlations, which capture most of the coher-
ence between the two sonar returns, may be used as features to
classify the objects at the corresponding aspect angles. We test
this hypothesis on a subset of a wideband data set that was col-
lected at the Applied Research Laboratory, University of Texas
(ARL-TU, Austin, TX), and benchmark our results against those
in [1] on the same data set.

II. REVIEW OF CANONICAL CORRELATION ANALYSIS

In this section, we review canonical coordinates and
canonical correlations and show how linear dependence and
coherence between two data channels may be determined using
canonical correlation analysis. The material presented here and
much of the language and terminology are drawn from [14].

Consider the composite data vector consisting of two
random vectors and , , i.e.,

(1)

We assume that and have zero means and share the com-
posite covariance matrix

(2)

This composite covariance matrix may be taken to block tridi-
agonal form as follows [14]:

(3)

The trick is to choose , , and to be the singular
value decomposition (SVD) of the coherence matrix

. That is

(4)

where and are orthogonal matrices,
i.e., , , and

is a diagonal singular value matrix,
with and

.
Then, the transformation

(5)

resolves into their canonical coordinates
, with the composite covariance matrix

(6)

We refer to the elements of and
as the canonical coordinates of and , respec-

tively. The diagonal cross-correlation matrix

(7)
is called the canonical correlation matrix of canonical correla-
tions , with . An important
property of canonical correlations is that they are invariant under
uncoupled nonsingular transformations of and [14].

The linear dependence between and may be measured
as [14]

(8)

The measure takes the value 0 iff there is linear dependence
between elements of and ; it takes the value 1 iff the elements
of and are mutually uncorrelated. Equation (8) shows that
the linear dependence or coherence between the two channels
(e.g., sonar returns at two consecutive aspect angles) depends
only on the canonical correlations of the channels and may be
easily computed after the decomposition. They also show that
each canonical coordinate pair, e.g., , contributes to the
linear dependence according to its canonical correlation . This
shows that the linear dependence between and is decom-
posed into the linear dependence between their canonical coor-
dinates, each of which is determined by a canonical correlation.
Thus, only canonical coordinates with large canonical correla-
tions have significant contribution to the linear dependence and
coherence. Therefore, they are the only ones that need to be re-
tained for detection and classification.

Remark 1: A conventional method of canonical coordinate
decomposition as in (5) does not offer a simple way to com-
pute a small subset of canonical coordinates and correlations.
A full SVD for the coherence matrix, along with square root
inverses of data covariances, has to be computed, regardless of
the rank reduction. This makes the conventional method com-
putationally intractable, especially when the data channels have
large dimensions. In [17], simple algorithms called alternating
power methods with deflation have been reported to recursively
compute the canonical coordinates and correlations one-by-one
or in groups. Provided that the singular values of the coherence
matrix are not close together, alternating power methods can
be more efficient in computation than the conventional method.
The reader is referred to [17] for details.

Remark 2: It is worth mentioning that canonical coordinates
have been used in many other two-channel signal processing
problems, including reduced-rank estimation [14], [18], low-
rank Gauss–Gauss detection [19], and reduced-rank quantiza-
tion of noisy sources [20]. In this paper, we explore the use of
canonical correlation analysis for feature extraction specifically
for underwater target classification.
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Fig. 1. Building the ensembles of the two channels (x and y) for canonical correlation analysis from two sonar returns.

III. WIDEBAND SONAR DATA SET

The sonar data set used in this paper is a subset of a wideband
acoustic backscattered data set collected at the ARL-UT, Lake
Travis test station (LTTS) [21]. This subset contains acoustic
backscattered signals from three mine-like and three nonmine-
like objects in two different bottom conditions, namely, smooth
and rough. For the rough bottom condition, the sand is raked,
giving it rippled effects. The mine-like objects are two cylin-
drical steel objects (targets 6 and 7) of different sizes, and a
truncated cone shape plastic object (target 2). The nonmine-like
objects are a water-filled steel drum, a concrete pipe, and a tele-
phone pole.

During the data collection, the objects were placed on a ro-
tating seabed, 7.62–9.14 m below the lake surface, with minimal
embedding/scouring. The diameter of the seabed was 7.62 m.
The center of the object was positioned as near to the center of
the circular platter (seabed) as possible. The objects were ro-
tated in a horizontal plane while the acoustic panel was set at a
depression/elevation (D/E) angle of 13.5 and a range of 32 m
from the center of the seabed. A single rotation was executed
while acoustic backscattered signals at nearly uniform 1 incre-
ments were collected.

The receiver array consisted of 16 channels with 2.54-cm sep-
aration. The transmit signal was a linear frequency modulated
(LFM) waveform with a bandwidth of 85 kHz in the range of
15–100 kHz, and was approximately 7 ms long. The backscat-
tered signals were recorded for approximately 16 ms at 500-kHz
sampling rate, resulting in 8192 samples. In our experiments, we
use the averaged data of four channels to yield a beamwidth that
is just wide enough to insonify the object and not much of the
surroundings. The beamwidth (in degrees) is computed approx-
imately using , where is the aperture length in wave-
lengths. At 100 kHz (i.e., wavelength 1.52 cm), the length
of the four-channel aperture is 6.6 wavelengths, hence giving a
beamwidth of approximately 8.6 . At a distance of 32 m, this
results in a coverage width of 4.27 m, which is wide enough
to cover the entire length of the objects and narrow enough to
avoid the side edges of the seabed.

An inverse matched filtering algorithm (see [3] for details) is
used to remove the artifacts and secondary reflections caused by
the straps and supporting barge of the experimented setup. The
idea is to apply a window in matched filter domain to extract a
clean signal and then perform the inverse matched filtering to
obtain a “clean backscattered” signal. The clean backscattered
signals (or from hereon backscattered signals) are then used in
the feature extraction process described in Section IV.

IV. FEATURE EXTRACTION PROCESS

In this section, we describe how canonical correlation
analysis may be used to extract a set of features that capture
common target/nontarget attributes among two consecutive
sonar returns, with certain aspect separation. In Section V, we
will apply the feature extraction method presented here to the
wideband ARL-UT data set and use the extracted features for
classifying mine-like objects from nonmine-like objects.

To build the ensembles of the two channels ( and ) for
canonical correlation analysis, we partition two backscattered
signals from an object, with certain aspect separation, into over-
lapping blocks, as illustrated in Fig. 1. In this figure, sonar return
1 is the backscattered signal from an object at aspect angle, say

, and sonar return 2 is the backscattered signal from the same
object at aspect angle , where is the aspect
separation between these two returns. The blocks of sonar return
1 are taken as the samples of the first channel (the -channel)
and the blocks of sonar return 2 are taken as the samples of the
second channel (the -channel). Referring to Fig. 1, the data
sample is the vector of the time series associated with the
th block of range cells in sonar return 1, and is the vector

of the time series associated with the th block of range cells
in sonar return 2. The collections of these data vector samples
form the sample data matrices and

. Thus, in the canonical correlation analysis formu-
lation of Section II, the covariance matrices , , and
are replaced by their corresponding sample estimates

, , and .
The dominant canonical correlations between these sample data
matrices and , which capture most of the coherence, will
be used as features to represent the sonar signal at aspect angle

.
Note that taking blocks of range cells of the sonar returns as

snapshot vectors to build sample covariance matrices requires
the second-order statistics of the sequence of underlying random
vectors to be time invariant. The Appendix discusses the condi-
tions for which this will hold.

The aspect separation should be large enough so that the
bottom reverberation effects are almost uncorrelated, but small
enough so that the returns from the objects remain coherent.
Clearly, this choice depends on many factors including specific
properties of the sonar such as speed of movement, range and
elevation of the vehicle, and size and orientation of the object.
For the ARL-UT data set, we have experimentally determined
that an aspect separation of 16 is a reasonable choice.
Therefore, in the simulations preformed in Section V, the
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sonar returns are paired according to aspect angles as follows:
. The

dominant canonical correlations extracted from each pair of
aspects will be used as features to represent the
return at aspect angle .

V. CANONICAL CORRELATION FEATURES AND

CLASSIFICATION RESULTS

In this section, the feature extraction process described in
Section IV is applied to the sonar returns in the ARL-UT data
set, and the extracted features are used to classify mine-like
objects from nonmine-like objects. In the experiments per-
formed here, the backscattered signals are partitioned into
blocks of size 50 samples, with 50% (25 samples) overlap,
leading to 50-dimensional and channels. Although, the
block size is determined experimentally here, there are several
factors that must be considered.These include duration of the
transmit signal, sampling rate, and the shape and size of the
objects. Since the length of the backscattered signals is 8192
samples, dividing each backscattered signal into blocks of size
50 samples with 25 samples overlap results in vector
samples for - and -channels. As a result, the sample data
matrices and will each have size 50 327. The 50 327
data matrices and share 50 canonical correlations. We use
the first (largest) 15 out of 50 canonical correlations between
data matrices and , which are associated with a pair of
angles , as features to represent the aspect angle .
The first 15 canonical correlations capture a major portion of
the coherence between the sonar returns.

Experiment 1: The objective here is to demonstrate the
usefulness of canonical correlation features for classifying
mine-like from nonmine-like objects in both smooth and rough
bottom conditions. The training data set for classification is
formed from the feature vectors extracted at 90 aspect angles
of the smooth bottom data, at aspect increments of 4 . The
feature vectors extracted from the rest of the aspect angles of
the smooth bottom data (270 aspect angles) are kept to validate
the trained classifier. This validation data set is primarily used
to select the best trained classifier. To see how well the trained
classifier generalizes, the feature vectors extracted from the
backscattered signals in the rough bottom condition are used as
a testing data set.

Fig. 2(a)–(c) shows the scatter plots of the first two canon-
ical correlation features for the training, validation, and testing
data sets, respectively. As can be seen, for the training data set
[Fig. 2(a)] and the validation data set [Fig. 2(b)], the features of
mine-like objects (targets 2, 6, and 7) are packed together and
almost completely separated from those of the nonmine-like ob-
jects (steel drum, concrete pipe, and telephone pole). Addition-
ally, the extracted features for the training and validation data
sets, for the objects in the smooth bottom condition, are consis-
tent (occupying the same regions in the scatter plots).

In the rough bottom test condition [Fig. 2(c)], features of
target 2, target 6, and the telephone pole stay in the same regions
as in the smooth bottom condition, while those of the drum and
concrete pipe become more compact and move slightly towards
the right-hand side of the plot. Nonetheless, they still occupy al-
most the same regions as in the training and validation data sets.
Features of target 7, however, move from the upper right-hand
corner and spread out to the left-hand side and mix with those
of the steel drum and concrete pipe. The reason for the changes

Fig. 2. Scatter plots of the first two canonical correlation features for
(a) training, (b) validation, and (c) testing data sets. The scatter plots show that,
for five out of six objects, canonical correlations are fairly robust (only slightly
change) to the changes in the bottom condition.
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TABLE I
CONFUSION MATRICES OF THE BPNN CLASSIFIER TRAINED

WITH CANONICAL CORRELATION FEATURES

TABLE II
CONFUSION MATRICES OF THE BPNN CLASSIFIER TRAINED WITH LPC
SUBBAND FEATURES. THE CLASSIFICATION PROBLEM IS A TWO-CLASS

(MINE-LIKE OBJECT VERSUS NONMINE-LIKE OBJECT) PROBLEM

in features of target 7 may be attributed to the secondary reflec-
tions and the rather large size of this cylindrical target, which is
comparable to that of the drum. Clearly, the movement of target
7 features leads to some degradation in classification perfor-
mance in the rough bottom condition. These scatter plots show
that for five out of six objects, canonical correlations are fairly
robust (only slightly change) to the changes in the bottom condi-
tion. The same observation is also valid for the third and fourth
canonical correlation features.

Subsequently, the extracted canonical correlation features are
used to train a backpropagation neural network (BPNN) [22] to
classify the mine-like objects from nonmine-like objects. The
goal is to determine whether an object is mine-like or non-
mine-like, rather than classifying all the objects. In other words,
the problem is a two-class classification problem. To find a good
network structure, eight different two-layer BPNN structures
were tried. The number of hidden layer neurons was varied from
26 to 46. Each network was trained for ten different weight
initializations. The training was performed for 10 000 epochs,
where an epoch was a complete sweep over the entire training
data set. The best BPNN classifier, which was selected based on
the average classification rates on training and validation data
sets, gave an overall correct classification rate of 99.1% on the
training data set, 98.6% on the validation data set, and 81.0%
on the testing data set. These percentages are obtained based
on a hard-limiting decision threshold. We compare these re-

sults with those in [1] obtained by using linear predictive coding
(LPC) subband features and decision-level fusion method. As
reported in [1], the correct classification rates on the training,
validation, and testing data sets are 99.6%, 82.5%, and 75.2%,
respectively. Comparing these results indicates almost 16% and
6% improvements on the validation and testing data sets when
canonical correlation features are used. We note that these im-
provements are achieved without requiring any multiaspect clas-
sification fusion, like the one used in [1]. The confusion matrices
obtained for the classifiers, trained using these two feature types,
are shown in Table I (for the canonical correlation features) and
in Table II (for the LPC subband features). These results demon-
strate the promise of the canonical correlation features for clas-
sifying targets from nontargets in different bottom conditions.

It is interesting to note that the classifier trained using canon-
ical correlation features has correctly classified targets 2 and 6
at all aspect angles in both smooth and rough bottom conditions,
while the classifier trained using the LPC subband features has
poor performance on these targets. Additionally, the canonical
correlation features provide substantially lower false alarm rates
(2.7% for validation and 4.8% for testing) compared to the LPC
subband features (16.1% for validation and 22.4% for testing).
However, the classifier trained with the LPC subband features
provides better performance for target 7 in the rough bottom
condition compared to the canonical-correlation-based classi-
fier.

Experiment 2: Our goal in this experiment is to investigate
the robustness of the canonical correlation features with respect
to aspect angle variation in a fixed bottom condition, namely,
the smooth bottom. The training data set for each object is
formed from the feature vectors extracted for 1/4 of the aspect
angles that correspond to one side of the objects (aspect angles
0 –179 ) only. The feature vectors extracted from the rest of
the aspect angles between 0 and 179 in the smooth bottom
condition are kept to validate the trained classifier. The gen-
eralization and robustness of the trained classifier is tested, in
the same bottom condition, using the features extracted from
sonar returns from the other side of the objects, i.e., aspect
angles 180 –359 . Clearly, in this experiment, the classifier is
not exposed to the information on the other side of the objects
during the training and validation processes.

Fig. 3(a)–(c) shows the scatter plots of the first two canon-
ical correlation features for the training, validation, and testing
data sets. As can be seen, the canonical correlation features for
targets are similar and almost completely separated from those
of the nontargets. Additionally, the extracted features for the
training, validation, and testing data sets for the objects are fairly
consistent, implying that the canonical correlation features are
relatively invariant to aspect angle variation.

For this experiment, the best two-layer BPNN classifier,
trained with the extracted canonical correlation features, gave
an overall correct classification rate of 99.6% on the training
data set, 98.1% on the validation data set, and 99.8% on the
testing data set. The confusion matrices of this classifier for
validation and testing data sets are shown in Table III. It is seen
that only at a few aspect angles in the validation data set the
telephone pole is misclassified as a mine-like object. Similarly,
in the testing data set, there are only four misclassifications.
These results demonstrate that canonical correlation features
of an object are relatively invariant to changes in aspect angle,
provided that the environmental condition remains unchanged.
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Fig. 3. Scatter plots of the first two canonical correlations for (a) training,
(b) validation, and (c) testing data sets. The plots show that canonical corre-
lation features are relatively invariant to aspect angle variation.

TABLE III
CONFUSION MATRICES OF THE BPNN CLASSIFIER TRAINED WITH THE

CANONICAL CORRELATION FEATURES THAT ARE EXTRACTED FROM

ONE SIDE OF THE OBJECTS. THE CLASSIFICATION PROBLEM IS A

TWO-CLASS (MINE-LIKE OBJECT VERSUS

NONMINE-LIKE OBJECT) PROBLEM

VI. CONCLUSION

In this paper, canonical correlation analysis was exploited to
develop a multiaspect feature extraction method for underwater
target classification from a wideband sonar data set. The basic
idea is that when an object (target or nontarget) is present in the
environment, consecutive sonar returns exhibit a change in the
coherence compared to the case when there is no object. Further,
we hypothesized that the amount of coherence captured by the
dominant canonical correlations of the two sonar returns from a
mine-like object is different than that of a nonmine-like object.
Our experiments on the wideband ARL-UT data set demon-
strated that canonical correlation features offer good separation
between mine-like and nonmine-like objects. The results show
that except for one of the objects, namely, target 7 which is of
comparable size to the drum, the canonical correlation features
are robust to changes in the bottom condition. Moreover, we
showed that in a fixed bottom condition, canonical correlation
features are relatively invariant to changes in aspect angle. Re-
cent results [23] on buried object scanning sonar (BOSS) data
collected in St. Andrew’s Bay, Panama City, FL, further validate
the potential of the proposed canonical-correlation-based fea-
ture extraction method for detection and classification of buried
underwater objects.

APPENDIX

The backscattered signal at aspect angle , denoted by ,
may be written as a linear convolution of the form

(A.1)

where is the transmit pulse and is the target random
impulse response at time and aspect angle .

The instantaneous cross-correlation function between com-
plex amplitudes and , corresponding to two
sonar returns at angles and , is given by

(A.2)
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where denotes complex conjugate.
Assume that the random impulse response is wide

sense stationary and uncorrelated over time. Then, the cross cor-
relation between and is

(A.3)

where is the target scattering function. In the fea-
ture extraction procedure in Section IV, and correspond to
two different time samples (range cells) within a block, and
and correspond to aspect angles and .

The transmit pulse in this paper is an LFM signal. The
baseband representation of an LFM signal with time duration
and bandwidth is

(A.4)

Inserting (A.4) in (A.3) yields

(A.5)

Let and . Then, we can write (A.5) as

(A.6)

Note that the integral in (A.6) is equal to zero for .
If the pulse length is short compared to the variation length

of , then we can write

(A.7)

If is time invariant, then

(A.8)
and the correlation function becomes time in-
variant. Alternatively, if the pulse is much longer than the target
length so that the pulse scans the entire target, then can be
assumed to be time invariant during the insonification period.
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