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with u(w; s) = jwj1u(ŵ; s) whereŵ = w=jwj1. For anyw 2 R2

ands 2 f0; 1g; jz(w; s)j1 � 6jwj1.
We now turn our attention to signalsw(k) 2 ln1 andw(t) 2 Ln1,

and to distinguish them from vectors inRn we will use boldface type.
We introduce a control laŵKh : l21 ! l11, with

(K̂hw)(k) =
u(w(k);0); if k is even

u(w(k);1); if k is odd:
(12)

Then,K̂h is a nonlinear and two-periodic controller. AsP22 = 0, (4)
in Theorem 4.1 yieldŝKh = Q̂ and, hence, we may define an NTI
controllerK̂TI as in Theorem 4.2 bŷKTI = (1=2)(K̂h + qK̂hq

�1).
Then,Szw andqSzwq�1 are given by

(Szww)(t) =
z(w([t=h]); 0); if [t=h] is even

z(w([t=h]);1); if [t=h] is odd
(13)

(qSzwq
�1
w)(t) =

z(w([t=h]);1); if [t=h] is even

z(w([t=h]);0); if [t=h] is odd:
(14)

By Theorem 4.2,K̂TI gives closed-loop disturbance response system

(STIw)(t) =
1

2
(Szw + qSzwq

�1)(t)

=
1

2
(z(w([t=h]);0) + z(w([t=h]);1)): (15)

If we consider the specific unit disturbance signal~w 2 L2
1 with

~w(t) = w3 for all t 2 R, we obtainkSzw ~wk1 = kqSzwq
�1 ~wk1 =

6. So Szw is L1 norm h-periodic to ~w. Also kSTI ~wk1 = 4:5,
so Szw is not L1 h-periodic to ~w. As ~w is a constant signal,
sup0��<Nh kSzw ~w�k1 = 6 andsup0��<h kSTI ~w�k1 = 4:5. So
Theorem 5.1 is verified for the signal~w.

We can show that for anyw 2 L2
1; kSzwwk1 � 6kwk1, and

kSTIwk1 � 4:5kwk1. HencekSzwk1 = 6 andkSTIk1 = 4:5.
ThusSzw attains its system norm on the constant sequencefw[k] =
~wg, but is notL1h-periodic to it, verifying Theorem 5.2.

VII. CONCLUSION

In this note, the use of NPTV sampled-data control of continuous
time LTI plants for disturbance rejection performance is analyzed. For
a given strictly NPTV discrete controller yielding a closed-loop dis-
turbance response system that is notLph-periodic to the disturbance
inputs, an NTI discrete controller is constructed and shown to provide
strictly better rejection ofLp specific and uniform disturbances, for
all p 2 [1;1]. The authors consider that, in general, the closed-loop
system with a strictly NPTV discrete controller will beh-periodic to
very few inputs. Indeed, the likelihood ofh-periodicity is reduced for
larger values of the controller periodN . The results obtained include
linear periodic sampled-data control systems, and similar results can
be straightforwardly obtained for nonlinear periodic discrete systems.

As the systemLp norm can be related to the system robustness under
norm bounded model perturbations, the results imply that periodic con-
trollers amplify the systemLp norm which can lead to deterioration
of the system robustness against norm bounded model perturbations.
Hence, the use of periodic control will in general be at the cost of infe-
rior system robustness performance, relative to that achievable by time
invariant control.
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Undershoot and Settling Time Tradeoffs for Nonminimum
Phase Systems

K. Lau, R. H. Middleton, and J. H. Braslavsky

Abstract—It has been known for some time that real nonminimum phase
zeros imply undershoot in the step response of linear systems. Bounds on
such undershoot depend on the settling time demanded and the zero lo-
cations. In this note, we review such constraints for linear time invariant
systems and provide new stronger bounds that consider simultaneously the
effect of two real nonminimum phase zeros. Using the concept of zero dy-
namics, we extend these results to a class of nonlinear systems.

Index Terms—Nonminimum phase (NMP), settling time, undershoot,
zero dynamics.

I. INTRODUCTION

The analysis of performance tradeoffs in feedback control systems
aims to expound and quantify fundamental compromises in the design
of a feedback controller. This area of research has been the focus of
many studies through the years (see, e.g., the research monographs [1]
and [2]). Such studies have used both frequency domain (sensitivity
functions, interpolation constraints, achievableH1 performance) and
time domain (cheap control, undershoot–overshoot, settling time and
rise time,L1, andL2 performance) approaches. However, the analysis
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of performance tradeoffs is most clearly developed for linear systems
from a frequency domain perspective.

In attempting to extend these results to nonlinear systems, one nat-
ural avenue to explore is the extension of time domain constraints. Such
an approach has been taken in [3] to extend the cheap control results of
[4] to a class of nonlinear systems.

An additional advantage of the time domain analysis of performance
tradeoffs, is the characterization of design constraints directly related
to the transient response specifications of the system, e.g., undershoot
and settling time, which are of immediate practical value.

In this note, we consider the extension of the results on undershoot
and settling time constraints for nonminimum phase linear systems
obtained in [5] using frequency domain tools. As in [3], we use
the concept of zero dynamics [6], [7] for the characterization of
nonminimum phase nonlinear systems. In the context of the zero
dynamics formulation, we first rederive the results of [5] for linear
systems, and provide new, stronger undershoot bounds that consider
simultaneously the effect of two real nonminimum phase zeros.

We then present an extension of these results for a class of nonlinear
systems with unstable zero dynamics. Using concepts of constrained
reachability ([8, Sec. 3.6], [9, Ch. 6]) we show that the step response of
systems with scalar separable unstable zero dynamics must necessarily
undershoot. Furthermore, as is the case for linear systems, the under-
shoot cannot be small if a short settling time is required when the zero
dynamics are comparatively slow.

A. Background and Definitions

Consider the general problem of trying to control a single-
input–single-output nonlinear time invariant plant

y = P � u (1)

whereP denotes, in the most general setting, a dynamic nonlinear op-
erator mapping the input signalu(t) to the output signaly(t). In this
note, we are primarily interested in step response tracking examples,
where we wish to move from an equilibrium1 (y = 0) to a new equi-
librium (y = �y 6= 0). We are particularly interested in theundershoot
that may occur during such a transition. Given an output signaly(t) we
define therelative undershootrus as

rus(y(�)) = � inf
t2(0;1)

y(t)

�y
:

Undershoot is an important time domain characteristic of the response
of a control system. There are several reasons why it may be unde-
sirable to permit excessive undershoot in a plant response. First, large
undershoot may cause state constraints to be violated. Second, large
undershoot may be, and in the linear case definitely is, an indication
of poor sensitivity robustness properties. Third, large undershoot may
deceive a supervisor or operator into believing the control system is
faulty, and therefore manually intervening in a control system.

We are also interested in thesettling timeof a feedback control
system. The settling time has a variety of definitions by different au-
thors. In this note, for simplicity, we use the following definition of an
exact settling timeTes:

Tes(y(�)) = inf
�2(0;1)

f� : t > � ) y(t) = �yg:

Note that for many real control systems [for example, linear time
invariant (LTI) systems], the outputy may not be able to settle exactly
in finite time. However, the output may be able to approximate, to an
arbitrary degree of accuracy, an “ideal” output signal which does have
finite exact settling time. This approximation significantly simplifies
the analysis in this note.

1We assume, without loss of generality, that the initial equilibrium is at the
origin.

II. L INEAR TIME INVARIANT PLANTS

In the case where the plant can be described by a linear, causal, finite-
dimensional operator, we replace the description of (1) by the following
rational transfer function description:

y = P (s) � u

where the notationP (s) � u represents convolution of the impulse re-
sponse ofP (s) with u.

In this case, we say that the plant transfer functionP (s) is minimum
phaseif all of its zeros have nonpositive real parts. If any of the zeros
of P (s) have positive real part, then we say thatP (s) is nonminimum
phase(NMP). The study of NMP zeros, and their effects on time do-
main control properties have been studied previously by several authors
[2], [5], [10, Ch. 4]–[12]. We first review the situation for a single real
NMP zero.

A. Single Real NMP Zero

Consider the case where we have a single real NMP zero ats = �.
We then have the following result.

Proposition II.1: [5] Suppose thatP (�) = 0 where� is a posi-
tive real number. Consider any input–output signals such thatu(t) is
bounded and the outputy(t) settles exactly to�y in time T . Then, the
relative undershoot must satisfy

rus(y) �
1

e�T�1
: (2)

Proof2 : Sinceu(t) is bounded,� is in the region of conver-
gence ofU(s) = Lfu(t)g (the Laplace transform ofu(t)). Therefore,
sinceY (�) = P (�)U(�) = 0, we get the interpolation constraint
1

0
y(t)e��tdt = 0. By splitting the interval of integration, dividing

by �y, and using the definition of exact settling, we obtain
1

T

e��tdt =
T

0

�
y(t)

�y
e��t dt: (3)

The result then follows from the fact that�y(t)=�y � rus(y).
We now wish to expand on this result to consider the case where we

have two real NMP zeros.

B. Two Real NMP Zeros

Suppose that we have an LTI plant with two real NMP zeros ats =
�1 ands = �2. Then using the same arguments as in the previous
section, we obtain one interpolation constraint for each NMP zero. Of
course, Proposition II.1 applies (at least as a lower bound) individually
to each of these two NMP zeros. However, the interaction of the two
interpolation constraints gives stronger results as we now show.

Proposition II.2: Suppose thatP (�1) = P (�2) = 0 where�1 >
�2 > 0 are real numbers. Consider any input–output signals such that
u(t) is bounded and the outputy(t) settles exactly to�y in timeT . Then,
the relative undershoot must satisfy

rus(y) �
�1e

�� T � �2e
�� T

�1(1� e�� T )� �2(1� e�� T )
: (4)

Proof: Since�1 and�2 can be considered as two single NMP
zeros, the proof of Proposition II.1 can be used to show that (3) holds
for �1 and�2. Thus, forj = 1; 2 we have

e�� T

�j

=
T

0

�
y(t)

�y
e�� tdt: (5)

Subtracting (5) withj = 1 from the same equation withj = 2 yields

e�� T

�2
�

e�� T

�1
=

T

0

�
y(t)

�y
(e�� t � e�� t) dt:

2We include the proof here since it is brief, and is instructive for the remaining
development of the note.
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Sincee�� t � e�� t � 0 for t � 0, this implies that

e�� T

�2
�

e�� T

�1
� rus(y)

T

0

(e�� t � e�� t) dt

from which the desired result follows.
This result may be illustrated as shown in Fig. 1. Note that by

taking each constraint individually, we would only get the results for
�1=�2 ! 1. Clearly, from the figure, if the zeros are not widely
spaced, the results when the two constraints are considered together
may be many times worse than for the individual constraints. For
example, consider�2T = 1. As �1 ! 1 the lower bound on the
relative undershoot is 0.6 but when�1 is close to�2 the bound on
rus(y) is approximately 2.78.

The results have been derived based on Laplace transform analysis of
an LTI plant. However, when considering nonlinear plants, such anal-
ysis may be inappropriate and difficult to generalize. To facilitate anal-
ysis of nonlinear plants, we now consider the same problems, using a
zero dynamics formulation.

C. Linear Zero Dynamics Formulation

The zero dynamics formulation (see, for example, [7, p. 538] and
[6]) for a linear system performs a state transformation from the generic
state-space form

_x = Ax +Bu y = Cx

to the zero dynamics form

_� = Ac� +BcC0z +Bcu

_z = A0z +B0y (6)

y = Cc�:

In this case, the zero dynamics refers to the dynamics of the equation
_z = A0z and in particular, the eigenvalues ofA0 are the zeros of
the transfer function,P (s). Hence, an NMP system has unstable zero
dynamics.

With the system in zero dynamics form, one way of considering the
relationship of undershoot to settling time and NMP zeros is as follows:
Take the target output�y and form the target final state�z = �A�10 B0�y.
Without loss of generality, let�y > 0. For each� � 0, let Y� denote
the set of functionsy which satisfy

y(t) � �� 8t � 0:

Bounds on�, and hence the relative undershoot�=�y, can then be found
by assuming that9 y 2 Y� which takesz from 0 to �z in time T . We
now use this approach to rederive the results for one and two NMP
zeros.

1) First-Order Linear Zero Dynamics:Without loss of generality,
we takeA0 = � > 0 andB0 = 1; �y > 0. In this case, clearly�z =
��y=� and the general solution to the linear zero dynamics equation is
given by

z(t) =
t

0

e�(t��)y(� )d�: (7)

From (7), and fory 2 Y�; � � 0, we obtain

�z(T ) �
T

0

e�(T��)�d� = �
e�T � 1

�
: (8)

Clearly, therefore, unless�(e�T �1) � �y, (8) contradictsz(T ) = �z.
It follows that rus(y)(e�T � 1) � 1 which is equivalent to (2).
Thus, we have rederived the result of Section II.A without using
Laplace transforms.

2) Second-Order Linear Zero Dynamics:Suppose that�y > 0
and we have two distinct real NMP zeros�1 > �2 > 0.
Without loss of generality, we can takeA0 to be diagonal,

Fig. 1. Bound on ( ) given in (4) versus for and
= 1 2 3, and4.

that is, A0 = diagf�1; �2g and B0 = [1; 1]T . In this case,
�z = �A�10 B0�y = ��y[(1=�1); (1=�2)]

T . We also use the notation
B?0 = [1;�1] and the definition

z�(T )
�
= ��

T

0

eA (T��)B0 d� (9)

= ��A�10 (eA T � I)B0: (10)

With this background, we state our first proposition.
Proposition II.3: For the second order zero dynamics system pre-

viously defined, any statez(T ) reachable in timeT > 0 with y 2
Y�; � � 0 must satisfy both

B?0 (z(T )� z�(T )) � 0 (11)

and

B?0 e
�A T (z(T )� z�(T )) � 0: (12)

Proof: First, we note that using the Cayley Hamilton the-
orem (see, for example, [13, p. 167]),eA t = I�0(t) + A0�1(t),
where �0(t) = (�1e

� t � �2e
� t=((�1 � �2) and �1(t) =

(e� t � e� t)=(�1 � �2).
We prove (12). The proof of (11) is similar. From the definition of

z� (9) and the linear zero dynamics (6), we obtain

B?0 e
�A T (z(T )� z�(T ))

= B?0 e
�A T

T

0

eA (T��)B0(y(�) + �) d�

=
T

0

B?0 (I�0(��) +A0�1(��))B0(y(�) + �) d�

= B?0 A0B0

T

0

�1(��)(y(�) + �) d� � 0

because bothB?0 A0B0 and(y(�) + �) are nonnegative, and�1(��)
is nonpositive for� � 0.

At first sight, there might not appear to be any correspondence be-
tween this result and the earlier result (4) based on Laplace transforms.
However, as we now show, the two results give identical bounds on the
undershoot.

Corollary II.4: If the conditions of Proposition II.2 are satisfied,
then (12) implies (4).

Proof: Let � = rus(y) and� = ��y. Inequality (12), together
with z(T ) = �z = ��yA�10 B0 and (10), gives

0 � B?0 e
�A T (z(T )� z�(T ))

= B?0 e
�A T ��yA�10 B0 + ��yA�10 (eA T � I)B0 :
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Since�y > 0, andA�1
0

ande�A T commute, this is equivalent to

0 � �B?0 A�10 e�A TB0 + �B?0 A
�1

0 (I � e�A T )B0:

This implies, therefore, that sinceB?0 A
�1

0
(I � e�A T )B0 < 0

rus(y) � B?0 A
�1

0
e�A TB0

B?
0
A�1
0

(I � e�A T )B0

=

e
�

� e
�

1�e
�

� 1�e
�

which is equivalent to (4).
We therefore see that in the case of a linear time invariant plant, the

zero dynamics form allows the same results as those obtained using
Laplace transforms for relating zeros, undershoot and settling time.

III. PERFORMANCELIMITATIONS FOR NONLINEAR SYSTEMS WITH

UNSTABLE ZERO DYNAMICS

In the previous section, the zero dynamics form of a linear system
was used to derive a bound on the undershoot for a given settling time.
This was achieved by finding a relationship between the relative un-
dershoot at the output and the reachable states of the zero dynamics. In
this section, we will show that these ideas can be extended to nonlinear
systems with unstable zero dynamics.

Suppose that a nonlinear system has the form
_� = F (�; z; u); � 2 Rl

_z = F0(z; y); z 2 Rm (13)

y = H(�)

whereu is the input andy is the output. We focus on the zero dy-
namics (13). Note that although we assume that (13) represents the full
zero dynamics, for the purpose of this note, it is sufficient for this equa-
tion to describe part of the zero dynamics. The solution to the zero dy-
namics equation with the initial conditionz(0) = z0 shall be denoted
�(t; z0; y).

The following assumptions will be made.
Assumptions:

A1) 8�y 2 R; _z = F0(z; �y) has a unique equilibrium point�z
which implies0 = F0(�z; �y).

A2) F0(0; 0) = 0.
We shall be concerned with the problem of taking the system from

rest to the equilibrium aty(t) = �y > 0. This is equivalent to finding
y, which satisfies the following constraints:

lim
t!1

y(t) = �y > 0 (14)

lim
t!1

�(t; 0; y) = �z: (15)

As stated previously,y has a finite (exact) settling timeif
y(t) = �y 8t > T .

Definition 1 (Stability Definitions): The equilibrium point�z previ-
ously defined isunstableif it is not (locally) asymptotically stable. It
is anti-stableif _z = �F0(z; �y) is (locally) asymptotically stable. The
zero dynamics are unstable (antistable) if8�y, the corresponding equi-
librium point is unstable (antistable). If�z is unstable then thestable
manifoldM�z , corresponding to�z, is given by

M�z = z0 2 Rm : lim
t!1

�(t; z0; �y) = �z :

Note that in the case where�z is antistable,M�z = f�zg. Also, if �z is
globally asymptotically stable, thenM�z = Rm.

Recall that, for each� � 0;Y� is the set of functionsy which satisfy
y(t) � �� 8t � 0.

Definition 2 (Reachability Definitions):Consider the system de-
scribed by (13). For each triple(z0; �; T ) the reachable set, Rz ;�;T

is the set given by

Rz ;�;T = fz� 2 Rm : 9 y 2 Y� s:t: �(T; z0; y) = z�g
and a setS � Rm is reachableif S � Rz ;�;T . A setSu � Rm is
unreachableif Rz ;�;T � Scu, whereScu = Rm n Su.

We observe that ify satisfies constraints (14) and (15), and�z is un-
stable, theny must stabilise the zero dynamics by drivingz to M�z .
This leads to the following lemma.

Lemma III.1: Consider the system described by (13). Suppose that
Assumptions A1) and A2) are satisfied,�y > 0 andy1 satisfies con-
straint (15). Then, the following statements hold

a) If the open setSu is unreachable8y 2 Y0 (and8t > 0), and
�z 2 Su, theny1 must undershoot.

b) If Tes(y1) = T , andM�z is unreachable att = T 8y 2 Y�, then
rus(y1) � �=�y.

Proof: The proof is immediate, in both cases, by contradiction.

We now apply the aforementioned result to the case of scalar anti-
stable zero dynamics.

A. Scalar Zero Dynamics

1) General Case:Suppose that the zero dynamics satisfy

_z = F0(z; y) = f0(z) + g0(z)y; z(0) = 0 (16)

wherez 2 R; f0(z) is continuous and increasing(df0=dz > 0 almost
everywhere),f0(0) = 0, andg0(z) has constant sign8z. Without loss
of generality, we takeg0(z) > 0. Note that the conditions onf0 ensure
that the system satisfies Assumptions A1) and A2).

Suppose thaty is required to track a step of height�y > 0. Let the cor-
responding equilibrium point be�z. �z < 0 becausef(�z) = �g(�z)�y <
0. �z is also anti-stable becausef0 is an increasing function. It follows
thaty must drivez to �z.

For this system, the following proposition holds [14].
Proposition III.2: Consider the previous system. Suppose thaty 2

Y� and letz�(t) be the solution to initial value problem (16) with
y(t) = ��

z(t) � z�(t):

Proof: The proof [14, Prop. 2] is a direct application of the com-
parison principle.

Suppose thaty 2 Y0. When� = 0; z�(t) = 0. Thus, from the
proposition,z(t) � 0 8t. But then�z is unreachable, and soy must
undershoot.

We can also quantify the required undershoot for a given exact
settling time. Clearly, from the previous proposition, for a given
permissible level of undershoot�; y(t) = ��y takesz from 0 to �z
in minimum time. It was also shown in [14] that, as a consequence
of this, �z is unreachable fort < T �es(�; �y), where

T �es(�; �y) =
�z

0

1

f0(z)� ��yg0(z)
dz:

We note thatT �es(�; �y) is the infimal settling time for a given� and�y.
Let r�us(T; �y) be the infimal undershoot for a given�y and settling time
T . SinceT �es(�; �y) is a decreasing (and, hence, one-to-one) function of
�

r�us(T
�

es(�; �y); �y) = � (17)

and so,r�us(T; �y) = �̂, where�̂ is the solution ofT �es(�̂; �y) = T .
2) Particular Example: Consider the particular example in which

f0(z) = z3 andg0(z) = 1, i.e., _z = z3 + y. Then,�z = �p�y

and for � > 0; T �es(�; �y) =
�z

0

1

z3 � ��y
dz:

Let b = �1=3. An expression forT �es can be derived as follows:

T �es(�; �y) =
�z

0

1

z3 + (b�z)3
dz

=
1

3(b�z)2
ln jz + b�zj � 1

2
ln jz2 � b�zz + (b�z)2j

�z

0
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Fig. 2. Scalar example. Bound on relative undershoot versus settling time for
several values of�.
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3b�z

�z

0

=
1

6b2(�y)2=3
ln

(1 + b)2
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p
3

� tan�1 2� bp
3b

+
�

6
:

It follows from (17) that a plot ofr�us(T; �y) as a function ofT may
be obtained by plotting� againstT �es. Several of these plots are shown
in Fig. 2. Note that the bound on the relative undershoot increases for
fast settling times and smaller�y (slower zero dynamics). This is quali-
tatively similar to the linear case where the bound1=(e�T �1) is worse
for fast settling and slow zero dynamics.

IV. CONCLUSION

NMP behavior can be understood in the linear and nonlinear case
using the zero-dynamics formulation. In this formulation, the “con-
straints” imposed by plant NMP behavior can be examined. In partic-
ular, the permissible output behavior must drive the state of the zero
dynamics onto the stable manifold. Furthermore, in cases where we
wish to achieve this in a finite time, a lower bound on the required
output deviation is imposed. For the case of scalar nonlinear NMP zero
dynamics, we show fast settling and small undershoot are incompatible
requirements. This is consistent with linear system conclusions for real
NMP zeros.
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Selection of Variables for Stabilizing Control
Using Pole Vectors

Kjetil Havre and Sigurd Skogestad

Abstract—For a linear multivariable plant, it is known from earlier work
that the easy computable pole vectors provide useful information about in
which input channel (actuator) a given mode is controllable and in which
output channel (sensor) it is observable. In this note, we provide a rigorous
theoretical basis for the use of pole vectors, by providing a link to previous
results on performance limitations for unstable plants.

Index Terms—Actuator selection, control structure design, -infinity
control, -control, input usage, linear systems, performance limitations,
sensor selection.

I. INTRODUCTION

Most available control theories consider the problem of designing
an optimal multivariable controller for a well-defined case with given
inputs, outputs, measurements, performance specifications, and so on.
The following importantstructural decisions[14] that come before the
actual controller design are therefore not considered.

1) Selection of inputsu (manipulated variables, actuators).
2) Selection of primary outputsy1: controlled variables with spec-

ified reference values.
3) Selection of secondary outputs (measurements, sensors)y2:

Extra variables that we select to measure and control in order to
stabilize the plant and achieve local disturbance rejection.
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