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with u(w, s) = |w|su(w, s) wheredw = w/|w|e. For anyw € R? [3] S.K.Das, “Simultaneous stabilization of two discrete-time plants using
ands € {0,1}, |2(w, 8)|ee < 6|w]oo. a 2-periodic controller,”IEEE Trans. Automat. Contrvol. 46, pp.
We now turn our attention to signats(k) € I, andw(t) € L7, 125-130, Jan. 2001.

[4] M. A. Dahleh and J. S. Shamma, “Rejection of persisitent bounded

and to distinguish them from vectorsR" we will use boldface type. disturbances: Nonlinear controllersSyst. Control Lett.vol. 18, pp.

We introduce a control lavik, : 12, — .., with 245-252, 1992,
. *) w(w(k),0), if kis even [5] B.Al. Fragcsis,A Course inH ., Control Theory New York: Springer-
(Knw)(k) = { U e (12) Verlag, 1987.
u(w(k),1), ifkis odd. [6] J. M. Godhavn and O. Egeland, “A Lyapunov approach to exponential
Then, K}, is a nonlinear and two-periodic controller. &, = 0, (4) Stab”izgﬁon of ”IC’”gO'OﬂOWC\)igBSySé%nZWS inlpovg;r forEEE Trans. Au-
. R A py A : - tomat. Contr, vol. 42, pp. 1028-1032, July 1997.
in Theorem 4.1 yielddt, = () and, hence, we may define an NTI  [7] P. Khargonekar and K. Poolla, “Uniformly optimal control of linear
controllerrr as in Theorem 4.2 b7 = (1/2)(K), + q[{hqfl), time-invariant plants: Nonlinear time varying controllerSyst. Control
Then,S-., andg¢S...q~" are given by Lett, vol. 6, pp. 303-308, 1986. _
(o ([#/1]).0) /0] [8] G. Kothe, Toplological Vector Spaces New York: Springer-Verlag,
z(w([t/h]),0), if[t/h]is even 1969.
(S:ww)(t) = { 2(w([t/h]),1), if[t/h]is odd (13) [9] K. Poolla and T. Ting, “Nonlinear time-varying controllers for robust
( ([t/l D 1‘) £[t/h] i stabilization,”|EEE Trans. Automat. Contrvol. AC-32, pp. 195-200,
Z\w (2 s 1 L/ 1] 1S evell
(¢S-wq 'w)(t) = =) 1 : (14) Feb. 1987. ' o
z(w([t/R]),0), if[t/h]is odd. [10] R.Schmid and C. Zhang, “Performance analysis of periodic control for

N . . 1, andl_, disturbance rejectionAsian J. Contralvol. 3, pp. 240-247,
By Theorem 4.2/ gives closed-loop disturbance response system 2001.

1 i [11] A.A.Stoorvogel, “Nonlineat, optimal controllers for linear systems,”
(STrw)(t) = =(S-w + ¢Szwq™ () IEEE Trans. Automat. Contivol. 40, pp. 694—696, Apr. 1995.
% [12] N. Z. Yen and Y. C. Wu, “Optimal periodic control implemented as a
= Z(z(w([t/N]),0) + z(w([t/h]),1)). (15) generalized sampled-data hold output feedback contteEE Trans.
20 o Automat. Contr.vol. 38, pp. 1560-1563, Oct. 1993.

If we consider the specific unit disturbance sigwal € L?x) with [13] C. Z_hang and J. Zhang, “Performance analysis of periodically time-
N . N 1. varying controllers for sampled-data control2EE Trans. Automat.
W(t) = w; forallt € R, we obtain| - Wl|oo = [|gS=wq™ Wil = Contr, vol. 44, pp. 1607-1611, Aug. 1999.

6. S0 S.w iS Lo norm h-periodic tow. Also ||Stiw|e = 4.5,

S0 S.., is not L., h-periodic tow. As w is a constant signal,
SUPg<r < i (|92 Wrlloo = 6 @ndsupg, o, |11 Wr|lse = 4.5. SO
Theorem 5.1 is verified for the signat.

We can show that for anw € L2, ||S.0W|loo < 6||W||oo, and
[|S7riw|leo < 4.5|W||=. Hence||S:w||l = 6 and||Sri||e = 4.5.
ThusS., attains its system norm on the constant sequércé! =
w1}, but is notZ.. h-periodic to it, verifying Theorem 5.2.

Undershoot and Settling Time Tradeoffs for Nonminimum
Phase Systems

K. Lau, R. H. Middleton, and J. H. Braslavsky
VII. CONCLUSION

. In this note, the ‘%Se of NPTV lsanllpled-data CO”“‘?' of continuous Abstract—t has been known for some time that real nonminimum phase
time LTI plants for disturbance rejection performance is analyzed. Fros imply undershoot in the step response of linear systems. Bounds on
a given strictly NPTV discrete controller yielding a closed-loop dissuch undershoot depend on the settling time demanded and the zero lo-
turbance response system that is figh-periodic to the disturbance cations. In this note, we review such constraints for linear time invariant
inputs, an NTI discrete controller is constructed and shown to proviggStems and provide new stronger bounds that consider simultaneously the

. . - . . effect of two real nonminimum phase zeros. Using the concept of zero dy-
strictly better rejection of, spec_lflc and u_nlform disturbances, forpamics, we extend these resuilts to a class of nonlinear systems.
all p € [1,o¢]. The authors consider that, in general, the closed-loop
system with a strictly NPTV discrete controller will Beperiodic to
very few inputs. Indeed, the likelihood éfperiodicity is reduced for
larger values of the controller perigd. The results obtained include
linear periodic sampled-data control systems, and similar results can I. INTRODUCTION

be straightforwardly obtained for nonlinear periodic discrete systems. . .

g y P y The analysis of performance tradeoffs in feedback control systems

As the systend.,, norm can be related to the system robustness under . ) ) .
. . .. _aims to expound and quantify fundamental compromises in the design

norm bounded model perturbations, the results imply that periodic cor}- .
or a feedback controller. This area of research has been the focus of

trollers amplify the systeni, norm which can lead to deterioration .
. - many studies through the years (see, e.g., the research monographs [1]
of the system robustness against norm bounded model perturbations ! . o
L - . .and [2]). Such studies have used both frequency domain (sensitivity
Hence, the use of periodic control will in general be at the cost of infg- ~ * . . . .
unctions, interpolation constraints, achievablg, performance) and

rior system robustness performance, relative to that achievable by timﬁe domain (cheap control, undershoot—overshoot, settling time and

invariant control. o .
rise time,L ., andL, performance) approaches. However, the analysis

Index Terms—Nonminimum phase (NMP), settling time, undershoot,
zero dynamics.
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of performance tradeoffs is most clearly developed for linear systems Il. LINEAR TIME INVARIANT PLANTS

from a frequency domain perspective. Inthe case where the plant can be described by a linear, causal, finite-

In attempting to extgnd these re_sults tq nonllnea_r systems_, ON€ Niensional operator, we replace the description of (1) by the following
ural avenue to explore is the extension of time domain constraints. Su

. #&llonal transfer function description:

an approach has been taken in [3] to extend the cheap control results oP P

[4] to a class of nonlinear systems. y=P(s)*u
An additional advantage of the time domain analysis of performangg, g ¢ notatiod(s) = u represents convolution of the impulse re-

tradeoffs, is the characterization of design constraints directly rela nse ofP(s) with u

to the tra_nsie_nt response speci_ficatior_ls of the s_ystem, e.g., undersh ¥ this case, we say that the plant transfer funcfi{®) is minimum

and se.ttllng time, Wh'Ch. are of 'mmed'f”ﬂe practical value. haseif all of its zeros have nonpositive real parts. If any of the zeros
In this note, we consider the extension of the results on undershgfatp(s) have positive real part, then we say tti{ts) is nonminimum

and _settllr_lg time constraints for nonminimum phase_' linear syste ase(NMP). The study of NMP zeros, and their effects on time do-
obtained in [5] using frequency domain tools. As in [3], we us

h f d . 61 7] for the ch o ain control properties have been studied previously by several authors
the cgn_cept o zero dynamics [6]. [7] for the characterization 5,[5], [10, Ch. 4]-[12]. We first review the situation for a single real
nonminimum phase nonlinear systems. In the context of the z

dynamics formulation, we first rederive the results of [5] for linear P zero.
s_ystems, and provide new, stronger undersh_oqt bounds that consjgl_eginwe Real NMP Zero
simultaneously the effect of two real nonminimum phase zeros. i )

We then present an extension of these results for a class of nonlinedronsider the case where we have a single real NMP zerc=af\.
systems with unstable zero dynamics. Using concepts of constraifég then have the following result. _ _
reachability ([8, Sec. 3.6], [9, Ch. 6]) we show that the step response of ToPosition I1.1: [S] Suppose thaf’(A) = 0 whereA is a posi-
systems with scalar separable unstable zero dynamics must necessifffyreal number. Consider any input-output signals suchuihgtis
undershoot. Furthermore, as is the case for linear systems, the unf@Hnded and the outpyt?) settles exactly tg in time T'. Then, the
shoot cannot be small if a short settling time is required when the zdfjative undershoot must satisfy

dynamics are comparatively slow. 1
Y P Y 7'us(!l) > AT_1° (2
A. Background and Definitions ProoR: Sinceu(t) is bounded is in the region of conver-
Consider the general problem of trying to control a singlegence of/(s) = L{u()} (the Laplace transform of(#)). Therefore,
input—single-output nonlinear time invariant plant sinceY (A\) = P(MU(XN) = 0, we get the interpolation constraint

15 y(t)e™™dt = 0. By splitting the interval of integration, dividing

y=Pxu @ by 7, and using the definition of exact settling, we obtain
whereP denotes, in the most general setting, a dynamic nonlinear op- o, Tyt
erator mapping the input signalt) to the output signay(t). In this / e Tdt= / —'1‘7@_ dt. (3)
T 0

note, we are primarily interested in step response tracking examples

where we wish to move from an equilibridniy = 0) to a new equi- 1 n€ result then follows from the fact thaty(1)/y < rus (). u
librium (y = 7 # 0). We are particularly interested in th@dershoot We now wish to expand on this result to consider the case where we

that may occur during such a transition. Given an output sigitave ~have two real NMP zeros.
define therelative undershoot,s as
o(t) B. Two Real NMP Zeros

rus(y(-)) = = _inf {—} : Suppose that we have an LTI plant with two real NMP zeros-=at

tc(0,00) y ) : )
Undershoot is an important time domain characteristic of the respor%slea.nds = Ao Then using the same arguments as in the previous
ection, we obtain one interpolation constraint for each NMP zero. Of

of a control system. There are several reasons why it may be unae- . ) .
. YS . . y y e course, Proposition 1.1 applies (at least as a lower bound) individually
sirable to permit excessive undershoot in a plant response. First, Iatr(g;e . .
. . each of these two NMP zeros. However, the interaction of the two

undershoot may cause state constraints to be violated. Second, largé . . .
JInferpolation constraints gives stronger results as we now show.

undershoot may be, and in the linear case definitely is, an indicatio roposition 11.2: Suppose thaP(\) = P(As) = 0 where); >

f r sensitivity r n roperties. Third, lar ndershoot m - . .
ot poor se sit ty_ obustness p ope ties . .d’ arge undershoot ﬁy> 0 are real numbers. Consider any input—output signals such that
deceive a supervisor or operator into believing the control system’is, . T
. - u{t) is bounded and the outputt) settles exactly tg in time7". Then,
faulty, and therefore manually intervening in a control system.

We are also interested in theettling timeof a feedback control the relative undershoot must satisfy

system. The settling time has a variety of definitions by different au- re(y) > e 2T = e M7 )
thors. In this note, for simplicity, we use the following definition of an PEIE AL — e el — Mg (1 — e M1’

exact settling timele.: Proof: SinceX, and A, can be considered as two single NMP

Te(y(-)) = inf {r:t>7=yt) =7y} zeros, the proof of Proposition 1I.1 can be used to show that (3) holds
TE(0,20) for A1 and)». Thus, forj = 1,2 we have
Note that for many real control systems [for example, linear time AT T ) s
invariant (LT1) systems], the outpytmay not be able to settle exactly = / — Te_ it dt. (5)
J 4] $

in finite time. However, the output may be able to approximate, to an ) o ) ) L

arbitrary degree of accuracy, an “ideal” output signal which does hawe/Ptracting (5) witly = 1 from the same equation with= 2 yields

finite exact settling time. This approximation significantly simplifies e 2T oMT _ /1' _y(t)
0

the analysis in this note. o A\

f(@ixzt — 6’/7)\11) df.
Yy

Iwe assume, without loss of generality, that the initial equilibrium is at the 2We include the proof here since itis brief, and is instructive for the remaining
origin. development of the note.
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Sincee™*2t — e~ ! > () fort > 0, this implies that

— AT “AT r

e e — Aot —Aqt
- <rus')/ (e 2" —e ") dt
" NS (y A )

from which the desired result follows. [ |

This result may be illustrated as shown in Fig. 1. Note that by
taking each constraint individually, we would only get the results for
Ai/A2 — oc. Clearly, from the figure, if the zeros are not widely
spaced, the results when the two constraints are considered togeth
may be many times worse than for the individual constraints. For
example, considek:T = 1. As A\; — oo the lower bound on the
relative undershoot is 0.6 but wheq is close toA: the bound on
rus(y) iS approximately 2.78.

The results have been derived based on Laplace transform analysis «
an LTI plant. However, when considering nonlinear plants, such anal- 10 . =
ysis may be inappropriate and difficult to generalize. To facilitate anal- 10 11% 10
ysis of nonlinear plants, we now consider the same problems, using <. 172
zero dynamics formulation.

Bound on relative undershoot

Fig. 1. Bound onr,.(y) given in (4) versus\; /X, for A; > X, and

C. Linear Zero Dynamics Formulation A:T = 1,2,3, and4.

The zero dynamics formulation (see, for example, [7, p. 538] art]ﬁat is, 4y = diag{M, Ao} and Bo = [1,1]7. In this case,
[6]) for alinear system performs a state transformation from the generic 1 - - T .
state-space form z = —A, Boy = —g[(1/X),(1/A2)]" . We also use the notation

B = [1, —1] and the definition
t=Ar+Bu y=Cr ) T )
@ r+Bu y=Cr =(T) A —04/ A=) B g ©)
to the zero dynamics form _ —aAZ’l(e,AoT _ I)B.. (10)

- = A.£+ B.Coz+ B, N , L
¢ ¢t oFF Beu With this background, we state our first proposition.

£ = Aoz + Boy Proposition 11.3: For the second order zero dynamics system pre-
y = C&. viously defined, any state(7T') reachable in tim&" > 0 with y €
In this case, the zero dynamics refers to the dynamics of the equation @ = 0 must satisfy both
i = Aoz and in particular, the eigenvalues df, are the zeros of Bo (2(T) = za(T)) > 0 11)
the transfer functionP(s). Hence, an NMP system has unstable zero and
dynamics. L AeT, .
With the system in zero dynamics form, one way of considering the Bye (2(T) — z(T)) < 0. (12)

relationship of undershoot to settling time and NMP zerosis as follows:  Proof: First, we note that using the Cayley Hamilton the-
Take the target outpgtand form the target final state= — A, ' Boj.  orem (see, for example, [13, p. 167§)°" = I¢o(t) + Ao (1),

Without loss of generality, lef > 0. For eachv > 0, let ), denote where ¢o(t) = (A1e™?' — Xge'/((A\1 — A2) and ¢,(t) =
the set of functiong which satisfy (eMt — c"Q’)/()\l —A2).
y(t) > —a vt > 0. We prove (12). The proof of (11) is similar. From the definition of

. z« (9) and the linear zero dynamics (6), we obtain
Bounds onx, and hence the relative undershagf, can then be found

1 —AoT ’
by assuming thall y € V. which takes: from 0 toz in time T". We Bye ™ (:(T) = za(1))
. . T .
Qg\r/;suse this approach to rederive the results for one and two NMP _ BULE_AOT/ AT B () + ) dr
. 0
1) First-Order Linear Zero Dynamics:Without loss of generality, T
we takedy = A > 0 andB, = 1,7 > 0. In this case, clearl§ = :/ By (Igo(—=7) + Aod1 (—7))Bo(y(r) + o) dr
—y/X and the general solution to the linear zero dynamics equation is 0 v
given by = B3 A¢Bo / o1(—7)(y(7) +a)dr <0
J0
1
H(t) = / ANy () dr (7) because botiBy Ao Bo and(y(r) + ) are nonnegative, angh (—7)
0 ' is nonpositive forr > 0. |
From (7), and foy € Yo, a > 0, we obtain At first sight, there might not appear to be any correspondence be-
' P N tween this result and the earlier result (4) based on Laplace transforms.
—2(T) < / M) dr = 1_ (8) However, as we now show, the two results give identical bounds on the
0 A undershoot.
Clearly, therefore, unless(e*” —1) > §, (8) contradicts:(T) = z. Corollary 11.4: If the conditions of Proposition 1.2 are satisfied,

It follows that 7. (y)(e*” — 1) > 1 which is equivalent to (2). then (12) implies (4).
Thus, we have rederived the result of Section II.A without using Proof: Letp = rus(y) anda = pj. Inequality (12), together
Laplace transforms. with =(T) = z = —yA, ' By and (10), gives

2) Second-Order L_mc_aar Zero DynamicSuppose thay > 0 0> Bole—AoT(z(T) — -.(T))
and we have two distinct real NMP zeros > X > 0. Lo (o A
Without loss of generality, we can takel, to be diagonal, =DBye P (—yAO Bo + pyAq - (e7° —I)BO)-
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Sincej > 0, andA; " ande~“°T commuite, this is equivalent to We observe that if satisfies constraints (14) and (15), ants un-
0> =B Ay e "By + pBi Ay (I — e ") B,. sta_ble, thery must stab_ilise the zero dynamics by drivingo M.
S Lo 1 AT This leads to the following lemma.
This implies, therefore, that sindg 4, (1 — ¢="")Bo <0 Lemma Ill.1: Consider the system described by (13). Suppose that
By Agte=*T B, %IIT - e_;;T Assumptions A1) and A2) are satisfieg,> 0 andy; satisfies con-
rus(y) 2 BEA: (I — A0\ By  1oe—MT _ 1=t straint (15). Then, the following statements hold
AL A2

a) If the open sef, is unreachabl&y € ), (andVvt > 0), and

which is equivalent to (4). z € 8., theny; must undershoot
We therefore see that in the case of a linear time invariant plant theD y “ : . ’
' ) If Tes(y1) = T, andM: is unreachable at= T Vy € Y., then

zero dynamics form allows the same results as those obtained using .
: N rus(y1) > afy.
Laplace transforms for relating zeros, undershoot and settling time. . . . -
Proof: The proof is immediate, in both cases, by contradiction.

[ |
We now apply the aforementioned result to the case of scalar anti-
stable zero dynamics.
In the previous section, the zero dynamics form of a linear system
was used to derive a bound on the undershoot for a given settling tifle. Scalar Zero Dynamics
This was achieved by finding a relationship between the relative un-1) General Case:Suppose that the zero dynamics satisfy
dershoot at the output and the reachable states of the zero dynamics. In = Foey) = fol- B (0) = 0 16
this section, we will show that these ideas can be extended to nonlinear 2= Fo(zy) = fol2) + g90(2)y, (0) = (16)
systems with unstable zero dynamics. wherez € R, fo(z) is continuous and increasiridfo /d= > 0 almost
Suppose that a nonlinear system has the form everywhere)fo(0) = 0, andgo () has constant sigrz. Without loss
§= F(E, 2 u), ¢eR! of generality, we talfgg(:) > 0. Not_e that the conditions ofy ensure
T ‘ that the system satisfies Assumptions Al) and A2).
2= Fo(zy), zeR” (13) Suppose that is required to track a step of height> 0. Let the cor-
y=H(¢) responding equilibrium point be z < 0 becausg(z) = —g(2)j <
wherew is the input andy is the output. We focus on the zero dy-V- is also an_ti-stable becauge is an increasing function. It follows
namics (13). Note that although we assume that (13) represents the!fifity must drivez to =. _ .
zero dynamics, for the purpose of this note, itis sufficient for this equa-FOr this system, the following proposition holds [14].

tion to describe part of the zero dynamics. The solution to the zero dy-ProPosition I11.2: Consider the previous system. Suppose ghat
%, and letz. (¢) be the solution to initial value problem (16) with

Ill. PERFORMANCELIMITATIONS FOR NONLINEAR SYSTEMS WITH
UNSTABLE ZERO DYNAMICS

namics equation with the initial conditior{0) = z, shall be denoted <
o(t, 2o, y)' y(f) -
The following assumptions will be made. (1) > zalt).
Assumptions: -
Al) Vy € R, z = Fy(z,9) has a unique equilibrium poirt Proof: The proof [14, Prop. 2] is a direct application of the com-
which implies0 = Fy(z,9). parison principle. [ ]
A2)  Fp(0,0) = 0. Suppose thay € Yo. Whena = 0, z,(t) = 0. Thus, from the

We shall be concerned with the problem of taking the system fropfoposition,z(t) > 0 V¢. But thenz is unreachable, and gomust
rest to the equilibrium ag() = § > 0. This is equivalent to finding undershoot.
y, which satisfies the following constraints: We can also quantify the required undershoot for a given exact
settling time. Clearly, from the previous proposition, for a given
(14) 2 _ ~
permissible level of undershogt y(¢t) = py takesz from 0 to z
Jim 6(t,0,y) = =. (15)  in minimum time. It was also shown in [14] that, as a consequence

As stated previously,y has a finite (exact) settling timeif ©Of this, Z is unreachable for < Ti(p.7), where
U(f):ﬁVf>T o ™ . . . Te*s(py)://;_dz

Definition 1 (Stability Definitions): The equilibrium point previ- ‘ o Jfo(2) = pTgo(2)
ously defined isunstableif it is not (locally) asymptotically stable. It We note thafl%;(p, 7) is the infimal settling time for a givep andy.
is anti-stableif 2 = —Fy(z, §) is (locally) asymptotically stable. The Let (T, 5) be the infimal undershoot for a givgnand settling time
zero dynamics are unstable (antistablejf the corresponding equi- T'. SinceT; (p, 7) is a decreasing (and, hence, one-to-one) function of
librium point is unstable (antistable). ¥ is unstable then thstable p
manifold M, corresponding t@, is given by

M: = {ZO €R™: lim o(t, 20,7) = z}. O

lim y(t) =9 >0
t—oc

s (T (0, 9),9) = p a7

and soy (T, §) = p, wherep is the solution ofl.; (5. 7) = T'.

Note that in the case whekeis antistable M. = {z}. Also, if Z is : ) . ) .
2) Particular Example: Consider the particular example in which

globally asymptotically stable, thetriz: = R™. 3 Fa 3, = 3G
Recall that, for each > 0, ), is the set of functiong which satisfy fo(z) = =" andgo(2) = 1,1.e.,2 = 2" +y. :I'hen,z ==V
yt) 2 —aVE20. _ and forp> 0. T = [ o
Definition 2 (Reachability Definitions):Consider the system de- ’ o 22 —py
scribed by (13). For each triple, o, T') thereachable setR.,..,r  Leth = p'/*. An expression fofl, can be derived as follows:
is the set given by L z 1
Rzo,a,T = {Z* S R™: 3 y € yrx s.t. @(Ta Zo«,?/) = } TFS(p’ y) - ,/0’ dz

2" 23 4+ (b2)3
and aseS C R™ isreachableif S C R.; o, 1. AsetS, C R™ is 1 )
unreachabldf R., .7 C S;, whereS; = R™ \ S,,. 0 T 3002 |

dz.

z+bz| — %ln |2* = bzz 4 (b2)|
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25— bz\17 Selection of Variables for Stabilizing Control
x [tan™' [ Z—— Using Pole Vectors
o (s ), :
_ 1 (1+0)° Kjetil Havre and Sigurd Skogestad
= 602(3)2/° [ln(l—b—l—b? +23
X [tmﬁl <u) + E” ) Abstract—For a linear multivariable plant, it is known from earlier work
V/3b 6 that the easy computable pole vectors provide useful information about in

It follows from (17) that a plot of% (T, 7) as a function ofl” may WhtiChtinf?m chla(nnel (a;t_ltj_atorg a giveb? rT;O(tjr(]e_ is C(:ntrollable %nd in_which
: ; : * output channel (sensor) it is observable. In this note, we provide a rigorous
.be qbtamed by plotting against,. Severa.l of these plots .are Showr} eoretical basis for the use of pole vectors, by providing a link to previous
in Fig. 2. Note that the bound on the relative undershoot increases fQfits on performance limitations for unstable plants.
fagt sett“.ng. times anq smallgr(slower zero dynaml/\cls)' Th!s is quali- Index Terms—Actuator selection, control structure design, H -infinity
tatively S|m|I.ar to the linear case Wherg the bouride™" —1)isworse  control, £, -control, input usage, linear systems, performance limitations,
for fast settling and slow zero dynamics. sensor selection.

IV. CONCLUSION
I. INTRODUCTION

NMP behavior can be understood in the linear and nonlinear cast?vI . . . -
using the zero-dynamics formulation. In this formulation, the “con- ost available control theories consider the problem of designing
straints” imposed by plant NMP behavior can be examine’d In partl%o optimal multivariable controller for a well-defined case with given
ular, the permissible output behavior must drive the state of the zé?gms’ outputs, measurements, perf_or_mance specifications, and so on.
dynamics onto the stable manifold. Furthermore, in cases where \I\J%e following |mport§1nstructural decision¢14] that come before the
wish to achieve this in a finite time, a lower bound on the require?]':tuall contrc_)ller d§5|gn are thgrefore not c.on5|dered.
output deviation is imposed. For the case of scalar nonlinear NMP zerol) Selection of inputs (manipulated variables, actuators).
dynamics, we show fast settling and small undershoot are incompatible?) Selection of primary outputg : controlled variables with spec-
requirements. This is consistent with linear system conclusions for real  ified reference values.

NMP zeros. 3) Selection of secondary outputs (measurements, sengers)
Extra variables that we select to measure and control in order to
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