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Abstract  18 

 19 

Anther-smut fungi constitute a powerful system to study host-pathogen specialization and 20 

coevolution, with hundreds of Microbotryum species specialized on diverse Caryophyllaceae 21 

plants, castrating their hosts through particular manipulation of hosts’ reproductive organs 22 

that facilitates disease transmission. Microbotryum fungi also have exceptional genomic traits, 23 

including dimorphic mating-type chromosomes, that make this genus also an excellent model 24 

for the evolution of mating systems and their influence on population-genetic structure and 25 

adaptive potential. Important insights into the adaptation, coevolution, host specialization and 26 

mating system evolution have been gained using anther-smut fungi, in particular with the 27 

recent advent of genomic approaches. We argue and illustrate based on the Microbotryum 28 

case studies that using a combination of genomic analyses is a powerful approach, where 29 

comparative genomics, population genomics and transcriptomics data allow the integration of 30 

different evolutionary perspectives and across timescales. We also highlight current 31 

challenges and future studies that will contribute to advance our understanding of mechanisms 32 

involved in adaptive processes in fungal pathogen populations. 33 

 34 

Keywords : comparative genomics, population genomics, transcriptomics, adaptation, positive 35 

selection, selective sweeps, divergence, gene flow, rearrangements, suppressed recombination 36 

37 
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Introduction  38 

 39 

Pathogens thrive using living organisms as nutritional resources, which reduces their host 40 

fitness. This leads to coevolutionary arms races, in which pathogens are selected for increased 41 

abilities of host infection and exploitation, while hosts are selected for mechanisms of 42 

resistance to particular diseases. Such coevolution occurs on short evolutionary scales, as a 43 

never-ending process of adaptation and counter-adaptation (113). Across macro-evolutionary 44 

scales, some pathogens also may undergo host shifts, forming new species by specialization 45 

in combination with new hosts (42). Coevolution  is a very different evolutionary process 46 

from host specialization, despite the terms often being used interchangeably, and may involve 47 

different genomic mechanisms and/or molecular interactions that have yet to be well resolved 48 

(42).  49 

 50 

An integrated understanding of the ecological and genetic/genomic mechanisms underlying 51 

both coevolution and host specialization by pathogens is of fundamental importance. These 52 

phenomena indeed represent cases of rapid adaptation, diversification and long-term species 53 

interactions, shedding light on the processes generating and maintaining biodiversity and 54 

ecosystem dynamics. Furthermore, knowledge on the genomic mechanisms involved in 55 

coevolution and host specialization in fungal pathogens is important for controlling crop and 56 

animal diseases and preventing emerging diseases that are a rising threat in domestic and wild 57 

populations (52, 70). Fungi are the most important plant pathogens, causing dramatic crop 58 

diseases, including many devastating diseased that are newly emergent following host shifts 59 

(9, 45, 51). 60 

 61 
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Fungal pathogens also have to cope with their abiotic environment, such as temperature and 62 

humidity (2, 35, 44, 47, 129). Understanding the mechanisms of adaptation to climatic 63 

variables is thus similarly of fundamental and applied interest. Adaptation ability is however 64 

impacted by genetic diversity and gene flow, which are themselves influenced by dispersal 65 

rates and mating systems, that are therefore important life history traits to study for an 66 

integrated understanding of evolution, adaptation, population subdivision and speciation (18, 67 

60, 63). 68 

 69 

From the advent of modern genetics a century ago, anther-smut fungi (Microbotryum 70 

violaceum species complex, previously Ustilago violacea) have served as useful models for 71 

the molecular controls of mating and adaptations to abiotic conditions (1, 17, 23, 29, 61, 62, 72 

73, 93, 123, 124). With advances in population genetics and genomics, emphasis has grown 73 

with regard to the natural diversity within this pathogen group, the dynamics of diseases, the 74 

mating systems and genetic differentiation in relation to host plants in natural ecosystems (2, 75 

27, 32, 38, 39, 58, 65, 67, 97, 105, 111, 131, 132). The anther-smut fungi belong to the 76 

Microbotryum genus (basidiomycetes), which castrate plants of the Caryophyllaceae family, 77 

replacing the pollen with their spores and aborting ovaries (Figure 1B). They constitute an 78 

excellent model pathosystem, with hundreds of closely related fungal species specialized on 79 

different host plants, resulting from numerous host shifts, with conspicuous symptoms, a rich 80 

scientific history and occurring in natural ecosystems (Figure 1A) (83, 92, 97, 111, 118). 81 

Furthermore, they are phylogenetically close to the rust fungi as damaging crop pathogens 82 

(127). Most Microbotryum species are highly host-specific, but a few are more generalist, 83 

parasitizing closely related host species (Figure 1A) (98, 105). Other Microbotryum species, 84 

while distantly related, co-occur on the same host species, representing cases of convergence 85 

(Figure 1A) (2, 97).  86 
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 87 

Host-pathogen coevolution in the Microbotryum model systems has been suggested based on 88 

patterns of plant local adaptation (43, 49) and congruent plant-pathogen genetic structure (49). 89 

Microbotryum species show little pre-zygotic isolation and increasing post-zygotic isolation 90 

strength with phylogenetic distance (28, 41, 98), which may allow gene flow among closely 91 

related species. Moreover, abiotic factors have been shown to play a role with the disease 92 

interactions in important ways (2), and Microbotryum fungi display an interesting mating 93 

system, with predominant automixis (i.e., intra-tetrad selfing), which has fostered multiple 94 

chromosomal rearrangements across the genus linking the mating-type loci controlling 95 

gamete compatibility (25, 26). A consideration of these features altogether allows the 96 

studying adaptation, coevolution, host specialization, differentiation and mating systems with 97 

unique power.  98 

 99 

For tackling this complex suite of questions, comparative genomics and population genomics 100 

constitute highly relevant and complementary approaches, addressing different time scales of 101 

evolution. In contrast to life history traits, ecology and population structure, which have been 102 

extensively studied (7, 10, 22, 90), the genetic basis of interactions between Microbotryum 103 

fungi and their hosts is still little known; genomic approaches can elucidate the mechanisms 104 

and the functions involved in adaptation, coevolution, host specialization and speciation in 105 

this pathosystem. Analyses of gene expression between different stages of the life cycle can 106 

also inform on these processes. In particular, the pathogen’s mating systems also influence 107 

adaptation, coevolution and host specialization (63, 66), especially in anther-smut fungi that 108 

are obligately completing the sexual cycle upon every disease transmission. Genomics can 109 

further help to understand the evolution of mating systems by studying the changes at the 110 

mating-type loci.  111 
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 112 

In this review, we discuss the recent insights into our understanding of adaptation, 113 

coevolution and host specialization in anther-smut fungi gained from gene expression data 114 

and comparative genomics (part 1) and from population genomics (parts 2 & 3). We then 115 

discuss insights gained from genomics on mating system evolution (part 4). We illustrate that 116 

the combination of multiple genomic approaches is needed for a full understanding of 117 

evolution, as comparative genomics, population genomics and transcriptomics address 118 

different timescales and have power for detecting different footprints of adaptive events. 119 

Finally, future challenges to be addressed using genomics tools are discussed (part 5). 120 

 121 

1- COMPARATIVE GENOMICS AND TRANSCRIPTOMICS APPROACHES TO 122 

UNDERSTAND ADAPTATION AND HOST SPECIALIZATION IN ANTHER-SMUT 123 

FUNGI 124 

The sequencing of genomes and transcriptomes of Microbotryum species sheds light on 125 

pathogenicity, adaptation and specialization mechanisms across long evolutionary timescales; 126 

speciation events in castrating Microbotryum fungi have been dated from 0.4 to 11 MYA (26, 127 

72) (Figure 2A). Phylogenomics enables obtaining an accurate understanding of the lineage 128 

histories, and comparative genomics is highly suitable to identify genetic changes associated 129 

with diversification at such large evolutionary scales. 130 

 131 

Genome architecture and identification of candidate genes involved in pathogenicity 132 

using expression data 133 

One of the best studied anther-smut species is M. lychnidis-dioicae, parasitizing the white 134 

campion Silene latifolia (Figure 1B). The diploid genomes of the Lamole M. lychnidis-dioicae 135 

strain was the first eukaryote genome to be assembled with new sequencing technologies (16). 136 
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Comparative analysis of the Lamole strain of M. lychnidis-dioicae with other basidiomycetes 137 

genomes revealed specific gene content features such as the absence of plant cell wall 138 

degrading enzymes and expanded repertoires of major facilitator superfamily transporters, 139 

secretory lipases, glycosyltransferases and enzymes that could manipulate host development 140 

(104). Such features are likely related to the castrating and biotrophic lifestyle of anther-smut 141 

fungi (104), where the fungus takes up a largely symptomless residence between the host cells 142 

in the plant’s growing points/meristems until the host initiates flower development. 143 

Additionally, this pathogen has a remarkable ability to developmentally transform female host 144 

plants to take on a male-like floral structure, with the growth of stamens that then bare spores 145 

in place of pollen and the abortion of the ovary early in its development (13).  Apart from the 146 

accumulation of transposable elements (TEs) in the non-recombining regions of the mating-147 

type chromosomes, there was no genome compartmentalization into more or less repeat-rich 148 

regions on autosomes (16, 104), in contrast to some other fungal pathogens with isochore 149 

genomic architecture and localization of effector genes in repeat-rich regions (74). 150 

Nevertheless, transposable elements were locally associated across the Lamole M. lychnidis-151 

dioicae genome with gene clusters of small secreted proteins and genes affected by within 152 

species presence-absence polymorphism, suggesting a role of transposable elements in 153 

genome rearrangements and duplications of genes putatively involved in host adaptation (80, 154 

104). Although footprints typical of genome defense mechanisms against TEs, similar to 155 

repeat-induced point mutation (RIP), were identified in anther-smut genomes, a massive 156 

burst-like expansion of Gypsy-like retrotransposons in a Microbotryum strain suggested that 157 

persistent transposable elements activity and expansion can occur (86, 87). 158 

 159 

Transcriptomics conducted at several in vitro stages allow detecting genes upregulated in 160 

certain conditions and thus likely involved in important functions at a given life stage. 161 
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Transcriptomic analyses using the Lamole M. lychnidis-dioicae strain enabled identifying 162 

genes likely associated with nutrient uptake, the mating program and the dikaryotic switch 163 

(54, 104, 125, 126, 136). In silico effector gene prediction combining in planta expression 164 

data, sequence conservation and predicted localization, allowed identifying small secreted 165 

proteins genes as candidate effectors, i.e. involved in pathogenicity, in M. lychnidis-dioicae, 166 

M. silenes-dioicae and M. violaceum var paradoxa (20, 96). Eight genes in M. silenes-dioicae 167 

and three genes in M. violaceum var paradoxa predicted to encode secreted proteins were 168 

further confirmed to be secreted using yeast secretion trap (20, 96). Compared expression data 169 

in male and female S. latifolia individuals during fungal infection revealed pathogen-mediated 170 

changes in sex-biased gene expression and altered sexual dimorphism in the host (137). 171 

Another transcriptome analysis of the early development stages of infected flowers detailed 172 

changes in gene expression in M. lychnidis-dioicae, identifying gene categories likely to 173 

manipulate the host development and reproductive system, such as potential effectors and 174 

virulence factors (125). Further coupling experiments of host and pathogen gene expression 175 

changes, and in further paired host-Microbotryum fungi, should help deciphering the major 176 

components of the tight host-pathogen interactions described in the system. 177 

 178 

Comparative genomics studies within the Microbotryum genus  179 

Comparative genomics among Microbotryum fungi, and with other plant pathogens, has 180 

provided insights into the specificity of castrating biotrophic pathogens growing 181 

intracellularly (115) relative to other forms of parasitic nutritional ecology. Comparative 182 

genomics among anther-smut fungi specialized on different hosts can help unravel the 183 

genomic determinants of host specificity as well as the shared pathogenicity mechanisms. 184 

Indeed, while substantial insights has been gained by the study of individual genomes of 185 

Microbotryum species, whether features such as the conspicuous lack of cell-wall degrading 186 
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enzymes in the M. lychnidis-dioicae Lamole genome are common to the genus cannot be 187 

known without a comparative genomics analysis that addresses both distantly and closely-188 

related species (77).  189 

 190 

Early comparative studies focused on orthologous genes across single pass Sanger-sequenced 191 

cDNA libraries, i.e. expressed sequence tags, from four Microbotryum species.  The primary 192 

focus was looking for signals of positive selection in terms of frequent amino-acid changes 193 

(4). A subset of the genes evolving under positive selection between species was further 194 

shown to be under strong purifying selection within two closely-related Microbotryum 195 

species, M. lychnidis-dioicae and M. silenes-dioicae, suggesting that adaptive changes 196 

concomitant with host shifts can be later fixed due to strong functional constraints within 197 

species (69). Although the inferred function of some of the orthologous groups with signals of 198 

positive selection could be associated with aspects of virulence or speciation, none of these 199 

displayed features of effectors (such as secretory signals), likely because the expressed 200 

sequence tags did not exhaustively cover the genomes. Indeed, only 53 clusters of orthologs 201 

shared by at least three species and at least 300 nucleotides long could be retrieved (4). 202 

Therefore, even though these analyses demonstrated the utility of comparative genomics to 203 

identify candidate genes for diversifying selection in non-model organisms, the lack of whole 204 

genome sequences prevented any insight about presence-absence polymorphisms or 205 

substitutions both known to be important for adaptation to new hosts. 206 

 207 

The number of high-quality genomes assemblies or shotgun sequencing from Microbotryum 208 

species/strains has exploded recently, reaching nearly a hundred as by late 2018 (Table 1; 209 

Figure 1A; (15, 16, 25, 26, 30, 56, 112, 134)). In comparative genomics, near-complete gene 210 

lists can be clustered to obtain groups of homologous sequences that can be then used to build 211 
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phylogenetic profiles of gene content. Such comparisons allow the identification of gene 212 

families that are species-specific and those that have been expanded or reduced in particular 213 

lineages (8, 76). Species- or population-specific genes are either derived from within-group 214 

innovation, a rather uncommon phenomenon (31), the result of differential losses or gene 215 

duplications (78), or due to the non-vertical acquisition of gene-coding genome fragments, for 216 

instance horizontal gene transfer (50). Expanded gene families require the escape from the 217 

rampant pseudogenization (non-functionalization) of duplicated genes (99), whereas reduced 218 

or complete losses of gene families is often related to ecological shifts (117), rendering the 219 

product of those genes no longer needed for survival (5). Understanding these processes is 220 

fundamental to the study of evolutionary ecology as they help to explain the genomic 221 

architecture underlying the phenomenon of adaptive divergence. In silico annotations and 222 

comparative analyses have identified hundreds of candidate effectors across multiple 223 

Microbotryum species, enriched in gene families showing presence-absence polymorphism 224 

across species (Figure 2B) (112), along with orthologous genes with landmarks of positive 225 

selection between species and purifying selection within species (20), thus generalizing and 226 

expanding previous findings. High-quality genome assemblies revealed little genomic 227 

rearrangements in autosomes (26). 228 

 229 

Studies of positive selection based on the comparisons of non-synonymous and synonymous 230 

substitution rates (dN/dS; (135)) and on the comparisons of the proportions of non-231 

synonymous and synonymous polymorphisms within species and differences between species 232 

(McDonald and Kreitman test; (100)) revealed no signature of diversifying selection between 233 

sister Microbotryum species specialized on two closely related host species (15), but detected 234 

a dozen of genes encoding secreted proteins with signs of positive selection between more 235 

distantly related Microbotryum species specialized on more distant host species (Figure 2C) 236 
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(20). Future comparative genomics studies encompassing all currently sequenced genomes 237 

will likely have high power to detect genes involved in host specialization by allowing further 238 

disentangling the effects of pathogen and host phylogenetic distances. In particular, 239 

combining population and comparative analyses should be very powerful to identify genes 240 

under diversifying selection between species and purifying selection within species as well as 241 

species-specific gene gains and losses. Building gene genealogies based on whole genomes 242 

also allowed to resolve previously ambiguous relationships among some anther-smut species 243 

(Figure 1A). The comparison of repeat contents and genomic rearrangements between 244 

genomes will be a further key step to understand the role of genome dynamics in adaptive 245 

processes in anther-smut fungi. 246 

 247 

 248 

2-POPULATION GENOMICS TO IDENTIFY ADAPTIVE GENETIC VARIATION 249 

IN NATURAL PATHOGEN POPULATIONS  250 

Population genomics is a complementary approach to comparative genomics for 251 

understanding adaptation in pathogen populations. Population genomics indeed address more 252 

recent adaptive events, and on a broader range of evolutionary genetic phenomena, not only 253 

gene gains/losses and recurrent changes in amino-acids. Selective sweeps can be detected 254 

using population genomics, which can reveal positive selection on a single amino-acid change 255 

or basepair substitutions in non-coding regions. Furthermore, population genomics can 256 

address the questions of the genomic bases of host-pathogen coevolution and local adaptation, 257 

that constitute more recent selection compared to the long-term selection underlying host 258 

specialization, and possibly differential selection among geographically distant populations 259 

(Figure 2A) (36, 75, 107). In contrast to major fungal-plant pathosystems, no gene-for-gene 260 

relationship has been reported for anther-smut fungi. Instead, the probability of infection 261 

shows quantitative variation (6, 7, 33), which suggests a rather complex genetic basis of co-262 
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evolution and host local adaptation. Genome-wide population genomics approaches in anther-263 

smut fungi allowed identification of the complex genetic basis of recent adaptive events 264 

through genome scans of selective sweeps and gene-presence absence polymorphism (3, 15, 265 

80).  266 

 267 

Selective sweep analyses allow one to identify loci that have recently been under positive 268 

selection within populations and thus likely underlying coevolution and local adaptation, 269 

whereas genes involved in host specialization are likely under purifying selection within 270 

species after the initial adaptive events following host shifts. Analyses of whole genome 271 

sequences of 53 genomes of the anther-smut sister species M. lychnidis-dioicae and M. 272 

silenes-dioicae identified selective sweeps (Figure 2D) (15), likely resulting from dynamic 273 

co-evolutionary arm race of the fungus with its hosts. The overlap between genes 274 

differentially expressed in planta and in vitro and those lying within selective sweeps, 275 

together with functional annotations, provided clues to genes and functions involved in plant-276 

pathogen interaction in the Microbotryum-Silene system. Candidate genes included glycoside 277 

hydrolases, pectin lyases and an extracellular membrane protein with CFEM domain (15). 278 

The pectin lyase function seems relevant in that Microbotryum fungi grow between cells of 279 

the meristem (115), which is a pectin-occupied space. Extracellular membrane proteins with a 280 

cysteine-rich CFEM domain are present in effectors in several fungal pathogens (95). This 281 

study was also an opportunity to test for differences in intensity of coevolution between 282 

anther smut fungi on different hosts. Interestingly, differences in the number and the location 283 

of the selective sweeps were found between sister species. Footprints of positive selection 284 

affected 17 % of the genome in M. lychnidis-dioicae and 1 % of the genome in M. silenes-285 

dioicae (15). Selective sweeps were scattered throughout the genomes. Linkage 286 

disequilibrium was found to decay relatively slowly with physical distance along 287 

chromosomes, as expected for selfing species, but still indicated effective recombination. 288 



13 

 

Polymorphism in each fungal species was negatively correlated with the recombination rates 289 

along chromosomes, consistent with recurrent positive and/or background selection erasing 290 

diversity on larger genomic regions when recombination is less frequent (15).  291 

 292 

Population genomics can also contribute to our understanding of the impact of recent 293 

anthopogenic factors on the genome and subsequent adaptation. Analyses of M. lychnidis-294 

dioicae genomes along a gradient of ionizing radiation levels around Chernobyl showed no 295 

evidence of deleterious mutation accumulation in the form of non-synonymous substitutions 296 

(3). Lower mean values of dN/dS were even found in Chernobyl compared to other areas of 297 

the same eastern genetic cluster (3), which may be due to stronger selection in contaminated 298 

areas against individuals bearing mildly deleterious mutations, i.e. stronger purifying 299 

selection. 300 

 301 

In addition to genome scans looking at signatures of positive selection, other population 302 

genomic approaches make use of the genetic variation in pathogen populations to identify the 303 

genomic architecture of local adaptation (19, 36, 107, 114). Population genomics enables the 304 

unravelling the genomic bases of adaptation to abiotic conditions by searching for correlations 305 

between local population allele frequencies and local environments (genetic-environment 306 

association methods) (82). Such approaches can be used in anther-smut fungi along altitudinal 307 

clines in Alpine populations on Dianthus or Silene hosts. Studies on the three species 308 

parasitizing S. vulgaris in particular could be interesting as elevation and climate has been 309 

shown to impact these anther-smut fungi (1, 2). Strong population structure as found in many 310 

Microbotryum species at European scale (2, 15, 27, 55, 105) might be a challenge to the use 311 

of such methods in particular, but these methods can be utilized at small geographical scales 312 

and/or in species with less population subdivision.  313 
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Gene copy number variation segregating within species is also a widespread and an important 314 

source of genetic variation and several examples of adaptive evolution through gene loss or 315 

gene gain have been identified in agricultural fungal plant pathogens (57). Population 316 

genomics allow to explore the extent and adaptive potential of such within-species variation. 317 

Gene presence/absence polymorphism was found to contribute to the genetic variation in 318 

populations of the two closely related species of castrating anther-smut fungi, M. lychnidis-319 

dioicae and M. silenes-dioicae (80). Genes displaying presence/absence polymorphism were 320 

mostly recently acquired, in a single species, through duplications in multiple-gene families 321 

and few genes predicted to encode secreted proteins were affected, suggesting defense against 322 

host recognition by other genetic changes than gene loss or gain. Although most gene 323 

presence/absence polymorphisms were likely neutral, the putative functions of some genes 324 

affected by presence–absence polymorphism (e.g., secreted proteins) or their localization 325 

within previously identified selective sweeps suggested that some gene loss or gain events 326 

may be adaptive (80). 327 

 328 

3-INSIGHTS INTO THE DYNAMICS OF DIVERGENCE AND GENE FLOW FROM 329 

POPULATION GENOMICS 330 

By providing a glimpse into intra-specific genetic diversity and its variation across the 331 

genome, population genomics analyses are also highly useful to understand processes 332 

underlying species divergence and phylogeography, quantifying rates of gene flow and its 333 

heterogeneity along genomes, and providing accurate estimation of population size variations. 334 

The occurrence of multiple Microbotryum sister species pairs in sympatry makes the system a 335 

perfect model to study the dynamics of divergence and gene flow in fungal pathogen 336 

populations. 337 

 338 
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Contrasted patterns of interspecific gene flow in the Microbotryum genus: a speciation 339 

continuum? 340 

The two pathogens M. lychnidis-dioicae and M. silenes-dioicae and their respective sister host 341 

plants, Silene latifolia and S. dioica, are ubiquitous in Europe and their geographic 342 

distributions are largely overlapping, providing an ideal system for research on the formation 343 

and maintenance of species in sympatry. Microsatellite data from samples across Europe 344 

revealed rare disease transmission events between the host species and rare pathogen hybrids 345 

(72, 132). However, these approaches using a dozen microsatellite markers may lack power. 346 

Analyses of whole genome sequences of many pathogen samples that appeared of pure 347 

ancestry based upon the microsatellite data then revealed no evidence for admixture, 348 

indicating that introgression does not persist beyond one or two generations (15). In the 349 

laboratory, both fungal species can infect both host plants (40, 64, 98). Experimental crosses 350 

showed little premating isolation by assortative mating between the two pathogen species (28, 351 

98, 132), even at sympatric sites (110), and a lack of post-mating barriers (41, 98). Hybrids 352 

were viable and fertile at least through the F2 generation in the greenhouse (40, 98, 131). F2 353 

hybrids produced by selfed F1s had mostly returned to homozygosity, suggesting that 354 

genomic content derived from one of the two parental species had already begun to be purged 355 

(28, 40). This latter finding, combined with the fact that introgression does not appear to 356 

persist in nature, is consistent with strong genome-wide selection by the host plant and the 357 

scattering of genes involved in host specialization across the genome, as revealed in genome 358 

scans of selective sweeps (15). FST values were found near their maximum all along their 359 

genomes (Figure 3A).  360 

 361 

Whereas strict host specialization is often the rule on Silene species (15, 97, 133), on 362 

Dianthus hosts in contrast population genetics approaches revealed four Microbotryum 363 
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lineages with broader and overlapping host specificities (Figure 1A) (97, 105). One 364 

Microbotryum lineage was found only on D. pavonius while the others occurred spread across 365 

several host species, some of them being shared among Microbotryum lineages. The sympatry 366 

of Microbotryum lineages within populations, in particular in the Alps, led to hybridization 367 

(105). The individuals with mixed ancestry based on clustering analyses of microsatellite data 368 

suffered from significant meiotic sterility, which confirmed they were hybrids between 369 

species (105). The larger host ranges of Microbotryum lineages on Dianthus hosts may be 370 

explained by the recent divergence of their host plants. The Dianthus genus has indeed 371 

undergone a recent radiation in Europe with morphologically diverse European Dianthus 372 

species restricted to small geographically restricted ranges (130). The full extent and 373 

evolutionary consequences of the hybridization on pathogen dynamics and evolution remains 374 

to be explored. Along this line, the Dianthus-Microbotryum system may become, in the 375 

coming years, a tractable model to investigate the impact of gene flow during divergence, and 376 

whether selection due to local/host adaptation can make some genomic regions more or less 377 

permeable to gene flow, which represents a current debate in evolutionary biology (37). These 378 

questions could not be addressed so far based on the population genomics analyses of M. 379 

lychnidis-dioicae and M. silenes-dioicae as no genomic introgression could be detected in 380 

natural populations (15). In contrast, the hybrids detected in natural populations on Dianthus 381 

hosts with significant sterility suggest the occurrence of introgressions (105). Other pairs of 382 

Microbotryum species might also be suitable to address these questions of the impact and 383 

heterogeneity of gene flow along the genome. For example, anther-smut fungi on the closely 384 

related and sympatric native American species S. virginica and S. caroliniana (11, 12) could 385 

not be separated into host-specialized species based on a few gene genealogies (58, 92, 111).  386 

In this system, population genomics should allow elucidating whether anther-smut fungi on 387 

these American Silene species show host differentiation or genome-wide gene flow, or 388 
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introgression only in genomic regions not involved in host specialization. Based on the few 389 

genomes available so far (26), we find FST values between Microbotryum populations on the 390 

two hosts, S. virginica and S. caroliniana, that are lower and more heterogeneous along the 391 

genomes than between M. lychnidis-dioicae and M. silenes-dioicae referenced above (Figure 392 

3B).  These initial results suggests the occurrence of gene flow in some genomic regions. The 393 

situation of anther-smut fungi on S. vulgaris, with three distant lineages with convergent 394 

specialization on this same host species (2), would also be worth exploring using population 395 

genomics to determine the extent of introgression and its genomic localization, and whether 396 

the interspecific exchange of alleles has been deleterious or adaptive.  397 

 398 

Another promising approach in anther-smut fungi for identifying genomic regions involved in 399 

host adaptation will be to perform genome scans of differentiation between closely related 400 

species or host races, if possible to avoid the potential pitfalls of such approaches (37). This 401 

could contribute to our understanding of the role of gene flow in the early stages of 402 

divergence and to identifying genomic regions less permeable to gene flow because of 403 

selection for host adaptation and/or genetic incompatibilities between lineages (24, 37). More 404 

generally, such population genomics approaches would be valuable to use in plant pathogen 405 

fungi. 406 

 407 

Phylogeography and demographic history inferences 408 

Microbotryum lychnidis-dioicae and M. silenes-dioicae also constituted case studies in 409 

providing one of the most clear-cut examples of phylogeographic structure in pathogens, 410 

thanks to a collection of samples whose density and geographical scale was unprecedented for 411 

a disease association in natural populations. In M. lychnidis-dioicae, clustering analyses based 412 

on microsatellite markers (133), as well as nuclear gene sequences (69, 72), revealed the 413 
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existence of three genetically distinct clusters, reflecting recolonization from well-recognized 414 

southern refugia after glaciation. Little admixture has been found between clusters based on 415 

microsatellites (49, 133), and this has later been confirmed by whole genome sequences (15). 416 

Indeed, SNPs (single nucleotide polymorphisms) revealed few shared polymorphisms and 417 

many fixed differences among the clusters, and pairwise FST values between them were high 418 

(0.56–0.74; Figures 3C and D), supporting low levels of inter-cluster gene flow (15). Whole 419 

genome sequences provided further insights into the age of divergence between the three M. 420 

lychnidis-dioicae lineages (Southern, Western and Eastern clusters), sequential size changes 421 

in the population size of derived lineages and also supported low levels of gene flow (15). 422 

Most notably, the pathogen genetic structure closely matched with the genetic structure of the 423 

host species S. latifolia with the same regionally defined Southern, Western and Eastern 424 

clusters, indicating that the anther-smut pathogen remained during the last glaciation in the 425 

same three distinct refugia as its host (i.e. in the Iberian, Italian and Balkan peninsulas) (49). 426 

The congruence of population structures between M. lychnidis-dioicae and its host appeared 427 

even stronger than what could be expected because of isolation by distance alone, suggesting 428 

that coevolution has played a significant role in the congruence of the population structures 429 

(49). Genome-wide gene presence-absence polymorphism recovered the same population 430 

structure (80). Inoculation experiments, indicating plant local adaptation for resistance to 431 

pathogens (49, 89, 91), were consistent with a contribution of adaptive factors to the observed 432 

congruence between pathogen and host population structures. 433 

 434 

Microsatellite markers and genome-wide SNPs indicated that M. silenes-dioicae also 435 

exhibited a genetic structure, albeit with biogeographic patterns more difficult to interpret (15, 436 

133) and very low FST values genome-wide (Figure 3E). Genome-wide gene presence/absence 437 

polymorphism revealed two different clusters with a more obvious east/west separation (80), 438 
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that may correspond to local adaptation of S. dioica clusters (81, 109), although this remains 439 

to be assessed. This case study shows the power of various kinds of population genomic 440 

studies to unravel weak and/or adaptive population subdivision.  441 

 442 

4-UNRAVELLING MATING SYSTEM AND GAMETE COMPATIBILITY 443 

SYSTEMS USING BOTH COMPARATIVE GENOMICS AND POPULATION 444 

GENOMICS  445 

The combination of comparative genomics and population genomics also can reveal 446 

remarkable transitions in mating systems by elucidating the changes in genomic mechanisms 447 

controlling mating compatibility. For the broad group of basidiomycete fungi, gamete 448 

compatibility is controlled by two loci acting at the haploid stage, mating being successful 449 

only between haploid cells carrying different alleles at both mating-type loci (34). The two 450 

mating-type loci are i) the PR locus which encodes pheromone genes and a pheromone 451 

receptor gene implicated in gamete recognition and fusion, and ii) the HD locus which 452 

encodes homeodomain protein-coding genes allowing, after fusion, for the maintenance of the 453 

dikaryon and hyphal growth (48, 94). Most basidiomycetes are outcrossing and have these 454 

two loci unlinked, although some fungi in this group have linked mating-type loci (103). 455 

Linkage of the two mating type loci is considered to be favored due to increased odds of 456 

gamete compatibility under selfing when mating-type loci are linked (103). Interestingly, 457 

most Microbotryum species are highly selfing and were long known to segregate only two 458 

mating type phenotypes, but it remained uncertain whether this was due to mating-type loci 459 

linkage or to the loss of role in mating-type determinism for one of the two mating-type loci, 460 

as both cases occurred in basidiomycetes (85, 103). Comparative genomics of well-assembled 461 

genomes allowed to resolve the complex genome architecture and long-term evolutionary 462 

history of the repeat-rich and rearranged mating type chromosomes in anther-smut fungi, and 463 
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population genomics datasets were essential for identifying young events of recombination 464 

suppression. 465 

 466 

Population genomics confirmed high rates of selfing in all studied Microbotryum species, by 467 

showing high levels of genome-wide homozygosity (15, 25, 26) and confirmed massive 468 

recombination suppression on mating-type chromosomes (84, 134). High-quality genomes 469 

assemblies allowed reconstructing the history of genomic events underlying the shift in 470 

gamete compatibility system (25, 26). The long-read sequencing technology allowed 471 

assembling the two repeat-rich mating-type chromosomes of the Lamole M. lychnidis-dioicae 472 

strain, which confirmed linkage between the two mating-type loci HD and PR (Figure 4A) 473 

(16). Genome comparisons between multiple Microbotryum species showed that the ancestral 474 

state had unlinked mating-type loci on two distinct chromosomes, and that independent 475 

rearrangements and chromosome fusions occurred in multiple species, convergently linking 476 

the two mating-type loci by large regions without recombination (Figure 4B) (25, 26). This 477 

shows that natural selection can repeatedly lead to similar phenotypes through multiple 478 

different evolutionary pathways. 479 

 480 

Following recombination suppression, a chaos of rearrangements occurred on mating-type 481 

chromosomes (16), as well as TE and non-synonymous substitution accumulation (16, 54), as 482 

is typical in non-recombining regions, and in particular on sex chromosomes (14). The high-483 

quality assemblies allowed the detailed characterization of extensive rearrangements and 484 

repeat accumulations on the two mating-type chromosomes (16, 25, 26). Another important 485 

characteristic feature of sex chromosomes was observed on the mating-type chromosomes of 486 

multiple Microbotryum species, i.e., the stepwise extension of the regions with recombination 487 

suppression. The progressive extension of the regions without recombination revealed a 488 
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pattern of clear “evolutionary strata”, i.e., decreasing divergence between alleles on the 489 

alternative mating-type chromosomes farther from the mating-type loci (Figure 4C). 490 

Population genomics was essential for providing evidence of early events of recombination 491 

suppression in several species, by showing the segregation of alleles according to their 492 

associated mating-type, decreased levels of diversity as expected under lower population 493 

effective sizes and that high divergence between alleles associated with the alternative mating 494 

types was due to balancing selection on mating types rather than elevated substitution rates 495 

(25, 26). Indeed, as soon as recombination ceased, alleles on the two mating-type 496 

chromosomes diverged gradually with time (Figure 4D). Finding such evolutionary strata in 497 

fungi, which lack male and female roles, challenged the classical view for the evolution of sex 498 

chromosomes. Indeed stepwise recombination suppression in sex chromosomes was thought 499 

to be due primarily to sexual antagonism, i.e., the selection to link genes with alleles 500 

beneficial in one sex, and deleterious in the other, to the sex determining gene (21). The 501 

finding of evolutionary strata in fungi without sexual antagonism indicates that alternative 502 

hypotheses should be explored to explain the progressive spread of recombination 503 

suppression, such as overdominance, epigenetic modifications associated with transposable 504 

elements or neutral rearrangements (88, 108). 505 

 506 

 507 

5-CONCLUDING REMARKS AND PERSPECTIVES 508 

A thorough understanding of the major roles played by pathogens requires the integrative 509 

study of both ongoing processes of coevolution and dynamics of specialization that impact the 510 

emergence new diseases. Investigations of the anther-smut fungi utilizing comparative 511 

approaches to genomics and gene expression profiles, combined with population-level 512 

studies, illustrate the strength of combining different genomic approaches addressing different 513 
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scales of evolution (Figure 2). The availability of genomic data for multiple sister species and 514 

multiple populations within species makes the anther-smut system quite exceptional for 515 

identifying the genetic mechanisms involved in adaptation, coevolution, host specialization 516 

and mating system at different evolutionary times (Table 1; Figure 1). Comparative genomics 517 

has long been the predominant approach for studying adaptation in plant fungal pathogens 518 

(46, 53, 59, 102, 107) and has provided important insights into the mechanisms of adaptation, 519 

e.g., through horizontal gene transfers, gene gains/losses, hybridization or recurrent amino-520 

acid changes (71). Comparative genomics by definition does not consider population-level 521 

variation, such that population genomics is a complementary approach for insights into 522 

evolutionary processes acting at the local and regional scales. For example, several recent 523 

studies have revealed gene presence/absence polymorphism within species (78, 80, 119, 120). 524 

In addition, comparative genomics can only detect a specific type of positive selection, 525 

involving frequent changes of amino-acids. Positive selection of a single amino-acid change 526 

or of regulatory regions can only be detected by looking for selective sweeps using population 527 

genomics. Some recent studies based on population genomics have in fact revealed important 528 

aspects of adaptation in fungal plant pathogens, showing footprints of introgression, selective 529 

sweeps and amino acid-changes (68, 79, 101, 116, 121, 122). 530 

 531 

Furthermore, cross referencing candidate genes that are highlighted by multiple indications of 532 

being subject to natural selection during parasitism as outlined here (e.g. genes found within a 533 

selective sweep, upregulated in the plant and having experienced gene family expansion 534 

compared to other fungal pathogens) can strengthen their putative roles as pathogen effector 535 

that are central in the specificity of fungal-plant combinations. Functional studies can help 536 

understanding the role of the candidate genes. Promising transformation protocol have been 537 

developed in M. lychnidis-dioicae (128) and will likely facilitate the characterization of key 538 
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genes involved in the interaction between the anther-smut fungi and their Caryophyllaceae 539 

host plants, an important challenge for the coming years. Transcriptomes and epigenomes of 540 

multiple Microbotryum species and multiple strains within species will likely be 541 

complementary to the current available genomic ressources to identify the role of regulatory 542 

and epigenetic mechanisms in the adaptation of anther-smut fungi to their hosts and 543 

environment, their divergence and their mating-type chromosome organisation, contributing 544 

to further understanding the mechanisms involved in adaptive processes in fungal pathogen 545 

populations. It will also be interesting to investigate similar levels of among and within 546 

species sampling and genome sequencing using pathogens of different levels of obligate 547 

parasitism, including facultative and opportunistic pathogens, as well as hemibiotrophy and 548 

necrotrophy. 549 

 550 

 551 
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Figure 1: Specialization and co-phylogenies of anther-smut fungi and their 934 

corresponding host plants. (A) Cladograms representing relationships between species of 935 

anther-smut fungi (left, Microbotryum genus) and species of host plants (right, mainly 936 

Caryophyllaceae), that are a consensus from previous phylogenetic analyses (26, 30, 111). 937 

Availability of short reads or long reads-based genome assemblies or population genomic data 938 

for the species of anther-smut fungi as presented in Table 1 is indicated with a black square 939 

near the fungal cladogram leaves. Dashed lines indicate specialization of a fungal species on a 940 

host species, with pink lines for fungal species infecting different hosts, and orange links for 941 

fungal species infecting the same host. The sequenced strain M. intermedium was sampled on 942 

Salvia pratensis, although this fungal species is usually found on Scabiosa hosts. (B) Infected 943 

host plants by anther-smut fungi. Numbers refer to host species as in panel A. Spores of 944 

anther-smut fungi are visible in the anthers of the flowers (Photo credits: Michael E. Hood, 945 

Tatiana Giraud, Maarteen Strack van Schijndel). 946 

 947 

Figure 2: Evolutionary processes in anther-smut fungi studied by comparative genomics 948 

and population genomics methods. (A) Schema highlighting differences in time scales 949 

between host specialization, species divergence, coevolution and local adaptation events in 950 

four host-specialized Microbotryum species. (B) Type of genomic variation investigated 951 

according to the evolutionary event time scales. (C) Examples of methods recently used to 952 

investigate various evolutionary events in anther smut fungi, focusing on between-species 953 

variation (1), between- and within-species variation (2), or only within-species variation (3). 954 

Information on gene annotation, gene expression and gene presence-absence polymorphism 955 

may be coupled to narrow down the number of candidate genes to be involved in host 956 

specialization, coevolution and local adaptation. (1) Study of gene content variation between 957 

whole genome shotgun assemblies of 19 Microbotryum species. Core and complementary 958 
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(species-specific) genomes were computed by sampling groups of 1 to 18 Microbotryum 959 

species (112). Increase in size of the complementary genome with the number of sampled 960 

genomes highlights the dynamic gene gain and loss within the Microbotryum genus. Genes 961 

contained in the complementary genome are putative candidate genes for host specialization. 962 

(2) Identification of genes under positive selection using polymorphism in one species and 963 

divergence with an outgroup using McDonald–Kreitman tests. An excess of the ratio between 964 

non-synonymous (DN) and synonymous (DS) substitutions between species compared to the 965 

ratio between synonymous (PS) and non-synonymous (PN) polymorphisms within species is 966 

indicative of positive selection within the focal species indicated by an asterisk. Examples are 967 

shown for the orthologous group ORTHAg06728 and ORTHAg05587 (20). (3) Genome scan 968 

to identify selective sweeps based on allele frequency spectrum in M. lychnidis-dioicae. A 969 

selective sweep is characterized by an excess of rare variants. Composite likelihood ratio 970 

(CLR) tests estimate the probability of the presence of a selective sweep taking into account 971 

demographic history and genome-wide allele frequency spectrum (15).  972 

 973 

Figure 3: Distribution of divergence along genomes between species of host-specialized 974 

anther-smut fungi (Microbotryum genus) based on FST genome scans. FST distributions are 975 

based on the genomes of five strains in each group for comparisons, except for strains on S. 976 

caroliniana for which only three genomes were available. (A) Divergence distribution 977 

between M. silenes-dioicae and M. lychnidis-dioicae. (B) Divergence distribution between 978 

Microbotryum fungi on S. caroliniana and S. virginica. (C) (resp. (D)) Divergence 979 

distribution between Southern and Northern (resp. Eastern) European genetic clusters of M. 980 

lychnidis-dioicae parasitizing S. latifolia. (E) Divergence distribution between Eastern and 981 

Western European genetic clusters of M. silenes-dioicae parasitizing S. dioica.  In each panel, 982 

from top to bottom: density curve of genome-wide per-gene FST values; chromosomal 983 
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distribution of per-gene FST values on the species largest chromosome (on 2 Mb for each to 984 

ease comparisons); map showing the sampling location of sequenced strains (genomes used 985 

for FST distributions are shown as squares); pictures of infected hosts by each host-specialized 986 

species (Photo credits: Michael E. Hood). For each pairwise comparison, FST values were 987 

calculated per gene for all genes present on autosomal contigs (i.e. not belonging to mating-988 

type chromosomes) and carrying at least 1 SNP using the PopGenome R package (106). Red 989 

dashed lines correspond to median FST values. Genomic data were described in (15, 26, 134). 990 

Mapping, SNP calling and FST calculations were described in (26, 80).  991 

 992 

Figure 4: Genomic rearrangements and evolutionary strata on mating-type 993 

chromosomes of Microbotryum lychnidis-dioicae on Silene latifolia. (A) Circos plot 994 

allowing to retrieve the rearrangements events which occurred during the evolution of the M. 995 

lychnidis-dioicae mating-type chromosome. The two mating-type chromosomes (PR and HD 996 

mating-type chromosome) of M. lagerheimii are used as proxy for the ancestral state (25). 997 

The outer tracks represent contigs with scale in Mb. The blue and orange lines link orthologs, 998 

with inversions in orange. The blue and purple dots represent the HD and PR loci, 999 

respectively, and the yellow regions the centromeres. (B) Evolutionary scenario of the M. 1000 

lychnidis-dioicae mating-type chromosome evolution from the two ancestral mating-type 1001 

chromosomes through a centromere-to-telomere fusion event, which brought the PR and HD 1002 

loci onto the same chromosome and allowed their linkage through a recombination 1003 

suppression (dashed lines). (C) Demonstration of stepwise recombination suppression using 1004 

per-gene synonymous divergence and their respective standard error (dS ± SE) between 1005 

alleles from M. lychnidis-dioicae associated to the a1 versus a2 mating types along the mating-1006 

type chromosome gene order of M. lagerheimii, as a proxy for ancestral gene order. 1007 

Evolutionary strata of different divergence levels (colored differently) shows that 1008 
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recombination suppression extended stepwise from the HR and PR mating-type loci. (D) 1009 

Examples of two gene genealogies showing contrasted clustering levels of alleles at non-1010 

mating-type genes associated with the a1 versus a2 mating types (dark grey and light grey 1011 

squares, respectively, at the tips of the gene genealogy). The left panel shows the gene 1012 

genealogy of a gene belonging to the pseudo-autosomal region (or PAR), with no trans-1013 

specific polymorphism, i.e., intermingled alleles associated with a1 and a2 mating types. The 1014 

right panel shows the gene genealogy of a gene belonging to the non-recombining region, 1015 

with completely separated alleles associated with a1 versus a2 mating types of both M. 1016 

lychnidis-dioicae and M. silenes-dioicae, and thus trans-specific polymorphism. The branch 1017 

length scale is indicated at the bottom of each gene genealogy.  1018 

 1019 

 1020 



Table	1	:	Whole	genome	public	resources	in	anther-smut	fungi	(Microbotryum	genus).

Number	of	

Fungal	species	name Host	plant	of	sampling distinct	genotypes References Public	database Project	ID/	Strain	ID	/	Accession	ID*

M.	intermedium Salvia	pratensis** 1 (25) 	GenBank	 PRJEB15277	:	Microbotryum	Intermedium	Assembly	(GCA_900096595)

	M.	lagerheimii	 Silene	vulgaris 1 (25) 	GenBank	 PRJEB12080	:	MvSv-1253-A1-R1	(GCA_900015505);	MvSv-1253-A2-R1	(GCA_900013405)

	M.	lychnidis-dioicae	 Silene	latifolia 2 (16) 	GenBank	 PRJEB12080	:	MvSl-1064-A1-R4	(GCA_900015465);	MvSl-1064-A2-R4	(GCA_900015445)

(80) 	GenBank	 PRJNA437556	:	MvSl-1318_A1	(GCA_003121365);	MvSl-1318_A2	(GCA_003121355)

M.	violaceum	sensu	lato	(M.v.	caroliniana) Silene	caroliniana 1 (26) 	GenBank	 PRJEB12080:	MvCa-1250-A1-R1	(GCA_900014965);	MvCa-1250-A2-R1	(GCA_900014955)

Long	read	based	 M.	violaceum	sensu	lato	(M.v.	paradoxa) Silene	paradoxa 1 (26) 	GenBank	 PRJEB12080	:	MvSp-1252-A1-R1	(GCA_900015495);	MvSp-1252-A2-R1	(GCA_900015485)

assemblies

M.	violaceum	sensu	stricto Silene	nutans 1 (25) 	GenBank	 PRJEB12080:	MvSn-1249-A1-R1	(GCA_900015425);	MvSn-1249-A2-R1	(GCA_900015455)

M.	saponariae Saponaria	officinalis 1 (30) 	GenBank	 PRJEB12080	:	MvSof-1268-A1-R1	(GCA_900015975);	MvSof-1269-A2-R1	(GCA_900015475)

M.	scabiosae Knautia	arvensis 1 (26) 	GenBank	 PRJEB12080	:	MvKn-1118-A1-R1	(GCA_900008855);	MvKn-1118-A2-R1	(GCA_900015415)

M.	silenes-acaulis Silene	acaulis 1 (26) 	GenBank	 PRJNA437556:	ASM366583v1	(GCA_003665835);	ASM366582v1	(GCA_003665825)

M.	silenes-dioicae Silene	dioica 1 (25) 	GenBank	 PRJEB16741	:	MsdSdi1	(GCA_900120095);	PRJNA437556	:	MsdSdi2	(ID	requested)

M.	carthusianorum Dianthus	superbus 1 (112) 	GenBank	 PRJNA437556	:	MvDC3-001-A2-G1	(ID	requested)

M.	coronariae Lychnis	flos-cuculi 1 (112) 	GenBank	 PRJNA437556	:	MvLf-1062-A1-G1		(ID	requested)

M.	lagerheimii Silene	vulgaris 1 (112) 	GenBank	 PRJNA437556	:	MvSv1-300-38-G1	(ID	requested)

M.	lychnidis-dioicae Silene	latifolia 1 (104) GenBank PRJNA41281	:	p1A1	Lamole	(GCA_000166175)

(112) 	GenBank	 PRJNA437556	:	MvSlA1A2r2		(ID	requested)

M.	major Silene	otites 1 (112) 	GenBank	 PRJNA437556	:	MvSo-338-G1		(ID	requested)

M.	silenes-acaulis Silene	acaulis 1 (112) 	GenBank	 PRJNA437556	:	MvSa-10-04-A1-G1	(ID	requested)

M.	silenes-dioicae Silene	dioica 1 (112) 	GenBank	 PRJNA437556	:	MvSd-IT02-32-2-17A-A2-1141	(ID	requested)

M.	silenes-inflatae Silene	vulgaris 1 (112) 	GenBank	 PRJNA437556	:	Sv2-78-06-G1		(ID	requested)

Whole genome shotgun M.	stellariae Myosoton	aquaticum 1 (112) 	GenBank	 PRJNA437556	:	MvMa-946-A1-G1		(ID	requested)

 assemblies 

M.	superbum Dianthus	pavonius 1 (112) 	GenBank	 PRJNA437556	:		MvDp-1065-A2-G1		(ID	requested)

M.	superbum Dianthus	seguieri 1 (112) 	GenBank	 PRJNA437556	:	MvDC1-001-A2-G1		(ID	requested)

M.	violaceum	sensu	lato	 Silene	sp. 1 (112) 	GenBank	 PRJNA437556	:	MvSc-a-1127-A2-G1		(ID	requested)

M.	violaceum	sensu	lato		(M.v.	caroliniana) Silene	caroliniana 1 (112) 	GenBank	 PRJNA437556	:	MvCa-1131-A1-G1		(ID	requested)

M.	violaceum	sensu	lato		(M.v.	italica) Silene	italica 1 (112) 	GenBank	 PRJNA437556	:	MvSi-1128-A1-G1	(ID	requested)

M.	violaceum	sensu	lato		(M.v.		lemmonii) Silene	lemmonii 1 (112) 	GenBank	 PRJNA437556	:	MvSlm-001-A2-G1		(ID	requested)

M.	violaceum	sensu	lato		(M.v.	paradoxa) Silene	paradoxa 1 (112) 	GenBank	 PRJNA437556	:	MvSp-880-A1-G1		(ID	requested)

M.	violaceum	sensu	lato	 Silene	pusilla 1 (112) 	GenBank	 PRJNA437556	:		MvSpu-866-A1-G1		(ID	requested)

M.	violaceum	sensu	stricto Silene	nutans 1 (112) 	GenBank	 PRJNA437556	:	MvSn-1014-A1-G1		(ID	requested)

M.	violaceo-irregulare Silene	vulgaris 1 (112) 	GenBank	 PRJNA437556	:	MvSv3-001-G1	(ID	requested)

	M.	lychnidis-dioicae	 Silene	latifolia 39 (134) NCBI Short Read Archive PRJNA269361

(15) NCBI Short Read Archive PRJNA295022

Sequence	archive M.	silenes-dioicae Silene	dioica 19 (15) NCBI Short Read Archive PRJNA295022

	(reads)

M.	violaceum	sensu	lato	(M.v.	paradoxa) Silene	paradoxa 4 (26) NCBI Short Read Archive PRJEB16741	

M.	violaceum	sensu	lato		(M.v.	caroliniana) Silene	caroliniana;	Silene	virginica 11 (26) NCBI Short Read Archive PRJEB16741	

M.	saponariae Saponaria	officinalis 1 (56) 	GenBank	 PRJEB11435

*Information	were	retrieved	on	public	databases	on	22.11.18.	For	long	read	based	assemblies,	assemblies	of	the	two	mating	type	a1	and	a2	are	indicated	if	available.	

ID	requested	indicate	that	the	genomic	data	were	submitted	to	the	public	database	and	are	currently	processed

**the	sequenced	strain	was	sampled	on	Salvia	pratensis,	although	the	fungal	species	is	usually	found	on	Scabiosa	hosts
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