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Understanding Addiction Using
Animal Models
Brittany N. Kuhn, Peter W. Kalivas* and Ana-Clara Bobadilla*

Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States

Drug addiction is a neuropsychiatric disorder with grave personal consequences that

has an extraordinary global economic impact. Despite decades of research, the options

available to treat addiction are often ineffective because our rudimentary understanding

of drug-induced pathology in brain circuits and synaptic physiology inhibits the rational

design of successful therapies. This understanding will arise first from animal models of

addiction where experimentation at the level of circuits and molecular biology is possible.

We will review the most common preclinical models of addictive behavior and discuss

the advantages and disadvantages of each. This includes non-contingent models in

which animals are passively exposed to rewarding substances, as well as widely used

contingent models such as drug self-administration and relapse. For the latter, we

elaborate on the different ways of mimicking craving and relapse, which include using

acute stress, drug administration or exposure to cues and contexts previously paired with

drug self-administration. We further describe paradigms where drug-taking is challenged

by alternative rewards, such as appetitive foods or social interaction. In an attempt

to better model the individual vulnerability to drug abuse that characterizes human

addiction, the field has also established preclinical paradigms in which drug-induced

behaviors are ranked by various criteria of drug use in the presence of negative

consequences. Separation of more vulnerable animals according to these criteria, along

with other innate predispositions including goal- or sign-tracking, sensation-seeking

behavior or impulsivity, has established individual genetic susceptibilities to developing

drug addiction and relapse vulnerability. We further examine current models of behavioral

addictions such as gambling, a disorder included in the DSM-5, and exercise, mentioned

in the DSM-5 but not included yet due to insufficient peer-reviewed evidence. Finally, after

reviewing the face validity of the aforementioned models, we consider the most common

standardized tests used by pharmaceutical companies to assess the addictive potential

of a drug during clinical trials.

Keywords: addiction models, preclinical studies, DSM-V, drug seeking behavior, relapse activity

Abbreviations: 5-CSRTT, 5-Choice Serial Reaction Time Task; AMPA, Receptor: α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor; BLA, Basolateral amygdala; bHR, Bred high-responder; bLR, Bred low-responder;
BP, Break-point; CIE, Chronic intermittent ethanol; CNS, Central nervous system; CPA, Conditioned Place Aversion;
CPP, Conditioned place preference; CS, Conditioned stimulus; CSA, Controlled Substances Act; DID, Drinking In the
Dark; DS, Discriminative stimulus; DSM, Diagnostic and Statistical Manual; EA, Exercise addiction; GD, Gambling
disorder; GT, Goal-tracker; FDA, Food and Drug Administration agency; HR, High-responder; IGT, Iowa gambling
task; IntA, Intermittent access training; LgA, Long-access training; LR, Low-responder; NAc, Nucleus accumbens; OFC,
Orbitofrontal cortex; PavCA, Pavlovian conditioned approach training; PFC, Prefrontal cortex; rGT, Rodent gambling
task; SA, Self-administration; ShA, Short-access training; ST, Sign-tracker; THC, ∆

9-tetrahydrocannabinol; VTA, Ventral
tegmental area.
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INTRODUCTION

‘‘All models are wrong, some models are useful.’’
George Box

The main difficulty with modeling drug addiction using
nonhuman animals is capturing an inherently complex
behavioral pathology using relatively simple behavioral
protocols (Spanagel, 2017; Müller, 2018). Environmental
circumstances, behavioral traits and genetic factors all interplay
with one another and affect an individual’s susceptibility to
acquiring and maintaining the use of an addictive substance,
as well as relapse propensity (Everitt and Robbins, 2016).
Regardless, creating better preclinical models of drug addiction
is essential for elucidating the neurobiological mechanisms
that contribute to addiction-related behaviors, and creating
better treatment options for those afflicted with addiction. In
this review article, we build on the existing literature (García
Pardo et al., 2017; Lynch, 2018) and discuss the various models
that exist for studying addiction-related behaviors in animals,
including individual variation in addiction-related behaviors,
and commonalities between drug addiction and certain
behavioral addictions. We then focus on how these models are
used to assess abuse potential by pharmaceutical companies.

In models such as behavioral sensitization and conditioned
place preference (CPP), an animal is non-contingently
administered a drug, allowing drug delivery independent from
the motivation to take the drug to be assessed. More commonly
used are drug self-administration (SA) models, whereby
drug delivery is contingent upon the animal’s motivation to
take the drug. SA models are constantly evolving, with the
emphasis being placed on the importance of the duration of
drug experience (i.e., session length) and the temporal pattern
of drug delivery as a means to better model the transition to
addiction. The motivation for drug-taking can also be assessed
using multisymptomatic training paradigms and behavioral
economics. Factors that contribute to reinstated drug-seeking
behavior, including environmental contexts, cues, stressors and
the drug itself are briefly discussed, along with procedures where
drugs are challenged by alternative rewards.

Independent of modeling addiction-related behaviors,
we emphasize the importance and advantages of modeling
individual variation within these behaviors, as is seen in humans.
For example, measures of impulsivity have been shown to
predict addiction liability. We also discuss two well-established
models that capture individual variation in addiction-related
behaviors: the high-responder/low-responder model, and the
sign-tracker/goal-tracker model. While the high-responder/low-
responder model captures individual variation in the acquisition
of drug-taking behavior, the sign-tracker/goal-tracker model
captures individual variation in relapse propensity. Thus, the two
models independently capture two different phases of addiction.

Next, we discuss behavioral addictions that share several
similarities with drug addiction, with an emphasis on gambling
disorder. There is a high prevalence rate between those diagnosed
with gambling disorder and those with a substance abuse
disorder (17% for illicit drugs, 28% for alcohol dependence

according to Lorains et al., 2011) and not surprisingly the criteria
to diagnose the two are very similar (for review see Rash et al.,
2016). As with drug addiction, accurately modeling behaviors
associated with gambling disorder using rodents are complex.
The growing prevalence and efforts to assess and diagnose
exercise addiction are also briefly discussed.

We end this review with a discussion on the models used
by pharmaceutical companies to assess the abuse potential of
possible medications for the treatment of addiction. It is for this
reason that critical evaluation of models used to assess addiction-
related behaviors is particularly necessary, as these models are
being used to evaluate treatment efficacy.

NON-CONTINGENT MODELS:
BEHAVIORAL SENSITIZATION,
CONDITIONED PLACE PREFERENCE AND
RUNWAY MODEL

Models based on non-contingent (i.e., experimenter-
administered) drug exposure are simple and quick to set
up. Because of these advantages, many studies have used them to
identify key reward-related neurobiological substrates and how
drug exposure alters them. See Table 1 for a succinct summary
of advantages and limitations of these models.

Behavioral Sensitization
The behavioral sensitization model is at the heart of the
incentive-sensitization theory of addiction developed by
Robinson and Berridge (1993). The model is based on the
potentiation of drug-induced locomotion after repeated
non-contingent exposure to a constant drug dose. Behavioral
sensitization is usually divided into two phases: the induction (or
initiation) and the expression phase. During the induction phase,
it is possible to measure the molecular and cellular modifications
directly induced by drug exposure. The expression, tested with
a drug challenge and after a variable withdrawal, is generally
attributed to the long-term effects of the aforementioned
drug-induced changes. Behavioral sensitization requires
D1-dopaminergic receptor activation in the ventral tegmental
area (VTA; Vezina, 1996) and AMPA-mediated glutamatergic
transmission in the nucleus accumbens (NAc), the latter being
shared with most models of drug seeking (Bell and Kalivas,
1996; Pierce et al., 1996; Famous et al., 2008). Sensitization to all
drugs of abuse has also been shown to correlate with a sustained
hyper-reactivity of noradrenergic and serotonergic systems in
the locus coeruleus and dorsal raphe, respectively (Tassin, 2008;
Doucet et al., 2013).

Behavioral sensitization has many advantages. First, drug
delivery is simple, as it relies on experimenter-administered
intraperitoneal injections. Depending on the experimental
timeline and withdrawal periods, sensitization can be rapidly
induced since potentiation can be measured after only a
few drug injections, or even a single injection (Magos, 1969;
Robinson et al., 1982; Vanderschuren et al., 1999a; Valjent
et al., 2010). However, it is possible to use sensitization to
study the long-term effects of chronic drug-exposure, one
rat study showing amphetamine sensitization lasting up to a
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year (Paulson et al., 1991). But beyond these technical strengths,
an important characteristic of behavioral sensitization is that
most drugs of abuse, including cocaine (Post and Rose, 1976),
amphetamine (Segal and Mandell, 1974), morphine (Babbini
and Davis, 1972), ethanol [in certain mouse strains only, never
shown in rats (Didone et al., 2008; Bahi and Dreyer, 2012a,b)],
and nicotine (Clarke and Kumar, 1983), induce sensitization
in rodents. Notably, no behavioral sensitization has been
shown with ∆

9-tetrahydrocannabinol (THC; Varvel et al., 2007).
Throughout the drug spectrum, sensitization remains sensitive
to individual vulnerabilities to stress and genetics factors, as
demonstrated by the wide range of behaviors observed with
different rodent strains (Phillips et al., 1997).

Most importantly, drugs often cross-sensitize, which means
that potentiated response to one drug is observed after induction
with another drug. Cross-sensitization has indeed been observed
between psychostimulants such as amphetamine and cocaine
(Bonate et al., 1997; Vanderschuren et al., 1999a), but also
across different drug classes like amphetamine and morphine
(Vezina and Stewart, 1990; Vanderschuren et al., 1997), with
the exception of one study in rats where cross-sensitization was
lacking (Vanderschuren et al., 1999b). Surprisingly, although
THC does not induce behavioral sensitization as mentioned
earlier (Varvel et al., 2007), it cross-sensitizes with opioids
(Lamarque et al., 2001; Cadoni et al., 2008) and amphetamine
(Lamarque et al., 2001) in rats. However, cannabinoid agonist
HU 210 failed to cross-sensitize with morphine or alcohol
(Hagues et al., 2008). Interestingly, pre-exposing animals to
drugs, thus inducing sensitization, potentiates CPP (Lett,
1989; Gaiardi et al., 1991; Shippenberg and Heidbreder, 1995;
Shippenberg et al., 1996; Meririnne et al., 2001; Harris and
Aston-Jones, 2003a,b) and SA behaviors (Horger et al., 1990,
1992; Piazza et al., 1990; Valadez and Schenk, 1994; Pierre
and Vezina, 1998; Covington and Miczek, 2001) compared to
non-sensitized controls. These results support the idea that
chronic non-contingent drug exposure used in the sensitization
model allows studying the neurobiological pathways shared
by all drugs.

Despite all the advantages of this model, behavioral
sensitization faces major downsides that contributed to the field
increasingly shifting towards other models. Before all else, the
face validity of this model is limited as sensitization in humans
is challenging to demonstrate, although some studies measured
a potentiation of certain symptoms such as activity and energy
levels, mood or speech quantity after repeated amphetamine
challenges that could be compared to behavioral sensitization
(Strakowski et al., 1996; Strakowski and Sax, 1998; Boileau
et al., 2006). Chronic amphetamine use has also been linked to
progressive augmentation in paranoid behaviors (Kalivas and
Stewart, 1991). Another characteristic of this model contrasting
with the clinic resides in the fact that only a few drug injections
can induce sensitization in rodents, whereas in humans a large
number of exposures over time often precede abuse. Because
of this, it has been argued that this model can be useful to
better understand the initial phases of drug intake that influence,
but does not provide a complete picture, of the transition
to substance use disorder (Vanderschuren and Pierce, 2010).

Finally, cross-sensitization is not limited to drugs, but also
extends to stressors such as foot shock (Herman et al., 1984;
Sorg, 1992), restrain stress (Robinson et al., 1985) or tail pinch
(Antelman et al., 1980). In addition to stress, amphetamine-
sensitized animals show facilitation of sexual behavior (Fiorino
and Phillips, 1999a,b), whereas rats sensitized to morphine
display increased interest for food, as well as sexual and social
behaviors (Nocjar and Panksepp, 2007). These results suggest
that drug-sensitization induces an unspecific activation of the
reward pathways, which contradicts Diagnostic and Statistical
Manual (DSM) criteria of addicted individual’s disinterest for
natural, social or professional rewards (APA, 2013).

Conditioned Place Preference (CPP)
CPP (also known as place preference conditioning, or PPC)
allows testing the rewarding or aversive properties of an
experience or a stimulus. A multitude of variations of the
CPP model exist, yet the standard use remains to associate
an experience, such as non-contingent drug delivery, to a
recognizable context, often a chamber with definitive cues
identifiable by the animal. In parallel, animals are also exposed to
a different neutral context. After a first phase of pre-conditioning
to assert no innate preference of the animal for one of the
contexts, the acquisition phase consists of pairing the drug to
one context. Pairing can be achieved after single or repeated
exposures, depending on the drug doses or timing exposures.
On test day, or post-conditioning phase, the animal is allowed
to explore the contexts freely. When the time spent in the paired
context is longer to the time spent in the unpaired one, the
stimulus is concluded to be rewarding. The opposite result grants
aversive effects to the stimulus, defined as Conditioned Place
Aversion (CPA). CPP was first shown with morphine (Beach,
1957), and a multitude of studies later showed that all drugs
of abuse, including cocaine, amphetamine, methamphetamine,
nicotine, alcohol and cannabis also induced CPP (Bardo and
Bevins, 2000; García Pardo et al., 2017). Along with SA, CPP
is the most commonly used model to test abuse potential
of a new drug during clinical trials (see later section). The
popularity and abundant use of this model relies on its
simplicity and promptness. Moreover, the drug of interest is
typically not administered on testing day, thus allowing the
determination of its rewarding properties and measurement of
enduring neurobiological changes induced by the drug without
causing massive neurotransmitter release. It also provides a
tool to definitively establish aversive effects through avoidance,
which lacks in the self-administering paradigm (i.e., lack
of responding to a drug can be interpreted as the drug
having aversive or neutral properties). Importantly, individual
differences and susceptibilities to the rewarding effects of drugs
can be measured using this paradigm. While reviewing how
the novelty-seeking endophenotype impacts psychostimulant
responses, Arenas et al. (2016) summarized the potentiated
responses of high responding rats to sub-threshold doses of
amphetamine and cocaine compared to low responding animals
(see the ‘‘Individual Variation in Addiction-Related Behaviors’’
section below for more detailed definition of the High-
responder/Low-responder model). This potentiated response
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could be linked to the corticotropin-releasing factor (CRF)
since a study found that mice continually overexpressing CRF
show potentiated cocaine CPP only in mice displaying low
behavioral reactivity to novelty in contrast to mice with high
locomotor response to novelty (Kasahara et al., 2015). More
recently, a study established a positive correlation between rats
exhibiting risk-taking behaviors andmethamphetamine-induced
CPP (Takahashi et al., 2019), corroborating the ability to detect
individual differences using this paradigm. However, CPP is
not specific to abused substances, since natural rewards such as
food (Cason et al., 2010), novelty (Klebaur and Bardo, 1999),
physical exercise (wheel running; Antoniadis et al., 2000) and
sexual behavior (Paredes, 2009) induce robust CPP. Similar to
the behavioral sensitization and SA models, CPP heavily relies
onmotor capacities, thus requiring appropriate controls to assess
possible sedative or anxiolytic effects of the drug that are not
present when testing the animal in a drug-free state.

Using receptor-specific agonists and antagonists, many
studies (for an extensive review see Tzschentke, 2007) have
established a necessary role of the usual suspects within reward
circuitry (dopaminergic, glutamatergic, GABergic, cholinergic,
noradrenergic and serotonergic systems) in the induction and
maintenance of CPP. Consistent with this idea of shared reward-
relatedmechanisms, inducing CPP often potentiates the behavior
observed in other models of addiction as seen in a study
where expression of cocaine behavioral sensitization is only
observed in the compartment paired with the drug during CPP,
and not in a novel compartment (Duvauchelle et al., 2000).
Using CPP and CPA can also help elucidate heterogeneous
behaviors in other models. Supporting this, the authors of a
study comparing animals self-administering cocaine at a high
and stable level to animals failing to do so elegantly show
that self-administering animals exhibit cocaine CPP, while non-
self-administering ones show CPA (Rademacher et al., 2000).
These results argue that cocaine effects are appetitive for some
animals but aversive for others. However, inducing CPP with
one reward does not always predict a potentiated reward-induced
behavior in other models, as reported in a study that found
no correlation between the magnitude of novelty-induced CPP
and the degree of amphetamine SA (Klebaur et al., 2001).
Another study reported that ethanol consumption during the SA
pre-exposure phase negatively correlates with ethanol-induced
CPP in mice (Nocjar et al., 1999).

In some studies, CPP is also used to model relapse and
dissect the neurobiology of drug-seeking (for extensive review,
see Aguilar et al., 2009). Prior to CPP reinstatement, animals
undergo extinction training, consisting in either exposing
the animal to the previously reward-paired context without
administering the reward or administering sham injections
in the paired and unpaired contexts (Epstein et al., 2006;
Aguilar et al., 2009). CPP reinstatement, shown for cocaine,
amphetamine, methamphetamine, morphine, heroin, nicotine,
ethanol and MDMA, can be induced by a priming dose
of drug or different types of stress, including footshock,
immobilization and forced swim (Liu et al., 2008; Aguilar
et al., 2009). A study further demonstrated robust cocaine
CPP reinstatement induced by conditioned fear stimuli, in

this case an odor or a tone previously paired with footshock
(Sanchez and Sorg, 2001). In a study testing the establishment,
maintenance, extinction and reinstatement of cocaine CPP,
authors showed that once developed, place preference endures
for several weeks and is rapidly reinstated after extinction
training following cocaine priming injections (Mueller and
Stewart, 2000). Similar to the induction and maintenance
part of CPP, several neurotransmitters have been shown to
drive reinstatement, including glutamatergic, dopaminergic and
noradrenergic transmissions. The role of these systems seems
to be highly dependent on reinstatement modality, i.e., drug
priming or stress (Aguilar et al., 2009).

The Runway Model
The runway model has been used to evaluate opponent aversive
and rewarding components of drugs. It was developed to study
goal-directed behaviors with natural rewards (Hull, 1934; Crespi,
1942; Miller, 1944). From the start compartment, animals learn
to cross a 6-foot long straight corridor (the runway) to reach
the goal compartment, where the reward is delivered (Ettenberg,
2004, 2009). Prior to drug exposure, food-deprived animals
are trained to enter the goal compartment for food pellets.
Subsequently, entering the goal compartment is associated
with drug delivery. The run time, i.e., the time the trained
animal takes to reach the goal compartment, is the resultant
of approach and avoidance behaviors and is interpreted as
an index of motivation/aversion for the reward. While in
some cases the drug-seeking is delivered in a noncontingent
fashion, the model has been adapted to more recent techniques
such as i.v. drug self-administration (Geist and Ettenberg,
1990) or optogenetics (Jhou et al., 2013). The runway model
allows characterization of the ambivalent properties of drugs,
which have been shown with most drugs including cocaine,
amphetamine, heroin, morphine, MDMA and ethanol (for
review see Ettenberg, 2009).

CONTINGENT MODELS OF
ADDICTION-RELATED BEHAVIORS

The models presented here rely on operant learning during
repeated exposure to the drug of interest. During SA sessions
an animal performs an action (e.g., lever deflection or nose
port entry) in order to receive an infusion of the drug. There
is consensus in the addiction field that initial exposures to
the drug mainly impact the prefrontal cortex (PFC), driving
goal-directed behavior, and the mesolimbic regions, including
the NAc, are key regions in the integration of reinforcing
stimuli (Hopf and Lesscher, 2014). As the training develops,
the dorsal striatum has been shown to take a major role
in maintaining drug intake (Belin and Everitt, 2008). Below
we discuss the main SA paradigms currently used in drug
addiction research, followed by a discussion on the various
ways to assess the motivation for taking a drug and relapse
propensity. See Table 1 for a brief summary of advantages
and limitations of drug self-administration models and Table 2

for models of motivation and drug-seeking and relapse models
mentioned below.
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TABLE 1 | Brief summary of preclinical behavioral models most currently used to study the neurobiology of addiction: non-contingent drug administration and

contingent drug self-administration (SA).

Model Advantages Limits

Non-contingent drug administration

Behavioral sensitization
• Long-lasting

• Shared by all drugs

• Cross-sensitization amongst drugs

• Lack of animal-driven behavior

• Stereotypies at high doses

• Not exclusive to drugs of abuse

• Poor face validity

Conditioned Place Preference (CPP)
• Drug-free testing

• Establishes rewarding or aversive properties

• Lack of animal-driven behavior

• Not exclusive to drugs of abuse

Runway Model
• Can be adapted to contingent drug delivery

• Drug-free testing

• Establishes rewarding or aversive properties

• Requires initiation training with other rewards

• Not exclusive to drugs of abuse

Contingent—drug self-administration (SA)

Short Access (ShA)
• Short training sessions

• Reliably shows escalation of intake and relapse

behavior

• Does not capture compulsive drug-taking

behavior

Long Access (LgA)
• Greater escalation of intake, higher break-points and

greater drug-induced reinstatement compared to ShA

• Long training sessions

Intermittent Access (IntA)
• Captures temporal pattern of drug intake observed in

humans

• Greater motivation to work for the drug and

cue-induced reinstatement compared to ShA and

LgA

• More complex behavioral training compared

to ShA and LgA

2-Bottle choice-Ethanol
• Simple set up, no invasive surgery

• Good correlation between intake and blood

concentration

• Good face validity

• Low consumption

• Initiation training with other rewards

Drink in the Dark (DID)-Ethanol
• No confounding with other reward

• Good face validity for binge-drinking

• Strain-specific

Chronic Intermittent Ethanol (CIE)
• Good face validity (increased voluntary consumption) • Long protocol

Drug Self-administration Models
Animal drug SA paradigms have significantly evolved since
the inception of the technique in 1962 (Weeks, 1962), as
more attempts are being put forth to more accurately model
drug-taking behavior in humans. A commonly used paradigm,
short-access (ShA) training, involves SA sessions that generally
last between 1 and 3 h. ShA paradigms reliably show an increase
in drug-taking behavior and reinstatement of drug-seeking
behavior, two features of human addiction. However, despite
its proliferous use, arguments have been made that ShA
sessions capture drug-taking behavior, but not behavior that is
representative of the transition to addiction (Ahmed and Koob,
1998). That is to say, ShA may only address recreational drug
use, and not the escalation to compulsive drug taking that is
seen in human addicts (for review see Roberts et al., 2007). To
address this limitation, a long-access (LgA; Spanagel et al., 1996)
training procedure was developed that consists of SA training
sessions lasting a minimum of 6 h (Ahmed and Koob, 1998),
with some lasting as long as 12 h (Lucantonio et al., 2015; Cocker
et al., 2019). Compared to ShA sessions, rats undergoing LgA
training show greater escalation in drug-taking behavior (Ahmed
and Koob, 1998; Mantsch et al., 2004; Mandt et al., 2015), are
more motivated to work for an infusion of cocaine (Paterson

and Markou, 2003; Hao et al., 2010), and show greater cocaine-
primed drug-seeking behavior (Mantsch et al., 2004; Knackstedt
and Kalivas, 2007). The neurobiological mechanisms mediating
behavior as a result of these two training paradigms also appear
to differ, specifically in respect to neuroplasticity within the
striatum (Purgianto et al., 2013; Ducret et al., 2016).

Rats have continuous access to a drug during LgA and ShA
training, however, the temporal pattern of drug delivery has been
argued to also play a critical role in the transition to addiction.
Human addicts have been reported to take cocaine intermittently
whereby a large quantity of cocaine is consumed within a short
time span, followed by a period of no drug use before consuming
cocaine again (Allain et al., 2015). This intermittent pattern of
drug-taking is believed to cause a constant spiking of brain-
cocaine concentration levels and contribute to addiction-related
behaviors (Zimmer et al., 2011). The intermittent access (IntA)
training procedure emulates this behavior in a rodent model.
During this task, rats are allowed to self-administer during
5 min bins that are separated by 25 min periods where the
drug is not available (Zimmer et al., 2011). This procedure
results in a high level of consumption during drug-available
periods (Allain et al., 2018) and fluctuations in brain-cocaine
concentration levels (Zimmer et al., 2012). While rats trained
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TABLE 2 | Brief summary of preclinical behavioral models most currently used to study the neurobiology of addiction: motivation and seeking in contingent models,

models including alternative rewards.

Model Advantages Limits

Contingent—motivation for drug taking

Progressive Ratio (PR)
• Simple task

• Can be done several times throughout training

• Direct comparisons between different

reinforcers not possible

• Reward on-board during test

Behavioral Economics
• Can measure several parameters of motivation within one

session

• Can be done several times throughout training

• Direct comparisons between different reinforcers possible

• Complex data analysis

DSM Related
• Modeled directly from DSM criteria

• Good face validity

• Requires the use of several different

behavioral paradigms

• Long protocol

Contingent—drug seeking and relapse

Cued-Reinstatement
• Two types: discrete and discriminative cues

• Simple set-up

• Good face validity

• Action precedes the reward-cue in discrete

cue-induced reinstatement (usually reverse in

human population)

Context-Reinstatement
• Can assess the effects of a compilation of cues on different

sensory modalities on drug-seeking behavior

• Complex SA procedures (i.e. multiple

contexts needed)

Prime-Reinstatement
• Simple set-up

• Good face validity

• Route of administration normally different

than during SA

• Reward on-board during test

Stress-Reinstatement
• Environmental and interoceptive stressors can be used

• Shown to increase relapse across several classes of drugs

• Complex training with certain stressors

• Difficult to model complex human

psychological stressors

Contingent drug seeking in presence of alternative rewards

Any model presenting

competing choice between

drugs and other rewards

• Good face validity: models closer to human experience

(not-limited to drug exposure exclusively)

• Myriad of alternative rewards available (appetitive foods,

social interactions, enriched environment, etc.)

• Complex study of the neurobiology of each

reward

• Might require longer training and protocols

• Might require larger n and additional controls

to self-administer cocaine using LgA procedures consume more
drug, rats trained using IntA show greater motivation to work
for cocaine compared to rats in LgA or ShA training (Zimmer
et al., 2012). Rats also show greater cue-induced drug-seeking
behavior following IntA training compared to LgA or ShA
(Kawa et al., 2016, 2019). IntA results in greater dopamine
concentrations within the NAc core following a single infusion
of cocaine compared to LgA training, and dopamine levels
correlated with several measures of motivation for cocaine
(Kawa et al., 2019). IntA training, but not LgA or ShA, using
psychostimulants also results in sensitization of NAc dopamine
transports (Calipari et al., 2013, 2014). Taken together, it is
apparent that while ShA, LgA and IntA all produce drug-taking
and drug-seeking behavior, the behavioral paradigms differ in
several other measures of motivation for a drug and resultant
neurobiological effects, both of which are factors that should be
taken into consideration during experimental design.

MOTIVATION FOR DRUG-TAKING
BEHAVIOR

Motivation for a drug can be measured independent of the
quantity of drug consumed or pattern of intake. Progressive

ratio tests and behavioral economics can be used to assess the
reinforcing properties of a reward as the price and/or demand
for the drug is manipulated. Adapting DSM criteria on substance
use disorders to behavioral tests are also used to more directly
translate data from rodent models to human addiction.

Progressive Ratio
Progressive ratio schedules are within-session procedures where
the cost of a reward exponentially increases with each subsequent
trial (Hodos, 1961; Roberts and Richardson, 1992; Richardson
and Roberts, 1996). Using this paradigm, the motivation of the
animal to work for a reward can bemeasured, with the maximum
number of responses an animal makes in order to receive the
reward referred to as the ‘‘break-point’’ (BP). BPs can be taken
at several time points in an experiment, yielding insight into
how the reinforcing properties of a drug change over the course
of drug SA training. Behavior during this test is particularly
sensitive to drug dose (Roberts et al., 1989), injection speed
(Woolverton and Wang, 2004; Liu et al., 2005), and availability
of drug during SA as well as length of forced abstinence (Morgan
et al., 2002, 2005). Due to these factors, comparing BPs for the
same reward between studies is often difficult. Furthermore, BPs
are not comparable between different reinforcers, as they are not
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standardized to a baseline threshold, as is common using demand
curves (discussed below). Nevertheless, a progressive ratio test is
a useful tool to assess the motivation of an animal to work for a
drug, and thus track the transition to addiction in animal models
(for review see Roberts et al., 2007).

Behavioral Economics: Demand Curve
Analysis
Behavioral economics approaches, specifically demand curve
analyses, have become more widely used due to their unique
ability to measure several parameters of motivation for a drug
during SA (Bickel et al., 1993, 2011; Hursh and Winger, 1995).
A demand curve is the effort an individual is willing to expend
for a reward at various prices (Hursh, 1980), and so the cost or
price of a reward is a function of that effort (Hursh et al., 1988).
Demand curves can be generated within a single SA session
using a threshold procedure (Oleson and Roberts, 2009; Oleson
et al., 2011; Bentzley et al., 2013). These sessions typically last
110 min, and every 10 min the dose of drug available decreases
according to a quarter logarithmic scale. At the conclusion of the
session, a demand curve is fit to the data, and several variables are
generated that yield insight into the reinforcing properties of the
reward (Hursh and Silberberg, 2008). Recent models of demand
curve analysis have used a focused fitting approach, whereby data
points that are generated when brain-cocaine concentrations
greatly fluctuate, generally at the start of the session when the
animal is ‘‘loading’’ on the drug or toward the end of the session
when the price is beyond what the animal is willing to work for
the drug, are removed from analysis (Bentzley et al., 2013). This
has been shown to result in a demand curve that more accurately
represents the behavior of the subject (Bentzley et al., 2013).

The following variables are calculated from the demand curve:
Qo, Pmax, Omax and α. Q0 is a measure of the ‘‘hedonic set point’’
(Ahmed and Koob, 1998, 1999), or the drug intake when the
effort to acquire the drug is low. It thus acts as a general measure
of consummatory behavior (Oleson et al., 2011). Because the
price of the reward is low, Qo is a function of demand only. In
contrast, Pmax is a function of elasticity. Elasticity refers to the
rate at which the slope of the demand curve changes as the price
for the reward increases (Hursh, 1980). A demand curve showing
more elasticity is indicative of an individual showing less effort to
consume the reward as the price increases. Pmax is the maximum
price (responses/mg reward) an individual will pay to consume
the reward, or rather the maximum effort the animal will expel
to maintain its hedonic set point (i.e., Qo; Hursh, 1991). It is not
too surprising then that Pmax values have been shown to correlate
with the BP in a progressive ratio test (Rodefer and Carroll,
1997; Bickel andMadden, 1999; Lenoir and Ahmed, 2008; Oleson
and Roberts, 2009). The Omax value, or the maximum number
of responses made at Pmax, is a function of both demand and
elasticity (Hursh and Winger, 1995). This value is unique in that
it is the only variable generated from a demand curve that reliably
predicts the success of drug addiction treatment (MacKillop and
Murphy, 2007). The last variable, α, is known as the ‘‘essential
value’’ of a reward and is the slope of the demand curve (Hursh
and Silberberg, 2008). The motivation to continue to work for
the drug as price increases is inversely related to α, such that

rewards with a higher essential value have smaller α values, and
show less elasticity (Bentzley et al., 2013). Alpha can also be
tracked across several time periods throughout SA training to
see how the essential value of the drug changes with increased
drug experience (Christensen et al., 2008b). An advantage of
α in comparison to the other variables is that it is inherently
normalized to Qo, allowing for α values to be directly compared
between reinforcers. In fact, food as a reward has a greater
essential value compared to both cocaine (Christensen et al.,
2008a) and methamphetamine (Galuska et al., 2011). Though
Pmax and Omax are not normalized to Qo, they can manually
be such that these values are also able to be compared across
different rewards (Ko et al., 2002; Winger et al., 2006; Wade-
Galuska et al., 2007). Overall, though data analysis is complex,
demand curve analysis affords researchers the ability to parse
the multiple components of motivation for drug-taking behavior
within a single session and allows for the direct comparison of
these components between different rewards.

Modeling DSM-Related Drug Addiction
Behaviors
Another consideration when modeling addiction-related
behaviors in animal models is incorporating the diagnostic
criteria within the DSM for substance use disorders in humans.
To that end, efforts have been put forth to model some of the
criteria in animal models in order to create better preclinical
models of drug addiction (Deroche-Gamonet et al., 2004; for
review see Belin-Rauscent et al., 2016). Criterion often modeled
includes: compulsive drug-seeking behavior when the drug
is not available, high levels of motivation for the drug, and
continuing to take drug despite the co-occurrence of adverse
consequences (Deroche-Gamonet et al., 2004). In a rodent
model, these criteria are applied by measuring drug-seeking
behavior during periods of signaled no drug availability, using
progressive ratio tests, and pairing a foot shock with reward
consumption (for review see Belin-Rauscent et al., 2016). By
using this multi-symptomatic model, rats can be separated based
on the number of criteria met for a substance use disorder
diagnosis, and interestingly the percent of rats that meet all
criteria is very similar to the percent of human drug addicts that
meet DSM criteria, further strengthening the validity of using
this model (Deroche-Gamonet et al., 2004). Another advantage
of this model is the ability to assess individual differences in
behavioral traits and neurobiological factors that may contribute
to an addicted phenotype (Belin et al., 2008, 2009, 2011; Kasanetz
et al., 2010; Kawa et al., 2016).

MODELS OF REINSTATEMENT OF
DRUG-SEEKING BEHAVIOR

The biggest obstacle in the treatment of drug addiction is
the high rates of relapse following exposure to environmental
stimuli (e.g., cues, contexts, stressors) associated with prior
drug-taking behavior (Shaham et al., 2003; Bossert et al., 2013).
The most common methods for examining relapse behavior
in animal models is via tests for cue-induced [both discrete
(Meil and See, 1996) and discriminative (Weiss et al., 2000)],
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context-induced (Crombag and Shaham, 2002), drug-primed
(de Wit and Stewart, 1981) and stress-induced (Shaham and
Stewart, 1995) reinstatement. Tests for reinstatement generally
occur following a period of abstinence, such as forced abstinence,
voluntary abstinence, extinction training, or a combination of
these procedures.While each reinstatement test isolates a specific
factor that contributes to drug-seeking behavior, in humans,
several of these factors likely co-occur and result in relapse.
However, by studying each of these models separately, we are
able to assess similarities and differences in the neurobiological
mechanisms that mediate each mode of relapse (for review see
Crombag et al., 2008; Bossert et al., 2013).

Cues associated with the drug-taking experience can result in
craving (Childress et al., 1988, 1993) and ultimately drug relapse
(see Bossert et al., 2013). There are two common types of cues
used during SA training that differ based on their contingency of
presentation: a discrete cue and a discriminative stimulus (DS). A
discrete cue is one that is localizable and directly tied to operant
responding for drug delivery (e.g., light above the lever), thus
presentation of a discrete cue is contingent upon drug-taking
behavior. During discrete cue-induced reinstatement, the action
during SA that resulted in drug delivery and presentation
of the discrete drug-associated cue now only results in the
presentation of the cue. Therefore, during these tests, the
conditioned reinforcing property, or the ability of the cue
to invigorate ongoing behavior, of the reward-paired cue is
being assessed. In humans, however, though presentation of
the reward-cue invigorates drug-seeking behavior, oftentimes
drug-seeking behavior precedes presentation of a reward-cue.
While using a single discrete cue can evoke drug-seeking
behavior, using a compound discrete stimulus, such as a cue-light
and tone pairing, results in a more robust reinstatement (Kruzich
et al., 2001). In contrast to a discrete cue, a DS signals when
the reward is, or is not, available during SA training sessions.
That is, a DS operates as an ‘‘occasion setter’’ (Crombag et al.,
2008), signaling when operant responding for the drug will
(positive DS), or will not be (negative DS), reinforced (e.g., house
light turning on and off). Thus, presentation of the DS is not
contingent upon drug-taking behavior. During discriminative
cue-induced reinstatement tests, the positive or negative DS is
noncontingently presented, and the ability of the DS to affect
subsequent drug-seeking behavior is analyzed. While the use of a
DS is oftentimes classified as a type of cue-induced reinstatement,
some have argued that it shares more properties with context-
induced reinstatement (Weiss, 2005; Trask et al., 2017).

Like cues, exposure to contexts associated with the
drug-taking experience can result in relapse in humans
(Wikler, 1973; O’Brien et al., 1992). A context is a compilation
of several cues where no single cue predicts drug availability
more than another. To test the ability of a context to invigorate
drug-seeking behavior, animals are trained to self-administer
drugs in one context (Context A), extinguished in a separate
context (Context B), and then reintroduced to Context A for
the reinstatement test (Bouton and Bolles, 1979; Crombag and
Shaham, 2002; Fuchs et al., 2005). In addition to environmental
cues and contexts evoking drug-seeking behavior, interoceptive
cues associated with the drug experience following abstinence

can also result in craving (Jaffe et al., 1989) and elevated
intake (de Wit and Chutuape, 1993). Tests for drug-primed
reinstatement involve the non-contingent delivery of the drug
prior to being tested in extinction conditions, thus the reinstating
properties of a drug are being tested while the drug is on board.
In contrast to intravenous delivery as during SA, the drug prime
is usually administered subcutaneously or intraperitoneally,
leading to possible pharmacokinetic differences in the drug’s
effect. Regardless, prime reinstatement remains the only
test that isolates the ability of the drug itself to invigorate
drug-seeking behavior.

The ability of different environmental and interoceptive
stressors to invigorate drug-seeking behavior has also been
explored. During these tests, a stressor is generally administered
to the animal prior to the session starting. The main stressors
used are food deprivation (Shalev et al., 2000), intermittent
foot-shock (Shaham and Stewart, 1995), and administration of
yohimbine (Shepard et al., 2004), a drug that causes anxiety-
and stress-like effects. While it is difficult to model the complex
psychological and physical stressors relevant to the human
condition using animal models, the aforementioned stressors
have been shown to potentiate drug-seeking behavior across
several classes of drugs (for review see Mantsch et al., 2016).

There are several similarities and differences between the
neurobiological mechanisms that mediate drug-seeking behavior
using the different models of reinstatement. However, such detail
is not within the scope of the current review, but several reviews
exist that proficiently address the neurobiology associated with
different animal relapsemodels (see Crombag et al., 2008; Bossert
et al., 2013; Mantsch et al., 2016).

ALTERNATIVE REWARDS

Most operant models currently used to dissect the neurobiology
underlying abuse disorders present very restricted options to
animals; they can choose between self-administering the reward
or not. However, a growing number of studies prove that when
given broader choices, the vast majority of animals recoil from
drug rewards.

Early in the development of the addiction field, a few rare
studies measured the desire of dogs or chimpanzees pre-treated
with drugs to choose cocaine or morphine over food (Tatum
and Seevers, 1929; Spragg, 1940), in an attempt to model
addiction-like phenotypes in animals. More recently, Lenoir
et al. (2007) published an elegant study that surprised many:
when given the mutually exclusive option between saccharin-
sweetened water or cocaine, 94% of the animals preferred the
sweet water over intravenous cocaine. Rats established this
preference after multiple cocaines and sweet water samplings,
consistently over 15 days of training. Importantly, when
cocaine was present, maximal lever sampling and locomotor
sensitization confirmed its rewarding and locomotor effects.
Based on these results and subsequent work, Ahmed et al.
(2013) argued that the field might be limited by using models
lacking competing choices to study addiction, a disorder
altering value-based decision-making. To study craving after
experiencing several rewards, one study tested reinstating
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animals after they underwent food and cocaine SA, followed
by choice tests and extinction training (Tunstall and Kearns,
2014). While the majority of rats chose to self-administer
food, cocaine-primed reinstatement induced a significant
increase in lever pressing of the cocaine-associated lever.
Footshock and food-primed induced reinstatements however
only induced a mild, non-specific increase of responding in
both levers. The authors conclude that cocaine seeking can
prevail over food seeking when cocaine is on board during
primed reinstatement. A follow-up study established that
when choosing between cocaine or grain pellets, rats still
preferred pellets. However, cue-induced reinstatement following
extinction training showed cocaine craving, as measured by
a significant increase in lever pressing for the previously
cocaine-associated lever (Tunstall and Kearns, 2016). When
choosing between grain and sucrose pellets, the majority
of rats self-administered sucrose over grain pellets and also
responded more to the sucrose-associated lever during cued-
reinstatement. The cocaine/sucrose paradigm was not tested.
These results argue for a strengthening of the cocaine-
associated cue despite cocaine not being the preferred option
during SA.

Recently, Venniro et al. (2018) elegantly developed an operant
model of choice between drugs and social interaction and
showed that operant social reward prevented methamphetamine
and heroin SA, even in rats exhibiting a high addiction
score (Deroche-Gamonet et al., 2004). It also prevented
methamphetamine incubation of craving and relapse, through
protein kinase C-δ -expressing neurons in the central amygdala
and inhibition of activity in the anterior ventral insular cortex
(Venniro et al., 2018). These results are consistent with what is
observed in humans, where greater social support and integration
predicted lower risk of relapse for alcohol, opiates and cigarette
smoking (Havassy et al., 1991). Another innovative study showed
how social interactions profoundly affect decision-making and
firing of dopaminergic cells in the VTA by analyzing the behavior
of mice living in Souris City, a large environment shared by
a large community of peers (Torquet et al., 2018). Based on
measurements obtained after experimenter-induced social re-
organizations, the authors highlight the importance of social
environments on animals’ individual profiles and goal-directed
decision-making.

The effects of alternative rewards are not only observed
in contingent models. Solinas et al. (2009) showed that
upgrading mice home cages to an enriched environment not
only reduced the reinforcing effect of psychostimulants, as
it had been previously shown (Bardo et al., 2001; Bezard
et al., 2003; El Rawas et al., 2009; Solinas et al., 2009), but
completely eliminated cocaine-induced behavioral sensitization
and CPP (Solinas et al., 2008). These results were later extended
to additional drugs including methamphetamine, heroin and
nicotine (Sikora et al., 2018).

Despite the fact that exposing animals to multiple rewards
makes dissecting the neurobiological effects of each reward more
complex, it brings preclinical models closer to the intricate
human experience. Akin to Portugal, a few countries combat
addiction and the social marginalization associated with it

by offering treatment, support services and enforcing harm
reduction policies (Cabral, 2017). These could be considered
the clinical equivalent of enriched environment or social
interaction, and the success of such drug policy supports the
idea that, by implementing similar strategies, drug abuse can be
greatly decreased.

MODELS OF ALCOHOL INTAKE

Similar to other drugs, alcohol abuse is a complex disorder
impacted by social, economic and neurobiological factors
(Goltseker et al., 2019). Aside from a few examples (Augier
et al., 2014; de Guglielmo et al., 2017), voluntary alcohol
consumption is typically weak, and often requires water-
depriving the animals to incentivize drinking or initially pairing
ethanol with a more salient reward, such as sucrose (Koob
and Weiss, 1990; Becker, 2013; Goltseker et al., 2019). Since
this ‘‘initiation training’’ introduces animals to multiple rewards
and this can be problematic (see ‘‘Alternative Rewards’’ section
above), a few rodent strains showing high preference for alcohol
have been selectively bred (Li et al., 1979; Stewart and Li,
1997; Bell et al., 2006). Despite low levels of behavior, many
studies use two-bottle choice and drinking in the dark (DID)
models, both based on voluntary consumption. In the two-bottle
choice model, animals are usually first presented with two
bottles of water, later replacing one water solution bottle by
another containing increasing percentages of alcohol (García
Pardo et al., 2017). Access to alcohol can be continuous or
intermittent, presenting the alcohol bottle only every other day
(Brancato et al., 2016). Two-hours alcohol exposure is sufficient
to measure significant correlations between alcohol intake and
blood ethanol concentrations (Griffin, 2014). Several studies
show that long-term exposure to intermittent alcohol access
induces binge-drinking, potentiated alcohol preference and high
blood alcohol concentrations (Wise, 1973; Carnicella et al.,
2014). Because of these behaviors, this model mimics closely
what is observed in humans, for whom the drinking pattern
is a key factor in the development of alcohol use disorder
(Kranzler and Soyka, 2018).

The DID model (Rhodes et al., 2005) takes advantage of
rodent’s nocturnal activity to replace the home cage water
bottle by a bottle containing a high concentration (20%) ethanol
solution for a short period of time (2–4 h). This ethanol exposure
promotes binge drinking and pharmacologically relevant blood
ethanol concentrations, high enough to cause behavioral
evidence of intoxication (Thiele and Navarro, 2014). This model
aims to mimic the rapid and massive consumption most often
observed in adolescent alcohol drinking. It does not require
any modification of the alcohol solutions with other rewards or
progressive increase of alcohol percentages, and binge drinking
can be observed in 4 days, making it a simple and prompt model
to use. However, the model seems to be somewhat restricted
by mouse strain specificity. In the original study presenting the
model (Rhodes et al., 2005), the DID paradigm induced binge
drinking in the high ethanol drinking strain (C57BL/6J), yet the
behavior was not observed in any of the other 11 inbred mice
strains tested.
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Chronic intermittent ethanol (CIE) is another recent model
of alcohol use disorder gaining popularity (Griffin, 2014). This
paradigm combines voluntary drinking and repeated exposure
to alcohol vapor. After a 4-week training period of daily 2 h
voluntary alcohol drinking, mice enter a cycle of 16 h vapor
exposure, followed by 8 h of control air exposure (Lopez and
Becker, 2005). After repeating the cycle 4–5 times (one cycle
is enough to measure significant effects, but repeated cycles
potentiate the behavioral outcome), animals are then tested in
limited access sessions, similar to the ones performed during
the training phase. CIE-animals exhibit a significant increase in
voluntary ethanol drinking compared to controls, thus modeling
the increase experienced by humans developing alcohol use
disorder, that have been shown to be driven by neuroadaptations
in glutamatergic and CRF signaling (Griffin, 2014). Since low
voluntary alcohol consumption in most rodent strains is a
notable limitation to study binge drinking (see discussion above),
a non-contingent version of the CIE model, the Chronic-
Intermittent Ethanol Administration (CIEA) paradigm, has
been developed in rats (Nogales et al., 2014; Contreras et al.,
2019) and mice (Sanchez-Roige et al., 2014; Lacaille et al.,
2015; Monleón et al., 2019). The protocol follows the CIE
timeline or a variation of it, i.e., repeated cycles of exposure to
i.p. ethanol injections (3–4 g/kg) for several consecutive days
intertwined with repeated days of non-exposure. CIEA is easy
and inexpensive, and in combination with simple behavioral
paradigms such as locomotion or elevated plus-maze, allows
studying the neurobiology of binge drinking.

Alternative models focus on ethanol seeking behavior as
a way to replicate relapse. Similar to other drugs, seeking
behavior can be induced by priming injections of ethanol,
stress, ethanol-paired cues or a combination of these factors
(Le et al., 1998; Liu and Weiss, 2002; LeCocq et al., 2018).
Using an alcohol-preferring rat strain, Giuliano et al. (2015)
developed a different model of cue-induced alcohol-seeking.
The procedure begins with a long exposure (18 sessions) to a
2-bottle choice procedure, followed by training to instrumental
response to access alcohol paired with an alcohol-associated
conditioned stimuli (CS). Alcohol seeking is measured during
20 min cycles where the drug is no longer present and contingent
presentations of the CS act as a reinforcer. At the end of the
seeking period, ethanol is re-introduced to avoid the CS losing its
reinforcing properties. This experimental design aims to model
alcohol craving by creating unusually high levels of alcohol-
seeking behavior induced by the CS, followed by high alcohol
consumption following the craving, thus closely mimicking
craving leading to ethanol consumption in humans. Other
models focus on compulsive-like alcohol intake, by incorporating
aversive consequences to consumption, such as pairing alcohol
intake with bitter quinine or footshocks (Hopf and Lesscher,
2014). These paradigms aim to model drug use despite negative
consequences, one of the key symptoms listed in the DSM-5
to characterize substance abuse (APA, 2013). Quinine-resistant
alcohol consumption seems to require long periods of ethanol
exposure to develop, since it is measured after long cycles
(8 months) of free access to alcohol (Spanagel et al., 1996; Fachin-
Scheit et al., 2006; for review seeHopf and Lesscher, 2014) or after

at least 3 months of intermittent access (Hopf et al., 2010). The
models pairing footshocks to ethanol intake in alcohol-preferring
rats show that the punishment context-dependently decreases
subsequent alcohol SA (Marchant et al., 2013), however, some
rats show footshock-resistant alcohol intake (Seif et al., 2013).

INDIVIDUAL VARIATION IN
ADDICTION-RELATED BEHAVIORS

It is widely acknowledged that regardless of the class of
addictive drug, a minority of people who use the drug develop
compulsive drug-seeking behaviors indicative of substance use
disorder. Appropriately modeling this variation in animals can
yield powerful insight into the neurobiological mechanisms that
mediate addiction propensity. Fortunately, animal models exist
that capture the individual variation inherently present in the
human population. Impulsivity, a trait associated with addiction
liability, can be assessed using an array of behavioral paradigms.
Individual variation in the acquisition of drug-taking behavior
can be captured using the high-responder (HR)/low-responder
(LR) model, while individual variation in relapse propensity
can be assessed using the sign-tracker (ST)/goal-tracker (GT)
model. The HR/LR and ST/GT models are particularly useful as
they capture individual variation in two distinct phases of drug
addiction: acquisition and relapse, respectively.

Models of Impulsivity
Although not specific to addiction, impulsivity, or the tendency
to act prematurely without foresight, is often impaired in
individuals with substance abuse disorders (Dalley et al., 2011;
Ersche et al., 2012; Kaiser et al., 2016) and constitutes one
of the risk factors for addictive behaviors (Dalley et al., 2007;
Voon and Dalley, 2016; Kozak et al., 2019). This is particularly
the case in adolescence and young adulthood, a critical period
of substance experimentation, brain development and elevated
impulsive behavior (Rømer Thomsen et al., 2018). Similarly,
in preclinical models, adolescent animals (largely defined as
postnatal day 21–60), tend to display more impulsive patterns
of responding compared to adults (Burton and Fletcher, 2012;
Hunt et al., 2016).

Adapted from a human task, the 5-choice serial reaction
time task (5-CSRTT) rodent model was originally presented
by Carli et al. (1983) in rats and has since become one
of the most commonly used models to study attentional
performance and motor impulsivity in rodents (Higgins and
Silenieks, 2017). Rodents are first trained (20–30 sessions, around
100 trials/session) to respond to a visual stimulus on top of one of
the five nose-pokes arranged on one wall of the testing chamber.
Responding to the stimulus by poking the associated nose-poke
is rewarded by food or liquid reward. This task requires the
animal to maintain attention to the five nose-pokes and their
corresponding visual cues. Poking during inter-trial intervals,
i.e., between the last nose-poke and the presentation of a new
stimulus, is recorded as a premature and impulsive response
that is not rewarded and followed by a time-out. One of the
advantages of this test resides in the possibility to control nearly
every parameter, from the randomization of the visual stimuli
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to the length of the limited hold of the nose-poke and time out
periods (Higgins and Silenieks, 2017). However, interpretation
of the data requires researchers to take into account the extensive
influence of attention when drawing conclusions, as any disorder
disrupting attentionmight heavily alter the results. In this regard,
using mice in this task could appear more delicate than using
rats, since mice have shorter attention spans (Kentros et al.,
2004; Hok et al., 2016). However, mice performances in this task
are equivalent to rats, a few studies showing indeed superior
motor control of task performance (Humby et al., 1999; Sanchez-
Roige et al., 2012; Cope et al., 2016; Higgins and Silenieks,
2017). Exposure to drugs of abuse is typically correlated to
robust increases in impulsive behavior, often specifically in
adolescent rodents but not in adults, measured with the 5-CSRTT
or the two-choice reaction time task, a simplified version of
the former (Burton and Fletcher, 2012; Siemian et al., 2017;
Moazen et al., 2018; Xue et al., 2018). Interestingly, a study
compared cocaine and a cocaine-associated cue to compete for
attention, and concluded that while cocaine severely disrupted
the well-learned sustained attention task in rats, the cocaine-
associated cue induced cocaine seeking but failed to impair the
task (Pitchers et al., 2017c).

Another model focuses on response inhibition, i.e., the ability
to inhibit a pre-potent (planned or already initiated) action
by measuring action restraint and/or cancellation (Bari and
Robbins, 2013). The animal is required to withhold responding
for a set duration in order to receive a reward. Any premature
response during the waiting interval resets the waiting time and
increases the delay to reward.

Using these models, the field has established that impairments
of the PFC, that undergoes profound pruning during adolescence
(Drzewiecki et al., 2016), are both risk factors and consequences
of impulse-control disorders, akin to what is observed in
substance abuse (Goldstein and Volkow, 2011). Other studies
show a role of VTA dopamine, locus coeruleus norepinephrine
neurons and cholinergic neurotransmission on attention,
impulsive and motivational control (Balachandran et al., 2018;
Fitzpatrick et al., 2019; Sarter and Lustig, 2019).

High-Responder/Low-Responder Model
Rats are characterized as HRs or LRs based on their cumulative
locomotor movements during a locomotor test in a novel,
inescapable environment, with HRs showing greater locomotor
activity compared to LRs. This separates rats based on novelty-
induced ‘‘sensation-seeking’’ behavior, a trait associated with
drug addiction (Piazza et al., 1989; Dellu et al., 1996). This model
captures individual variation in the acquisition of drug-taking
behavior, specifically psychostimulants. Relative to LRs, HRs
acquire cocaine (Piazza et al., 2000; Mantsch et al., 2001;
Ferris et al., 2013), amphetamine (Piazza et al., 1989, 1990,
1991, 1998; Klebaur et al., 2001; Cain et al., 2008) and
nicotine SA (Suto et al., 2001) at a faster rate. HRs also
show greater behavioral sensitization to repeated amphetamine
injections compared to LRs (Hooks et al., 1992). Despite
acquiring drug-taking at different rates, outbred HRs and LRs
do not differ in other addiction-related behaviors following
prolonged cocaine SA, including the motivation to work for

the drug, or drug-seeking behavior during tests of cocaine-
primed and cue-induced reinstatement (Deroche-Gamonet et al.,
2004). However, work using a model of rats selectively bred
based on locomotor response to a novel environment [bred
high-responder (bHR)/bred low-responder (bLR) model] has
challenged this view, as these two phenotypes do differ in several
addiction-related traits. Compared to bLR, bHR show higher
levels of impulsivity (Flagel et al., 2010), attribute incentive
motivational value to food and cocaine cues (Flagel et al., 2010),
and acquire cocaine SA at a faster rate (Davis et al., 2008; Flagel
et al., 2016). Recent work has shown that after prolonged SA
training bHR initially acquires cocaine SA at a faster rate and
show greater compulsive drug-seeking behavior when drug is not
available compared to bLRs (Flagel et al., 2016). bHRs also show
greater drug-seeking behavior during tests of cocaine-primed
and cue-induced reinstatement compared to bLRs (Flagel et al.,
2016). While the data from the selectively bred rat line (Flagel
et al., 2016) contrasts those of an outbred population of rats
(Deroche-Gamonet et al., 2004), it appears that this model may
still be relevant for assessing individual variation in addiction-
related behavior beyond the acquisition of drug-taking.

Work focusing on the neurobiological mechanisms
underlying phenotypic differences between HRs and LRs
has focused mainly on the mesolimbic dopamine system.
Following drug experience, both outbred and selectively bred
HRs and LRs differ in several dopamine parameters within the
NAc (Rougé-Pont et al., 1993; Chefer et al., 2003; Flagel et al.,
2010; Ferris et al., 2013; Waselus et al., 2013; Mabrouk et al.,
2018), as well as dopamine firing rates in the VTA (McCutcheon
et al., 2009, HRs and LRs only). Differences also exist in basal
levels of epigenetic modification within the NAc in bHRs and
bLRs (Chaudhury et al., 2014), and these differences persist
following cocaine experience (Flagel et al., 2016). In addition
to the mesolimbic dopamine system, HRs and LR differentially
engage the hypothalamic-pituitary-adrenal axis (Piazza et al.,
1991; Kabbaj et al., 2007), which is also believed to contribute
to differences in addiction-related behaviors between the
two phenotypes.

Sign-Tracker/Goal-Tracker Model
The sign-tracker (ST)/goal-tracker (GT) model is used to assess
individual variation in the motivational value of a reward-paired
cue during a Pavlovian conditioned approach (PavCA) task
(Flagel et al., 2007; Robinson and Flagel, 2009; Meyer et al.,
2012). During Pavlovian learning, a once neutral stimulus that
reliably precedes the delivery of a reward becomes attributed
with a predictive value and is transformed into a CS (Pavlov,
1927). However, in addition to a predictive value, the CS can
also be attributed with an incentive motivational value and
invigorate behavior on its own (Robinson and Berridge, 1993;
Berridge, 2001). During PavCA training, rats that attribute a
predictive value to the CS are called GTs, whereas those that
attribute both a predictive and incentivemotivational value to the
CS are STs. Using this model, the neurobiological mechanisms
underlying the predictive vs. the incentive motivational value
of a reward cue have been explored. STs engage regions within
the ‘‘motive circuit’’ (Kalivas and Volkow, 2005) to a greater
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extent than GTs in response to both food (Flagel et al., 2011a;
Haight et al., 2017) and drug-paired cues (Yager et al., 2015).
Dopamine transmission within the NAc core (Flagel et al.,
2007, 2011b; Saunders and Robinson, 2012) and PFC (Pitchers
et al., 2017b) also mediates sign-tracking behavior, whereas
cholinergic transmission within the PFC mediates goal-tracking
behavior (Pitchers et al., 2017b). Collectively, work has shown
that goal-tracking behavior is reliant on ‘‘top-down’’ cortical
processing (for review see Kuhn et al., 2018a; Sarter and
Phillips, 2018; Campus et al., 2019), whereas sign-tracking
behavior engages ‘‘bottom-up’’ subcortical processing (for review
see Flagel and Robinson, 2017; Kuhn et al., 2018a). It is
proposed that the imbalance between ‘‘top-down’’ and ‘‘bottom-
up’’ processing results in the behavioral differences between
the phenotypes.

It has been postulated that attributing an excessive incentive
motivational value to a reward-cue can lead to maladaptive
behaviors such as drug addiction. In fact, STs and GTs differ
in several addiction-related behaviors. For example, in addition
to sign-tracking to cues associated with a food reward, STs
also sign-track to cues associated with cocaine (Uslaner et al.,
2006; Yager and Robinson, 2013) and opioid (Yager et al., 2015)
reward delivery. Relative to GTs, STs are also more impulsive
(Flagel et al., 2010; Lovic et al., 2011) and will work harder
for an infusion of cocaine (Saunders and Robinson, 2011).
However, the two phenotypes do not differ in the rate of
cocaine SA (Saunders and Robinson, 2010; but see Beckmann
et al., 2011; Saunders et al., 2013; Kawa et al., 2016; Kuhn
et al., 2018b) or operant extinction (Saunders and Robinson,
2011; Kawa et al., 2016; Kuhn et al., 2018b), but do differ
in reinstatement of drug-seeking behavior. STs show greater
rates of both cocaine-primed (Saunders and Robinson, 2011)
and cue-induced (Saunders et al., 2013; but see Kawa et al.,
2016) reinstatement of drug-seeking behavior compared to
GTs following ShA training. Work has shown that enhanced
dopamine transmission within the NAc core contributes to
higher cue-induced drug-seeking behavior observed in STs
(Saunders et al., 2013). Additionally, the paraventricular nucleus
of the thalamus, a region within the motive circuitry (Kelley
et al., 2005) that has recently gained attention for mediating
motivated behaviors including addiction-related behaviors (for
review see Millan et al., 2017), is also a key node regulating
this individual variation in cue-induced drug-seeking behavior
(Kuhn et al., 2018b).

Though STs are more susceptible to both cocaine-primed
and cue-induced reinstatement, GTs show greater drug-seeking
behavior during a test for context-induced reinstatement
(Saunders et al., 2014), and in response to discriminative stimuli
associated with reward delivery, an effect mediated by cholinergic
transmission within the PFC (Pitchers et al., 2017a). Compared
to STs, GTs more readily utilize cortical processing (for review
see Sarter and Phillips, 2018), and it is postulated that this
cortical engagement allows them to disentangle the complex
nature of contexts and discriminative stimuli better than STs,
resulting in more drug-seeking behavior. This difference in
relapse propensity between STs and GTs relative to the type
of reinstatement implies that both phenotypes are sensitive

to addiction-related behaviors; however, the environmental
contingencies and neurobiological mechanisms mediating these
effects differ. These findings suggest that in contrast to the
HR/LR model, the main strength of the ST/GT model is
elucidating the neurobiological mechanisms associated with
individual variation in relapse propensity. This model also has
translational validity, as work in humans has shown sign-
and goal-tracking behavior (Garofalo and di Pellegrino, 2015;
Joyner et al., 2018; Schad et al., 2019), though linking a
specific conditioned response in humans with addiction-related
behaviors has yet to be explored.

ADDITIONAL MODELS OF BEHAVIORAL
ADDICTIONS

Gambling Disorder
Due to its diagnostic similarities with substance-use disorders,
gambling disorder (GD; Langdon et al., 2019) was moved
to a new category entitled ‘‘Substance-related and Addictive
Disorders’’ in the most recent DSM (APA, 2013). In fact, GD is
currently the only behavioral addiction that is diagnosable
in the DSM, and interestingly there is a high level of
comorbidity between individuals diagnosed with GD and
drug addiction (Lorains et al., 2011). GD is characterized
as compulsive gambling behavior that results in distress
and causes disruptions to an individual’s personal and
professional life (APA, 2013). The Iowa Gambling Task
(IGT), a neuropsychological battery used to assess decision-
making strategies, is clinically used to study GD. During this
task, an individual selects a card from one of four decks, each
of which has a different probability of a reward to punishment
ratio assigned to it resulting in ‘‘safe’’ and ‘‘risky’’ options
(Bechara et al., 1994). Individuals with GD choose cards from
riskier decks more often than healthy control, resulting in
fewer winnings (Cavedini et al., 2002). In fact, performance
on this task has been associated with treatment success
(Alvarez-Moya et al., 2011).

The rodent gambling task (rGT; Zeeb et al., 2009) is the
most commonly used adaptation of the IGT. During this task,
rats have the option to poke into four different ports, and each
port has a specific reward (e.g., sugar pellets) and punishment
(e.g., time-out period between trials) ratio associated with it.
Rats are given a fixed amount of time to complete the task and
choosing from the riskier ports (i.e., more sugar pellets but a
longer time-out period) results in a lower net gain compared to
selecting the safer ports. Studies have found that the orbitofrontal
cortex (OFC) and the basolateral amygdala (BLA) mediate the
acquisition of adaptive decision making during this task (Zeeb
and Winstanley, 2011, 2013). However, only the BLA is needed
for the continued expression of the adaptive strategy suggesting
that the OFC is initially recruited to establish the behavior,
but the BLA maintains it (Zeeb and Winstanley, 2011; Zeeb
et al., 2015). The insular cortex has also been shown to mediate
decision making during the rGT (Ishii et al., 2015; Pushparaj
et al., 2015; Daniel et al., 2017). These data complement studies
in humans demonstrating that various regions of the PFC are
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recruited during the IGT (Fellows and Farah, 2005; Tanabe
et al., 2007; Lawrence et al., 2009; Power et al., 2012), and
the amygdala mediates GD in humans (Bechara et al., 1999;
Takeuchi et al., 2019).

While the rGT emulates aspects of GD and appears to have
translational significance, it has been criticized for only modeling
poor decision-making strategies, and not behaviors exclusively
associated with GD (for review see Winstanley and Clark, 2016).
To better address this, additional rodent models have been
developed to model specific aspects of GD. For example, the
rodent betting task models ‘‘escalation of commitment’’, or
rather the phenomenon that people become more cautious as
the stakes get higher (Staw, 1981). Like humans, as stakes get
higher rats will more often select a certain reward as opposed
to the chance of receiving a higher reward with the risk of
receiving nothing at all (Cocker et al., 2012). The BLA (Tremblay
et al., 2014), regions within the PFC (Barrus et al., 2017), and
dorsal striatal dopamine levels (Cocker et al., 2012) appear to
mediate behavior during this task. Gambling tasks have also been
created to mimic the behavior of ‘‘loss-chasing,’’ or continuing
to gamble in an effort to earn back previous losses, which
is commonly observed in individuals with GD (Toce-Gerstein
et al., 2003; Strong and Kahler, 2007). During this paradigm,
rats intermittently must choose between withholding responding
during a time-out period, or to gamble with the chance of
avoiding the time-out period with the risk of doubling it (Rogers
et al., 2013). The BLA (Tremblay et al., 2014), as well as serotonin
and dopamine transmission (Rogers et al., 2013), have been
shown to mediate behavior during this task. Lastly, a task known
as the rat slot machine task has been used to model the ‘‘near-
miss effect’’ (Peters et al., 2010) seen in humans whereby barely
losing a gamble motivates continual gambling (Kassinove and
Schare, 2001; Clark et al., 2009). During this task, rats must
first poke into all available ports, after which the lights within
each port either turn on or stay off. If all lights come on, that
is considered a ‘‘win’’ trial and the rat must press on a lever in
order to receive the reward. Compared to other ‘‘loss’’ trials, rats
show greater lever pressing when a ‘‘nearmiss’’ occurs (e.g., lights
in all ports come on except one vs. only one light coming on;
Winstanley et al., 2011). Dopamine signaling has been implicated
in mediating behavior during this task (Winstanley et al., 2011;
Cocker et al., 2014, 2017), particularly within the insular cortex
(Cocker et al., 2016).

Other factors that affect gambling behavior in humans are
also being taken into consideration when modeling GD, such as
the motivational salience of audiovisual cues that are commonly
present in casinos. Similar to behavior in drug addiction, cues
and contexts associated with gambling have been shown to
affect gambling behavior (for review see Barrus et al., 2016),
and behavioral paradigms in rodents have been created to
emulate these effects (Barrus and Winstanley, 2016; Adams
et al., 2017; Langdon et al., 2019). Taken together, it is evident
that no single behavioral paradigm can capture the complexity
of GD in rodents. Thus, similar to studying drug addiction-
related behaviors in animal models, a battery of assessments are
used in order to better model and assess the neurobiological
underpinnings of GD.

Exercise Addiction
Though not included in the DSM, exercise addiction (EA) has
been reported to affect 0.3–0.5% of the general population and
1.9–3.2% of individuals who regularly exercise (Berczik et al.,
2012; Griffiths et al., 2015). The main issue in diagnosing
individuals with EA is that diagnostic criteria have not yet been
agreed upon. Several screening tools have been developed to
assess EA in humans, including the Exercise Addiction Inventory
and the more commonly used Exercise Dependence Scale (for
review see Hausenblas et al., 2017). Several studies have proposed
that criteria for EA be adapted from those used to diagnose
substance use disorders per the DSM, including measures
of tolerance, withdrawal, and decreased involvement in other
activities (for review see Freimuth et al., 2011). Independent
of diagnostic criteria, studies have identified behavioral traits
associated with EA, such as obsessive-compulsive behavior,
loneliness and anxiety (Macfarlane et al., 2016; Lukács et al.,
2019). Several other disorders, including substance use disorders,
eating disorder, and other behavior addictions such as shopping
and sex addiction have been found to co-occur with EA
(for review see Freimuth et al., 2011). Despite not having
a standardized diagnostic procedure, rodent models of EA
exist, primarily composed of assessing wheel-running behavior.
In fact, several studies using rodent wheel-running models
have yielded evidence of behaviors akin to symptoms of EA
aligning with those observed in substance use disorders (for
review see Richter et al., 2014). Though still being fully
conceptualized, it is evident that EA is garnering more attention
and is being more rigorously assessed in both clinical and
preclinical models.

MODELS USED BY PHARMACEUTICAL
COMPANIES TO ASSESS ABUSE
POTENTIAL AND THEIR FACE VALIDITY

Regardless of the scientific question, all animal models strive
to represent part of the neurobiological mechanisms that guide
human behavior. Models are limited in this regard, but their
use is needed to assess the abuse potential of new drugs. We
describe in this section a general overview of the procedures
commonly used by pharmaceutical companies during a new
drug safety evaluation to assess that risk. In 2017, the Food
and Drug Administration agency (FDA) released an updated
guide for industry gathering nonbinding recommendations on
how to evaluate whether a new drug product acting on the
central nervous system (CNS) has abuse potential and required
to be subject to control under the Controlled Substances Act
(CSA; U.S. Department of Health and Human Services, 2017).
FDA does not recommend that every drug under development
undergo an evaluation of abuse potential, but proposes focusing
on the new CNS-active molecular entities that have not
previously been assessed by FDA for abuse potential. After
assessing if a new drug, or any of its major metabolites, is
CNS-active through chemistry, pharmacokinetics and receptor-
binding studies, the next step includes abuse-related animal
behavioral studies, most commonly performed in rats. A first
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set of safety studies measure the effects of the drug on general
behavior, such as a motor performance test. As an example,
drug-induced hyperactivity is recorded as an abuse-related
signal. Specific abuse-related studies evaluate: (1) the rewarding
and reinforcing properties of the drug; and (2) the similarity
of the effects of the new drug to established drugs of abuse,
defined as drug discrimination. The rewarding and reinforcing
properties are measured using SA starting on fixed ratio 1,
which increases with continual training. Drug discrimination
generally involves training animals to self-administer a training
drug, usually a drug of abuse of similar classification than the
newly tested drug, with a known mechanism of action. When
the new drug induces the same SA behavior than the training
drug, it is then hypothesized that drugs share a pharmacological
mechanism of action (Carter andGriffiths, 2009). However, since
certain classes of drugs, such as hallucinogenic 5HT2A agonists
or cannabinoids, are poorly self-administered if at all (Yanagita,
1986; Fantegrossi et al., 2004; Heal et al., 2018), conditioned
place-preference studies are alternatively recommended to
establish potential rewarding properties of a new drug (Heal
et al., 2018). These studies are usually performed at the end of
phase 2 of the clinical trial, using the final therapeutic doses
previously selected. When the studies establishing drug reward
properties are completed, the FDA additionally recommends
performing a physical dependence study, to identify potential
withdrawal syndromes and behavioral disruptions upon abrupt
drug discontinuation.

The decision to test the abuse potential of a new drug in
humans depends on the results of the above-mentioned animal
studies, a thorough comparison of the preclinical and clinical
studies related to the drug and profiles of abuse- and euphoria-
related adverse events established in healthy individuals and
individuals with the disease of study. If all of these markers
point to abuse-related signals, the drug is then tested in humans
reporting numerous recent recreational experiences with drugs
in the same drug class as the tested drug, through human abuse
potential additional studies.

The two major models used to classify and regulate drug
use, SA and CPP, present different levels of face validity.
SA, including multiple-choice SA procedures (Griffiths et al.,
1993), presents a high level of face validity and predictive
validity (Haney and Spealman, 2008; Carter and Griffiths,
2009) and drugs self-administered in rodents correspond
with those having reinforcing properties in humans (Schuster
and Thompson, 1969; Griffiths and Ator, 1980; Haney and
Spealman, 2008; Carter and Griffiths, 2009). In several studies,
preclinical identification of drugs reducing craving and/or intake
successfully translated to humans (Heilig et al., 2016). This was
the case for the α2-adrenergic agonist clonidine that reduced
cocaine and heroin craving in a human laboratory setting and
clinical trial (Jobes et al., 2011; Kowalczyk et al., 2015). Similarly,
glucocorticoid receptor antagonist mifepristone was found to
decrease alcohol intake in rats, and also lessened cue-induced
alcohol craving and intake in individuals with alcohol use
disorder (Vendruscolo et al., 2012, 2015).

It is critical to remember that although useful, simple
rodent models fail to encapsulate the complexity of human life.

Factors such as drug availability, economic and socio-cultural
levels influence the opportunities and experiences available to
individuals and thus impact the risk of abuse. Preclinical models
offering alternative rewards or including behavioral economics
tackle some of these factors (see above), but these models
are mostly limited to laboratory use currently and are not
yet mainstreamed for pharmacological testing. Some authors
additionally argue that, albeit the current models used to assess
abuse potential are valid and reliable, they often lack accuracy
assessing the propensity to develop addiction and the severity
in which it will manifest, two parameters deeply influenced
by individual vulnerability (Conway et al., 2010). They argue
the need for better indices accounting for the complexity and
multifactorial traits that impact the development of addiction in
humans, in order to develop improved prevention approaches
and treatment strategies.

One way to address these limitations is to introduce genetic
variability in rodent models. While genetic factors contribute to
susceptibility to drug addiction (for review see Nestler, 2000;
Bevilacqua and Goldman, 2009), the heritability of drug use
varies with hallucinogens showing the lowest level of heritability
and cocaine showing the highest (Goldman et al., 2005). Rat
lines exist that inherently capture genetic diversity, such as
the heterogeneous stock rat, allowing for better representation
of genetic and behavioral variation present in the human
population (Solberg Woods, 2014; Woods and Mott, 2017).
For a more targeted assessment of the role a gene may have
in a behavioral trait, transgenic models, specifically genetic
knockout and overexpressing models, can be used. In contrast
to manipulating the genetic background of an animal to assess
changes in behaviors, models can also be created by selectively
breeding animals based on a specific behavioral trait, such as
in the bHR/bLR model, and then assessing genetic differences
between phenotypes. Lastly, to gain a broader understanding of
the genetic differences that may contribute to certain phenotypic
traits in animal models, quantitative trait loci analysis can be
used. Using this technique, genetic variants can be identified in
animals that differ in behaviors associated with addiction. While
genetics plays a role in the predisposition for addiction-related
behaviors, previous work has also focused on the epigenetic
effects drugs of abuse have on the long-term transcriptional
regulation of genes and how this contributes to addiction
(Robison and Nestler, 2011). By focusing on the genetic basis for
addiction-related behaviors, in conjunction with implementing
better preclinical models of addiction, pharmaceutical companies
can identify more successful therapeutics interventions in the
treatment of drug addiction.

CONCLUSION

Despite the complexity of substance-related and addictive
disorders, we have highlighted in this review currently used
preclinical models aiming to mimic as closely as possible
the behaviors observed in humans. As models become more
complex, the tools used to study the underlying neurobiological
substrates also improve, moving the field forward towards future
therapeutic opportunities.
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