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The past 10 years have witnessed an explosion in deep learning neural
network model development. The most common perceptual models with
vision, speech, and text inputs are not general-purpose AI systems but
tools. They automatically extract clues from inputs and compute prob-
abilities of class labels. Successful applications require representative
training data, an understanding of the limitations and capabilities of
deep learning, and careful attention to a complex development process.
The goal of this view is to foster an intuitive understanding of convolu-
tional network deep learning models and how to use them with the goal
of engaging a wider creative community. A focus is to make it possible
for experts in areas such as health, education, poverty, and agriculture to
understand the process of deep learning model development so they can
help transition effective solutions to practice.

1 Introduction

Recent successes in artificial intelligence (AI) rely on learning systems called
neural network models. This name originated because these models use
many simple computation elements or nodes operating in parallel and
arranged in layers reminiscent of biological neural networks. Nodes are
connected via weights whose settings are learned during training. Mod-
ern “deep learning” neural network models demonstrate improved perfor-
mance on many tasks, including locating and labeling objects in images,
speech recognition, detecting fraudulent financial transactions, transcrib-
ing speech, analyzing text queries, medical diagnostics, and drug discovery
(LeCun, Bengio, & Hinton, 2015; Vaswani et al., 2017).

Neural network capabilities have grown dramatically. A 1987 review of
neural networks included only six common models and a few applications
(Lippmann, 1987). A recent online review (Fridman, 2020) and more than 40
workshops in the important NeurIPS neural network research conference
include more than 100 applications and approaches.1 Deep learning using

1
NeurIPS Conference information is available at https://neurips.cc/virtual/2021/

index.html.
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288 R. Lippmann

multilayer neural networks was known as an approach in 1987, but mod-
ern advances are founded on massive amounts of data, vast computation
resources, and new large architectures sometimes containing as many as
billions of settings learned from data.

Early research on neural networks explored multilayer perceptrons
(MLPs) where all nodes in a layer are connected to every node in the next
layer and computations feed forward from lower to upper layers (Lipp-
mann, 1987). These fully connected systems provided good performance on
some classification and prediction tasks, but required many trained weights
or settings and were often too computationally expensive for tasks such
as image classification. Convolutional networks (ConvNets, or CNNs) are
feedforward networks that were initially developed for image classifica-
tion and other vision tasks (LeCun et al., 2015). They include many fewer
trainable settings than MLPs and are relatively invariant to the position of
an object in an input image. Convolutional networks are now the domi-
nant approach for image classification, object identification in images, face
recognition, extracting text from images, preprocessing speech in speech
recognizers, and classification tasks in many domains. They often pro-
vide substantial improvement in performance over existing state-of-the-art
systems. Real-time implementations can be found in cameras and smart
phones for face detection, face recognition, and limited-vocabulary offline
speech recognition.

Recurrent networks were developed to process input tokens with no
predefined length such as sequences of words for speech recognition or
language translation and sequences of video frames to determine when a
person performs a specific action (Hochreiter & Schmidhuber, 1997). These
networks contain internal memory that holds information extracted from
past tokens and is used in addition to the most recent input to produce
outputs. More recently, complex feedforward networks called transform-
ers have been developed to analyze sets of input tokens such as sentences
or paragraphs of words for tasks such as language translation, text topic
classification, question answering, and predicting the next word or words
in a sentence (Vaswani et al., 2017; Brown et al., 2020). Transformers use a
type of training called attention to determine those node outputs from one
layer to weight most strongly when forming inputs for each node in the
next layer. These networks all use supervised training where class labels of
at least some training examples are provided. Generative adversarial net-
works (GANs) are complex networks that use unsupervised training and
do not require labels for training (Goodfellow et al., 2014). GANs can syn-
thesize examples that are similar to training data but are not in the train-
ing data. Systems have been developed to synthesize high-resolution novel
images of faces, help edit images, and generate superresolution versions of
blurry images (Creswell et al., 2017). Examples of artificially generated faces
and chemicals generated by GANs (Karras et al., 2020) are available at https:
//thispersondoesnotexist.com and https://thischemicaldoesnotexist.com.
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This view focuses on convolutional networks because they have been
transformational in vision, health, drug design, security, speech, vehicle
safety, and many other application areas (LeCun et al., 2015). They are also
widely used and easy to apply to new application areas. Finally, under-
standing how they work illustrates both the strength and weaknesses of not
only convolutional networks but of many other deep neural networks. The
goal of this view is to provide an intuitive understanding of convolutional
networks that encourages a wider creative community to use them. This in-
cludes describing what they do, how they work, the overall development
process they require, and benefits and limitations.

This view was motivated by three observations. First, many people
vastly overrate capabilities of deep learning AI as confirmed by responses
to a recent AI literacy quiz (DeCario & Etzioni, 2021). In addition, terms of
“superhuman” and “better than human” performance on specific vision,
speech, and text data sets are used even when performance is not quite
even normal-human. Many “superhuman” models that work well on sim-
ple data sets are fragile and fail dramatically with small changes in the data
that humans easily handle. As part of this problem, some literature overper-
sonifies AI systems. One recent book states that a research group “invited
AI to participate in its process” (Kissinger, Schmidt, & Huttenlocher, 2021,
p. 9). This sets the stage for failure by vastly oversimplifying the importance
and difficulty of collecting data, training, and applying deep learning.

A second motivation for this view was that most people do not under-
stand the statistical nature of machine learning. It would be exciting to have
a reasoning system that can understand novel new situations and explain
how it comes to conclusions. Unfortunately, deep learning systems are good
at extracting clues to classify inputs but poor at creating a deep understand-
ing of the world represented by those images. Deep models are brittle, en-
tirely dependent on training data, and often overconfident when making
wrong decisions, and their actions are difficult to explain.

A final motivation for this view was to better democratize the use of deep
learning systems and encourage a larger community to think about using AI
for good. Currently, large online corporations have been the primary bene-
ficiaries of deep learning. They have developed AI approaches to improve
Internet search, select social media content that keeps users engaged, and
present advertisements tuned to individual users. The more people who
understand how deep learning works, the more ideas that might surface
to generate new applications. Some of these could improve everyday liv-
ing and work processes or focus on poverty, hunger, health, education, or
one of the 13 other United Nations 2030 Sustainable Development Goals
(Vinuesa et al., 2020). These types of applications are made more feasi-
ble by the steadily improving capability of deep learning models to run
on small devices, including smartphones (Ignatov et al., 2018; Wang et al.,
2020) and development platforms that require little programming knowl-
edge (Google, 2022; Microsoft, 2022).
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290 R. Lippmann

Figure 1: A deep learning model with knobs representing adjustable settings.
Outputs are probabilities of an input image containing a dog or cat.

The remainder of this view focuses on convolutional network deep
learning systems that are fed some type of input and help humans make
decisions about that input. These include some of the most widely applied
vision, speech, and text analysis models. New terms commonly used in the
deep learning field are italicized when first presented to gently introduce
important terminology.

2 Deep Learning Models Are Probability Computing Tools

Deep learning models, including multilayer perceptrons, convolutional
networks, recurrent networks, and transformers, are often used as tools that
help us decide which preselected class label best describes a given input. A
model is like a spreadsheet where you copy in data that represent an in-
put, and there are as many outputs as there are classes for possible inputs.
Internally, the input data are fed through a fixed computation or function,
and each output represents a guess at the probability that the input corre-
sponds to one class. Probabilities are numbers between 0.0 (not present) and
1.0 (certainly present) that express how likely the label applies to the input.
The only difference between a deep learning model and a spreadsheet is
that the settings are trained using data instead of adjusted by hand.

A simple deep learning model that analyzes images has knobs repre-
senting adjustable parameters or settings and has two outputs, as shown
in Figure 1. Outputs represent probabilities that the input image contains
a dog or a cat. In other similar classifiers, the input could be an x-ray im-
age and a patient’s medical history and the output could be the probability
of cancer. In more complex applications, there may be hundreds of outputs
representing species of insects that might be infecting a crop or tens of thou-
sands of outputs corresponding to all the words in a dictionary. There also
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might be more complex inputs’ including text, acoustic speech waveforms,
and numerical data.

Outputs of neural net models are produced using a complex but fixed
nonlinear function created during training by varying adjustable parame-
ters to obtain good performance on training data. This function could be
computed on something as small as a smartwatch using thousands of set-
tings for simple applications, such as detecting when a short phrase is spo-
ken to wake up a device (Chen & Ran, 2019), or it could be computed on
a smartphone using a few million settings to recognize objects in images
from a built-in camera (Howard et al., 2019). Alternatively, it may require
large, centralized computer servers in the cloud when there are many mil-
lions of settings as in large image classification models (Tan & Le, 2019) or
billions of settings as for some large recent language models used for text
completion or constrained question answering (Brown et al., 2020).

Deep learning models do not have a high-level understanding of input
classes. They do not understand what cancer is, how dangerous it is, or how
it occurs and is cured. They do not need to understand why earthquakes,
thunderstorms, or floods are important. They are simply trained to compute
probabilities based on clues extracted from input data. It may seem odd that
models can calculate probabilities from inputs, but this is something we do
all the time. By looking at cars traveling on a road, we infer the probability
of being safe when we pull our car into a stream of traffic. By reading the
temperature of our children on a thermometer, we determine if they are
sick. By looking at a garden, we can determine if it needs watering.

Deep learning models do not make decisions. It is up to users to deter-
mine how to use the probabilities provided. In simple applications, such as
identifying your pet cat in a collection of images, you could simply say the
cat is in an image if a cat-detector model produces a probability above 0.5.
For more complex decisions, like deciding if there is a pedestrian in the road
for autonomous driving or whether a person has cancer, these probabilities
are one piece of information to take into consideration.

3 How Deep Learning Convolutional Vision Models Work

Although we see the world in 3D, the most common and successful deep
learning vision models, called convolutional nets, compute probabilities from
flat images (LeCun et al., 2015). You can understand how they work by
thinking about how we solve jigsaw puzzles. Jigsaw puzzles are already
broken up into small pieces. We pick up an individual puzzle piece, com-
pare it to a full picture of the completed puzzle on the box cover, and try to
find a texture, edge, color, or feature that the piece matches. We also try to
combine the piece with other similar pieces to match larger patches of the
full picture.

Instead of matching puzzle pieces to a full image, deep learning models
first break the input up into small pieces or patches. They then compare each
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Figure 2: Patches in an input image are analyzed to determine if they contain
clues to the image class. In this example, clues are found in different patches
that contain evidence for points (ears), fur, two eyes, and a nose. These increase
the output probability that the input contains a dog. Every patch is analyzed to
determine if it contains any clue. Images of clues are from Olah et al. (2020).

patch to clues for the different classes of input images. The major advantage
of deep learning models is that they automatically learn these clues during
training. These might be as simple as edges at different orientations, unique
colors or textures, or small curves or points. Clues are like highly identifi-
able puzzle pieces that are special for each class. During testing, the strength
of matches to clues determines the output probability for each class.

Clues are stored and matches are computed in structures that will be
called filters but also called convolutional filters or matched filters. At the low-
est level, inputs to filters are numbers that represent the red, green, or blue
(RGB) color values used in cameras and displays to determine the color of
each small dot or pixel in an image patch. A filter operates on all pixels in
a patch by multiplying the number for each pixel by a separate weight and
summing all the products to produce an output. Weights are the settings of
a deep learning model.

At higher layers, filters operate on the outputs of lower-layer filters and
can create clues from larger areas of the input image. These could be lines,
curves, light or color gradients, dark spots, pointy shapes, curved regions,
textures, or even a face prototype that contains two dark spots above a cen-
tral dark region as described in Olah et al. (2020). Figure 2 shows an in-
put image of a dog broken into intermediate-sized patches. Four clues are
shown using stylized images of input patches that best match each clue.
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These clues represent the behavior of only a few thousand filters in a large
pretrained model. The images are from Olah et al. (2020), who generated
and hand-selected them to explain how convolutional models work. Ar-
rows show a few of the patches that strongly match clues. For example, the
filter that detects peaks matches the tips of a dog’s ears, and the more com-
plex filter that detects a dark spot matches the dog’s nose. These clues all
are associated with the class “dog” and cause the output probability for that
class to increase. There may be thousands of other clue detectors in a deep
learning model for different classes focusing on small features that distin-
guish among classes. Every filter is applied to every patch in the image to
determine how closely a patch matches its clue. Probabilities are calculated
by combining the outputs of high-level clue detectors.

The clues shown in Figure 2 were learned by training a deep learning
convolutional network using 1.2 million images assigned to 1000 classes
from a data set called ImageNet (Russakovsky et al., 2015). Roughly 12% of
these classes are pictures of dogs from different breeds, so it is not surprising
that there are clues for the dog shown. Over the years, however, it has been
found that as long as there are enough training data, models learn similar
low-level clues (Olah et al., 2020).

Instead of matching each clue to every input patch, one at a time in
sequence, deep learning models are structured so that matching can be per-
formed in parallel. Training large deep learning models was made feasi-
ble by graphical processing units (GPUs) that could efficiently perform these
parallel computations. Applying trained models to images also requires
computing filter outputs. Many modern cell phones already include hard-
ware that provides this capability and can process multiple images per sec-
ond (Ignatov et al., 2018).

A stylized diagram of a convolutional net is shown in Figure 3. A single
input that could be an image, spoken word or phrase, medical record data,
or a word of text is first converted to numbers that are fed into the lowest
layer on the left. This conversion is sometimes called embedding, and details
depend on the type of input. As noted above, these numbers are pixel color
values for images. Numbers are processed by input linear filters. The tips
of each of the triangles shown represent computing elements or nodes that
compute the sum of products between weights and inputs of one filter. Al-
though it seems too simple, each of these weighted sums determines how
well a patch of input matches a clue. For spoken words, one low-level filter
might extract high-frequency energy present in the sound for “s” as a clue
for discriminating between stop and go. As noted above, for images, low-
level filters might be sensitive to specific colors, edges of different orienta-
tion, low-level shapes, or textures. There may be fewer than 100 different
clues in the input level that are matched to hundreds or thousands of input
patches.

Linear processing is followed by nonlinear processing that allows the
overall model to compute complex functions. In addition, specialized
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Figure 3: A deep learning convolutional neural net with multiple layers where
the input is an image and outputs indicate label probabilities.

computations enlarge the extent of the input processed by upper-level fil-
ters. This makes upper filters able to combine clues from a larger part of
the input image. These models are called deep not because they have deep
understanding but because they contain many layers. Outputs after a final
layer are processed to produce probabilities. There may be only a few layers
to hundreds of layers and many thousands of filters extracting a wide vari-
ety of clues. Excellent visualizations of a wide variety of deep convolutional
models are available at OpenAI (2022a). They illustrate the complex struc-
ture of many models, let you visualize clues at different levels, and display
example input images that best match clues.

The structure of convolutional networks makes them relatively insensi-
tive to where an object occurs in the input. Because clues are computed on
all patches of an image, output probabilities change little as the image is
moved right and left or up and down until it falls outside the input image.
Network performance may still, however, degrade if the size of an object
changes, the viewpoint or angle of an object changes, or the background
changes.

As noted, there are other deep learning models. The most important is
called a transformer. Instead of processing a single input image, word, or
speech segment at a time as in convolutional networks, it processes a collec-
tion of inputs such as words in a paragraph of text and produces a collection
of probabilities at the output (Vaswani et al., 2017). Transformers were ini-
tially used for natural language applications such as language translation
and text completion, but they are now being applied successfully to image
classification and other applications. Transformers also use linear filters and
nonlinearities arranged in multiple layers. When used for processing text,
clues are formed from specific sequences of words, while when used for
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Figure 4: Machine learning application developers follow a four-step program.
First, data are collected from a specific location and time and split into training
and testing data. Second, a learning model’s settings are adjusted using training
data until its error rate is low enough. Third, the trained model is tested on test
data to make sure it performs well on this previously unseen data. Finally, the
trained model is deployed somewhere, often nowhere near where training data
were collected and well after those data were collected.

images, clues are formed from image patches. A major difference in trans-
formers is that linear filters are applied across members of the input collec-
tion using a process called attention. This can form new clues that combine
information from items in different locations in an image or that occur in the
past or future for items in a temporal sequence, as in speech recognition or
text processing. Transformers currently provide the best performance when
extremely large training data sets are available to train equally large models
(Brown et al., 2020; Devlin, Chang, Kee, & Toutanova, 2019; Dai, Liu, Le, &
Tan, 2021).

4 The Deep Learning Development Process

Developing machine learning applications requires a focus on data, how
those data interact with deep learning models, and how to ensure good
performance during deployment. The best way to keep the development
process on track and focused is for someone who has a thorough under-
standing of a problem to participate in the four steps of deep learning de-
velopment shown in Figure 4.

The four-step approach starts when someone comes up with an idea
about how deep learning can address an important problem. The first step is
collecting data from a specific location and time that characterize the prob-
lem. In Figure 4, data come from California in the United States. This could
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be images, text, speech, graphs such as molecular structures, a variety of
unstructured data such as patient records, or partly structured data such
as spreadsheets. All data have to be collected, cleaned, and labeled using a
predetermined set of classes.

The second step of development in Figure 4 begins with splitting data
into two parts. Training data are used to train models until error on this data
is low. Test data are tucked away safely without looking at them until train-
ing is over to make sure the model is not so overtrained and tuned to the
training data that it no longer works well on different real-world data. As
noted above, the type of training used for most models is called supervised
training because labels, for example, in the training data are required to su-
pervise or guide the training process. The main procedure is to start with a
model that has randomized settings. A few training examples are selected
and passed through the current model computing a cost using example la-
bels that estimates how well model outputs represent actual probabilities.
Model settings are adapted after every few examples in a manner that re-
duces the cost over time. This process continues, possibly going through all
examples multiple times, until estimated performance no longer improves,
as described below.

The third step of development is to test the trained model on previously
unseen test data. This is an attempt to determine the expected performance
of the model or generalization on new, unseen data. If the performance on
test data is not good enough for this application, then more data, different
data, or a different model might be necessary to address this problem. Alter-
natively, it could be that it is impossible to obtain better performance with
the information available in the data provided.

Finally, if the test data error is low enough, the model is deployed. In
Figure 4 this occurs in South America, even though it was developed in
the United States. Although time has passed and the model is deployed
far from where the training data were gathered, there is always hope that
performance might actually be similar to that measured with test data. In
practice, performance almost always drops substantially in the first live test
of a model. More rounds of data collection and development are often re-
quired to improve performance on current real-world data collected where
the model is deployed.

4.1 The Importance of Data. Acommon misunderstanding is that train-
ing data should not be required to solve a new problem because deep learn-
ing is a capable, advanced AI that can be applied to any situation. Nothing
can be further than the truth. Data collection is the most important step
of deep learning model development, and providing sufficient good data
is the surest approach to good performance. It is not uncommon to spend
80% or more of your effort on obtaining, cleaning, labeling, and organizing
data for training and testing in a new area. It is impossible to overstate how
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many ways data can be messy, noisy, and corrupted and thus difficult to
clean and use for training.

Data could be collected by a machine learning developer or a local ex-
pert like a doctor, banker, or farmer who is interested in a new application.
An indication of the importance of data is a new track in the NeurIPS 2021
conference focusing on data sets and benchmarks (Vanschoren & Yeung,
2021) and a workshop on Data-Centric AI focusing on automating the work
involved in gathering, cleaning, preprocessing, and labeling data.2 Label-
ing each example is especially important because the accuracy of machine
learning model training and evaluation depends on correct labeling. It is
also important to make sure data include all important classes and exam-
ples of their everyday variability.

The long lifetime of many data sets is an indication of the importance
of data and how difficult they are to collect. For example, the ImageNet
data set contains roughly 1.2 million training images and 100,000 test im-
ages. It was created in 2010 and enabled the initial development of deep
learning vision models in 2012 (Russakovsky et al., 2015). This data set is
still used to improve and develop new models after 12 years. The current
highest-performing vision and natural language models owe much of their
performance to custom curated data sets containing billions of images or
words (Brown et al., 2020; Dai et al., 2021).

4.2 An Overview of Training. Just as the original data are split into
training and test data, examples set aside for training are normally split into
two parts. The larger part is used to adjust weights, but validation data are set
apart and used to measure validation error as training progresses. Training is
stopped if the validation error increases, indicating the model is overfitting
to unimportant details of the training data and may not perform well on
other unseen data. A general overview of how training proceeds is shown
in Figure 5.

Before training starts, model weights are set to random values within
specified ranges. The first step of training is to select a few training exam-
ples called a batch. The second step is to process these examples and produce
probability outputs from the current model. A cost is computed by compar-
ing probability outputs to the correct labels. The cost computation uses a
cost function that, if low enough, indicates the model is correctly estimating
probabilities. The cost for one example is lowest when the highest output
is for the example’s class.

The goal of training is to reduce this model error over time but not to
reduce it so much that the model overfits the training data. This is part of
the art of training deep learning models. A common misunderstanding is

2
The NeurIPS data centric workshop is described at https://datacentricai.org/

neurips21/.
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Figure 5: Training a deep learning model involves (1) repeatedly selecting a
few training examples, (2) using the model to predict output probabilities and
comparing them to the known input labels, and (3) adapting model settings to
improve performance the next time those examples are presented.

that after training, networks produce 1.0 at the output corresponding to the
current input label and 0.0 for other outputs. As noted above, outputs are
probabilities, and since classes can almost never be perfectly distinguished
from each other, probabilities are usually between 0.0 and 1.0.

After computing the cost for one batch of training examples, model set-
tings are adjusted in a way that reduces the error the next time these ex-
amples are presented. Each setting could be moved back and forth to find
the direction and magnitude that reduce the cost for these examples, just as
you might tune an analog radio, but this would take too long. You could also
simply kick or randomly move all settings until you stumble on a setting
that reduces the error, but this would also take too long. Instead, calculus
is used to compute derivatives that determine how each setting affects the
cost. Settings are changed in a direction and magnitude that depend on the
strength and direction of their individual effect. Settings that have a strong
influence on the output cost are changed a great deal, while settings with a
weak influence are changed little. The name given to the process of deter-
mining how much to change settings is backpropagation because derivatives
are computed first at the network output and then propagate to earlier net-
work levels. The amount of correction is usually multiplied by a step size
or learning rate that can be set manually or automatically and is frequently
reduced as training proceeds.

This process continues by running through all training examples. A sin-
gle pass through all training examples is called an epoch, and it may take

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/3/287/2071846/neco_a_01518.pdf by guest on 19 Septem
ber 2023



Understanding and Applying Deep Learning 299

many epochs to fully train a model. This overall approach to training is
called stochastic gradient descent, and it can take minutes to days to com-
plete, depending on the size of the data and the amount of computation
available.

A simpler approach to training, called transfer learning, can greatly re-
duce the amount of labeled training data required. This involves obtain-
ing a pretrained model and tuning that model using the data collected
and labeled for your specific application. Many pretrained models called
foundation models are available for this purpose (Bommasani et al., 2021).
For example, in many medical applications, a convolution net can be pre-
trained on the ImageNet data set, and then smaller numbers of image data
can be used to tune the model for a specialized medical imaging application
(Greenspan, van Ginneken, & Summers, 2016). This still requires custom
well-labeled data for an application but not as much as would be required
to completely train a model. The same is true for natural language models
designed for problems such as answering text queries. These models can
be pretrained on billions of words of text and then adapted using question-
and-answer pairs for a specific application (Brown et al., 2020; Devlin et al.,
2019).

Another new approach, self-supervised learning, has been developed
to reduce the number of labeled training examples required. With self-
supervised training, large numbers of unlabeled data are first used to train
a model. This model is then tuned using smaller numbers of training data
as with transfer learning. For example, large natural language models are
being trained on text from the Internet by learning to either predict the next
word given prior words or how to fill in missing words given surround-
ing words (Brown et al., 2020; Devlin et al., 2019). After training, the core of
these models can be tuned with a few labeled data to perform a natural lan-
guage task such as question answering. Other self-supervised approaches
have been successful for image classification and speech recognition (Chen,
Xie, & He, 2021; Chen et al., 2021).

4.3 Why Errors Increase When a Model Is Deployed. Performance
drops when a model is deployed for many reasons—for example, test
data differ from training data, definitions of classes might be different be-
tween training and deployment, data might be collected differently, or la-
bels might be incorrect in training data.

There are many examples of this effect. Word error rates for commercial
speech to text systems for African American speakers averaged an unus-
able high 35% for conversational speech (Koenecke, Nam, Lake, & Goel,
2020) compared to reported low word error rates of less than 4% for deep
learning speech models tested on clean speech (Chen et al., 2021). A recent
clinical evaluation was performed in Thailand on a deep learning system
developed to detect retinopathy from images of a person’s retina. This sys-
tem was trained using more than 128,000 labeled retina images and was
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found to be comparable to trained ophthalmologists (Gulshan, Peng, &
Coram, 2016). In the clinic, however, it could not be applied to more than
20% of the images. The system was trained only on high-quality images.
It refused to rate low-quality images but rejected them even when it was
clear to nurses that patients were free of the eye disease. Rejection can be
an effective approach to ensuring that performance of deep learning classi-
fiers remains high, but the clinical staff in this evaluation were unprepared
for the unexpected workload. Finally, a convolutional net trained on chest
x-ray images was shown to diagnose pneumonia as well as radiologists did
at one hospital (Rajpurkar et al., 2017). When the same system was tested
at a nearby hospital, performance dropped substantially because a slightly
different machine and imaging protocol was used.

These degradations can only be addressed by assuming deployment is
part of the overall development cycle. After deployment, more cycles of
data collection and model improvement should be expected and built into
the overall model development process. Ideally, this would include periodic
or continuous performance monitoring and automated data collection to
support retraining.

5 A Recent Success Story in Drug Discovery

Researchers at MIT recently used deep learning to help discover a new an-
tibiotic as described in Stokes et al. (2020) and Yang et al. (2019). This is the
research mentioned in Kissinger et al. (2021), where it says that the research
group at MIT “invited AI to participate in its process.” It is informative to
examine how multiple experts from many fields cooperated to make this a
success and to understand the role deep learning played.

Performing experiments to determine the antibiotic activity of molecules
was the first step of this research. Laboratory analyses were performed on
2335 molecules to find those that inhibit Escherichia coli growth. Only 120
molecules were found to be 80% or more effective in inhibiting growth and
were labeled as “growth inhibiting.” The remaining molecules were labeled
as “not growth inhibiting.” This provided 2335 examples of labeled train-
ing data. These were very unbalanced data because only roughly 5% of the
examples could be used to learn clues about how to identify antibiotically
active molecules.

The second step of this study (step 2 in Figure 4) was to create numerical
inputs to train classifiers. This was complex because inputs are molecules of
different sizes and shapes. Information concerning the molecular structure
of each molecule was summarized using a type of deep network called a
graph neural network. It includes multiple levels of processing with nonlin-
earities as in a convolutional deep network but operates on graphs instead
of images (Yang et al., 2019). The numerical representation created from the
graph neural network was supplemented by adding other molecular in-
formation. These combined data were used to train an ensemble of binary
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machine learning classifiers that worked well on training data to discrimi-
nate between molecules that did and did not inhibit E. coli growth.

The first deployment of this screening classifier (step 4 in Figure 4) in-
volved using it to sort the antibiotic potential of 6111 molecules from a
repository called the Drug Repurposing Hub. The 99 molecules with the
highest “growth-inhibiting” probability outputs were selected for labora-
tory testing. Testing revealed that roughly half of these (51 of 99) signifi-
cantly inhibited E. coli growth. The sensitivity of a network such as this is
the percentage of the top-scoring selected test examples that are actually
the desired class. This was only roughly 50%, which would have been unac-
ceptable in medical diagnostic, image, or speech applications. In this appli-
cation, however, this was sufficient because it was relatively inexpensive to
perform 99 additional lab experiments to analyze the top 99 molecules. The
51 molecules identified were put through a second pass of screening based
on factors related to how rapidly they could be approved as a drug, their po-
tential toxicity, and structural similarity to molecules in the primary train-
ing data set. One molecule was selected from this second screening pass.
This molecule was almost missed. It was prioritized as number 89 in the top
99 molecules, and its probability of being effective was estimated to be only
0.33. It was lab-tested more thoroughly and found to be a broad-spectrum
bactericidal antibiotic. Renamed halicin, it is being more thoroughly tested
(Booq, Tawfik, Alfassam, Alfahad, & Essam, 2021).

This application of deep networks was complex but worked because ex-
perts in multiple fields were available for all steps of the process. They were
there to perform experiments necessary to label training data, format in-
put data, train a classifier, select and screen candidate drugs, perform ex-
periments to determine whether screened candidates inhibit E. coli growth,
and finally select the most likely positive candidate by hand using factors
not taken into account by the screening network. None of these steps was
easy. Although the screening network did not work that well, it was accu-
rate enough because a second stage of laboratory experiments and manual
screening identified an effective antibiotic.

6 Setting Expectations

Before even thinking about applying deep learning models, it is important
to understand their strengths and weaknesses. These models work well
with large numbers of training data, but they can be fragile and have other
weaknesses. This section is a reminder of these issues.

6.1 Sometimes a Deep Learning Model Won’t Make a Difference.
Relatively simple classifiers work well for a surprisingly high fraction of
real-world problems and data sets (Holte, 1993). Deep learning models are
required only when large amounts of data are available to support training
of such complex models. If there are only small numbers of data or if the
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data can be easily modeled and explained, then a deep learning model is
not necessary. If there is an existing solution to a problem and that solu-
tion works, then it also may be difficult to improve on that solution with
deep learning without adding new, informative sources of data. One re-
cent example where deep learning shows no benefit over more traditional
approaches is predicting the outcome of cardiac bypass surgery. Although
the largest medical data set available has more than 80,000 cases, simple
statistical logistic regression performs as well as more complex deep learn-
ing approaches with the categorical and numerical data available (Shahian
& Lippmann, 2020). This is a common finding in many areas, and it is al-
ways important to first try simpler solutions before developing deep learn-
ing models.

6.2 Deep Learning Models Are Often Fragile and Not Quite Super-
human. Many news articles start with a statement about how AI deep
networks perform better than humans on some tasks. In practice, deep
networks might perform well on some limited task in the laboratory but
can fail spectacularly even when inputs are varied only slightly. This sec-
tion focuses on the fragility to small changes in test data.

A good example of this fragility is the sensitivity that deep learning im-
age classifiers have to slight modifications of the ImageNet test data. Im-
ageNet contains roughly 1.2 million training examples containing pictures
from the Internet and 1000 classes. The accuracy of the top single guess from
a well-trained human on ImageNet is roughly 91% (Shankar et al., 2020),
and a high-performance Resnet50 model’s comparable top-1 accuracy is
76.2% (Radford et al., 2021; He, Zhang, Ren, & Sun, 2016) as shown by the
left-most bar in Figure 6. Human performance is not perfect because Ima-
geNet contains unfamiliar class labels such as as the dog breeds “Leonbert,”
“Vizsla,” and “Weimaraner” that are difficult to label correctly even with
training. Other common objects like “teapot,” “screw,” and “padlock” are
classified almost perfectly. The shaded area in the top of Figure 6 shows the
range of trained human performance on ImageNet and three degraded ver-
sions of ImageNet. It can be seen that human performance remains above
90% for all degraded data sets.

The second bar from the left in Figure 6 shows how the Resnet50 system
degrades when a different ImageNet test sample, called ImageNet V2, with
roughly 20,000 images was created by scanning the Internet using the same
procedures used to generate the original training images (Recht, Roelofs,
Schmidt, & Shankar, 2019). This is a surprising dramatic reduction in perfor-
mance demonstrating poor generalization on images similar to those used
for training! Humans show no consistent reduction in performance on these
new test data (Shankar et al., 2020).

The third bar in Figure 6 shows performance when new test data
called ObjectNet include images of common household objects taken from
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Figure 6: The four bars show ImageNet top-1 accuracy for a high-performance
deep learning Resnet50 model for normal ImageNet test images and for data
sets with degraded images. Human performance remains high, above 90%, even
with degraded images, as shown by the upper shaded area.

different viewpoints, with objects at different rotations, and with different
backgrounds (Barbu et al., 2019). Performance of Resnet50 drops precipi-
tously to roughly 33%, while human performance remains near 90%. Fi-
nally, another study selected natural images that are difficult for ImageNet
classifiers to identify but easy for humans (Hendrycks, Zhao, Basart, Stein-
hardt, & Song, 2021). The right-most bar in Figure 6 shows that the Resnet50
performance drops to almost zero (Radford et al., 2021) while human per-
formance remains near 90% correct (Hendrycks et al., 2021).

When possible, fragility can be reduced by collecting more training data
that better sample the variability seen during deployment. A recent study,
for example, put forth the effort to collect 400 million images from the In-
ternet using associated text as weak labels and train a classifier using 256
GPUs over two weeks (Radford et al., 2021). Performance on normal Ima-
geNet test images was the same as shown in Figure 6, but changes in test
images did not cause as large reductions in performance.

All of these studies suggest that humans use a different approach to im-
age classification than deep learning models do. Models appear to focus
more on local clues such as texture, color, local shape variations, and back-
grounds that might be consistently different between ImageNet classes. We
seem to have an internal model of objects and can use it to recognize objects
from different viewpoints and rotations and with different backgrounds.
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These studies suggest that deep learning is most useful in well-controlled
environments where backgrounds are controlled and data in deployment
are as close to training data as possible.

The same caution is true for recently developed large deep learning lan-
guage models (Brown et al., 2020; Devlin, Chang, Kee, & Toutanova, 2019).
They use training on large amounts of word sequences to extend inputs, an-
swer questions, or summarize text. When given text not seen during train-
ing, they can easily be coaxed to give nonsensical false answers. This is one
reason that these models are not currently in widespread use for applica-
tions such as Internet search (Metzler, Tay, Bahri, & Najork, 2021). There are
numerous examples of this problem, but here is a simple one where a lan-
guage model described in Brown et al. (2020) and available online (OpenAI,
2022b) answers a ridiculous question never seen before. After entering the
question, “When George Washington piloted an airplane to New York, what
type of biplane did he fly?” the response is, “The plane George Washington
flew was a Curtiss JN-4D, also known as a Jenny.” Notice how confident the
answer is, providing exact details on the biplane.

6.3 Be Careful Applying Deep Learning Models in Life-Critical Situa-
tions. Fragility, overconfidence in wrong decisions, and lack of easy expla-
nations for decisions make it problematic to use deep learning in life-critical
situations. It is difficult to verify that a model will work correctly when de-
ployed because inputs can deviate far from training data. It is also difficult
to verify that the model is focusing on the relevant parts of the input and
operating in a sensible manner.

There is no easy solution to these problems. When possible, simple but
effective classifiers that are transparent and easy to explain can be used to
assist in decision making for criminal justice, law enforcement, and medi-
cal decisions as suggested and demonstrated in Rudin (2019). It is also im-
portant that training data include rare events and unusual corner cases to
make sure they are handled properly. Andrew Karpathy (2020) reveals how
difficult it is even to train a simple stop-sign detector for autonomous vehi-
cles. Multiple classifiers are required to detect occluded, hand-held, digital,
school bus, and many other types of stop signs and tens of thousands of
training examples are collected to train each classifier. Even with all this
effort, unusual situations might arise that were not sampled in training.

Much recent research is addressing these issues. Approaches that esti-
mate the uncertainty in deep learning model outputs are summarized in
Abdar et al. (2021), and anomaly detection attempts to determine when in-
puts are too different from training data (Hendrycks, Mazeika, & Dietterich,
2019). These approaches could be used to determine when to trust a model
and when to delegate a task to a human. There is also extensive recent work
in the area of explainable, understandable, and fair AI (Ghassemi, Oakden-
Rayner, & Beam, 2021; Linardatos, Papastefanopoulos, & Kotsiantis,
2020).
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7 Conclusion

Deep learning models provide new tools to address difficult real-world
problems. Success requires the joint cooperation of both machine learning
developers and experts in an application area. It is beneficial if everyone in-
volved in system development understands the overall development pro-
cess, including the need to gather sufficient representative data for training
and to carefully monitor models after deployment and retrain when nec-
essary. Expectations can be set properly only after understanding the lim-
its of deep learning systems, including their dependence on training data,
fragility to new test inputs, lack of transparency, and a tendency to be over-
confident when making predictions.
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