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ABSTRACT

�e General Data Protection Regulation (GDPR) provides new
rights and protections to European people concerning their per-
sonal data. We analyze GDPR from a systems perspective, trans-
lating its legal articles into a set of capabilities and characteristics
that compliant systems must support. Our analysis reveals the
phenomenon of metadata explosion, wherein large quantities of
metadata needs to be stored along with the personal data to sat-
isfy the GDPR requirements. Our analysis also helps us identify
new workloads that must be supported under GDPR. We design
and implement an open-source benchmark called GDPRbench that
consists of workloads and metrics needed to understand and as-
sess personal-data processing database systems. To gauge the
readiness of modern database systems for GDPR, we follow best
practices and developer recommendations to modify Redis, Post-
greSQL, and a commercial database system to be GDPR compliant.
Our experiments demonstrate that the resulting GDPR-compliant
systems achieve poor performance on GPDR workloads, and that
performance scales poorly as the volume of personal data in-
creases. We discuss the real-world implications of these find-
ings, and identify research challenges towards making GDPR-
compliance efficient in production environments. We release all of
our so�ware artifacts and datasets at h�p://www.gdprbench.org
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1. INTRODUCTION
�e European Union enacted the General Data Protection Reg-

ulation (GDPR) [3] on May 25th 2018 to counter widespread abuse
of personal data. While at-scale monetization of personal data has
existed since the early dot-com days, the unprecedented rate at
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which such data is ge�ing compromised is a recent phenomenon.
To counter this trend, GDPR declares the privacy and protection
of personal data as a fundamental right of all European people. It
grants several new rights to the EU consumers including the right to
access, right to rectification, right to be forgo�en, right to object,
and right to data portability. GDPR also assigns responsibilities
to companies that collect and process personal data. �ese include
seeking explicit consent before using personal data, notifying data
breaches within 72 hours of discovery, maintaining records of pro-
cessing activities, etc. Failing to comply with GDPR could result in
he�y penalties: up to €20M or 4% of global revenue, whichever is
higher. For instance, in January 2019, Google was fined €50M for
not obtaining customer consent in their ads personalization [38];
in July 2019, British Airways was fined £184M for failing to safe-
guard personal data of their customers [34].

Compliance with GDPR is challenging for several reasons. First,
GDPR’s interpretation of personal data is broad as it includes any
information that relates to a natural person, even if it did not
uniquely identify that person. For example, search terms sent to
Google are covered under GDPR. �is vastly increases the scope
of data that comes under GDPR purview. Second, several GDPR
regulations are intentionally vague in their technical specification
to accommodate future advancements in technologies. �is causes
confusion among developers of GDPR-compliant systems. Finally,
several GDPR requirements are fundamentally at odds with the
design principles and operating practices of modern computing
systems [41]. It is no surprise that recent estimates [11, 26] peg
the compliance rate to be less than 50%.

Analyzing GDPR. In this work, we aim to understand and evalu-
ate GDPR compliance of existing database systems. Our goal is not
to optimize these systems or to build new systems from scratch;
instead, we follow public best practices and developer recommen-
dations to ensure existing systems are GDPR-compliant [20, 12].
We analyze GDPR and distill its articles into capabilities and char-
acteristics that database systems must support. By design, the
law allows multiple interpretations: we pick a strict interpreta-
tion to reason about the worst-case performance costs of GDPR
compliance. For example, GDPR does not specify how soon af-
ter a Right To Be Forgo�en request should the data be erased. We
resolve this ambiguity by requiring the deletion request to be ini-
tiated (and possibly completed) within a few seconds. In contrast,
Google cloud, which claims GDPR compliance, informs that all
deletions will complete within 180 days of request [6]. We believe
that analyzing the impact of and benchmarking the overheads of
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the worst-case performance (resulting from strict interpretation)
is a useful reference point for designers and administrators. How-
ever, in practice, a company may adapt a relaxed interpretation
that reduces the cost and overhead of compliance. We make three
key observations in our analysis.

1. We identify and characterize the phenomenon of metadata ex-
plosion, whereby every personal data item is associated with
up to seven metadata properties (such as purpose, time-to-live,
objections etc) that govern its behavior. By elevating each per-
sonal data item into an active entity that has its own set of rules,
GDPR mandates that it could no longer be used as a fungible
commodity. �is is significant from a database standpoint as it
severely impacts both the control- and data-path operations.

2. We observe that GDPR’s goal of data protection by design and
by default conflicts with the traditional system design goals of
optimizing for performance, cost, and reliability. For example,
in order to notify people affected by data breaches, a company
may want to keep an audit trail of all accesses to their personal
data. From a datastore perspective, this turns every read oper-
ation into a read followed by a write.

3. Lastly, we identify that GDPR allows new forms of interactions
with datastores. We discuss the characteristics of these novel
GDPR queries (which we organize into a new benchmark called
GDPRBench), and their implications for database systems.

GDPRbench. As our analysis reveals, GDPR significantly affects
the design and operation of datastores that hold personal data.
However, none of the existing benchmarks recognize the abstrac-
tion of personal data: its characteristics, storage restrictions, or
interfacing requirements. We design and implement GDPRbench,
a new open-source benchmark that represents the functionalities
of a datastore deployed by a company that collects and processes
personal data. �e design of GDPRbench is informed by painstak-
ing analysis of the legal cases arising from GDPR from its first
year of roll-out. GDPRbench is composed of four core workloads:
Controller, Customer, Processor, and Regulator ; these core work-
loads are not captured by any database benchmark available to-
day. GDPRbench captures three benchmarking metrics for each
workload: correctness, completion time, and storage overhead.

Evaluating GDPR-Compliant DBMS. Finally, we aim to gauge
the GDPR compliance of modern database systems. We take three
widely-used database systems, Redis [13] (an in-memory NoSQL
store), PostgreSQL [12] (an open-source RDBMS), and a com-
mercial enterprise-grade RDBMS, and modify them to be GDPR
compliant. We followed recommendations from the developers
of these tools [20, 12] in making them GDPR-compliant; the goal
was to make minimal changes, not to redesign the system inter-
nals for efficient compliance. While all three were able to achieve
GDPR compliance with a small amount of effort, the resulting
systems experienced a performance slow down of 2-5× for tra-
ditional workloads like YCSB, primarily due to monitoring and
logging mandated by GDPR. We evaluated the performance of
these databases against GDPR workloads using GDPRbench. We
observe that GDPR queries may result in large amounts of data
records and metadata being returned, resulting in significantly
low throughput. Our analyses and experiments identify several
implications for administering GDPR-compliant database systems
in the real world.

Limitations. In this work, we have not tried to optimize the per-
formance of the GDPR-compliant systemswe evaluate. Wemerely
followed developer recommendations to achieve GDPR compli-
ance. We realize that the resulting performance degradation could

be further reduced with GDPR-specific optimizations or by re-
designing security mechanisms. �us, our work focuses on un-
derstanding GDPR compliance resulting from retrofi�ing existing
systems. Next, the design of GDPRbench is guided by several fac-
tors including (i) our interpretation of GDPR, (ii) court rulings and
GDPR use-cases in the real-world, and (iii) the three database sys-
tems that we investigated. As such, we recognize that the current
iteration of GDPRbench is a snapshot in time, and may need to
evolve as more technical and legal use cases emerge.

Summary of contributions. Our work lays the foundation for
understanding and benchmarking the impact of GDPR on database
systems. In particular, we make the following contributions:

• GDPR Analysis: Our work is one of the first to explore GDPR
from a database systems perspective. We analyze GDPR articles,
both individually and collectively, to distill them into a�ributes
and actions for database systems. In doing so, we (i) observe
the phenomenon of metadata explosion, and (ii) identify new
queries and workloads that personal data systemsmust support.

• Design and Implementation of GDPRbench: To enable cus-
tomers, companies and regulators interpret GDPR compliance
in a rigorous and systematic way, we design an open-source
benchmark named GDPRBench. In GDPRbench, we model the
queries and workloads that datastores encounter in the real-
world, and develop metrics to succinctly represent their behav-
ior. We publicly release all of our so�ware artifacts at h�p:
//www.gdprbench.org.

• Experimental Evaluation: We discuss our effort into mod-
ifying Redis, PostgreSQL, and a commercial RDBMS to be
GDPR-compliant. Our evaluation shows that GDPR compliance
achieved by minimal changes via straightforward mechanisms
results in significant performance degradation for traditional
workloads. Using GDPRbench, we show the completion time
and storage space overhead of these compliant systems against
real-world GDPR workloads. Finally, we share our insights
on deploying compliant systems in production environments,
implications of scaling personal data, as well as the research
challenges of efficient GDPR compliance.

2. BACKGROUND
Webeginwith a primer onGDPR including its internal structure

and its adoption challenges in the real world.

2.1 GDPR Overview
�e European parliament adopted GDPR on April 14th 2016,

and made it an enforceable law in all its member states starting
May 25th 2018. GDPR is wri�en1 as 99 articles that describe its
legal requirements, and 173 recitals that provide additional con-
text and clarifications to these articles. �e articles (henceforth
prefixed with G ) could be grouped into five broad categories. G 1-
11 articles layout the definitions and principles of personal data
processing; G 12-23 establish the rights of the people; then G 24-50
mandate the responsibilities of the data controllers and processors;
the next 26 describe the role and tasks of supervisory authorities;
and the remainder of them cover liabilities, penalties and specific
situations. We expand on the three categories that concern sys-
tems storing personal data.

Principles of data processing. GDPR establishes several core
principles governing personal data. For example, G 5 requires that
data collection be for a specific purpose, be limited to what is

1even the CS people in our team found it quite readable!
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necessary, stored only for a well defined duration, and protected
against loss and destruction. G 6 defines the lawful basis for pro-
cessing, while G 7 describes the role of consent.

Rights of data subjects. GDPR grants 12 explicit and excercis-
able rights to every data subject (a natural person whose personal
data is collected). �ese rights are designed to keep people in loop
throughout the lifecycle of their personal data. At the time of col-
lection, people have the right to know the specific purpose and
exact duration for which their data would be used (G 13, 14). At
any point, people can access their data (G 15), rectify errors (G 16),
request erasure (G 17), download or port their data to a third-party
(G 20), object to it being used for certain purposes (G 21), or with-
draw from automated decision-making (G 22). In the rest of the pa-
per, we use the terms, data subjects and customers, synonymously.

Responsibilities of data controllers. �e third group of articles
outline the responsibilities of data controllers (entities that collect
and utilize personal data) and data processors (entities that process
personal data on behalf of a controller). To clarify, when Netflix
runs their recommendation algorithm on Amazon’s MapReduce
platform, Netflix is the controller and Amazon, the processor. Key
responsibilities include designing secure infrastructure (G 24, 25),
maintaining records of processing (G 30), notifying data breaches
within 72 hours (G 33, 34), analyzing risks prior to processing large
amounts of personal data (G 35, 36) and controlling the location of
data (G 44). Additionally, the controllers should create interfaces
for people to exercise their GDPR rights.

2.2 GDPR from a Database Perspective
GDPR defines four entities—controller, customer, processor, and

regulator—that interact with the data store. Figure–1 shows how
three distinct types of data flows between the GDPR entities and
data stores. �e database that hosts personal data and its associ-
ated metadata (purpose, objections etc.,) is the focus of our work.
We distinguish it from the other store that contains non-GDPR
and derived data as the rules of GDPR do not apply to them.

�e controller is responsible for collection and timely deletion
of personal data as well as managing its GDPR metadata through-
out the lifecycle. �e customers interact with the data store to
exercise their GDPR rights. �e processor uses the stored per-
sonal data to generate derived data and intelligence, which in turn
powers the controller’s businesses and services. Finally, the reg-
ulators interact with the datastores to investigate complaints and
to ensure that rights and responsibilities are complied with.

Our focus on datastores is motivated by the high proportion of
GDPR articles that concern them. From out of the 99 GDPR arti-
cles, 31 govern the behavior of data storage systems. In contrast,
only 11 describe requirements from compute and network infras-
tructure. �is should not be surprising given that GDPR is more
focused on the control-plane aspects of personal data (like col-
lecting, securing, storing, moving, sharing, deleting etc.,) than the
actual processing of it.

2.3 GDPR in the Wild
�e first year of GDPR has demonstrated both the need for and

challenges of a comprehensive privacy law. On one hand, peo-
ple have been exercising their newfound rights like the ability to
download all the personal data that companies have amassed on
them [21], and not been shy to report any shortcomings. In fact,
the EU data protection board reports [18] 144,376 complaints from
individuals and organizations in the first 12 months of GDPR.

However, any a�empt to regulate decade-long practices of com-
moditizing personal data is not without consequences. A number
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d
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Figure 1: GDPR defines four roles and distinguishes be-
tween three types of data. �e arrows out of a datastore
indicate read-only access, while the arrows into it modify
it. (1)�e controller can collect, store, delete and update any
personal- and GDPR-metadata, (2) A customer can read, up-
date, or delete any personal data and GDPR-metadata that
concerns them, (3) A processor reads personal data and pro-
duces derived data, and (4) Regulators access GDPR meta-
data to investigate customer complaints.

of companies like Instapaper, Klout, and Unroll.me voluntarily ter-
minated their services in Europe to avoid the hassles of compli-
ance. Like wise, most of the programmatic ad exchanges [23] of
Europe were forced to shut down. �is was triggered by Google
and Facebook restricting access to their platforms to those ad ex-
changes that could not verify the legality of the personal data they
possessed. But, several organizations could comply by making mi-
nor modifications to their business models. For example, media
siteUSA Today turned off all advertisements [42], whereas the New
York Times stopped serving personalized ads [24].

As G 28 precludes employing any data processor that does not
comply with GDPR, the cloud providers have been swi� in show-
casing [48, 7, 37] their compliance. However, given the mone-
tary and technical challenges in redesigning the existing systems,
the focus has unfortunately shi�ed to reactive security. It is still
an open question if services like Amazon Macie [8], which em-
ploys machine learning to automatically discover, monitor, and
alert misuse of personal data on behalf of legacy cloud applica-
tions would survive the GDPR scrutiny.

Regulators have been active and vigilant as well: the number
of ongoing and completed investigations in the first 9 months of
GDPR is reported to be 206326. Regulators have already levied
penalties on several companies including €50M on Google [38] for
lacking a legal basis for their ads personalization, and £184M on
British Airways [34] for lacking security of processing. However,
the clearest sign of GDPR’s effectiveness is in the fact that reg-
ulators have received 89,271 voluntary data breach notifications
from companies in the first 12 months of GDPR. In contrast, that
number was 945 for the six months prior to GDPR [43].

1066



3. DESIGNING FOR COMPLIANCE
We analyze GDPR articles, both individually and collectively,

from a database perspective. �e goal of this section is to distill our
analysis into a�ributes and actions that correspond to database
systems. We identify three overarching themes: how personal
data is to be represented, how personal data is to be protected,
and what interfaces need to be designed for personal data. �ese
three collectively determine howGDPR impacts database systems.

3.1 Characterizing Personal Data
GDPR defines personal data to be any information concerning

a natural person. As such, it includes both personally identifiable
information like credit card numbers as well as information that
may not be unique to a person, say search terms sent to Google.
Such interpretation vastly increases the proportion of data that
comes under GDPR purview. Also, by not restricting the applica-
bility of GDPR to any particular domain like health and education
as in the case of HIPAA [2] and FERPA [1] respectively, GDPR
brings in virtually all industries under its foray.

Next, to govern the lifecycle of personal data, GDPR introduces
several behavioral characteristics associated with it; we call these
GDPR metadata. �is constitutes a big departure from the evo-
lution of data processing systems, which have typically viewed
data as a helper resource that could be fungibly used by so�ware
programs to achieve their goals. We discover that, when taken
collectively, these metadata a�ributes convert personal data from
an inert entity to a dynamic entity that possesses its own purpose,
objections, time-to-live etc., such that it can no longer be used as a
fungible commodity. Below, we list the seven metadata a�ributes
that must be stored along with every piece of personal data2.

1. Purpose. G 5(1b) states that personal data should only be col-
lected for specific and explicit purposes, and not further pro-
cessed in a manner incompatible with those purposes. Also,
the recent Google case [38] has established that GDPR explic-
itly prohibits any purpose bundling.

2. Time to live. Given the value of personal data, the longstand-
ing practice in computing has been to preserve them indefi-
nitely (or at least till they are economically viable). However,
G 5(1e) mandates that personal data shall be kept for no longer
than necessary for the purposes for which it was collected. In
addition, G 13(2a) requires the controller to provide this TTL
value to the customer at the time of data collection.

3. Objections. G 21 grants users a right to object, at any time,
to any personal data being used for any purposes. �is right
is broadly construed, and a controller has to demonstrate com-
pelling legitimate grounds to override it. �is property, essen-
tially sets up a blacklist for every personal data item.

4. Audit trail. G 30 requires controllers and processors to main-
tain records of their processing activities. �en, G 33(3a) re-
quires that in the event of a data breach, the controller shall re-
port the number of customers affected as well as details about
their records exposed. In light of these requirements, cloud
providers including Amazon [9] have started supporting fine-
grained per-item access monitoring. �is would create an audit
trail for every personal data item.

2�ough it may be possible for controllers to reduce this overhead by
reusing the same metadata across groups of related items like GPS traces
of a given person, the metadata granularity cannot be increased to per-
person or per-service level.

5. Origin and sharing. Every personal data item should have
an origin i.e., how it was originally procured, and sharing in-
formation i.e., external entities with which it has been shared
(G 13, 14). �e data trail set up by these articles should enable
customers to track their personal data in secondary markets.

6. Automated decision-making. �is concerns the emerging
use of algorithmic decision-making. G 15(1) grants customers a
right to seek information on which of their personal data was
used in automated decision-making. Conversely, G 22 allows
them to request that their personal data be not used for auto-
mated decision-making.

7. Associated person. G 15 enables users to ask for all the per-
sonal data that concern them along with all the associated
GDPR metadata. As such, it is imperative to store the identifi-
cation of the person to whom it concerns.

Impact on Database System Design. We call our observation
that every personal data item should be associated with a set of
GDPR metadata properties as metadata explosion. �is has sig-
nificant consequences in both control- and data-path operations
of database systems. First, having to store metadata along with
the data increases the overall storage space. Second, having to
validate each access (for purpose etc.,) and having to update a�er
each access (for audit etc.,), increases the access latency for per-
sonal data. While optimizations like metadata normalization or
metadata-aware caching could help minimize this overhead, the
resulting overhead would still be significant.

3.2 Protecting Personal Data
GDPR declares (in G 24) that those who collect and process per-

sonal data are solely responsible for its privacy and protection.
�us, it not onlymandates the controllers and processors to proac-
tively implement security measures, but also imposes the burden
of proving compliance (in G 5(2)) on them. Based on our analysis
of GDPR, we identify five security-centric features that must be
supported in the database system.

1. Timely Deletion. In addition to G 5(1e) that requires every
personal data item to have an expiry date, G 17 grants cus-
tomers the right to request erasure of their personal data at any
time. �us, datastores must have mechanisms to allow timely
deletion of possibly large amounts of data.

2. Monitoring and Logging. As per G 30 and G 33(3a), the
database system needs to monitor its operations in both data
path (i.e., read or write) and control path (say, changes to access
control), so that compliance can be established upon request by
a regulator, or relevant information be shared with regulators
and customers in the event of data breaches.

3. Indexing via Metadata. Ability to access groups of data
based on one or more metadata fields is essential. For example,
controllers needing to modify access control (G 25(2)) against
a given customer’s data; G 28(3c) allowing processors to access
only those personal data for which they have requisite access
and valid purpose; G 15-18, 20-22 granting customers the right
to act on their personal data in a collective manner (deleting,
porting, downloading etc.,); finally, G 31 allowing regulators to
seek access to metadata belonging to affected customers.

4. Encryption. G 32 requires controllers to implement encryp-
tion on personal data, both at rest and in transit. While pseudo-
nymization may help reduce the scope and size of data needing
encryption, it is still required of the datastore.
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Table 1: �e table maps the requirements of key GDPR articles into database system attributes and actions. �is provides a
blueprint for designing new database systems as well as retrofitting the current systems into GDPR compliance.

No GDPR article/clause What they regulate
Impact on database systems

A�ributes Actions

5 Purpose limitation Collect data for explicit purposes Purpose Metadata indexing

5 Storage limitation Do not store data indefinitely TTL Timely deletion

13
14

Information to be provided […]
Inform customers about all the GDPR
metadata associated with their data

Purpose, TTL,
Origin, Sharing

Metadata indexing

15 Right of access by users Allow customers to access all their data Person id Metadata indexing

17 Right to be forgotten Allow customers to erasure their data TTL Timely deletion

21 Right to object Do not use data for any objected reasons Objections Metadata indexing

22 Automated individual decision-making
Allow customers to withdraw from
fully algorithmic decision-making

Automated
decisions

Metadata indexing

25 Data protection by design and default Safeguard and restrict access to data — Access control

28 Processor Do not grant unlimited access to data — Access control

30 Records of processing activity Audit all operations on personal data Audit trail Monitor and log

32 Security of processing Implement appropriate data security — Encryption

33 Notification of personal data breach Share audit trails from affected systems Audit trail Monitor and log

5. Access Control. G 25(2) calls on the controller to ensure that
by default, personal data are not made accessible to an indef-
inite number of entities. So, to limit access to personal data
based on established purposes, for permi�ed entities, and for
a predefined duration of time, the datastore needs an access
control that is fine-grained and dynamic.

Impact on Database System Design. GDPR’s goal of data pro-
tection by design and by default sits at odd with the traditional
system design goals of optimizing for cost, performance, and re-
liability. While our analysis identified a set of just five security
features, we note that modern database systems have not evolved
to support these features efficiently. �us, a fully-compliant sys-
tem would likely experience significant performance degradation.

3.3 Interfacing with Personal Data
GDPR defines four distinct entities—controller, customer, pro-

cessor, and regulator—that interface with the database systems
(shown in Figure 1). �en, its articles collectively describe the
control- and data-path operations that each of these entities are
allowed to perform on the database system. We refer to this set of
operations asGDPR queries, and group them into seven categories:

• CREATE-RECORD to allow controllers to insert a record con-
taining personal data with its associated metadata (G 24).

• DELETE-RECORD-BY-{KEY|PUR|TTL|USR} to allow
customers to request erasure of a particular record (G 17);
to allow controllers to delete records corresponding to a com-
pleted purpose (G 5.1b), to purge expired records (G 5.1e), and
to clean up all records of a particular customer.

• READ-DATA-BY-{KEY|PUR|USR|OBJ|DEC} to allow pro-
cessors to access individual data items or those matching a
given purpose (G 28); to let customers extract all their data
(G 20); to allow processors to get data that do not object to
specific usage (G 21.3) or to automated decision-making (G 22).

• READ-METADATA-BY-{KEY|USR|SHR} to allow cus-
tomers to find out metadata associated with their data (G 15);

to assist regulators to perform user-specific investigations, and
investigations into third-party sharing (G 13.1).

• UPDATE-DATA-BY-KEY to allow customers to rectify in-
accuracies in personal data (G 16).

• UPDATE-METADATA-BY-{KEY|PUR|USR} to allow cus-
tomers to change their objections (G 18.1) or alter previous con-
sents (G 7.3); to allow processors to register the use of given
personal data for automated decision making (G 22.3); to en-
able controllers to update access lists and third-party sharing
information for groups of data (G 13.3).

• GET-SYSTEM-{LOGS|FEATURES} to enable regulators to
investigate system logs based on time ranges (G 33, 34), and to
identify supported security capabilities (G 24,25).

Impact on Database System Design. When taken in totality,
GDPR queries may resemble traditional workload, but it would be
remiss to ignore two significant differences: (i) there is a heavy
skew of metadata-based operations, and (ii) there is a need to en-
force restrictions on who could perform which operations under
what conditions. �ese observations make it impractical to store
GDPRmetadata away from the personal data (say, on backup stor-
age to savemoney), which in turnmay affect system optimizations
like caching and prefetching (since the results, and even the ability
to execute a query are conditional on several metadata factors).

3.4 Summary
Table–1 summarizes our analysis of GDPR. We identify three

significant changes needed to achieve GDPR compliance: ability to
handle metadata explosion, ability to protect data by design and by
default, and ability to support GDPR queries. While it is clear that
these changes will affect the design and operation of all contem-
porary database systems, we lack systematic approaches to gauge
the magnitude of changes required and its associated performance
impact. Towards solving these challenges, we design GDPRbench,
a functional benchmark for GDPR-compliant database systems (in
Section-4), and present a case study of retrofi�ing two popular
databases into GDPR compliance (in Section-6).

1068



4. GDPRBENCH
GDPRbench is an open-source benchmark to assess the GDPR

compliance of database systems. It aims to provide quantifi-
able ground truth concerning correctness and performance un-
der GDPR. In the rest of this section, we motivate the need for
GDPRbench, and then present its design and implementation.

4.1 Why (a New) Benchmark?
As our analysis in Section-3 reveals, GDPR significantly affects

the design and operation of datastores that hold personal data.
However, existing benchmarks like TPC and YCSB do not rec-
ognize the abstraction of personal data: its characteristics, stor-
age restrictions, or interfacing requirements. �is is particularly
troublesome given the diversity of stakeholders and their conflict-
ing interests. For example, companies may prefer a minimal com-
pliance that avoids legal troubles without incurring much perfor-
mance overhead or modifications to their systems. On the other
hand, customers may want to see a strict compliance that priori-
tizes their privacy rights over technological and business concerns
of controllers. Finally, regulators need to arbitrate this customer-
controller tussle in a fast-evolving technologyworld. �us, having
objective means of quantifying GDPR compliance is essential.

A rigorous framework would allow system designers to com-
pare and contrast the GDPR implications of their design choices, as
well as enable service providers to be�er calibrate their offerings.
For example, many cloud providers currently report the GDPR
compliance of their services in a coarse yes-no format [9], mak-
ing it difficult for regulators and customers to assess either the
compliance levels or performance impact. Finally, many govern-
ments around the world are actively dra�ing privacy regulations.
For instance, India’s ongoing Personal Data Protection bill [16],
and California’a Consumer Privacy Act (CCPA) [5]. �is bench-
mark provides a methodical way to study the efficacy of GDPR
regulations, and then adopt suitable parts of this law.

4.2 Benchmark Design
Our approach to benchmark design is guided by two factors:

insights from our GDPR analysis, and real-world data from the
first year of GDPR roll out. At a high level, GDPRbenchmodels the
working of a database deployed by an organization that collects
and processes personal data. Below, we describe the key elements
of the benchmark design.

4.2.1 Data Records

Given the stringent requirements of GDPR, it is prudent to as-
sume that personal data would be stored separately from other
types of data. �us, our benchmark exclusively focuses on per-
sonal data records. Each record takes the form <Key><Data>

<Metadata>, where <Key> is a variable length unique iden-
tifier, <Data> is a variable length personal data, and <Meta-

data> is a sequence of seven a�ributes, each of which has a three
le�er a�ribute name followed by a variable length list of a�ribute
values. We enforce all the fields of the record to have ASCII char-
acters (except for semicolon and comma, which we use as separa-
tors). We illustrate this with an example record:

ph-1x4b;123-456-7890;PUR=ads,2fa;TTL=7776000;

USR=neo;OBJ=∅;DEC=∅;SHR=∅;SRC=first-party;

Here, ph-1x4b is the unique key and 123-456-7890 is
the personal data. Following these two, we have seven a�ributes
namely purpose (PUR), time-to-live (TTL), user (USR), objections

(OBJ), automated decisions (DEC), third-party sharing (SHR), and
originating source (SRC). A�ributes could have a single value, a
list of values, or ∅. While the benchmark defines default lengths
and values for all these fields, they could be modified in the con-
figuration file to accurately represent the testing environment. Fi-
nally, we neither require nor prescribe any specific internal data
layout for the personal records, and leave it up to the individual
databases to organize them in the most performant way.

4.2.2 Workloads

We define four workloads that correspond to the core entities
of GDPR: controller, customer, processor and regulator. We com-
pose the workloads using the queries outlined in Section-3.3, and
concerning only the flow of personal data and its associated meta-
data (denoted in Figure–1 by thick and do�ed lines respectively).
�en, we glean over usage pa�erns and traces from the real-world
to accurately calibrate the proportion of these queries and the dis-
tribution of the data records they act on. However, since GDPR is
only a year old, the availability of said data in the public domain is
somewhat limited. In situations where no real data is available, we
make reasonable assumptions in composing the workloads. �e
resulting GDPRbench workloads are summarized in Table–2, and
described in detail below. While GDPRbench runs these work-
loads in its default configuration, we make it possible to update or
replace them with custom workloads, when necessary.

Controller. �e controller workload consists of three categories
of operations: (i) creation of records, (ii) timely deletion of records,
and (iii) updates to GDPR metadata towards managing access
control, categorization, third-party sharing, and location manage-
ment. While the controller is also responsible for the security and
reliability of the underlying storage system, we expect these to
be infrequent, non real-time operations and thus, do not include
them in our queries.

To determine the frequency and distribution of operations, we
rely on three GDPR properties: first, in a steady state, the number
of records createdmustmatch the number of records deleted (since
G 5.1 mandates that all personal data must have an expiry date);
next, a valid sequence of operation for each record should always
be create, updates, and delete in that order; lastly, the controller
queries should follow a uniform distribution (since G 5.1c prevents
the controller from collecting any data that are not necessary or
useful). We set the update queries to occur twice as frequently as
creates and deletes.

Customer. �is represents the key rights that customers exercise
while interfacing with the datastore: (i) the right to delete any of
their data, (ii) the right to extract and port all their data, (iii) the
right to rectify personal data, and finally (iv) the right to access
and update the metadata associated with a given personal data.

To determine the frequency and distribution of customer queries,
we study operational traces from Google’s implementation of
Right-to-be-Forgo�en (RTBF) [17]. �ough GDPR has a namesake
article (G 17), RTBF is a distinct 2014 EU ruling that allowed indi-
viduals to request the search engines to delist URLs that contain
inaccurate, irrelevant and excessively personal information from
their search results. We gather three high-level takeaways from
the Google report: first, they received 2.4 million requests over a
span of three years at a relatively stable average of 45k monthly
requests. Second, 84.5% of all delisting requests came from indi-
vidual users. Finally, the requests showed a heavy skew towards a
small number of users (top 0.25% users generated 20.8% delisting).
Based on these insights, we compose our customer workload by
assigning equal weights to all query types and configuring their
record selections to follow a Zipf distribution.
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Workload Purpose Operations
Default Default

Weights Distrib.

Controller
Management and
administration of
personal data

create-record 25%

Uniformdelete-record-by-{pur|ttl|usr} 25%

update-metadata-by-{pur|usr|shr} 50%

Customer
Exercising
GDPR rights

read-data-by-usr 20%

Zipf

read-metadata-by-key 20%

update-data-by-key 20%

update-metadata-by-key 20%

delete-record-by-key 20%

Processor
Processing of
personal data

read-data-by-key 80% Zipf

read-data-by-{pur|obj|dec} 20% Uniform

Regulator
Investigation and
enforcement of
GDPR laws

read-metadata-by-usr 46%

Zipfget-system-logs 31%

verify-deletion 23%

(a) Core Workloads

GDPR
Workloads

Controller, Customer
Processor, Regulator

Core Infrastructure

DBMS Systems

DB Interface Layer

PostgreSQL, Redis, 30 Others

Workload 
Executor

Core, GDPR

Runtime Engine

Threads, Stats

Core
Workloads

A  B  C  
D  E  F

. . .

. . .

(b) Architecture

Figure 2: GDPRbench core workloads (a), and its architecture (b). �e table describes the high-level purpose of each workload
along with its composite queries and their default parameters. We select these defaults based on GDPR properties, data from
EU regulators, and usage patterns from industry. �e architecture diagram shows the components of YCSB that we reused in
gray and our GDPR-specific extensions in blue.

Regulator. �e role of the regulator is to investigate and enforce
the GDPR laws. In case of data breaches or systematic compliance
violations, the regulator would summon access to detailed system
logs for the period of interest. In case of privacy rights violation of
individual customers, they would seek access to the GDPR meta-
data associatedwith that particular customer. However, regulators
do not need access to any personal data.

To calibrate the regulator workload, we inspect the European
Data Protection Board’s summary [18] of the first 9 months of
GDPR roll out. It reports that the supervisory authorities received
206326 complaints EU-wide. Out of these, 94622 (46%) were di-
rect customer complaints concerning their privacy rights, 64684
(31%) were voluntary data breach notifications from controllers,
and the rest (23%) were statutory inquiries against multinational
companies, and complaints by non-government and civil rights
organizations. We set the weights of regulator queries to match
the percentages from this report. Next, in line with the Google
RTBF experience, we expect the rights violations and compliance
complaints to follow a Zipf distribution.

Processor. �e processor, working on behalf of a controller, per-
forms a well-defined set of operations on personal data belong-
ing to that controller. While this role is commonly external, say a
cloud provider, the law also allows controllers to be processors for
themselves. In either case, the processor workload is restricted to
read operations on personal data.

We compose the processor workload to reflect both existing and
emerging access pa�erns. For the former, we refer to the five
representative cloud application workloads identified by YCSB, as
shown in Table–3. While some operations (like updates and in-
serts) are not permi�ed for processors, their access pa�erns and
record distributions are still relevant. For the emerging category,
we rely on our GDPR analysis, which identifies access pa�erns
conditioned on metadata a�ributes like purpose and objection.
Since this is still an emerging category, we limit its weight to 20%.

4.2.3 Benchmark Metrics

We identify three metrics that provide a foundational charac-
terization of a database’s GDPR compliance: correctness against
GDPR workloads, time taken to respond to GDPR queries, and the
storage space overhead.

Correctness. We define correctness as the percentage of query
responses that match the results expected by the benchmark. �is
number is computed cumulatively across all the four workloads. It
is important to note that correctness as defined by GDPRbench is a
necessary but not sufficient condition for the database to be GDPR
compliant. �is is because GDPR compliance includes multitude
of issues including data security, breach notification, prior consul-
tation and others that cover the whole lifecycle of personal data.
However, the goal of this metric is to provide a basic validation for
a database’s ability to implement metadata-based access control.

Completion time. �is metric measures the time taken to com-
plete all the GDPR queries, and we report it separately for each
workload. For majority of GDPR workloads, completion time is
more relevant than the traditional metrics like latency. �is is be-
cause GDPR operations embody the rights and responsibilities of
the involved actors, and thus, their utility is reliant upon com-
pleting the operation (and not merely starting them). �is is also
reflective of the real world, where completion time gets reported
more prominently than any other metric. For e.g., Google cloud
guarantees that any request to delete a customer’s personal data
would be completed within 180 days.

Space overhead. It is impossible for a database to comply with
the regulations of GDPR without storing large volumes of meta-
data associated with personal data (a phenomenon described in
Section-3.1 as metadata explosion). Since the quantity of meta-
data overshadows that of personal data, it is an important metric
to track. GDPRbench reports this metric as the ratio of total size of
the database to the total size of personal data in it. �us, by defini-
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tion, it will always be a rational number >1. As a metric, storage
space overhead is complementary to completion time since opti-
mizing for one will likely worsen the other. For example, database
applications can reduce the storage space overhead by normaliz-
ing the metadata. However, this will increase the completion time
of GDPR queries by requiring access to multiple tables.

4.3 Architecture and Implementation
We build GDPRbench by adapting and extending YCSB. �is

choice was driven by two factors. First, YCSB is an open-source
benchmarkwith amodular design, making it easy to reuse its com-
ponents and to build new ones on top of it. Second, it is a modern
benchmark (released in 2010) and has a widespread community
adoption with support for 30+ database and storage systems.

Benchmark architecture. Figure–2b shows the core infrastruc-
ture components of YCSB (in gray), and our modifications and ex-
tensions (in blue). Like the core workloads of YCSB, we create new
GDPR workloads that describe the GDPR queries and proportions
for GDPR roles (in Table–2). Inside YCSB core infrastructure, we
modify the workload engine to parse the GDPR queries and trans-
late them to generic database operations. Note that we reuse the
YCSB runtime engine that manages threads and statistics. All of
our core infrastructure changes were done in ∼1300 LoC.

Database Clients. �ese modules translate the generic storage
queries into native APIs that could be understood by the given
database. �ey are also useful for implementing any missing fea-
tures or abstractions as well as converting input data into for-
mats suitable for database ingestion. �ough YCSB already has
client stubs for 30+ database systems, the new requirements of
GDPRbenchmeant that we had to re-implement parts of Redis and
JDBC stubs. In our client stubs, we retained the native data repre-
sentation of the target databases: key-value format for Redis, and
table format for the other two RDBMS. Our Redis client includes
support for new GDPR queries, and a metadata-based access con-
trol. We implemented these changes in ∼400 lines of Java code.

Extensions and Configurability. GDPRbench retains the same
level of extensibility and configurability as YCSB. For example,
adding support for a new database simply requires adding a new
client stub. Similarly, its configuration file allows modifying the
workload characteristics, runtime parameters, and scale of data to
be�er suit the testing environment.

5. GDPRCOMPLIANT DBMS
Our goal is to present a case study of retrofi�ing current gen-

eration systems to operate in a GDPR world. Accordingly, we se-
lect three widely used database systems: Redis [13], an in-memory
NoSQL store, PostgreSQL [12], a fully featured RDBMS, and an
commercial enterprise-grade RDBMS that we call System-C3. �is
choice is representative of database organization (SQL vs. NoSQL),
design philosophies (fully featured vs. minimalist), development
methodology (open-source vs. commercial), and deployment en-
vironments. In turn, this diversity helps us generalize our find-
ings with greater confidence. Our effort to transform Redis, Post-
greSQL, and System-C into GDPR compliance is largely guided by
the recommendations in their official blogs [20, 12], and other ex-
periences from real-world deployments. While Table-2 succinctly
represents the native support levels for GDPR security features in
these three systems, we describe these and our modifications in
detail below.

3since we do not have the necessary licence to publicly share the bench-
mark results of this system, we anonymize its name.

Table 2: Native support for GDPR security features. Par-
tial support is when the native feature had to be aug-
mented with third-party libraries and/or code changes to
meet GDPR requirements.

Redis PostgreSQL System-C

TTL Partial No No

Encryption No Partial Full

Auditing Full Full Full

Metadata indexing No Full Full

Access control No Full Full
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Figure 3: Microbenchmark: (a) Redis’ delay in erasing the
expired keys beyond their TTL as DB size is increased, and
(b) PostgreSQL’s performance worsens significantly as sec-
ondary indices are introduced.

Redis. From amongst the features outlined in Section-3, Redis
fully supports monitoring; partially supports timely deletion; but
offers no native support for encryption, access control, and meta-
data indexing. In lieu of natively extending Redis’ limited security
model, we incorporate third-party modules for encryption. For
data at rest, we use the Linux Unified Key Setup (LUKS) [10], and
for data in transit, we set up transport layer security (TLS) us-
ing Stunnel [14]. We defer access control to DBMS applications,
and in our case, we extend the Redis client in GDPRbench to en-
force metadata-based access rights. Next, while Redis offers sev-
eral mechanisms to generate audit logs, we determine that piggy-
backing on append-only-file (AOF) results in the least overhead.
However, since AOF only records the operations that modify Re-
dis’ state, we update its internal logic to log all interactions includ-
ing reads and scans.

Finally, though Redis offers TTL natively, it suffers from inde-
terminism as it is implemented via a lazy probabilistic algorithm:
once every 100ms, it samples 20 random keys from the set of keys
with expire flag set; if any of these twenty have expired, they are
actively deleted; if less than 5 keys got deleted, then wait till the
next iteration, else repeat the loop immediately. �us, as percent-
age of keys with associated expire increases, the probability of
their timely deletion decreases. To quantify this delay in erasure,
we populate Redis with keys having expiry times. �e time-to-live
values are set up such that 20% of the keys will expire in short-
term (5 minutes) and 80% in the long-term (5 days). Figure– 3a
then shows the time Redis took to completely erase the short-term
keys a�er 5 minutes have elapsed. As expected, the time to era-
sure increases with the database size. For example, when there are
128k keys, clean up of expired keys (∼25k of them) took nearly 3
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Table 3: YCSB workload patterns

Workload Operation Application

Load 100% Insert Bulk DB insert

A 50/50% Read/Update Session store

B 95/5% Read/Update Photo tagging

C 100% Read User profile cache

D 95/5% Read/Insert User status update

E 95/5% Scan/Insert �readed conversation

F 100% Read-Modify-Write User activity record

hours. To support a stricter compliance, we modify Redis to iter-
ate through the entire list of keys with associated EXPIRE. �en,
we re-run the same experiment to verify that all the expired keys
are erased within sub-second latency for sizes of up to 1M keys.

PostgreSQL. As a feature-rich RDBMS, PostgreSQL offers full na-
tive support to three of the five GDPR features. For encryption
of data at rest, PostgreSQL does not natively support column/file-
level encryption, so we set up LUKS externally. For encryption
of data in transit, we setup SSL in verify-CA mode. Logging is
enabled by using the built-in csvlog in conjunction with row-
level security policies that record query responses. Next, we cre-
ate metadata indexing via the built-in secondary indices. As with
Redis, we enforce metadata-based access control in the external
client of GDPRbench. Finally, since PostgreSQL does not offer na-
tive support for time-based expiry of rows, wemodify theINSERT
queries to include an expiry timestamp and then implement a dae-
mon that checks for expired rows periodically (currently set to 1s).

To efficiently support GDPR queries, an administrator would
likely configure secondary indices for GDPR metadata. Interest-
ingly, while PostgreSQL natively supports secondary indices, we
observe that its performance begins to drop significantly when the
number of such indices increases as shown in Figure–3b. Using the
built-in pgbench tool, we measure throughput on the Y-axis, and
the number of secondary indices created on the X-axis. We run
this pgbench experiment with a DB size of 15GB, a scale factor
of 1000, and with 32 clients. Just introducing two secondary in-
dices, for the widely used metadata criteria of purpose and user-id,
reduces PostgreSQL’s throughput to 33% of the original.

System-C. Amongst the three, this offers the best level of sup-
port for GDPR. We implement TTL, the only missing feature, us-
ing the same mechanism as in PostgreSQL. For encryption, it sup-
ports Transparent Data Encryption, which encrypts the database
tablespaces internally without relying on the OS/file system level
encryption like LUKS. �is is more secure since LUKS based en-
cryption could allow not just the DB engine but all other applica-
tions running on the same server, an unencrypted access to the DB
files. Next, we set up real-time monitoring and logging by config-
uring the built-in audit trail feature. Specifically, our microbench-
marks indicate that continuously streaming the generated logs to a
pre-designated directory works up to 3× faster than saving them
in the database. Finally, we configure secondary indices to im-
prove performance for metadata-based queries of GDPRbench.

Key Takeaways. Introducing GDPR compliance in Redis, Post-
greSQL, and System-C was not an arduous task: Redis needed 120
lines of code changes; PostgreSQL, about 30 lines of scripting; and
System-C, mostly configuration changes. We accomplished all of
our modifications, configuration changes, and microbenchmarking
in about two person-months. However, as our compliance effort
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Figure 4: Performance degradation a�er introducing GDPR
features, with bars indicating performance relative to the
baseline, and absolute numbers reported for the combined
configuration. Our evaluation shows that when all features
are enabled (solid bar), Redis experiences an overhead of 5×,
PostgreSQL 2×, and System-C 2-3×.

shows, the administrators should look beyond the binary choice of
whether or not a GDPR feature is supported, and analyze if a given
implementation meets the expected GDPR standards.

6. EVALUATION
We evaluate the impact of GDPR on database systems by an-

swering the following questions:

• What is the overhead of GDPR features on traditional work-
loads? (in Section-6.1)

• How do compliant database systems perform against GDPR
workloads? (in Section-6.2)

• How does the scale of personal data impact performance? (in
Section-6.3)

Approach. To answer these questions, we use the GDPR compli-
ant Redis, PostgreSQL, and System-C described in Section-5. For
benchmarking against traditional workloads, we use the industry
standard Yahoo Cloud Serving Benchmark [22], and for bench-
marking against realistic GDPR workloads, we use GDPRbench.

1072



 0

 40

 80

 120

 160

 200

controller

custom
er

processor

regulator

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
in

s
)

(a) Redis

 0

 4

 8

 12

 16

 20

controller

custom
er

processor

regulator

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
in

s
)

(b) PostgreSQL

 0

 4

 8

 12

 16

 20

controller

custom
er

processor

regulator

C
o
m

p
le

ti
o
n
 T

im
e
 (

m
in

s
)

(c) System-C

Figure 5: Running GDPRbench workloads on compliant versions of Redis, PostgreSQL and System-C.We see that PostgreSQL
and System-C are an order of magnitude faster than Redis against GDPR workloads.

Experimental setup. We perform all our experiments on the
Chameleon Cloud [30]. �e database systems are run on a dedi-
cated Dell PowerEdge FC430 with 40-core Intel Xeon 2.3GHz pro-
cessor, 64 GB RAM, and 400GB Intel DC-series SSD. We choose
Redis v5.0 (released March 18, 2019), PostgreSQL v9.5.16 (released
Feb 14, 2019), System-C (released in 2017), and YCSB 0.15.0 (re-
leased Aug 14, 2018) as our reference versions.

6.1 Overheads of Compliance
Our goal is to quantify the performance overhead of GDPR com-

pliance by using the industry standard YCSB [22]. As shown in
Table–3, YCSB comprises of 6 workloads, named A through F, that
represent different application pa�erns. For this experiment, we
run YCSB with 16 threads; configure it to load 2M records and
perform 2M operations in each workload category.

Redis. Figure–4a shows the YCSB workloads on the X-axis and
Redis’ throughput on the Y-axis for each of the newly introduced
GDPR security features. We normalize all the values to a base-
line version of Redis that has no security or persistence. We see
that encryption reduces the throughput by ∼10%, TTL modifica-
tion brings it down by∼20%, and AoF-based logging (persisted to
disk once every second) slows the performance by ∼70%. Since
Redis is an in-memory datastore, requiring it to persist AoF to the
disk synchronously results in a significant slowdown. Given that
these GDPR features affect all types of queries: read, update, and
insert, the performance drops are fairly consistent across all types
of YCSB workloads. Finally, when all the features are enabled in
tandem, Redis experiences a slowdown of 5×.

PostgreSQL. Next, Figure–4b shows PostgreSQL performance.
PostgreSQL experiences 10-20% degradation due to encryption
and TTL checks, while logging incurs a 30-40% overhead. When
all features are enabled in conjunction, PostgreSQL slows down
by a factor of 2× of its baseline performance. �e graph also
demonstrates that the effect of GDPR on PostgreSQL is not as
pronounced as in the case of Redis. However, in terms of raw
throughput, Redis still outperforms PostgreSQL since the former
is in-memory datastore compared to the disk-based PostgreSQL.

System-C. Lastly, we show System-C’s performance in Figure–4c.
We observe that System-C’s baseline throughput is ∼2× be�er
than PostgreSQL, and internally, its write throughput is slightly
be�er than its read throughput. In terms of overheads, encryption
and TTL induce 10-20% slowdown, but auditing causes a much
steeper drop of 30-50%. �is is surprising since System-C’s audit

Table 4: Storage space overhead corresponding to Figure–
5. In the default configuration, GDPRbench has 25 bytes of
metadata attributes for a 10 byte personal data record.

Personal data
size (MB)

Total DB
size (MB)

Space
factor

Redis 10 35 3.5×

PostgreSQL 10 59.5 5.95×

trail natively supports the type of extensive logging required by
GDPR. Cumulatively, these features result in a performance degra-
dation of 2-3× compared to its baseline.

Workload E. All three systems experienced drastic overhead in
supporting range queries. In contrast to other workloads that fin-
ished in the order of seconds to minutes, Workload E took tens
of hours, underscoring the challenges of implementing complex
queries under GDPR se�ings. We omit the Workload E results as
they would require weeks to obtain; at this point, we note that
implementing range queries in an efficient manner under GDPR
constraints is a significant challenge. Note that YCSB workloads
do not exercise access control or metadata indexing, but the GDPR
workloads in the next section will incorporate these two.

Summary. �e security features introduced affect all read and
write operations, resulting in reduced performance. Features such as
logging can result in significant performance degradation, making
GDPR compliance challenging for production environments.

6.2 GDPR Workloads
In this section, our goal is to quantify how compliant Redis,

PostgreSQL, and System-C perform against real-world GDPR
workloads. A major difference between YCSB and GDPRbench
workloads is that GDPRbench mostly consists of metadata-based
queries as opposed to primary-key based queries of YCSB. Most
YCSB queries return single record associated with one primary
key. In contrast, GDPR queries such as “get all metadata associated
with a user’s records” can return a large number of records. As a
result, GDPR queries obtain lower throughput than YCSB queries.
Cognizant of this characteristic, we configure GDPRbench to load
100K personal records, and perform 10K operations for each of its
four workloads. Note how these numbers are one to two orders
of magnitude lower than the YCSB configuration in Section–6.1.
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Figure 6: Time taken by Redis to complete 10K operations
as the volume of data stored in the DB increases. For the
traditional workload in (a), Redis’ performance is only gov-
erned by the number of operations, and thus remains virtu-
ally constant across four orders of magnitude change in DB
size. However, for GDPR workload in (b), the completion
time linearly increases with the DB size.

We use the default proportion of workload queries and record
distributions as specified in Table–2, and run it with 8 threads.

Redis. Figure–5a shows Redis’ completion time along Y-axis, and
the GDPRbench workloads along the X-axis. As expected, the pro-
cessor workload runs the fastest given its heavy skew towards
non-metadata based operations. In comparison, all other work-
loads are 2-4× slower, with the controller and regulator workloads
taking the longest. �is is because, the customer workload simply
deals with the records of a given customer, whereas the controller
and regulator queries touch records across all customers. Table–
4 benchmarks the storage overhead. In the default configuration,
we see a space overhead ratio of 3.5 i.e., on average every byte of
personal data inserted causes the storage size to grow by 3.5 bytes.

PostgreSQL. Next, Figure–5b shows the corresponding baseline
compliance graph for PostgreSQL. Right away, we see that the
completion times are an order of magnitude faster than Redis for
all the workloads, while holding similar trends across the four
workloads. Our profiling indicates that PostgreSQL, being an
RDBMS, is be�er at supporting complex queries efficiently. Post-
greSQL’s performance is also bolstered (by ∼30%) by the use of
secondary indices for the metadata. However, adding these extra
indices increase the storage space overhead from 3.5× to 5.95× as
outlined in Table–4.

System-C. Figure–5c shows System-C’s performance against
GDPR workloads. Since GDPR-compliant System-C came out
slightly worse than PostgreSQL in our setup (as discussed in
Section–6.1), many GDPR workloads have taken longer to com-
plete in System-C than PostgreSQL. However, interestingly, since
the GDPR workload sizes are smaller (10MB) compared to the
YCSB workloads (2GB), System-C’s built-in query result cache
was able to significantly improve the performance of read-only
workloads such as the processor.

Summary. GDPRbench reflects the challenges of supporting GDPR
workloads on retrofi�ed compliant systems. While all systems expe-
rience significant degradation in their performance compared to tra-
ditional workloads, our evaluation shows that feature-rich RDBMS
like PostgreSQL performs be�er than NoSQL stores like Redis.

6.3 Effect of Scale
Finally, we explore how an increase in the scale of data affects

the systems. In particular, we structure this experiment to reflect a
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Figure 7: Time taken by PostgreSQL to complete 10K oper-
ations as the DB size scales. Expectedly, PostgreSQL’s per-
formance remains constant for traditional workloads in (a).
However, unlike in Redis (Figure-6a), PostgreSQL’s GDPR
performance worsens only moderately thanks to its use of
metadata indices.

scenario where a company acquires new customers, thus increas-
ing the volume of data in the DB. However, the data of the ex-
isting customers remain unchanged. �is experiment then mea-
sures how Redis and PostgreSQL perform for queries concerning
the original set of customers. We lay out experiments in two differ-
ent contexts: first, when the database contains non-personal data,
we run YCSB workloads; second, when the database contains per-
sonal data, we use GDPRbench customer workload. In both cases,
we scale the volume of data within the database but perform the
same number of operations at every scale. For both GDPR and tra-
ditional workloads, we use identical underlying hardware, same
version of GDPR-compliant Redis and PostgreSQL so�ware, and
retain the same configuration as in Section–6.1.

Redis. We seed Redis store with 1MB worth of data and perform
10K operations using YCSB workload-C. Figure-6a shows that Re-
dis takes almost identical time to complete 10K operations, despite
increasing the database volume by four orders of magnitude. �is
is not unexpected as Redis supports efficient, constant-time CRUD
operations. However, when we switch from this traditional work-
load to a GDPR workload, Figure-6b paints a different picture. In
this graph, we linearly increase the volume of personal data from
100 to 500MB, and we see a corresponding linear increase in the
completion time. �is indicates that the completion time is not
only a function of the number of operations but also the size of
the database. In hindsight, this is not completely unexpected as
metadata based queries require O(n) access, especially in absence
of secondary indices.

PostgreSQL. Next, we conduct the same scale experiment on
PostgreSQL, which has support for secondary indices. While
PostgreSQL’s performance for YCSB (shown in Figure-7a) is ex-
pectedly similar to that of Redis, its response to GDPR workload
(shown in Figure-7b) is much be�er than that of Redis. While
PostgreSQL is still affected by the increase in DB size, the impact
on its performance is muted. Our profiling indicates that this
is largely due to secondary indices speeding up metadata based
queries. But as the DB size increases, the overhead of maintain-
ing multiple secondary indices does introduce some performance
degradation.

Summary. Current generation database systems do not scale well
for GDPR workloads. PostgreSQL with metadata indexing fares bet-
ter than Redis, but still experiences some performance degradation
as the amount of personal data increases.
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7. DISCUSSION
Our experiments and analyses identify several implications for

administering GDPR-compliant database systems in the real world
and research challenges emerging from it. We discuss them below.

Compliance may result in high performance overheads.
Our work demonstrates that introducing GDPR compliance into
modern database systems is straight-forward, ranging fromminor
code changes in open-source systems, to simple configurations in
enterprise level systems. However, in all these case, the resulting
performance degradation of 2-5× (in Section-6.1) raises funda-
mental questions of compliance-efficiency tradeoffs. Database
engineers and administrators should carefully analyze the per-
formance implications of any compliance efforts, especially in
production environments. For instance, recommendations from
cloud providers such as Amazon Web Services [48], Microso�
Azure [37], and Google Cloud [7] primarily focus on checklist
of security features without much a�ention to their performance
implications.

Compliant systems experience challenges at scale. A key
takeaway from our scale experiments (in Section-6.3) is that naive
efforts at achieving GDPR compliance results in poor scalability.
Increasing the volume of personal data, even by modest amounts,
makes it challenging to respond to customer’s GDPR rights in a
timely manner, or even to comply with GDPR responsibilities in
real-time. �us, consideration for scale ought to be an important
factor in any compliance effort.

Additionally, GDPR quells the notion that personal data, once
collected, is largely immutable. In light of GDPR’s right to be for-
go�en and right to rectification, customers are allowed to exercise
much greater control over their personal data. Consequently, tra-
ditional solutions to scale problems like replication and sharding
would likely incur extra overheads than before. It might be worth
investigating the benefits of a GDPR co-processor.

Compliance is easier in RDBMS than NoSQL. We observe
that achieving compliance is simpler and effective with RDBMSs
than NoSQL stores. In our case, Redis needed two changes at the
internal design level as opposed to PostgreSQL and commercial-
RDBMS, which only needed configuration changes and external
scripting. Even from a performance point of view, the drop is
steeper in high-performant Redis as compared to the RDBMSs.
We hope our findings encourage designers and maintainers of all
categories of database systems to reevaluate their design choices,
optimization goals, and deployment scenarios in the light of pri-
vacy regulations like GDPR.

GDPR is strict in principle yet flexible in practice. �ough
GDPR is clear in its high-level goals, it is intentionally vague in its
technical specifications. Consider G 17 that requires controllers
to erase personal data upon request by the customer. It does not
specify how soon a�er the request should the data be removed. Let
us consider its implications in the real world: Google cloud, which
claims GDPR-compliance, describes the deletion of customer data
as an iterative process [6] that could take up to 180 days to fully
complete. Such flexibility also exists for the strength of encryption
algorithms, duration for preservation of audit trails, etc.

�is flexibility in GDPR interpretation allows compliance to be
treated more like a spectrum instead of a fixed target. Database
engineers and administrators could use GDPRbench to explore the
tradeoff between strict compliance vs. high performance. We note
that compliance efforts could go beyond our choices of reusing the
existing features and stickingwith the default data layouts in order
to improve performance. For example, GDPR metadata a�ributes

could be shared between related groups of data, be stored in a sep-
arate table, be normalized across multiple records, or be cached in
the application to reduce the storage overhead and access latency.

Research challenges. Our evaluations show that trivially ex-
tending the existing mechanisms and policies to achieve compli-
ance would result in significant performance overheads. We ob-
serve two common sources of this: (i) retrofi�ing new features
when they do not align with the core design principles. For ex-
ample, adding to Redis’ minimalist security model, and (ii) using
features in ways that are not intended by their designers. For ex-
ample, enabling continuous auditing in a production environment.
We identify three key challenges that must be addressed to achieve
compliance efficiently: efficient auditing, efficient time-based dele-
tion, and efficient metadata indexing.

8. RELATED WORK
A preliminary version of this analysis appeared [40] in a work-

shop. To the best of our knowledge, this work is one of the first
to analyze the impact of GDPR on database systems. While there
have been a number of recent work analyzing GDPR from pri-
vacy and legal perspectives [35, 28, 47, 15, 44, 19, 45, 25, 29],
the database and systems communities are just beginning to get
involved. DatumDB [32] proposes an architectural vision for a
database that natively supports guaranteed deletion and consent
management. Compliance by construction [39] envisions new
database abstractions to support privacy rights. In contrast, we
focus on the challenges that existing DBMS face in complying
with GDPR, and design a benchmark to quantify its impact.

Orthogonal to our focus, researchers are working on imple-
menting and analyzing individual GDPR articles end-to-end. For
example, Google researchers [17] have chronicled their expe-
riences implementing the Right to be Forgo�en for their search
service. Two groups of researchers from Oxford University an-
alyzed [27, 46] how GDPR’s right to explanation impacts the
design of machine learning and artificial intelligence systems. Fi-
nally, there is a wealth of blog posts that describe how to achieve
GDPR compliance for popular database systems including Mon-
goDB [31], CockroachDB [33], Redis [20], Oracle [36], and Mi-
croso� SQL [4].

9. CONCLUSION
�is work analyzes GDPR from a database systems perspective.

We discover the phenomenon of metadata explosion, identify new
workloads of GDPR, and design a new benchmark for quantify-
ing GDPR compliance. We find that despite needing to implement
a modest number of changes to storage systems, GDPR compli-
ance results in significant performance overheads. Our analyses
and experiments identify several implications for administering
GDPR-compliant database systems in the real world. We hope that
GDPRbench would be useful for customers, controllers, and regu-
lators in interpreting the compliance level of storage systems, and
helpful for database designers in understanding the compliance-
performance tradeoff.
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