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Abstract 
 
 
 
 
Users are increasingly expected to manage a wide range of security and privacy settings. 
An important example of this trend is the variety of users might be called upon to review 
permissions when they download mobile apps. Experiments have shown that most users 
struggle with reviewing these permissions. Earlier research efforts in this area have 
primarily focused on protecting users’ privacy and security through the development of 
analysis tools and extensions intended to further increase the level of control provided to 
users with little regard for human factor considerations.  

This thesis aims to address this gap through the study of user mobile app privacy 
preferences with the dual objective of both simplifying and enhancing mobile app privacy 
decision interfaces. Specifically, we combine static code analysis, crowdsourcing and 
machine learning techniques to elicit people’s mobile app privacy preferences. We show 
how the resulting preference models can inform the design of interfaces that offer the 
promise of alleviating user burden when it comes to reviewing the permissions requested 
by mobile apps. Our contribution is threefold. First, we provide the first large-scale, in-
depth analysis of mobile app data collection and usage practices as found in the Google 
Play app store.  This includes an analysis of over 100,000 Android apps, the permissions 
they request and the different types of third parties with which they share information. 
Second, we introduce a crowdsourcing methodology to collect people’s privacy 
preferences when it comes to granting permissions to mobile apps for different purposes 
(e.g. for internal purpose, for sharing with advertising networks) and use the results to 
develop new mobile app privacy decision interfaces. Third, by using machine learning 
techniques to analyze privacy preferences from over 700 smartphone users, we show that, 
while these preferences are diverse, a relatively small number of privacy profiles can go a 
long way in simplifying the number of decisions users have to make. This last 
contribution offers the promise of alleviating user burden and ultimately increasing their 
control over their information.  

This thesis provides an important scientific basis for starting to reconcile mobile privacy 

and usability and, in particular, helping inform the design of more usable privacy 

interfaces and settings.
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1 INTRODUCTION 

1.1 Overview 

Smartphone ownership has grown rapidly over the last few years. In 2013, global 
smartphone shipments are expected to hit 1 billion units [64]. Nearly half of cell phone 
owners carry smartphone nowadays. The explosion in smartphone ownership has been 
accompanied by the emergence of App Stores that enable users to download a growing 
number of applications onto their devices. As of June 2013, the Google Play Store1 
offered more than 1,000,000 apps; the Apple App store offered more than 950,000 apps, 
and both with close to 50 billion downloads since its launch [117, 118]. Mobile apps can 
make use of numerous capabilities of a smartphone, such as a user’s current location and 
call logs, providing users with pertinent services and attractive features.   

Inevitably, access to these capabilities opens the door to new types of security and 
privacy intrusions. Malware is an obvious problem [33, 52]; another serious problem is 
that mobile users, in general, are neither fully aware of nor have full control over how 
mobile apps access and transmit personal information. For example, the Pandora music 
app was under federal investigation for gathering location data, gender, year of birth, and 
unique device ID from mobile users and sharing this information with advertisers [35]. 
Social network applications, such as Facebook and Path, were found uploading entire 
contact lists onto their servers, which greatly surprised users and made them feel very 
uncomfortable [63, 111]. In fact, studies [54, 77, 82] have shown that users have a poor 
understanding of these sensitive resource usages, and existing interfaces fall short in 
terms of providing users with the information necessary to make informed decisions. 

A number of ongoing research efforts focus on protecting mobile users’ privacy and 
security using software analysis techniques or security extensions with app-specific 
privacy controls (e.g., [29, 68, 123]). In Android 4.3, Google also released a hidden “App 
Ops” function which allows users to fine-tune their permission settings after installation 
[114]. Given the average number of apps users install and the average number of 
permissions each app requests, asking users to systematically configure all these settings 
seems unrealistic. It creates too great a burden on the users and would most likely 
overwhelm users with details they may not fully understand and may ultimately not care 
about. To date, though there is a handful of work approaching the mobile app privacy 
problem from the users’ perspective [51, 54, 77], little work has been done to understand 
people’s privacy preferences in using mobile apps and see to what extent a better 
understanding of these preferences could inform the design of interfaces that empower 
users to better manage their privacy.  

The fundamental goal of this thesis is to contribute important knowledge on the end-
users’ side and bridge the gap between system or security-oriented privacy research and 
the user-oriented privacy preferences modeling. Within the context of mobile app 
privacy, we are aiming to solve two key research questions that potentially can also be 
applied to other relevant domains. The first one is how can we convey mobile apps’ 
                                                 
1 Previously called “the Android Market.” 
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Figure 1. The fundamental goal of this thesis is to bridge the gap between security-

oriented research and user research, emphasizing how to properly inform users of apps’ 
privacy-related behaviors and how to help users control their privacy settings without 

burdening them with numerous decisions. 

privacy-related behaviors to users in a more effective and understandable way. The other 
key research question is whether it is possible to simplify decisions users have to make 
without reducing their level of control over the decisions they really care about. In other 
words, this thesis focuses on two types of relationship between apps and users as shown 
in Figure 1, i.e. what and how should apps (or app markets) inform users regarding their 
data collection and usage practices (the “notify” arrow in Figure 1) as well as how to 
assist users in configuring their privacy settings to control the data usages of various apps 
(the “control” arrow in Figure 1).  

Specifically, this thesis involves the detailed analysis of over 100,000 mobile apps and a 
collection of more than 20,000 responses from over 700 hundred smartphone users. We 
leverage static analysis to identify the 3rd-party libraries that bundled with apps to infer 
the use of sensitive data2, crowdsourcing to collect users’ privacy preferences at large 
scale, and machine learning techniques to isolate distinguishing patterns within apps’ 
behaviors, as well as users’ preferences. In these ways, we explore whether we can 
identify the key information to inform users and whether it is possible to reduce and 
simplify the number of privacy decisions exposed to users without negatively impacting 
their sense of control. The central thesis aims at providing quantitative foundations and 
user perspectives to mobile privacy research, which can be summarized as: 

By combining static analysis, crowdsourcing and user-oriented machine 

learning techniques, we can build accurate and understandable models of 

mobile app permissions and of users’ willingness to grant these permissions. 

                                                 
2 Since the uses of 3rd-party libraries to some extent indicate why sensitive resources are used and the 
parties who collect this information.   
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These models can in turn inform the design of more usable mobile app 

permission interfaces.  

Given the scale of data we are aiming to deal with and the goal of eventually applying 
our models to the real settings, i.e. to a market of more than one million of apps and 
hundreds of millions of users, scalability is an important criterion in the design and 
conduct of our studies and analyses. In this thesis, we will also show how we resolve this 
challenge by leveraging the power of cloud, crowdsourcing and unsupervised learning.  

In the next section, we give a brief introduction to each of the three major components in 
this thesis outlining the key techniques we used and the lessons we learned in each step.  

1.2 Three Major Components of this Thesis 

Based on the objectives and the techniques involved, this thesis can be naturally divided 
into three components. In the first component, we describe the techniques we used to 
dissect and analyze mobile apps at a relatively large scale in order to understand the 
typical patterns of how apps consume users’ sensitive personal data. In the second 
component, we describe our accomplishment in improving the privacy notification 
interfaces to convey richer and more pertinent information to users. In the last component 
of this thesis, we present our exploration in quantitatively modeling users’ privacy 
preferences to identify representative privacy profiles that could greatly simplify the 
privacy configuration process.  

1.2.1 Analyzing Apps’ Privacy-Related Behavior  

In Chapter 3 and 4, we describe the detailed procedures involved in downloading and 
analysis over 100K mobile apps. Specifically, we discuss how we use Androguard [2] – 
an Android reverse engineering tool to perform static code analysis on apps, focusing on 
identifying the sensitive data requested as well as the 3rd-party libraries that bundled 
within apps that consume these sensitive resources. We leverage the Amazon EC2 cloud 
to enable the batch processing to speed up the analysis of this large quantity of apps. To 
identify the purpose for which access to sensitive user data or phone functionality is 
requested, we identified the 400 3rd-party libraries that are most frequently used in all 
these apps and organized them into 9 categories. These categories include Targeted 
Advertising, Customized UI Components, Content Host, Game Engine, Social Network 
Sites (SNS), Mobile Analytics, Secondary Market, Payment and other Utilities. We also 
analyze how different types of resources (permissions) are used for various purposes.  

We further performed clustering analysis to identify clusters of apps that request similar 
combinations of permissions. Our analysis identifies five different categories of apps, 
each exhibiting distinct patterns of permissions and purposes associated with these 
permissions. These different app categories give rise to different privacy risks and, as 
such, can also be expected to also give rise to different privacy preferences among users.  
 
This component provides a systems-oriented foundation for us to better understand 
mobile apps in terms of their privacy-related behaviors, which enables us to study users’ 
preferences in regard to these app behaviors in the later part of the thesis.   
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1.2.2 Improving Ways of Notifying Users 

Previous studies have found that Android’s existing permission interfaces are not 
sufficient for users to make informed decisions [54, 77]. In Chapter 5, we discuss how we 
identify essential information that needs to be conveyed to users, how we obtain this 
information, as well as how to present this information in more appropriate layouts.  

More specifically, we frame mobile privacy in the form of people’s expectations about 
what an app does and does not do as a key feature to convey to users, focusing on where 
an app breaks people’s expectations. The other key feature we found crucial is the 
purpose, i.e. why the sensitive data is required, since people’s perception of whether an 
app’s permission is reasonable is strongly influenced by the purpose associated with this 
permission (e.g. internal use of one’s location versus sharing that location with an 
advertising network). We show, how using crowdsourcing it is possible to collect this 
information and develop deep user privacy preference models that capture not just a 
user’s willingness to grant a permission to an app but also the purpose associated with 
this permission.  

Furthermore, based on our crowdsourced data, we present the design and evaluation of 
several new privacy notification interfaces that highlight the two key features we 
identified, including one preliminary design that adopted a similar text-based style as the 
existing Android permission screen and three other interfaces that visualize this 
information in more compact and understandable layouts.  

1.2.3 Helping Users with Privacy Settings by Providing Privacy 
Profiles 

In Chapter 6, we provide comprehensive quantitative modeling of users’ privacy 
preferences. We extend our crowdsourcing study to a sample of over 1200 app-
permission-purpose triples identified using static analysis. We collect over 20,000 
subjective responses of these sensitive data usages from over 700 participants as our 
dataset to analyze users’ privacy preferences. By performing clustering analysis, we show 
that it is possible to accurately capture the preferences of these users by subdividing them 
into four different groups of like-minded users. Looking at the different preference 
profiles associated with these groups, as identified by their willingness to grant different 
app-purpose-permission triples, we respectively label them the conservatives, the 
unconcerned, the fence-sitters and the advanced users.  

We proceed to show that using the resulting four privacy profiles and simple decision 
trees to identify which profile best matches each user, it is possible to predict a user’s 
willingness to grant app-purpose-permission triples with a high level of accuracy. This in 
turn offers the prospect of empowering users to better control their mobile app 
permissions without requiring them to  tediously review each and every app-purpose-
permission- decision associated with the apps they download on their smartphones, 
opening the door to privacy interfaces that could one day help reconcile privacy and user 
burden.    
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1.3 Research Contributions and Future Prospects 

In short, this thesis contributes to mobile app privacy research in several ways including: 
 Through a static analysis of over 100,000 apps that identified the 3rd-party 

libraries bundled in these apps, we contributed a valuable dataset to the 

community that includes attributes describing privacy-related behaviors of mobile 

apps, highlighting the purpose why users’ sensitive resources are used. 

 By clustering analysis of apps’ privacy-related behaviors, we provided a new way 

to classify mobile apps based on how and why they use users’ sensitive resources.  

 We identified two key features --- expectation and purpose--- that greatly impact 

users’ privacy preferences and should be conveyed to users for making better 

privacy decisions. 

 We demonstrated the feasibility of using crowdsourcing as a compelling 

technique to examine people’s preferences efficiently.  

 We proposed a set of privacy interfaces that provide detailed explanations of 

apps’ privacy-related behavior and leverage the misconceptions about an app that 

identified by crowdsourcing.  

 We identified four groups of users with distinct privacy preferences of mobile 

apps’ privacy-related behaviors. 

 We generated a set of default privacy settings based on identified user clusters 

and demonstrated the potentials of these privacy profiles in terms of estimating 

users’ privacy preferences more accurately and the great reduction of user burden 

they lead to. 

Collectively, these contributions should provide a scientific basis for starting to reconcile 
mobile privacy and usability and, in particular, helping inform the design of more usable 
privacy interfaces and settings. At the end of this thesis, we also outline several directions 
that worth exploring in the future. These include leveraging NLP or other techniques to 
generate more functionality-related attributes for app analysis, a series of user studies to 
evaluate identified privacy profiles as well as the design and implementation of a privacy 
wizard that can bootstrap users’ privacy settings. 

In the next section, I will present a comprehensive summarization of literature that is 
related to smartphone privacy, as well as other relevant domains.  
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2 BACKGROUND AND RELATED WORK 
In this section, I will first summarize the existing privacy frameworks of the two major 
smartphone operating systems, Android and iOS, to illustrate the problem and challenges 
that motivate my thesis. Then, I will survey all the recent work in mobile app privacy 
both from a systems, security, and end-user point of view. Following this, I will 
summarize the user privacy preference modeling research in other application, such as 
location sharing. Finally, I will mention all the other related technologies that inspired 
this work.  

2.1 Android & iOS Privacy Frameworks 

The Android permission framework is intended to serve two purposes to protect users: 
(1) limit the access of mobile apps to sensitive resources and (2) assist users in making 
trust decisions before installing apps. The latest Android 4.3 platform defines 11 
permission groups with more than 130 permissions [62]. Android apps can only access 
sensitive resources if they declare permissions in the manifest files and obtain approval 
from users at installation. At the official Google Play store, before installing an app, users 
are shown a permission screen that lists resources an app will access. It is this 
information that users must use to decide whether to trust the app (see Figure 2).  In order 
to proceed to installation, users need to accept all the permissions. Once granted, 
permissions cannot be revoked unless the user uninstalls the app.  

Although intended to be a more open platform, Android’s privacy framework puts the 
responsibility on users to make the “right” decisions. Therefore, its design easily suffers 
from two problems. One is the usability issue: several studies have pointed out that 
Android users generally paid limited attention to permission screens and had poor 
understanding of what the permissions implied [54, 77, 122]. Although Google has been 
continuously improving the ordering of permission groups and permission description, 

   
(a) (b) (c)           (d) 

 

Figure 2: The latest two generations of permission screens in Google Play Store (a) and 

(b). When a user clicks on an entry from the permission list, more explanations are 

shown (c) and (d). Previous research showed that most users click through the 

permission screen without carefully examining this list.   
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Figure 3. Both of the two major smartphone operating systems provide (start to provide) 

users with finer privacy control over sensitive resources. The left screen shows the 

hidden “App Ops” permission Controls in Android 4.3 and the right screenshot shows 
privacy settings in iOS 6.  

the current permission screens still generally lack adequate explanation and definitions. 
The other problem is the lack of controls. Before Android 4.3, once permissions are 
granted, users have no control over the permission usage of individual app other than 
uninstalling the app. This frequently puts end-users in a dilemma of trading off their 
privacy for functionality or cost, such that accumulatively users might lose confidence in 
Android system. The good news is, according to latest reports [20, 114], in Android 4.3 
users are finally able to fine-tune their privacy preferences after installing apps by using a 
hidden “App Ops” feature (Figure 3, left). On the other hand, given the number of apps 
installed on an average users’ phone3 and the number of permissions requested by each 
app, configuring permissions one by one seems infeasible, such that educating users to 
make proper configurations and developing trusted tools to provide certain level of 
automation become more and more important.  

The privacy framework in iOS adopts a different strategy. Apple’s App Store does not 
present any data usage related information to users at install time. Instead, users are 
prompted to accept or deny the use of sensitive resource the first time it is used. In the 
latest iOS versions (iOS 5 and above), users also have the ability to turn on and off the 
data usage (such as location, contacts, calendars, photos, etc, see Figure 3, right) for each 
individual app, which is similar to what “App Ops” provides for Android system, and 
hence suffers from similar potential usability problems as well. For jailbroken iPhones, 
Protect My Privacy (PMP) provides users with even more controls [13, 19]. Whenever 
sensitive resources are requested, an alert is shown to the user with “protect” and “allow” 
option. Instead of merely blocking access to information that might cause unexpected 
behavior or crash, PMP supplies fake replacement data. In the privacy setting page, PMP 

                                                 
3 Nielsen reported that US smartphones had an average of 41 apps installed in 2012 [87]. 
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also provides an automated way of making privacy decisions by crowd-sourcing 
recommendations from other users. In my thesis, I will demonstrate that the average 
recommendations are not optimal for individual users since users’ privacy preferences 
can differ from each other significantly.  

In short, this thesis is motivated by these above-mentioned problems in these most 
popular smartphone operating systems and aims to leverage app analysis, crowdsourcing 
and user preference modeling to provide practical solutions to these problems.  

2.2 Security-oriented Approaches in Mobile App Privacy 

To protect users’ privacy, a lot of work leveraged software security technologies to 
approach this problem, resulting in a number of useful tools for researchers and analysts 
to obtain deeper understanding of these mobile apps’ sensitive behaviors. 

To handle the increasing rate of malware in the Android market, in Feb 2012, Google 
announced their “Bouncer” service that scans apps for malware, spyware, Trojans, and 
other suspicious behaviors [124]. Though there is very little published information about 
how “Bouncer” actually works and how effective it is, the experiments conducted by  
Oberheide [96] unveiled that “Bouncer” performs dynamic runtime analysis of Android 
apps in an emulated Android environment and can be easily bypassed. For what we care, 
“Bouncer” was intended to detect malicious apps rather than privacy intrusive apps.  

Researchers have also developed many useful techniques and tools to detect sensitive 
information leakage in mobile apps [18, 24, 29, 36, 45-49, 53, 55, 68, 112, 115, 123]. 
Three methods are usually used in app analysis, namely permission analysis, static code 
analysis, and dynamic flow analysis. Table 1 categorizes previous research and studies 
based on methods used and highlights the pros and cons of each method. There have also 
been a good number of security and privacy extensions proposed in recent years which 
aimed to give users more controls over sensitive resources on their smartphones [19, 29, 
73, 93, 99, 123].  We will discuss these pieces of related work in more detail below. 

2.2.1 Permission analysis 

By analyzing the permission lists declared by app developers, potentially risky 
functionalities can be identified. This line of research has focused on how different 
permissions are used [24, 49, 55, 115] and highlights common usage patterns [24], 
misuses [53, 115], and potential implications to Android security and privacy [49, 53, 
55]. Enck et al. [48] were the first to conduct permission analysis on the Android system. 
Among the 311 apps they examined, 10 apps were flagged with questionable private 
resource usage. Barrera et al. [24] performed permission analysis of 1,100 free 
applications in the Android Market and identified the exponential decay distribution in 
the number of applications that requested individual permissions (i.e., most applications 
require only a small number of permissions). Felt et al. [53] studied the effectiveness of 
Android's install-time permission. Specifically, they found that developers sometimes 
made mistakes in declaring permissions requests (e.g., requesting unnecessary 
permission, non-existing permission, etc.). Hence, in follow-up work [49], Felt et al. 
proposed the Stowaway tool, which performs static analysis to detect over-privileged 
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applications. Similarly, an Android SDK extension was developed by Vidas et al. [115], 
which assisted Android developers in including the minimum set of permissions required 
by their app’s functionality.  

In more recent work, Frank et al. presented their results in mining permission request 
patterns of Android app in [56]. They identified over 30 typical patterns of permission 
request by using matrix factorization techniques. Our work differs from theirs in the 
sense that we enrich the dataset by including features describing why these permissions 
are requested. The work by Book et al. focused on how mobile behavioral advertising 
libraries use permissions over time by surveying 144K mobile apps [31]. They found that 
the ad libraries’ use of permissions has significantly increased over the last several years. 
Their excessive use of sensitive data poses particular risks to user privacy and security. In 
short, permissions are valuable for performance efficient security analysis; however, 
permission lists could not provide detailed information concerning what purpose private 
resources would be used, hence could only capture limited security and privacy risks.  

2.2.2 Static analysis 

Static program analysis can be conducted with or without source code. To date, most 
mobile app static analyses rely on decompilers to recover source codes of apps (e.g., [17, 
97] ). Egele et al. [43] proposed PiOS to perform static taint analysis on iOS application 
binaries to identify potential privacy violations. Among the 1,400 apps studied, more than 
half leaked the privacy sensitive device ID without the users' knowledge. Chin et al. [36] 

 Permission Analysis  Static Analysis  Dynamic Analysis  

Examples  Enck’09 [48] 

Barrera’10 [24] 

Felt &Greenwood’11 
[53] 

Felt&Chin’11 [49] 

Vidas’11 [115]  
Book’13 [31] 
Frank’12 [56] 

Egele’11 [43] 

Chin’11 [36] 

Felt&Wang’11 [55] 

Enck’11 [47, 54] 

App Profiles [18]  

Thurm’11 [43, 112]  

Enck’10(TaintDroid) 

[46]  

Beresford’11 [29] 

Zhou’11 [123] 

Hornyack’11 [68]  
Yang’12 [122] 

Pros  Simple and efficient  Easy to automate, cover 

all possible execution 

patterns  

Capture what actually 

happened, easy to 

interpret 

Cons  Only high-level analysis 

cannot tell the whole 

story  

Depend on decompiler, 

“Dead code” problem, 

i.e. segment of code 

never execute in the 

runtime; 

Require human 

intervention, hard to 

automate  

Table 1 : Categorization of existing work in mobile app analysis based on methodologies. 

The pros and cons of each method are highlighted. All methods assessed mobile apps’ 
behaviors from traditional security perspectives that cannot infer users’ perceptions of 
mobile privacy. Our proposed work makes use of the app analysis tool to obtain ground 

truth of mobile apps, aiming at bridging the gap between app analysis and users’ 
privacy preferences learning. 
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proposed ComDroid, which operates on used disassembled DEX bytecode. Specifically, 
ComDroid identifies vulnerabilities in intent communications between applications, such 
as broadcast theft, service hijacking, malicious service launch, etc. Among 100 apps 
analyzed, Chin et al. found 34 exploitable vulnerabilities. App Profiles [18] developed by 
the RobustNet research group at the University of Michigan analyzed mobile applications 
offline to detect privacy-related actions written into the application source code.  

While static analysis provides a complete and automated scan of mobile apps, its 
accuracy might highly depend on the performance of the decompiler used or the coding 
style of the developer. In addition, static analysis might produce false positive or false 
negative if the decompiled source codes contain what we referred as “dead code” (i.e. 
segment of program never executed in the runtime). Another challenge for privacy 
research involving static analysis is that this method cannot automatically determine 
whether privacy-related behavior is reasonable or not from users’ point of view. 

2.2.3 Dynamic analysis 

Dynamic analysis can help resolve ambiguity in permission granularity as well as provide 
an intuitive way to monitor how applications run. The Wall Street Journal reported the 
results of 101 popular smartphone apps for iPhone and Android devices that were 
examined by monitoring network analyses [112]. Results showed that 56 apps transmitted 
the phone's unique ID to third party servers without user consent, and 47 apps transmitted 
the phone's location and other personal information such as age, gender, etc. TaintDroid 
[46] performed a thorough dynamic flow analysis to capture information leakage on 
Android devices in real time. The authors modified the Android's Dalvik VM to perform 
instruction-level taint tracking that captures how private information flows from its 
source to its destination (i.e., network interface). Other work has built on TaintDroid to 
provide more pertinent privacy analyses or controls [29, 68]. The work by Yang et al. 
integrate crowdsourcing into dynamic analysis to understand why certain permissions are 
required [122]. They paid crowd workers to compare the screenshots of apps with and 
without granting permissions and summarize the differences in order to identify the 
purpose of accessing sensitive data such as for serving ads or for providing context-aware 
services.  

Dynamic analysis identifies what actually happens when an application is running. One 
drawback of dynamic analysis is that it is limited by scalability because human 
interventions (interactions with mobile apps) are needed to trigger certain behaviors of 
the apps in the process of analysis.  

Though app analysis provides us with a better understanding of apps’ behaviors, it cannot 
infer people’s perceptions of privacy or distinguish between behaviors which are 
necessary for an app’s functionality versus behaviors which are privacy-intrusive. Our 
work complements this past work by suggesting an alternative way of looking at mobile 
privacy from the users’ perspective by leveraging crowdsourcing to bridge the gap 
between app analysis and resolving users’ privacy concerns. To achieve this goal, we opt 
to use static analysis to capture the ground truth of apps with regard to type and purpose 
of information disclosed because of the scalability issue. 
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2.2.4 Security and privacy extensions 

All these approaches provide useful means to dissect mobile apps providing more and 
more detailed information on how they consume users’ sensitive information, the results 
of which also outlines the potential privacy and security risks of specific usage patterns. 
Upon these findings, many security extensions have been developed to harden privacy 
and security of smartphone operating systems.  

MockDroid [29] and TISSA [123] substituted fake information into API calls made by 
apps, such that apps could still function, but with zero disclosure of users' private 
information. Similarly, ProtectMyPrivacy [19] on jailbroken iPhone also enable users to 
substitute fake information to protect their privacy. In addition to faking information, 
AppFence [68], a subsequent project of TaintDroid, allowed users to specify which 
resources should only be used locally. It also hashed the phone identifiers in a way that it 
no longer could be linked to users, while still being useful for application developers to 
track application usage. Nauman et al. [93] proposed Apex, which provides fine-grained 
control over resource usage based on context and runtime constraints such as the location 
of the device or the number of times a resource has been used. They implemented an 
extended package installer named Poly that allows users to specify their policy at time of 
installation.  

To enable wide deployment, Jeon et al. proposed an alternative solution that rewrote the 
bytecode of mobile apps instead of modifying the Android system [73]. When accessing 
sensitive resources, the modified apps talk to a privacy proxy layer instead of directly 
talking to Android APIs. Pearce et al. [99] proposed to adopt privilege separation for 
mobile applications and advertisers in Android OS, which is motivated by the fact that 
over 56% of apps uses users’ location information only for serving ads. They suggested 
unifying all the mobile ad libraries into a system service that can be integrated into the 
Android platform. In their proposed AdDroid framework, a new permission 
ADVERTISING needs to be declared by app developers when a mobile app wants to 
deliver ads to users. Although the techniques they proposed are sound and effective, 
given the existing mobile app ecosystem, advertising companies have little incentive to 
cooperate in this initiative.  

These proposed privacy extensions aimed to provide users more control over apps and 
assumed that users are able to configure these settings perfectly. However, this 
assumption was not grounded by user studies. Dumping these settings on users and 
relying on users to specify their privacy preferences without adequate information could 
be questionable or even counterproductive. 

2.3 End-User Research in Mobile App Privacy 

In contrast to the above systems-oriented approaches, another important facet of privacy 
research approaches the challenge from the end-users’ side. In this line of work, 
researchers tried to gain deeper understanding of users, including their biggest privacy 
concerns, their perception of mobile apps, as well as their preferences of different types 
of sensitive data usages.  
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Several user studies have examined usability issues of permission interface displayed to 
users before downloading apps. Kelley et al. conducted semi-structured interviews with 
Android users and found that users paid limited attention to permission screens and had a 
poor understanding of what the permissions implied [77]. Specifically, permission 
screens generally lack adequate explanation and definitions. Felt et al. [54] found similar 
results from Internet surveys and lab studies that current Android permission warnings do 
not help most users make correct security decisions. In later work, Felt et al. [51] 
surveyed more than three thousand smartphone users about 99 risks associated with 54 
permissions without considering specific apps. Their survey focused more on security 
risks that malicious apps can exploit rather than the potential privacy concerns caused by 
normal mobile apps.  

An interview study by Chin et al. [37] probed smartphone users' concerns and fears with 
regard to privacy and security and offered several recommendations that could mitigate 
these threats. They found that users are in general more concerned about their privacy on 
their smartphones than their laptops in performing tasks such as payment and online 
banking etc. The work done by Jung et al. [22, 74] included lab studies and qualitative 
interviews to evaluate the gaps between user expectations with respect to mobile app 
privacy. They found users were surprised by the amount and frequency of data leaving 
their phones. There were three types of unanticipated data use, including discreetly 
collecting personal data in the background; application collecting seemingly unnecessary 
data with respect to their functionality; application collect excessive amount of personal 
data (frequency). Egelman et al. performed experiments to gauge how smartphone users 
value their privacy [44]. They found that 25% users are willing to pay a $1.50 USD for 
the application requesting the least permissions. Around 80% of participants stated that 
they would be willing to receive targeted advertisements regardless of the permissions 
used if it would save them $0.99. Benenson et al. surveyed over 700 German students to 
compare users’ security and privacy perceptions of Android and iOS [25]. Their data 
suggested that (1) if users are brand-aware, then they are more likely to have an iPhone; 
(2) Having an Android phone is positively correlated to being more privacy aware; (3) 
Female users are more likely to have an iPhone. 

Methodology-wise, Felt et al. discussed the strengths and weaknesses of several 
permission-granting mechanisms and provided guidelines for using each mechanism [50]. 
They suggested that for different types of sensitive data, different permission-granting 
mechanisms should be independently triggered and the permission-granting process 
should try to avoid interrupting user’s primary tasks.  

With regard to privacy interfaces, Kelly et al. proposed to improve Android’s existing 
permission screen by putting the privacy facts inline with the app’s description [78]. They 
also suggested including how the app used several types of personal information, 
including contacts, location, calendars, credit cards, diet, health, photos etc. They 
demonstrated that users who saw the new design were more likely to pick the application 
that requested fewer permissions than who saw the existing Android permission screen. 
Choe et al. contributed to the privacy interface design by investigating whether framing 
effect can be used to nudge people away from privacy invasive apps [38]. They found 
that between semantically equivalent visuals, different framing methods (positive framing 
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and negative framing) did not affect the time users spent on privacy interfaces; however, 
a positive framing icons were more effective in making a low privacy rating app look 
more unfavorable, whereas negative framing icons were more effective in making a high 
privacy rating app more unfavorable.  

The National Telecommunications and Information Administration (NTIA), the agency 
of US department of Commerce that serves as the President’s principal adviser on 
telecommunications policies, released guidelines for a short-form privacy notice as a 
voluntary Code of Conduct in July 2013, aiming to provide app users with an easy to 
understand display indicating which categories of personal data may be collected by the 
app and which types of entities those data may be shared with [67, 95]. The Code of 
Conduct identifies 8 categories of personal data categories, including for example, 
Internet browsing history, phone and text logs, contacts, financial information, location, 
and more. It also identifies 8 types of entities with whom personal data might be shared, 
including ad networks, data analytics companies, government entities, social networks, 
and more. Note that the Code of Conduct provides several general design guidelines and 
required explanatory text, but does not specify a particular standardized design at this 
point. Past work has looked at the usefulness and understandability of the category names 
used by NTIA [23]. Based on the code of conduct, several notice screen mockups have 
been proposed, such as [67]. In the collaborative work with Wong et al. [120], we 
evaluated one of the NTIA mockup by testing participants’ understanding of examples of 
this interface. We found that this interface is not as understandable as expected. It 
suggests that if NTIA’s guidelines are adopted, much more work needs to be done to 
improve the visual displays. 

All of the above-mentioned work provided valuable insights into users’ privacy concerns. 
This thesis provides a more quantitative approach, by leveraging the power of 
crowdsourcing, we built a dataset contributed by over 700 participants with their opinions 
over 1200 app- permission-purpose triples to uncover the underlying patterns of users’ 
privacy concerns. This dataset enables an in-depth probing of users’ mobile app privacy 
preferences.  

2.4 User Modeling in Location Sharing 

Our initial exploration of users’ mobile privacy preferences started with location sharing, 
focusing on understanding and resolving users’ privacy concerns when using location 
sharing applications (LSAs). These types of applications facilitate and encourage users to 
share their location information with others. They have recently attracted interest from 
both industry and academia [5, 8-12, 16, 32, 60, 69, 70, 98, 107, 116, 119]. With the 
proliferation of smartphone ownership, most location-sharing services are available on 
mobile platforms (e.g., Google Latitude [10], Foursquare [9], Facebook Places [8]). As a 
special subset of mobile apps, where the users’ location information is primarily 
consumed by people in their social networks,4 studying the privacy issues in LSAs could 
provide important lessons from both methodological perspective and knowledge 
perspective.   

                                                 
4 Though some location-sharing mobile apps also transmit users' location information to ad networks for 
advertising purposes. 
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Some of my past work fall into this line of research [83, 84, 110]. Our findings indicated 
that even only considering one type of sensitive resource users’ privacy preferences could 
be very complex and were influenced by different factors [27, 107]. For example, by 
tracking 26 participants for 3 weeks and asking them to provide place names for each 
location for various sharing scenarios, we observed that people modulate the way they 
convey location information to cope with privacy concerns [84]. They generally used two 
major techniques to tailor their location information, i.e. describing it semantically or 
geographically. Multiple factors were considered when users decided on what to disclose, 
including their relationship with the recipients, their perceived levels of comfort in 
sharing specific locations, the recipients’ familiarity with the places, and place entropy.5  

Along a similar direction, in collaborative work with Tang [110], we compared the 
location names users selected in different scenarios and reframed the location-sharing 
applications (LSA) into two categories, based on the users’ intention of sharing, namely 
purpose-driven LSAs and social-driven LSAs. Our findings indicated that people have 
distinct sharing preferences given the purpose of sharing (1) the types of location 
information they chose to share, (2) the different privacy concerns people had and 
strategies used to cope with these concerns, and (3) how privacy-preserving these 
location disclosures were. In the problem of mobile app privacy, the purpose of 
information disclosure remains an important factor that influencing people’s decision.  

In other work, we looked at the effect of cultural differences in location sharing. In [83], 
we reported findings of a three-week comparative study collecting location traces and 
location-sharing preferences from two groups of university students in the U.S. and China 
with similar demographics. We found that, on average, Chinese participants were more 
conservative about sharing their location; however, when they were given the ability to 
control the granularity of sharing, they shared more detailed location compared to U.S. 
participants. This finding suggests that, in the absence of granularity settings, U.S. 
participants were more willing than Chinese participants to relax their preferences and 
share their finest location details even when doing so was not their optimal choice, 
whereas Chinese participants were more likely to do the opposite. A significant 
implication of this finding is that granularity settings are likely to be more important for 
the adoption of location sharing among Chinese users than among American users. 

There is also a line of work focused on a more quantitative approach to modeling users’ 
location sharing preferences. For example, in the above-mentioned work [84], we also 
demonstrated the feasibility of applying machine learning techniques to predict the way 
people manipulate the disclosure of their location information in different context (e.g. 
based on how far away they are). This work suggested that people’s privacy preferences 
though complicated can still be modeled quantitatively. The work by Ravichandran et al. 
[103] learnt a set of default policies from users’ location sharing preferences using 
decision-tree and clustering algorithms. They suggested that providing users with a small 
number of canonical default policies to choose from can help reduce user burden when it 
comes to customizing the rich privacy settings they seem to require. The work by 
Cranshaw et al. [39] used a classifier based on multivariate Gaussian mixtures to 

                                                 
5 Place entropy characterizes the diversity of users seen in a particular place. See [40] 
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incrementally learn users’ location sharing privacy preferences. Kelley et al [79]and later 
Mugan et al. introduced the notion of understandable learning into privacy research [92]. 
They used two types of user-oriented machine learning techniques, namely default 
personas and incremental suggestions, to identify users’ privacy rules, resulting in a 
significant reduction of user burden. By restricting the level of control the user has over 
the policy model, their algorithm produced accurate and understandable learning results. 
Wilson et al. [119] evaluated the impact of privacy profiles in a location sharing study. 
They observe that although participants were given the ability to refine their preferences, 
the impact of the initial privacy setting remained visible after several weeks of use. In 
addition, participants who were exposed to the privacy profiles were more inclined to 
share than those who were not.  

Previous research (including my own work) has provided important knowledge in 
understanding users’ privacy concerns and needs in mobile context-sharing. Considering 
methodology, multiple user studies [26, 84, 113] have shown that remote auditing-based 
study methods (i.e., participants provide their responses remotely through a web site) is 
an efficient way to conduct privacy related studies. However, we are fully aware of the 
limited scalability of this approach given the number of mobile apps we want to 
investigate. Therefore, to tackle this challenge, we propose that mobile privacy user 
studies can take advantage of crowdsourcing to harvest users’ privacy preferences. We 
also learned that users’ location privacy preferences are dynamic and complex, but for the 
most part predictable. We demonstrate in Chapter 6 that this point also holds in the 
context of mobile app privacy. Furthermore, as pointed out by Wilson et al. in [119], “… 
the complexity and diversity of people’s privacy preferences creates a major tension 
between privacy and usability…”, and mobile app privacy poses similar usability 
challenges. In Chapter 6, we will demonstrate how we generate appropriate privacy 
profiles (default settings) for users as one possible way to simplify the decisions users 
have to make. As in Mugan et al. in [92], we also take into account understandability 
considerations in our work and aim to build understandable quantitative models of users’ 
mobile app privacy preferences. This is done using interpretability and generalizability as 
two criteria in our work on modeling users’ preferences.   

2.5 Crowdsourcing and Human Computation 
Crowdsourcing and human computation have gained attention as both a topic of and tool 
for research. Several methodological papers have addressed how to more effectively 
utilize crowdsourcing to yield better results [41, 71, 88, 90, 106]. Amazon’s Mechanical 
Turk (AMT)[1] is currently the most popular crowdsourcing platform and the one used in 
this work. With AMT, requesters can publish Human Intelligence Tasks (HITs) for 
workers. A number of projects have successfully used AMT and have ranged from 
human assisted online tasks (such as image labeling) to surveys and user studies [30, 57, 
66, 85, 86, 121]. My thesis makes use of many of the findings and methodologies 
mentioned above and builds on past work by extending the use of crowdsourcing to a 
mobile privacy study. In doing so, we demonstrate the feasibility and potentials of 
crowdsourcing as a scalable tool for privacy studies.  

2.6 Relationship to Prior Work 
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Before moving on to the details of this thesis, I want to point out a few distinctions 
between my thesis and past related work.  

From a technology standpoint, this thesis does not aim to produce new tools. Instead, it 
demonstrates that by identifying third party libraries that most commonly found in mobile 
apps, it is possible to extend static analysis to identify the purpose associated with many 
mobile app permissions in a scalable manner. In addition, this thesis also links users’ 
subjective feedback to various private resource usage patterns as identified through app 
analyses.  

Meanwhile, the security extensions mentioned above do provide users with more control 
over private data; however, these designs are not grounded in adequate user studies. 
Specifically, we foresee that these granular controls might overwhelm users with too 
many privacy decisions to make and might ultimately be unusable in practice. This 
potential usability issue also motivates my work in assisting users with privacy 
configurations by providing meaningful default settings.  

From an HCI standpoint, this thesis probes much deeper in the users’ privacy decision 
processes compared to previous permission usability studies [54, 77] or privacy surveys 
and interviews [37, 51]. By performing clustering, we isolate five classes of mobile apps 
and four different groups of users with distinct characteristics. Each cluster of users can 
be interpreted in the form of a privacy profile describing users’ different level of concerns 
over different data usages. These findings provide important practical suggestions to 
inform the design of simpler, easier-to-use interfaces and privacy control mechanisms 
that matter to users. 
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3 DISSECTING AND UNDERSTANDING THE BEHAVIOR 
OF SMARTPHONE APPS 

Before analyzing people’s privacy preferences of mobile apps, it is necessary to gain a 
deeper understanding of mobile apps with regard to their privacy-related behaviors as 
well as the implication of these behaviors. In this chapter, I will provide technical details 
of how we obtained metadata and binary files of apps from Google Play, and how we 
decompile and analyze these apps on a large scale.  

3.1 Data Gathering 

We collected meta-information for 171,493 Android apps and binary installation files 
(also known as apk files) for 108,246 free apps available on Google Play in July 2012.  

Each Android app in Google Play has its own description page. However, there is no 
index of apps that is publicly available. To build our dataset, we used a Python-based 
webpage crawler to run a Breadth-First-Search starting from Google Play's home page, 
and downloaded all of the web pages containing app description information when we 
traversed Google Play. Once we got a description page, we parsed the HTML page to 
extract the app's metadata, including its name, category, number of downloads6, average 
user rating score, rating distribution, price, and content rating.  

Next, for each app we crawled, we downloaded its binary installation file through an 
open-source Google Play API [3]. Google imposes limits on the number and the 
frequency of app downloads. To work around this limit, we dynamically switched among 
20 different Android accounts to prevent being permanently banned from Google Play. 
Using the same API, we also downloaded a total of 13,286,706 user reviews which was 
used in a side project [59]. Note that Google has strict restrictions on app purchase 
frequency and limits the number of apps that can be purchased with a single credit card. 
Because of these restrictions, the binary files downloaded in this thesis work are all free 
apps. However, we believe that our approach and the majority of our findings applies to 
paid apps as well. The entire apps’ metadata takes up about 500MB of storage space 
when stored in a MySQL database and all the binary files take approximately 300GB of 
storage space on a disk.  

At the time of writing, the aforementioned API [3] no longer supports the current version 
of Google Play. Readers interested in conducting similar studies in the future should 
explore alternative APIs such as [81].  

3.2 Dissecting Android Apps 

While dynamic analysis can provide information on apps’ runtime behaviors, the 
requirements of this type of analysis exceeded resources at our disposal, given the large 
number of apps we wanted to study. Instead, we opted to use static analysis tools given 
that they are more efficient and easier to automate. After examining several Android 
reverse engineering tools [2, 17, 3, 6, 7], we chose Androguard [2] as our major static 

                                                 
6 Google does not provide the absolute number of downloads. Instead, it discretizes this number into several ranges. 
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analysis instrument. Androguard is a tool written in Python to decompile Android apk 
files and to facilitate code analysis with well-documented APIs. More specifically, 
Androguard suited out needs for the following reasons: 

 Androguard is available for Linux/OSX/Windows as it is Python-powered. This 
gives us the flexibility to deploy our analyzer on a number of different types of 
servers. 

 Androguard provides an efficient de-compilation functionality that can de-
compile Dalvik bytecodes to Java source code faster than other de-compilers. 
Given the scale of the app analysis we planned on conducting, efficiency is 
crucial for us.  

 Androguard allows analysts to create customized static analysis scripts to examine 
app’s specific behaviors. In our case, since we are particularly interested in apps’ 
privacy-related behaviors, this was a significant advantage.  

 Androguard allows batch processing of analysis tasks, which facilitates the 
automation of analysis tasks.  

We created our own analysis script with the Androguard library and identified the 
following information related to apps’ privacy-related behaviors. 

 Permission used by each app.  
 The destination and source classes involved in the use of permissions. 
 All the third party libraries included in the app. 
 Permissions required by each third party library. 
 All the URLs and/or IP address the app is connecting to.   

The permission usages tell us what type of sensitive user data apps are requesting. By 
analyzing the 3rd-party libraries in an app and what permissions these libraries use, we 
can infer if users’ sensitive data is required for apps’ functionality or for other purposes, 
such as for delivering targeted ads, for market analysis and for promoting sharing on 
Social Network Sites. The URLs help us to confirm the destinations where different user 
data sent to. 

Permission information is directly obtained by parsing the manifest file of each apk. We 
further scan the entire de-compiled source code and look for specific Android API calls 
that request permissions to determine the destination and source classes involved in the 
use of these permissions. 

Third party libraries are identified by looking up package structures in the de-compiled 
source code. From example, if we found a “com.flurry” 7  sub-folder inside the de-
compiled source code, we say that the “flurry” library--- a mobile analytics library --- is 
included in this app. It is possible that we failed to identify some libraries, although we 
assume that we were able to correctly identify the most popular ones. We did not 
distinguish different versions of the same third party library to reduce the complexity of 

                                                 
7 http://www.flurry.com/ Flurry analytics is a cross-platform analytics service for developers to understand 
how consumers interact with their mobile applications.  

http://www.flurry.com/
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our analysis. Similar to the permission analysis step described above, we determined the 
permission usages of each 3rd-party library by scanning through all the Android standard 
API calls that relate to the target permission in the de-compiled versions of the libraries’ 
source code.   

To scale up the analysis, we employed five Amazon EC2 M1 Standard Large Linux 
instances to perform batch processing of the static analysis. Each instance has the 
capacity of 4 ECUs8 and 8 GB memory. The total analysis required 2035 instance hours, 
i.e. approximately 1.23 minutes per app. Among all the 108,246 free apps, 89,903 of 
them were successfully decompiled (83.05%). Upon manual inspection of a few failure 
examples, we were led to believe that failure to de-compile was primarily attributed to 
two reasons, (1) the binary files were corrupted during the download or transmission to 
cloud, (2) the binary files were intentionally obfuscated to prevent reverse engineering by 
using techniques such as APKProtect [4].     

3.3 Analysis Results 

Among the 89,903 free Android apps we decompiled, the percentages of each category 
are very similar to the stats reported in AppBrain [21]. Figure 4 shows the distribution of 
the apps according to the lower bounds on the total number of installs for each app. 
Google does not provide the absolute number of downloads; instead, it discretizes this 
number into several ranges. The x-axis of Figure 4 is labeled by the lower bounds of 
these ranges. Approximately 54.7% of apps had been downloaded more than 1000 times 
and less than 50,000 times. Since the data was collected in July 2012, the current number 
of downloads for each app might be much higher than the number plotted here.  

Among the 89,903 free apps that were successfully analyzed, we identified over 500 
different 3rd-party libraries used by various apps. We analyzed the top 400 most used 3rd-
party libraries online to understand the purpose or functionality associated with each. We 

                                                 
8 1 ECU is the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. 

 
Figure 4: Distribution of apps in our dataset by number of installs. 
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Type Count  Examples  Description  

Utility  140  Xmlparser, hamcrest…  Utility java libraries, such as parser, 
sql connectors, etc  

Targeted Ads  137 admob, adwhirl, 
greystripe…  

Provided by mobile behavioral ads 
company to display in-app 
advertisements 

Customized UI 

Components  

29 Easymock, kankan, 
viewpagerindicator…  

Customized Android UI components 
that can be inserted into apps. 

Content Host  25  Youtube, Flickr…  Provided by content providers to 
deliver relevant image, video or 
audio content to mobile devices. 

Game Engine  20  Badlogic, cocos2dx…  Game engines which provide 
software framework for developing 
mobile games. 

SNS  15  Facebook,twitter, 
socialize…  

SDKs/ APIs to enable sharing app 
related content on SNSs.  

Mobile Analytics  14  Flurry, localytics..  Provided by analytics company to 
collect market analysis data for 
developers. (in recent years, mobile 
analytics libraries have also been 
used to deliver in-app ads) 

Secondary 

Market 

11 Gfan, ximad, getjar… Libraries provided by other 
unofficial Android market to attract 
users. 

Payment  9 Fortumo, paypal, 
zong… 

e-payment libraries 

Table 2: The types of 3
rd

-party libraries identified. Based on the types of services they 

provide, we categorize them into 9 basic categories.  

eventually identified nine major categories of libraries as detailed in Table 2. Again, note 
that, we do not distinguish between different versions of the same library.  

Among all the identified libraries, 34.5% of them are Java utility libraries, such as 
XMLparsers, SQL connectors, etc. Most of these utility libraries do not involve Android 
API calls. Accordingly these libraries do not require any Android permissions, though 
INTERNET permission is sometimes required to allow these libraries to communicate 
with external servers.  
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The second largest category of 3rd-party libraries is targeted behavioral ads libraries, 
which are approximately one third of all the libraries identified 9 . Mobile targeted 
advertising is one of the major monetization channels for app developers, especially those 
who develop free apps. Java-based advertising libraries supplied by advertising agencies 
are bundled into application packages to deliver behavioral targeted ads based on users’ 
interests.  

These libraries communicate with servers controlled by advertising agencies, transmitting 
ad requests, displaying selected advertisements, and handling user interactions with these 
ads. In order to display ads that are more relevant to users, these targeted ads libraries 
usually have the ability to collect contextual information such as users’ location, phone 
number, and other information that can imply users’ preferences, which poses significant 
privacy concerns to mobile users [31].  

The other seven categories include Customized UI Component libraries which are usually 
developed and published by 3rd-party companies or developers to promote the reuse of UI 
modules; Content Host libraries are usually supplied by companies who supply 
multimedia content online such as YouTube, Flickr, etc; Game Engine libraries are 
usually used by mobile game developers in their game design; SNS libraries are supplied 
by major Social Networking Sites to provide in-app sharing functionality. For example a 
music player app might allow the user to post information about the sound track the user 
likes to her Facebook wall through these type of libraries; Mobile Analytics libraries are 
provided by mobile analytics companies such as Flurry and Localytics, which gather and 
analyze the users’ in-app interactions with the app on behalf of the app developers to 
identify who the customers are, where they come from and what they are doing; the 
remaining Secondary Market and Payment libraries are self-explanatory. Note that, after 
we crawled the dataset, a large number of new mobile analytic companies has emerged. 
In addition, many mobile analytics companies have started to integrate their services with 

                                                 
9 The most used ad libraries we identified are similar to the ones reported by Book et al in [30]. Therefore, 
we do not repeat the stats here. For interested reader, please refer to their paper. 
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mobile behavioral advertising. Therefore, though in this thesis we still distinguish Mobile 
Analytics and Targeted Ads libraries, we strongly recommend later work should combine 
these two categories together. As far as we can tell, no new categories has emerged at the 
time of writing this thesis. 

For all the apps we analyzed, we observed an average usage of 1.59 (SD=2.82, 
median=1) 3rd-party libraries (See Figure 5) in each app. There are some extreme cases 
where an app uses more than 30 3rd-party APIs. For example, the app with the package 
name (com.wikilibs.fan_tatoo_design_for_women_2.apk) used 31 3rd-party libraries, 22 
of them are targeted advertising libraries, such as adwhirl, mdotm, millenialmedia, tapjoy, 
etc. In the majority of the cases (91.7%), apps are bundled with less or equal to 5 
different 3rd-party libraries.   

We further breakdown the 3rd-party libraries across all the 30 app categories, 
emphasizing the penetration of three types of usage, namely the targeted ads, mobile 
analytics and SNSs. Figure 6 shows that for most popular categories such as mobile 
games, and personalization apps, the targeted advertising libraries are found in more than 
40% of these apps, even the lowest ads-penetrated category--- Business apps--- there are 
more than 8% of them bundled with targeted advertisement libraries. SNS libraries 
closely follow up targeted ads libraries, achieved an average penetration of 11.2% of the 
app market. The Social category of apps has the maximum usage of this type of 3rd-party 
libraries, which makes sense. Mobile analytics libraries have an average penetration of 
9.8% of the app market, and usually bundled with categories of apps that users use daily, 
such as weather, news & magazines, sports, etc. 

Lastly, we report on the usage of several of the most sensitive permissions in terms of 
why they are required in apps (see Table 3). We focus our analysis on the top four major 
uses, which are: 

 For internal use, where the permission triggering Android API calls are found 
within the application-specific code (rather than the bundled libraries). Given the 

 
Figure 6: Penetrations of three types of 3

rd
-party libraries across 30 Android app 

categories. We see significant penetration of targeted advertising libraries (blue bars) in 

almost all categories. Mobile analytics and SNS libraries also have relatively high 

penetration.  
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limitations of our analysis, we cannot provide detailed explanations of why 
certain resources are used (such as “for navigation”, “for setting up ringtone”, 
etc.), since this level of detail currently requires a great deal of manual code 
inspection. In other words, with current technologies, we have no easy way to tell 
how developers actually use the data.  

 For targeted ads, where the permission triggering Android API calls are found 
within targeted ads libraries. Relevant permissions might include INTERNET, 
ACCESS_FINE/COARSE_LOCATION, VIBRATION, and even CAMERA10.  

 For mobile analytics, where the permission triggering Android API calls are 
found within mobile analytics libraries. Usually, this type of libraries requires the 
access of INTERNET, ACCESS_FINE/COARSE_LOCATION and 
READ_PHONE_STATE. The last permission is used to obtain unique phone ID, 
as well as detecting if the user is on a phone call. 

 For SNS, where the permission triggering Android API calls are initiated by the 
SNS libraries, such that users can share app relevant information together with 
other context information to social network sites.   

Table 3 shows the distribution of permissions used for various purposes, such as for apps’ 
functionality, for delivering targeted advertisements, for mobile analytics, or for sharing 
on SNSs. For example, we found that 41.33% of apps that required INTERNET 
permission used this permission for internal use, and 47.48% of them used for targeted 
ads. The numbers in each row do not necessarily add up to 100% since one permission 
can be used for multiple purposes in an app. We also notice that for permissions like 
ACCESS_FINE/COARSE_LOCATION and READ_PHONE_STATE, a significant 
portion of apps used these permissions purely for delivering targeted advertisements. In 
other words, a large portion of apps requested excessive permissions just for 
monetization purposes.  

                                                 
10 We found this permission is required by one version of mobclix http://www.mobclix.com/ , a very 
popular mobile advertising library. 

 Internal Use Targeted Ads Mobile Analytics SNS 

INTERNET 41.33% 47.48% 20.71% 16.30% 

LOCATION 17.48% 72.94% 26.08% 6.07% 

PHONE_STATE 24.55% 74.40% 16.04% 6.35% 

READ_CONTACTS 52.07% 45.76% - 2.81% 

BLUETOOTH 86.54% - - - 

SMS 63.33% 38.81% - 1.19% 

GET_ACCOUNTS 32.51% 4.95% - 8.04% 

CAMERA 30.06% 17.45% - - 

RECORD_AUDIO 91.91% 9.51% - - 

Table 3: Distribution of permissions used for various purposes, including used for apps’ 
functionality (internal use), for targeted advertising, for mobile analytics, and for social 

network sharing. E.g. 41.33% of apps that required INTERNET permission used this 

permission for internal use, 47.48% of them used for targeted ads. Note that, an app can 

use one permission for multiple purposes, and so rows do not sum to 100%. 

http://www.mobclix.com/
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Cause 
Attracti-
veness 

 Stabili-
ty 

Accuracy Compati-
bility  

Connec-
tivity  

Cost Telephony Picture Media  Spam 

Words 

boring closes find galaxy log free unistall pictures video ads 
bad close location battery error money want picture sound notification 
stupid load search support account buy need pics watch spam 
waste every info off connect pay send camera videos bar 
dont crashes useless droid login paid messages save songs notifications 
hard keeps data nexus connection refund delete wallpaper audio adds 
make won way compatible sign want let see sounds annoying 
way start list install let back contacts photos hear many 
graphics please sync samsung slow bounght calls upload record pop 
controls closing wrong worked website waste off pic anything push 

% 18% 13% 13% 11% 10% 9% 8% 8% 5% 5% 

Example 
app 

Stardunk Opera Kindle App 2 SD Zedge Sygic LINE Pho.to IMDB 
Brightest 
Flashlight 

Blast 
Monkeys 

Bible Kobo 
Solar 
Charger 

Dropbox 
Cut the 
Rope 

WhatsAPP Retro Tuner 
Shoot the 
Apple  

Table 4: Most frequent words from the top 10 causes found by LDA topic modeling. The 

percentages in the middle row indicated the portions of apps that had comments 

expressed corresponding themes.  

In short, static analysis with batch processing in the cloud enables us to dig deeper into 
apps’ privacy-related behaviors and help us at some level understand better sensitive 
resource usages in terms of what are used and hints as to how and why they are used.  

3.4 Other Potential Ways to Analyze Apps11 

Other than static / dynamic analysis that extracts apps’ behaviors from the source code or 
in runtime, there are other approaches from which apps’ behavior can be determined. In a 
side project collaborated with Fu et al. [59], Natural Language Processing (NLP) 
technologies were applied to user reviews to diagnose problems associated with different 
apps. This was done in part using the Stanford Topic Modeling Toolbox [14] to train 
Latent Dirichlet Allocation models, resulting in a 10-topic model, as summarized in 
Table 4.  

The topics are sorted by their average proportions across the distribution of all 
documents. We added a descriptive word to each topic at the top of Table 4 to represent 
the major concept each topic is talking about. Most topics exhibit clear reasons why users 
dislike an app. These reasons related to functional features such as picture and telephony, 
performance issues such as stability and accuracy, and other important factors such as 
cost and compatibility.  

Looking at the 10 topics that had registered the most complaints, we can see that privacy 
is not included as such. It can be seen however that users complain about excessive 
behaviors such as spamming ads. This type of spamming very often comes with 
behavioral ad services collecting users’ private information such as location and phone 
ID to deliver context-based advertisements. While this may not be apparent to many end-
users, this is clearly an example of a privacy-invasive behavior directly related to the 
practices studied in this dissertation. 

By performing topic modeling in different time windows, a dynamic historical view can 
be created to illustrate the time span of an app, highlighting the different distribution of 
user complaints about different problems. For example, two new version releases 

                                                 
11 The content of this sub-chapter is published in KDD’13 [120]. 
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naturally separated the user review time series of Plants vs. Zombies into four segments 
(See Figure 7). This game was first introduced to Google Play on December 21, 2011 
(Day 1). There was a significant burst of negative reviews due to the instability of the 
initial release. Following this spike, stability remained the main source of complaints 
until a follow-on release in May 2012, which fixed the stability problem but resulted in 
connectivity issues. Approximately a week after this incident there was a spike of 
positive review on the time series plot, containing reviews such as “Finally fixed. 
Horray, no more crashing… ”, indicating that the connectivity problem had been solved. 
This dynamic view provides a historical view of apps, which is extremely useful for 
users, developers and analyst to gain a deeper understanding of apps. By combining all 
reviews across the market, high-level market trends can also be identified to improve the 
market efficiency. 

Similar NLP technologies can also help improve app analysis in terms of providing more 
context information. For example, Chen et al. studied the maturity rating [34] by 
performing text-mining on app descriptions and users’ reviews. They developed 
mechanisms to verify the self-reported maturity rating of mobile apps and investigated 
possible reasons behind the incorrect ratings. Although slightly outside the scope of 
mobile privacy, their work demonstrated the ability and flexibility of NLP techniques to 
study the content of an app. 

Along the same direction, through mining app description and user reviews, we can 
identify the services and functionality this application provides. Currently Google 
classified all the apps into 30 categories based on their functionalities; however, this 
taxonomy is still too coarse to infer whether certain private resources are necessary for 
certain apps. Text mining techniques can used to generate more comprehensive attributes 
to describe apps’ functionalities.  

3.5 Summary 

In this chapter, we described the detailed procedures involved in downloading and 
analysis over 100K mobile apps. Specifically, we discussed how we use Androguard, an 
Android reverse engineering tool to perform static code analysis on apps, focusing on 

 
Figure 7 . We use time series to visualize the life story of Plants vs. Zombies, and topic 

analysis is performed for different segments of the time series. 
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identifying what sensitive user data/resources are used and why. We leveraged the 
Amazon EC2 cloud to enable the batch processing to speed up the analysis of this large 
quantity of apps. To identify the purpose why sensitive user data are used, we looked up 
the top 400 3rd-party libraries that are most frequently used in all these apps and 
categorized them into 9 categories based on what type of services they provide. We also 
analyze how different types of resources (permissions) are used for various purposes. We 
further pointed out the potential of leveraging NLP techniques in app analysis.   
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4 IDENTIFYING PATTERNS IN APPS’ PRIVACY 
BEHAVIORS 

In the previous chapter, we discussed the techniques that we used to crawl Google Play 
and to perform code level static analysis of individual apps. To gain a deeper 
understanding of the Android mobile app market, and to identify typical patterns that 
apps consume users’ private information, we applied machine learning techniques to 
identify common patterns in apps’ privacy-related behaviors. More specifically, we want 
to see if there exist several groups of apps that exhibit particular characteristics in 
collecting and consuming users’ sensitive data; thus we can discuss their privacy risks 
and coping mechanisms separately.  

4.1 Preprocessing 

We performed several preprocessing steps to code our dataset properly for the clustering 
task.  

First, we organized the raw static analysis results by aggregating the 3rd-party library 
usage based on their categories (as mentioned in Table 2) and what Android permissions 
they use. For each permission p requested by an app a, we use one attribute to encode if p 
is triggered by internal use, and count how many 3rd-party libraries l in the category c is 
bundled in a. We only focused our analysis on the top 11 most sensitive and frequently 
used permissions, as identified earlier [49]. They are: INTERNET, 
READ_PHONE_STATUS, READ_CONTACT, GET_ACCOUNTS, BLUE_TOOTH, 
ACCESS_FINE/COARSE_LOCATION, SEND_SMS, READ_SMS, CAMERA, and 
RECORD_AUDIO (see Appendix A for the description of these permissions). By doing 
this, we can greatly reduce the number of features used to describe each app, and hence 
reduce the sparsity in our data. We also counted the number of URLs that app a is 
connecting to. In total, we used 131 attributes to represent the static analysis results for 
each of the 89,903 apps.  

Secondly, we append the apps’ meta-data to our dataset. These meta-data include the 
name of the app, developer, the range of the download number, the average rating of the 
app, star rating distribution, the number of user reviews, etc. Together with the app 
behavioral attributes, each app has a feature set of 144 features. 

Thirdly, we perform a simple dimension reduction by eliminating the features that are 
constant or nearly constant. This dimension reduction results in a remaining matrix of 
120 features.  

Finally, we normalize the dataset such that all the features except the text fields have the 
same value range of [0.0, 1.0].  

4.2 Clustering Algorithms and Distance Functions 

We used hierarchical clustering with an agglomerative approach to cluster apps’ privacy 
related behaviors, where each observation starts in its own cluster, and pairs of clusters 
are merged as one step moves up the hierarchy according to the distance measures and 
agglomerative algorithms. In the general case, the complexity of agglomerative clustering 
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is O(n3) [89]. Though its time complexity is not as fast as k-means or other flat clustering 
algorithms, we chose hierarchical clustering mainly due to three reasons: (1) it is flexible 
in its selection of distance functions, which gives us ample room to try out different 
distance functions since we did not know which one would work best; (2) the hierarchical 
structure produced by hierarchical clustering is much more informative than the 
unstructured clusters, hence the clustering results are more likely to be interpretable and 
less likely to result in artificial boundaries (such as those sometimes produced by 
centroid-based clustering techniques like k-means); (3) it does not require us to pre-
specify the number of clusters (in contrast to k-means) and the results are deterministic 
(stable).  In short, we intentionally sacrifice efficiency for the sake of obtaining clusters 
that are more likely to capture genuine differences between apps and more likely to be 
interpretable. 

In our work, given the new dataset and new problem, we first explored possible distance 
measures and agglomerative methods. More specially we ran our hierarchical clustering 
algorithms with the following distance measures [89]:  

A. Euclidean distance (ECL):  
Euclidean distance between two points in a 2D space is given by the Pythagorean 
formula. When extended to n-dimensional space, inner products are used. In 
Cartesian coordinates, if p=(p1,p2,...pn) and q=(q1,q2,...qn) are two points in Euclidean 
n-space, then the distance from p to q, or from q to p is given by: 

 

B. Manhattan distance (MHT): 
Manhattan distance measures the distance between two points as the sum of the 
absolute differences of their Cartesian coordinates, also known as rectilinear distance, 
L1 distance or taxicab metric. More formally,  

 

C. Canberra distance (CBR):  
Canberra distance is a weighted version of Manhattan distance, which has been used 
as a metric for comparing ranked lists and for intrusion detection in computer 
security. The Canberra distance between vector p and q in an n-dimensional real 
vector space is given as follows: 

 

D. Binary distance (BNR): 
Binary distance (so called Hamming distance) measures the minimum number of 
substitutions required to change one binary vector to another. In our case, we coded 
non-zero entries as '1's to form a binary matrix. So for binary vectors p and q the 
hamming instance is equal to the number of ones (population count) in p XOR q.  
 

In addition, we explore the following agglomerative methods in our experiments: 
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A. Ward’s Method (WAR):  
Ward's method offers a general agglomerative hierarchical clustering procedure, 
where the criterion for choosing the pair of clusters to merge at each step is based on 
the objective function that finds the minimum between-cluster distance. In other 
words, the pair of clusters with the closest boundaries are merged. 

B. Centroid Method (CTD):  
Centroid method suggests merging the two clusters with minimum distance between 
their centroids. The centroid of each cluster is usually defined by averaging all the 
points within the cluster.  

C. Average Linkage (AVG):  
The average linkage method merges clusters based on their average distances. It 
computes the distances between the pairs of points in two clusters and takes the mean 
of all these pairs as the average distance between two clusters. The two clusters with 
the minimum average distance are merged. 

D. McQuitty’s Similarity (MCQ):  
McQuitty’s method merges together the pair of clusters that have the highest average 
McQuitty’s similarity value, as defined in [100]. This agglomerative method has been 
proven to be effective in text clustering.  

We limited our exploration to the above-mentioned distance functions and agglomerative 
methods, since other distance functions or agglomerative methods either produce similar 
results as the above-mentioned ones or are not appropriate for our tasks based on the 
characteristics of our data. As research on clustering techniques continues, it is possible 
that new techniques could provide even better results than the ones we present. We found 
however that by themselves these techniques were already sufficient to isolate very 
different categories of mobile apps, when it comes to their permissions and the purposes 
associated with these permissions. 

4.3 Evaluating Clustering Algorithms 

To select the best agglomerative method and the best distance function for our problem, 
we experimented with various ways of combining the four agglomerative methods and 
four distance measures by using the R package “hclust” [102]. We conducted all the 
experiments on a Linux machine which has XeonE5-2643 3.3GHz CPU (16 cores) and 
32G memory. We selected the most popular 20,000 apps with all encoded features as the 
data input to perform the clustering analysis. 

We have two selection criteria in determining which combination of distance function 
and agglomerative method to use. First, the combination should not produce clusters with 
extremely skewed structures in dendrograms. A dendrogram is a tree diagram frequently 
used to illustrate the arrangement of the clusters produced by hierarchical clustering, 
where x axis represents all the instances in the vector space, and the y axis represents the 
range of distances in this vector space.  The tree structure in the dendrogram illustrate 
how clusters merged at each iteration. We check this by manually inspecting the 
dendrograms produced by the clustering.  The other criteria are three internal measures, 

http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Hierarchical_clustering
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namely connectivity, Silhouette Width and Dunn Index, which validate the clustering 
results based on their connectivity, compactness and degree of separation.   

Figure 8 shows two examples of dendrograms produced by different agglomerative 
methods and distance functions. The left one presents a fair structure in the sense that the 
clusters in the higher hierarchy include a good number of instances, whereas the right 
dendrogram presents a skewed structure --- even in the top several levels of the 
hierarchical structure, the clusters only contain a couple of instances. After inspecting all 
the resulting dendrograms, we eliminated the following combinations: Average Linkage 
methods with all distance measures, binary distance with Ward’s method and centroid 
method, Manhattan distance with McQuitty’s method, and Euclidean distance with 
McQuitty’s method, resulting in 8 remaining potential distance and agglomerative 
method combinations.  

In the second step, we use three internal measures (provided by R package 
“clValid”[101]) to quantitatively evaluate the remaining combinations. These measures 
reflect the compactness, connectivity and the separation of the cluster partitions.  

Connectivity measures to what extent observations are placed in the same cluster as their 
nearest neighbors in the data space, and is measured as [65]: 

 

Where nn i(j) denotes the j th nearest neighbor of observation i, and let be zero if i 

and j are in the same cluster and 1/j otherwise, and L is a parameter giving the number of 
nearest neighbors to use (L is set to 10 in our case). The connectivity has a value between 
zero and ∞ and should be minimized.  
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(a) Euclidean distance with Ward method 
 

(b) Manhattan distance with Average Linkage 
method 

Figure 8: Two examples of dendrograms produced by different agglomerative methods 

and distance functions. The left one is produced by applying Ward’s method with 
Euclidean distance. The right one is produced by applying Average Linkage method with 

Manhattan distance. The hierarchical structure is very skewed even at the top level.  
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Compactness assesses cluster homogeneity, usually by looking at the intra-cluster 
variances, while separation quantifies the degree of separation between clusters (usually 
by measuring the distance between cluster centroids). Popular methods combine the two 
measures into a single score, such as the Dunn Index [42] and Silhouette Width [105].  

The Dunn Index is the ratio of the smallest distance between observations not in the same 
cluster to the largest intracluster distance, computed as 

 

where diam(Cm) is the maximum distance between observations in cluster Cm. The Dunn 
Index has a value between zero and ∞ and should be maximized.  

The Silhouette Width is the average of each observation’s Silhouette value which 
measures the degree of confidence in the clustering assignment of a particular 
observation. For observation i, it is defined as  

 

where ai is the average distance between i and all other observations in the same cluster, 
and bi is the average distance between i and the observations in the “nearest neighboring 
cluster”. The Silhouette width thus lies in the interval [-1,1] and should be maximized. 

We varied the number of clusters k from 2 to 20 to create the cluster labels for each of the 
8 remaining distance and agglomerative method combinations, and then rank them based 
on the three internal measures respectively. Table 5 summarizes the rankings based on 
internal measures.  

It shows that Canberra distance with Ward’s method when k=5 has the highest Silhouette 
width (should be maximized) and Dunn Index (should be maximized), and it ranks the 
second for the connectivity (should be minimized). Collectively, we choose the clusters 
produced by this setting and present the visualization and interpretation in the following 
sections.  
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Rank 
Connectivity Dunn Index Silhouette Width 

Dist- aggl-k Value Dist- aggl-k Value Dist- aggl-k Value 
Top 1 ECL-WAR-5 4.38 CBR-WAR-5 0.40 CBR-WAR-5 0.98 
Top 2 CBR-WAR-5 4.96 ECL-WAR-9 0.26 BNR-MCQ-4 0.86 
Top 3 MHT-WAR-6 5.34 CBR-WAR-6 0.23 MHT-WAR-5 0.81 
 

Table 5: Top 3 clustering configurations for each internal measure. Clusters obtained by 

using Canberra distance and Ward’s method with k=5 (CBR-WAR-5) ranks first in 

Dunn Index (should be maximized) and Silhouette Width (should be maximized) and 

ranks second in the connectivity (should be minimized). We select this configuration as 

its best performance overall.  
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4.4 Resulting Clusters 

 We plot the dendrogram of the iterations of hierarchical clustering with Canberra 
distance and Ward’s method in Figure 9. At each iteration, cluster merging is represented 

 
Figure 9: The dendrogram of hierarchical clustering with Canberra distance and 

Ward’s method. It visualizes how clusters merge in each iteration. The five different 
colors at the bottom represents five different cluster labels assigned to all the instances 

when k=5.  

 

 
Figure 10: A heat map plots the centroid of each cluster. The brighter the color 

represents the higher values in corresponding attributes. We can see distinguishing 

patterns in all the five clusters.  
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by a merge in the hierarchical structure. Five different colors at the bottom represent five 
different clusters resulted in this process. The smallest cluster (in black) contains 10.8% 
of apps and the largest cluster (in blue) contains 35.5% of apps.  

To get a first impression of the resulting clusters, we compute the centroid of each cluster 
by averaging the attributes of all the instances in the same cluster. We use a heat map to 
visualize the centroids of all the five clusters in Figure 10, where the brighter the color is 
the larger the value in the corresponding attributes12. Although human perception can 
easily tell there are significant differences among the five clusters in the visualization, it 
is not straightforward to spot the distinct characteristics of each cluster.  

To better understand each cluster and its privacy implications, in the following sub-
sections, we separately plot the five clusters in 2 dimensional grid representations, where 
the vertical dimensions represent the different usages of permissions and the horizontal  
dimensions represent why (purpose) of using certain permission. The number in each grid 
roughly translates to the portion of apps used specific permission for a specific purpose.  
We will also discuss the potential privacy risks of each cluster of apps. 

4.4.1  Cluster_1: Few Requested Permissions  

Cluster 1 is the smallest cluster among the five. It contains just 10.8% of apps. Figure 11 
depicts the centroid of cluster 1. We can see that only a few entries are filled with very 

                                                 
12 Since the dataset is normalized before clustering, all the entries have values within the range of [0.0, 1.0]. 
It is hard to assign a physical meaning to the normalized value, though roughly the larger the value means 
more frequent usage of certain sensitive resources for certain purposes.  

 

Examples:  

 
Robo Defense FREE, 

 
Battery Widget, 

 
Calculator++ 
 

Figure 11: Heap map visualization of the centroid of cluster_1. Permissions are 

displayed along the vertical axis, while the possible purposes associated with these 

permissions are displayed along the horizontal axis Apps in this cluster seldom use any 

sensitive permissions. More red color indicates a higher proportion of apps requesting a 

given permission for a particular purpose. 
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light red. This suggests that this cluster of apps seldom use permissions that involving 
sensitive user data. A lot of them are utility apps such as calculator, battery widget, or 
simple games such as Robo Defense FREE. Because of the absence of permission usage, 
this type of cluster poses almost no privacy risks to users.  

4.4.2 Cluster_2: Permissions Primarily Requested for Internal Use 

The second cluster of apps is the largest (35.5% of all apps we crawled). The apps in this 
cluster consume permissions for their functionality (internal use) most of the time, as 
shown in Figure 12. Note that, the “internal use” here does not necessarily imply that user 
data never leaves the mobile devices, but rather it refers to the situation where the 
sensitive user data are not requested by any 3rd-party libraries bundled with the 
application.  

An example of an app in this cluster is Google Maps, which uses the user’s location 
information primarily to support location-based search and navigation functionality. 
Another example is WhatsApp Messenger, which accesses the phone book 
(READ_CONTACT) to facilitate messenger service. Yet another app in this category is 
YouTube, which accesses a user’s account information but solely as part of its 
authentication process. This category of apps seldom uses 3rd-party libraries and uses 
users’ sensitive data primarily within the app’s native code. The privacy risk associated 
with these apps appears to be low, which is similar to the first cluster. While developers 
or companies who produce apps in this cluster access and transmit sensitive user data to 
their servers, they seem to do so primarily to support their app’s core functionality. 
Obviously, once the data leave the mobile device, we have no way of knowing exactly 
how it will be used. In light of the many third party libraries found in the code of other 
apps, it is reasonable to assume that most of these apps probably do not share this data: if 
they were, they would likely do so using 3rd party APIs embedded in their app’s code, but 
there are probably some exceptions. A privacy policy could possibly help further clarify 
whether any such sharing takes place at the server level. In short, while this category of 
apps seems benign, they might still pose privacy risks, especially if the data being 
collected does not seem to be required by the app’s core functionality.  

4.4.3 Cluster_3: Ad-powered apps 

In the mobile ecosystem, a large portion of app developers monetize their products by 
bundling behavioral ad libraries [31]. This cluster of apps (Figure 13) demonstrates this 
intention clearly, since in most cases permissions are used for delivering targeted ads. 
Multiple types of personal information, including users’ location, phone number, and 
contact list could be used to profile users’ life style, habits and interests. Since an ad 
library might be bundled in multiple apps, the ad agency could potentially aggregate the 
data collected through multiple apps to build a more comprehensive profile of users.  In 
short, the privacy risks of this type of apps is not from developers, since they do not 
receive sensitive information, but rather from the companies and agencies involved in 
collecting this data, building profiles and delivering targeted ads.  
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 Some work has sought to block behavioral ad libraries to prevent excessive data 
collection [29, 68]. It is unclear to what extent such an approach will remain viable in the 
long run. This is because a large portion of app developers rely on behavioral advertising 
to monetize their products, especially those who develop free apps. Blocking ad libraries 
would greatly discourage these developers and blunt the innovation we have seen in 
smartphone apps. A more practical approach would involve the development of an 
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Figure 12: Heap map visualization of the centroid of cluster 2. This cluster of apps uses 

sensitive permissions mostly for functionality purposes.  
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Figure 13: Heap map visualization of the centroid of cluster 3. This type of app uses 

sensitive permissions because of the targeted ads libraries that bundled inside them. 
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Example: 
 

 
Facebook 
  

 
SoundHound 

 

 
Scope 

 

Figure 14: Heat map visualization of the centroid of cluster 4. This cluster of apps 

consume permissions most for internal functionality and for promoting sharing through 

bundled social network libraries. 

 

infrastructure or  functionality that exposes these practices to users and enable them to 
make better informed decisions. Over the past year, we have seen many big players in 
mobile advertising (such as Admob, Tapjoy, InMobi, etc.) refining their privacy policies. 
Some initiatives have also been launched that aim to better control the collection and use 
of user data.  These efforts include an agreement between the California Attorney 
General and six major mobile app marketplaces (including GooglePlay, iTunes and the 
Amazon App store) to require app developers to include privacy policies. They also 
include initial self-regulatory efforts by industry. Whether these efforts will be sufficient 
to empower end-users to make informed decisions remains to be seen.  

4.4.4 Cluster_4: Apps that Promote Sharing 

Compared to other clusters, this group of apps (see Figure 14) is often bundled with SNS 
libraries. These libraries are usually used to let users share app-related content on social 
network sites, like Twitter and Facebook, together with other contextual information such 
as location. By promoting the interaction with SNSs, these apps can achieve two goals. 
One is that the app itself can act as a portal for users to manage their social networks. The 
other is to leverage the SNSs as dissemination channels to propagate and advertise this 
app. Together with other facets like targeted advertising as well as in-app purchasing, 
either way could make the app more popular.  

The privacy risks associated with this type of app are similar to those posed by social 
network sites. Users are responsible for the consequences of sharing app-related 
information and potentially their own information through SNS libraries. This type of 
sharing might require users to balance factors like social capital, maintaining social 
images of themselves, and protecting their privacy. At the same time, when combined 
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Example: 
 

 
IMDb 

 

 
Pandora internet radio 

 

 
Skype - free IM & video calls 

 

Figure 15: Heat map of cluster 5. This cluster of apps consumes permissions both 

internally and for delivering targeted ads and facilitating mobile analytics.  
 

with internal functionalities or for targeted advertising, this type of app also suffers the 
same privacy risks as the previous two clusters.  

4.4.5 Cluster_5: Multi-purpose Apps 

The last cluster of apps (Figure 15) is the most sophisticated cluster, which contains 
approximately 16.13% of the free apps we crawled from Google Play. This type of apps 
uses permissions for multiple purposes and is more likely to be produced by developers 
who are interested to know how users use their apps, since we also observe a strong 
penetration of mobile analytics libraries such as Flurry and Localytics. Mobile analytics 
libraries usually provide paid services to app developers to help them understand how 
consumers interact with their apps. The information they collect might also include 
personal information such as users’ location, phone number, etc.  

Similar to targeted advertising libraries, mobile analytics companies can harvest user data 
from multiple apps, and are hence able to build more comprehensive user profiles. We 
also see the trend that some mobile analytic companies have started to offer targeted 
advertising in the last two years. It is a reasonable assumption that the user profiles built 
from mobile analytics are also being used to assist their ad services. Combined with other 
sensitive data usage by apps themselves and targeted advertising, this cluster of apps 
poses more convoluted privacy risks to users.  

4.5 Discussion 

We identified patterns in privacy-related behaviors of apps by clustering mobile apps in 
terms of how and why they use different private data. In this sub-section, we discuss how 
these findings help us move forward in our mobile app privacy research.  
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First of all, the five clusters of apps we identified provide a new way to organize mobile 
apps, and help us understand how these typical patterns are distributed in the app market. 
In contrast to previous work by Frank et al. [56] which focused on identifying app-
permission patterns, namely groups of apps with similar permission patterns. Our 
analysis provided a more in-depth look at these patterns by attempting to also capture the 
purpose associated with different app-permissions. By distinguishing between ten 
different purposes associated with different app permissions, we are able to develop a 
deeper understanding of the information flows associated with different app-permissions. 
As we show in the next chapter, the purpose associated with an app-permission pair has a 
significant impact on people’s privacy preferences when it comes to deciding whether 
they feel comfortable granting a given permission to an app.  Specifically, in the next 
chapter, we describe a crowdsourcing study where we asked participants why they 
believe an app is requesting a given permission and to what extent they feel comfortable 
granting that permission. 

As shown in the next chapter, different clusters of apps give rise to different privacy 
concerns. Given the different ways in which they use sensitive data, these clusters of apps 
induce different types of privacy risks. In other words, permissions by themselves are not 
sufficient for users to make decisions. Instead, additional details about the purpose 
associated with the collection of sensitive data are critical. Such information should 
minimally be provided in the form of privacy policies, though, as has been shown by 
others [91], users are unlikely to read these policies. In the following chapter, we show 
how models of people’s privacy preferences can also be used to inform the design of 
privacy displays that highlight those issues that are most likely to impact people’s privacy 
decisions.   

Finally, though this clustering information might not be intuitive for end users, it can be 
treated as another attribute to describe apps that could potentially provide extra value to 
other stakeholders. For example, these attributes could be used for services such as 
mobile app recommender systems, or can be used as a clue to assign privacy scores to 
individual apps.      

This chapter demonstrates the exploration and the knowledge we discovered with regard 
to apps’ privacy-related behaviors. We also produce a valuable dataset that describes 
apps in terms of what sensitive user data they consume and why. We believe that by 
applying more advanced machine learning techniques or mining this dataset from other 
angles, we can uncover more facts, patterns, and knowledge about either individual 
mobile apps or the mobile market as a whole. 
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5 NOTICE & AWARENESS: HOW TO INFORM USERS?13 
The FTC has identified five core principles (Fair Information Practice Principles) to 
protect consumers’ privacy, among which “Notice/Awareness” is the most fundamental 
one [58]. This principle states “Consumers should be given notice of an entity’s 
information practices before any personal information is collected from them.” However, 
multiple user studies have found that mobile app users seldom pay attention to 
permission screens and have a hard time understanding their privacy implications [54, 
77]. One major contribution of this thesis is to develop better ways informing users of 
pertinent information in a more effective and understandable way.  

5.1 What to Show?  

The existing permission screens of Android generally lack adequate explanation and 
definitions, which motivated us to explore what information should be conveyed to users 
that can help them better understand the privacy implications of apps’ sensitive data 
usages.  

One thing we learned from previous location sharing privacy studies is that users have 
distinct privacy preferences for different kinds of sharing [110]. This makes sense in the 
context of mobile app privacy as well. People’s perceptions of whether an action is 
reasonable, or how that action makes users feel with respect to their privacy are greatly 
influenced by why an action is taken. For example, is a given app’s use of one’s location 
appropriate or not? It all depends on the purpose: for a blackjack game with no clear 
reason for collecting location information, probably not, but for a map application to 
provide point-to-point navigation, very likely so. Therefore, a clear explanation as to why 
the sensitive data is required is necessary to properly inform users. Thanks to a number of 
research projects, there are many existing application analysis tools [36, 45-47, 55] that 
we can leverage to identify the purposes of the data disclosure.  

In addition, we frame mobile privacy in the form of people’s expectations about what an 
app does and does not do, focusing on where an app breaks people’s expectations. There 
has been a lot of discussions about expectations being an important aspect of privacy 
[109]. We framed our inquiry on Norman’s notion of mental models [94]. All people 
have a simplified model that describes what they think an object does and how it works 
(in our case, the object is an app). Ideally, if a person’s mental model aligns with what the 
app actually does, then there would be fewer privacy problems since that person is fully 
informed as to the app’s behavior. However, in practice, a person’s mental model is never 
perfect. We argue that by allowing people to see the most common misconceptions about 
an app, we can rectify people’s mental models and help them make better trust decisions 
regarding that app.  

The notion of expectations is fairly common in discussions of privacy [109]. For 
example, the famous 1967 US Supreme Court case Katz v United States ruled that people 

                                                 
13  Part of this chapter has been previously published in Ubicomp’12 [82], and other parts 
included in a paper submitted to CHI’14 [120]. 
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Figure 16: Sample questions to capture users’ mental models. Participants were randomly 
assigned to one of the conditions. In the expectation condition, participants’ were asked to 
specify their expectations and speculate about the purpose for this resource access. In the 

purpose condition, the purpose of resource access was given. In both conditions, participants 

were asked to rate how comfortable they felt having the targeted app access their resources.  

Please read the application description carefully and answer the questions below.
App Name: Toss it

Toss a ball of crumpled paper into a waste bin. Surprisingly addictive! Join the 

MILLIONS of Android gamers already playing Toss It, the most addictive casual game 

on the market -- FREE!

- Simple yet challenging game play: toss paper balls into a trash can, but don't forget to 

account for the wind! 

- Challenge your friends to a multiplayer game with Scoreloop

- Toss that paper through 9 unique levels -- you can even throw an iPhone! – Glob

And if you like Toss It, check out these other free games from myYearbook: - Tic Tac 

Toe LIVE! - aiMinesweeper (Minesweeper) - Line of 4 (multiplayer game like Connect 

Four)

 1. Have you used this app before? (required)

Yes No

2. What category do you think this mobile app should belong to? 

(required)

Game Application Book, music or video

3. Suppose you have installed Toss it on your Android device, 

would you expect it to access your precise location? (required)

Yes No

4. Could you think of any reason(s) why this app would need 

to access this information? (required)

Toss it does access users’ precise location information.

precise location is necessary for this app to serve its 

major functionality.

precise location is used for target advertisement or 

market analysis.

precise location is used to tag photos or other data 

generated by this app.

precise location is used to share among your friends or 

people in your social network.

other reason(s), please specify 

I cannot think of any reason.

5. Do you feel comfortable letting this app access your precise 
location? (required)

Very comfortable

Somewhat comfortable

Somewhat uncomfortable

Very uncomfortable

Please provide any comments of this app you may have below.

Based on our analysis, Toss it  accesses user's precise 
location information for targeted advertising .
3. Suppose you have installed Toss it on your Android device, 

do you feel comfortable letting it access your precise location? 

(required)
The Expectation Condition The Purpose Condition

Very comfortable

Somewhat comfortable

Somewhat uncomfortable

Very uncomfortable

OR

could not have their telephone calls monitored without a warrant because there was a 
“reasonable expectation of privacy” [15], with this famous phrase being the basis of a test 
used by US courts to evaluate the reasonableness of legal privacy protections. Our notion 
of privacy as expectations is a different construct, focusing primarily on people’s mental 
models of what they think an app does and does not do. Our core contribution is in 
operationalizing privacy in this manner of capturing people’s expectations as well as 
reflecting other people’s expectations directly in a privacy summary to emphasize places 
where an app’s behavior did not match people’s expectations. 

5.2 How to Gather Data? 

As mentioned in the previous section, the purpose of disclosing private data can be 
identified by using various analysis tools [36, 45-47, 55]. By leveraging the power of 
cloud, app analysis can be easily scaled up to handle dissecting thousands or even tens of 
thousands of apps. On the other hand, traditional ways of collecting user feedback, such 
as interview or lab studies seems inadequate to catch up with the scale of data that we 
intend to collect. How to collect user feedback in an efficient and affordable way 
becomes a major challenge.  

Inspired by work like [57, 90], we turn to crowdsourcing for help. There are four reasons 
why crowdsourcing is a compelling technique for examining privacy. Past work has 
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shown that few people read End-User License Agreements (EULAs) [61] or web privacy 
policies [72], because (a) there is an overriding desire to install the app or use the web 
site, and reading these policies is not part of the user’s main task (which is to use the app 
or web site), (b) the complexity of reading these policies, and (c) a clear cost (i.e. time) 
with unclear benefit. The current Android permission screen suffers from the same 
problems: (a) user’s main task is to install the apps and this task is interrupted by going 
through permission screen. (b) the permission description text is lengthy and hard to 
understand. (c) Without fully understand its privacy implication, there is no clear benefit 
for users to go through these permission lists.  

Crowdsourcing nicely addresses these problems. It dissociates the act of examining 
permissions from the act of installing apps. By paying participants, we make reading 
these permissions part of the main task and also offer clear monetary benefit. Lastly, we 
can reduce the complexity of reading Android permissions by having participants 
examine just one permission at a time rather than all of the permissions, and by offering 
clearer explanations of what the permission means. 

5.3 Study Description 

We recruited participants using Amazon’s Mechanical Turk (AMT). We designed each 
Human Intelligence Task (HIT) as a short set of questions about a specific Android app 
and resource pair (see Figure 16). Participants were shown one of two sets of follow-up 
questions. One condition (referred to as the expectation condition) was designed to 
capture users’ perceptions of whether they expected a given app to access a sensitive 
resource and why they thought the app used this resource. Participants were also asked to 
specify how comfortable they felt allowing this app to access the resource using a Likert 
scale that ranged from very comfortable (+2) to very uncomfortable (-2).  

In the other condition (referred to as the purpose condition), we wanted to see how 
people felt when offered more fine-grained information. Participants were told that a 
certain resource would be accessed by this app and were given specific reasons for the 
access. We identified these reasons by app analysis and knowledge about ad networks. 
Participants were then asked to provide their comfort ratings as in the expectation 
condition. Finally, participants from both conditions were encouraged to provide optional 
comments on the apps in general. The separation of the two conditions allowed us to 
compare users’ perceptions and subjective feelings when different information was 
provided. 

We focused our data collection on four types of sensitive resources (as suggested by 
AppFence [68]): unique device ID (READ_PHONE_STATE), contact list 
(READ_CONTACT), network location (ACCESS_COARSE_LOCATION), and GPS 
location (ACCESS_FINE_LOCATION). We also restricted the pool of apps to the Top 
100 most downloaded mobile apps on the Android market. The list of apps and their 
relevant permissions can be found in the Appendix B. Overall, 56 of these apps requested 
access to unique phone ID, 25 to the contact list, 24 to GPS location, and 29 to Network 
Location. This resulted in 134 app and resource pairs, i.e. 134 distinct HITs. For each 
HIT, we recruited 40 unique participants to answer our questions (20 per condition).  We 
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MSE  Network 

Loc  

GPS loc  Contact List  Unique 

ID 

expectation [0,1]  0.0354 0.0303  0.0353 0.0363 

comfort level [-2,+2]  0.7081  0.8136  0.6749 0.3067 

Table 6: Crowd workers and experts have similar expectations toward targeted 

mobiles. In general, experts were slightly more skeptical about these privacy-related 

behaviors. Numbers in this table indicate the differences between the rating we 

obtained from the crowd workers and the experts, measured by the Mean Square 

Error. 

limited our participants to Android users in U.S. and ensured a between-subjects design 
through a qualification test. 

All the HITs of this study were completed over the course of six days. We collected a 
total of 5684 responses. 211 were discarded due to incomplete answers, and 113 were 
discarded due to failing the quality control question, yielding 5360 valid responses. There 
were 179 verified Android users in our study, with an average lifetime approval rate of 
97% (SD=8.79%). On average, participants spent about one minute per HIT (M=61.27, 
SD=29.03), and were paid at the rate of $0.12 per HIT. 

5.3.1 Feasibility of Using Crowdsourcing to Study Privacy 
Though we already adopted quality control questions and qualification tests to ensure the 
validity of the data collected, we want to prove quantitatively that the crowdsourcing 
approach would not bias the results in gathering users’ subjective feedback. To this end, 
we recruited five Android experts14 to come to our lab; then we presented them with the 
same questions in the expectation condition and asked them to complete the questions for 
every resource and app pair (i.e., 134 sets of questions in total). We used the Mean 
Square Errors (MSE) to measure the differences between the subjective feedback 

                                                 
14 Someone with security background and has development experience in Android OS.  

 
Figure 17. The percentage of users surprised about popular mobile apps using users’ 
location, phone ID and contact list. This figure shows the top 10 apps with the least 

expected permission (among the top 100 most downloaded free Android Apps.)  
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collected from crowd workers and experts (see Table 6). In general, crowd workers had a 
similar level of expectations as experts (i.e., MSE < 0.05). Experts on average appeared 
to be more skeptical about privacy-related behaviors of apps, which attributed to the 
slightly higher MSEs seen in the second row. Given the comfort level scaling from -2 to 
+2, these MSEs were still considered acceptable. In other words, these results 
demonstrate the validity and feasibility of crowdsourcing as a method to collect users’ 
subjective feedback to study privacy.  

We also wanted to see how previous experiences with an app impacted participants’ 
expectations and level of comfort. To answer this question, we compared the responses 
between participants who had and hadn’t used the app before. Our results show that the 
differences were not statistically significant with respect to their reported expectation and 
comfort rating of sensitive resource access. This finding suggests that people who use an 
app do not necessarily have a better understanding of what the app is actually doing, in 
terms of accessing their sensitive resources. It also suggests that, if we use crowdsourcing 
to capture users’ mental models of certain apps, we do not have to restrict our participants 
to people who are already familiar with these apps, allowing us access to a potentially 
larger crowd.   

5.3.2 How Users Feel about Popular Apps 

To give a more intuitive impression of users’ subjective feelings towards mobile apps, we 
first present the responses we collected with regard to the some popular apps that readers 
might familiar with. In Figure 17, we show the percentage of participants who were 
surprised by these popular mobile apps access users’ location, unique phone ID and 
contact list. Figure 17 shows the data related to the top 10 apps with the least expected 
permission (among the top 100 most downloaded free Android Apps). From this figure 
we can see that even some very popular apps developed by well-known companies are 
harvesting more than necessary personal data from users, which greatly surprised their 
users. For example, participants were consistently surprised by the fact that a flashlight 
app needed to know their unique phone ID as well as their precise location.  

5.3.3 Expectation, Purpose, and Comfort Level 

When participants were surprised by access to a sensitive resource, they also found it 
difficult to explain why the resource was needed. Note, in the expectation condition, 
participants were only informed about which resources were accessed without 
information on the purpose of access. This is similar to what the existing Android 
permission list conveys to users. In this condition, we observed a very strong correlation 
(r = 0.91) between the percentage of expectations and average comfort ratings. In other 
words, the perceived necessity of resource access was directly linked to users’ 
subjective feelings, which guided the way users made trust decisions on mobile apps. 

We also found that, even if users were fully aware of which resources were used, they 
still had a difficult time understanding why the resources were needed. We compared 
the reasons our participants provided in the expectation condition against the ground truth 
from our app analysis. In most cases, the majority of participants could not correctly state 
why a given app requested access to a given resource. When resources were accessed for 
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Resource Type 
comfort rating w/ 

purpose(std) 
comfort rating w/o 

purpose (std) df T p 

Device ID 0.47     (0.30) -0.10     (0.41) 55 7.42 0.0001 

Contact List 0.66     (0.22) 0.16      (0.54) 24 4.47 
 
0.0002 

Network 

Location 0.90     (0.53) 0.65      (0.55) 28 3.14  0.004 

GPS Location 0.72     (0.62) 0.35      (0.73) 23 3.60  0.001 
Table 7 Comparison of comfort ratings between the expectation condition (2nd 

column) and the purpose condition (3rd column). Standard deviations are shown 

between parentheses. When participants were informed of the purpose of resource 

access, they generally felt more comfortable. The differences were statistically 

significant for all four types of resources. The comfort ratings were ranging from -2.0 

(very uncomfortable to +2.0 (very comfortable). 

functionality purposes, participants generally had better answers; however, accuracy 
never exceeded 80%. When sensitive resources were used for multiple purposes, the 
accuracy of answers tended to be much lower. Note that these results are for a situation in 
which participants were paid to read the description carefully. Many of them had even 
used some of these apps in the past. We believe for general Android users, their ability to 
guess answers would have been even worse.  

Given the lack of clarity as to why resources are accessed, users must deal with 
significant uncertainties when making trust decisions regarding installing and using a 
given mobile app. We observed that, for the four types of sensitive resources (i.e., device 
ID, contact list, network location, and GPS location), participants, in general, felt more 

comfortable when they were informed of the purposes of a resource access (see 
Table 3). The differences between the comfort ratings were statistically significant in 
paired t-tests. For example, concerning accessing the device ID, the average comfort 
rating in the purpose condition was 0.3 higher than in the expectation condition (t(55) = 
7.42, p < 0.0001). This finding suggests that providing users with reasons why their 
resources are used not only gives them more information to make better trust decisions, 
but can also ease concerns caused by uncertainties. Note that informing users about the 
“purpose” for collecting their information is a common expectation in many legal and 
regulatory privacy frameworks. Our results confirm the importance of this information. 
This finding also provides us with a strong rationale to include the purpose(s) of resource 
access in our new design of privacy summary interface.  

5.4 How to Apply the Results? Preliminary Design of a New 
Privacy Summary Interface 

In the above section, we have discussed how we identify the purpose of sensitive data 
disclosure in mobile apps and how to capture users’ expectation of mobile apps, in the 
remaining of this chapter we apply these finding in designing better privacy interfaces. 
The objective is to display richer and more pertinent information to users in a compact 
and understandable way.  

The first design we come up is a text-based design directly inherit the layout and color 
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Figure 18: A mockup interface of our newly proposed privacy summary screen, taking the 

Brightest FlashLight and the Dictionary app as examples. The new interface provides extra 

information of why certain sensitive resources are needed and how other users feel about 

the resource usages. Warning sign will appear if more than half of the previous users were 

surprised about this resource access. 

10% users were surprised this app 

wrote contents to their SD card.

25% users were surprised this app 

sent their approximate location to 

dictionary.com for searching nearby 

words.

85% users were surprised this app 

sent their phone’s unique ID to 

mobile ads providers.

0% users were surprised this app 

could control their audio settings.

See all

90% users were surprised this app 

sent their precise location to 

mobile ads providers.

95% users were surprised this app 

sent their approximate location 

to mobile ads providers.

95% users were surprised this app 

sent their phone’s unique ID to 

mobile ads providers.

See all

0% users were surprised this app 

can control camera flashlight.

schedule from existing permission screen. This new privacy summary interface features 
two crucial attributes identified in our previous study, namely expectation and purpose. 
In this preliminary design, we directly leverage other users’ mental models and highlight 
their surprises. By presenting the most common misconceptions about an app, we can 
rectify people’s mental models and help them make better trust decisions. We also 
provide the purposes of resource access to give users more explanations in our new 
summary interface.  

Previous research has discussed several problems with the existing Android permission 
screens [54, 77], including:  

 The wording of the permission list contains too much technical jargon for lay users. 
 They offer little explanations and insight into the potential privacy risk. 
 A long list of permissions makes users experience warning fatigue.  

With these problems in mind, in addition to the two identified key features, we proposed 
several principles for our own design: 

 Using simple terms to describe the relevant resources. For example, instead of using 
“coarse (Network) location”, we use the term “approximate location”.  

 Only displaying the resources that have greater impact on users’ privacy, such as 
location, device ID, storage, contact list etc. Users could choose to check out other 
low-risk resources by clicking “See all”. 

 Sorting the list based on users' expectation as captured through crowdsourcing. We 
order the list so that the more surprising resource usages are shown first.  
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*  p <0.05 ** p<0.005 
 
App Name 

# of Mentioning Privacy 

Concern (out of 20) Accuracy (max=1.0) Time spent (sec) 

Existing Proposed Existing Proposed p Existing Proposed p 
Brightest Flashlight 4 6 0.58 0.86 ** 74.59 65.11 

 Dictionary 1 3 0.73 0.91 ** 68.21 43.92 ** 
Horoscope 3 7 0.75 0.95 * 68.41 48.72 * 
Pandora 3 3 0.68 0.94 ** 76.86 76.82 

 Toss it 4 13 0.61 0.88 ** 67.43 57.10 
 Table 8. Comparisons between the existing Android permission screen (permission 

condition) and our newly proposed privacy summary (new interface condition). Our new 

interface makes users more aware of the privacy implications and is easier to understand. 

Users in general spent less time on these newly proposed interfaces but got more fine-

grained information. 

 Highlighting important information. We bold the sensitive resources mentioned in 
text, and use a warning sign and striking color to highlight the suspicious resource 
usages, i.e. when the surprise value exceeds a certain threshold. 

Figure 18 shows two examples of our new privacy summary interface. To make the 
comparison more symmetric, our design uses the same background colors and patterns 
that were used in the Android permission screen at the time of the study. In this study, we 
used the data collected in our previously described crowdsourcing study to mock up the 
privacy summary interfaces for five mobile apps, namely Brightest Flashlight Free, 
Dictionary, Horoscope, Pandora, and Toss it.  

We used AMT to conduct a between-subjects user study to evaluate our new privacy 
summary interface. Participants were randomly assigned to one of two conditions. In one 
condition, participants were shown the original permission screen that the current Google 
Play Store uses. In the other condition, participants were shown our new interfaces. We 
evaluated the new privacy summary interface from three perspectives. The first was 
privacy awareness (i.e., whether users were more aware of the privacy implications). 
This was measured by counting the number of participants who mentioned privacy 
concerns when justifying their recommendation decisions. The second was 
comprehensibility (i.e., how well users understood the privacy summary). This was 
measured by the accuracy in answering questions about app behavior. The third was 
efficiency (i.e., how long it took participants to understand the privacy summary), which 
was measured by the number of seconds participants spent reading the privacy summary 
screens. 

The comparisons between the two conditions are summarized in Table 8. Generally 
speaking, participants in the new interface condition weighted their privacy more when 
they made decisions about whether the app was worth recommending. More people in 
this condition mentioned privacy-related concerns when they justified their choices. 
When we asked participants in both conditions to specify the resources used by the target 
apps, those in the new interface condition demonstrated a significantly higher accuracy 
compared to their counterparts. Furthermore, except for the Pandora app, participants in 
the new interface condition, on average, spent less time reading the privacy summaries; 
however, the time difference was not always statistically significant. This finding 
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suggests that we can provide more useful information without requiring users to spend 
more time to understand it. 

5.5 Privacy Interfaces With Different Layouts 

Though improved from the existing Android permission screen, the above mentioned 
privacy interface is still text-based, hence might not be optimal for users to view at a 
glance. In this sub-section, we present three new designs that build on the expectation and 
purpose work, using the same crowdsourcing approach, but opting to present the key 
information in more understandable layouts.  

5.5.1 Proposed Privacy Interfaces 

Our three designs included a matrix view that shows what permissions an app uses and 
how those permissions are used (e.g. advertising, analytics, etc), a list view that shows 
the same information grouped by permissions, and another list view grouped by how 
permissions are used. As baselines, we compared our designs against Android’s interface 
available since April 2013 (see Figure 2b and 2d), and against a design based on the 
voluntary Code of Conduct proposed by the National Telecommunications & Information 
Administration (NTIA) [67, 95, 108], who is an agency of the United States Department 
of Commerce that serves as the President’s principal adviser on telecommunications and 
information policy.   

NTIA’s Code of Conduct provides general design guidelines but does not specify a 
particular standardized design at this point. In our study, we created a baseline privacy 
notice, based on the Code of Conduct and on published mockups developed by a number 
of the stakeholders [67]. We also chose to use this version based on its similarities to the 

(a)  

 

(b) 

 

(c) 

 

Figure 19. Implementation of a privacy interface following the NTIA Code of Conduct Guidelines, (a) 

identifying the types data collected by the app, (b) ways the data may be shared, (c) and a complete listing 

of the permissions used. We changed the color theme from the proposed mock ups so that they all have the 

same general texture.  
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existing Android permission interface. This version of the interface has one tab indicating 
which data categories are used by the app, a second tab indicating what types of entities 
may use the data, and a third tab with the full text of which permissions are used (Figure 
19). It is primarily text based, and displays the data types that are used first (and grays out 
the data types that are not).  

As we mentioned before, we identified 9 categories of 3rd-party libraries based on the 
type of services they provide. To simplify our designs, we opted to group the use of 
permissions into four categories: Basic App Functionality, Advertising, Market Analysis, 
and Other Utilities. Basic app functionality means that a permission is used by the app 
and not a third-party. Other utilities include all of the other libraries above other than 
advertising and market analysis. We grouped these uses together for two reasons. First, 
advertising and market analysis libraries were found in over 40% of apps that we 
analyzed, and represented a common piece of functionality across all apps. Second, we 
wanted to avoid overloading users with too many details, allowing them to focus on 
information that past work has identified as the most privacy concerning [31, 82, 99]. 

For our first design, we turned to a matrix visualization to display information about what 
permissions are used by an app, how the data and information gathered from those 
permissions are used, and which behaviors users are concerned with (see Figure 20). This 
design was inspired by past work on privacy nutrition labels [75, 76], which were 
originally designed for web site privacy policies. 

The matrix shows permissions that an app uses along the vertical axis. Categories of how 
the permissions are used are placed along the horizontal axis (i.e. Basic App 
Functionality, Targeted Ads, Market Analysis, and Other Utilities). Each box in the grid 
represents a behavior of the app, corresponding with the permission and type of usage. If 
the behavior is not exhibited by the app, a gray minus sign is displayed. If the behavior is 
exhibited by the app, the box is colored red, with darker red colors signifying that other 

 
Figure 20. Our matrix interface. Permissions used by the app are on the vertical axis; 

categories of use are on the horizontal axis. Darker boxes indicate that the behavior was 

more concerning to other users, based on our estimated crowdsourced data probing 

people’s level of comfort with the app using a given permission for a given behavior. The 
grades (C+, A-) are based on an average of comfort level across the entire row. Dashes 

mean that the app does not have a given behavior. 
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users generally found the behavior concerning, and lighter red colors less concerning. 
There were a total of five possible gradations. As noted by the privacy nutrition labels 
work, a matrix approach lets users quickly glance at the visualization and get an idea of 
the app’s behaviors by looking at the total number of shaded cells. Additionally, the 
concern levels are summarized with a letter grade, from A to F, to provide another way 
for users to easily skim the visualization. The grades represent a weighted average of 
concern levels, where A means approximately 80% or more of people do not feel 
concerned, B approximately 60-80%, and so forth. Grades are also weighted by the 
sensitivity of the data gathered. Users can hover over the text labels to show short text 
explanations of the permission as well as the categories of uses.  

A readily apparent problem with the matrix is that it does not translate well to a small 
smartphone screen, in that it requires a great deal of horizontal scrolling. To solve this 
problem, we created two different list visualizations. For the first list visualization, we 
created a list grouped by permission types (referred to as List-Permission, see Figure 
21a). Essentially, each row of the matrix has its own section, describing how each 
permission is used. We followed the same conventions used in the matrix, providing a 

(a) 

 

(b) 

 

(c) 

 

Figure 21. Two versions of the list view, optimized for a smartphone screen layout. (a) 

One list is grouped by permissions, called “List – Permission”. For each permission the 
app uses, the interface displays how that permission is used and a rating of how 

concerned other users were with that behavior. (b) The second list is grouped by 

categories of use, called “List – Use”. For each use, the interface displays the permissions 
the app uses as well as a concern rating.  (c) Users can click the “show details” button to 

view longer textual explanations of the permission types and usage categories. 
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box with a darker shade of red for more concerning actions, though we wrote the level of 
concern directly over the color (Very Low, Low, Medium, High, Very High), as there is 
limited screen space to add a legend. A button, labeled Show Details, expands the list, 
allowing users to read more detailed explanations about the types of permissions and 
categories of data use. The second list visualization groups shows data usage categories 
(referred to as List-Use, see Figure 21b), by grouping each column of the matrix into its 
own section, again following the same design conventions as the first list. 

5.5.2 Evaluation Methodology 

To evaluate our proposed privacy interfaces, we created information for 3 fake apps. We 
opted for fake apps so that participants would not have any prior experience with the 
apps. Our apps included Word Bind (a word game app), Friend Pix (a photo and video 
social networking app), and Alpha Flashlight (a flashlight app). The permissions and 
behaviors of the fake apps were based on a synthesis of real apps in the Google Play 
store. We also created concern ratings for each behavior, based on crowd ratings on the 
behaviors of the synthesized apps. Similar to the previous section, we evaluated these 
five interfaces with 210 participants from MTurk based on the understandability of these 
interfaces, the time users spent on reading these interfaces, as well as their impressions of 
the interfaces. After removing HITs that did not correctly answer a quality control 
question, a total of 230 HITs were completed. Each of the five interfaces had between 38 
and 52 HITs (M= 46). Each participant was presented with the name of the app, user 
rating, overall privacy grade, app description, and a permission interface. The interface 
was shown in a narrow frame to mimic a smartphone display, except for the matrix, 
which was displayed in a wider frame.  

Participants were asked questions in three sections. The first section had 6 multiple 
choice questions, and was designed to see how well the interfaces conveyed information 
to users. The first question asked what the purpose of the app is, to make sure participants 
had read all the information. This was also used to help filter participants who did not 
fully complete the task. The second question asked about a type of permission used by 
the app. The third and fourth questions asked about why or how permissions are used. 
The fifth and sixth questions asked about the concern levels regarding certain behaviors. 
Timing data was collected to see how long it took participants to answer questions in the 
first section.  

The second section was designed to gauge participants’ reactions to the user interfaces. 
Participants were asked to rate on a 5-point Likert scale how concerned they felt about 
each permission presented in the interface. They were also asked to use 5-point Likert 
scales to rate how comfortable they would feel downloading the app, how useful they 
thought the interface was, how difficult they thought it was to understand the information 
in the interface. Optional open-ended comments were also collected in this section. 

The third section consisted of demographics information, including the participant’s age, 
occupation, sex, type of smartphone owned (if any), length of time they owned a 
smartphone, and approximately how many apps they have installed. Additionally, 
participants were asked a series of six questions that referred as the simplified Westin’s 
privacy scale in order to determine what Westin’s privacy categories they belongs to [80]. 
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Interface n Total Score 
Permissio

ns 

How Info is 

Used 
Concern 

Google Play 47 3.85 0.89 N/A N/A 

NTIA 38 2.95 0.63 1.21 N/A 

Matrix 45 3.60 0.87 1.44 1.28 

List-

Permission 
48 3.54 0.85 1.52 1.17 

List-Use 52 3.47 0.85 1.44 1.06 

Maximum Possible Score 
or SubScore: 

5 1 2 2 

Table 9. Summary of the mean number of questions answered correctly. The total number of questions is 

listed in the bottom row. Higher scores mean more questions answered correctly. 
 

5.5.3 High Level Results 

At a high level, people answered fewer questions correctly with the NTIA interface than 
the other conditions. However, while participants were asked five multiple choice 
questions in addition to the quality control questions, the questions were not the same 
across all conditions, because the interfaces convey different dimensions of information. 
This information is summarized in Table 9. All five interfaces conveyed information 
about the permissions an app uses, and all were asked one question about this type of 
information. This data is treated as binary (the user either answered correctly or 
incorrectly), and a Pearson Chi-Square test with Χ2 (1, N = 230) = 12.42, p = .014, 
suggests that the NTIA interface that we created performed significantly worse at 
conveying information about what permissions are used. 

Participants were asked two questions about how an app might use their data and what 
information is gathered from permissions, for NTIA, Matrix, List-Permission, and List-
Use interfaces. These questions let us compare the understandability of these interfaces. 
While the participants with the NTIA interface answered fewer questions correctly, a one 
way ANOVA shows no significant difference between the four conditions, F(3, 179) = 
1.426, p = .237, r = .15.  

Participants were also asked two questions about how concerned other users felt about 
the app’s permission behaviors, for the Matrix, List-Permission, and List-Use interfaces. 
These questions let us compare the understandability of crowd comfort levels across 
these interfaces. While the participants with the Matrix interface on average answered 
more questions correctly, a one way ANOVA shows no significant difference between 
these three conditions, F(2, 142) = 1.107, p = .334., r = .12. 

In short, the understandability test results suggested that the NTIA interface that we 
created performed significantly worse at conveying information about what permissions 
are used. At the same time, our new proposed three interfaces had similar 
understandability comparing to the existing Android permission interface, though 
providing much richer information.  

We also measured how long it took participants to answer the multiple choice 
information questions (Table 10). There are some outliers creating a large difference in 
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Interface n 
Mean 

Seconds 

Std. Dev. 

Seconds 

Median 

Seconds 
Mean Rank 

Google Play 47 146.11 67.64 131 83.03 

NTIA 38 309.18 386.29 204 131.78 

Matrix 45 181.84 124.31 163 110.61 

List-

Permission 
48 207.23 169.31 199 122.83 

List-Use 52 235.25 197.05 191.5 130.41 

Table 10. Summary of the mean seconds for users to complete the multiple choice 

section of our proposed interfaces, the standard deviation of seconds, the median 

number of seconds, and the mean rank. 

standard deviations and the distribution of seconds is not normal even without outliers. 
To adjust for this, we analyzed the data using ranks by performing a Kruskal-Wallis test 
and found a significant result, H(4) = 16.90, p = .002.  

This suggests that the length of time it took for participants to complete the Google Play 
multiple choice questions was significantly less than in the other interface conditions,. 
This is further supported in pairwise comparisons, which show that the number of 
seconds it took in the Google Play condition is significantly shorter than the NTIA 
condition (p = .008), the List-Permission condition (p = .036), and the List-Use condition 
(p = .004).  

Because the questions were slightly different for the Google Play and Matrix conditions 
but the same for the Matrix and both List conditions, we perform a Kruskal-Wallis test on 
the timing data for the three proposed interfaces. We find that the difference is not 
significant, H(2) = 2.420, p=.298. In other words, given the similar amount of 

information, different layouts did not take users significantly longer or shorter time 
to digest. Meanwhile, the fact that the NTIA interfaces took the longest time for users to 
understand also demonstrate the weakness of text-based interfaces. 

In addition, we gathered qualitative responses from our participants, which helped us 
better understand the evaluation results. In our quantitative data analysis, we noticed that 
the NTIA interfaces were consistently worse than others both in terms of the 
understandability and the time it cost participants to read. Some reasons were suggested 
by our participants. For example, one participant commented that there was “too much 
text, info hidden in multiple tabs,” which made information hard to find. We emphasize 
that we only tested one permission interface based on the NTIA Code of Conduct 
guidelines, and it is possible that others may fare better. Furthermore, most of the 
mockups presented in [67] use multiple tabs to display information, which may make the 
NTIA interface harder to understand. More generally, the lack of matching the specific 

data types to a specific way the data is used is a general weakness of the NTIA’s 
Code of Conduct guidelines. One participant wrote that “I honestly had to use reasoning 
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to answer why the app would collect my location…because that figure above doesn’t 
explicitly provide that information.” A revised guideline requiring matching the specific 
data types to the ways data are used, or new interface that displays this information while 
still following the current guidelines may help users better understand the information. 

There were noticeable differences in these comments between conditions, which 
confirmed that users do need to know why their data are used. In the Google Play and 
NTIA interface conditions, people usually commented by asking why a permission is 
being used, such as “why does it need access to my call log and GPS location,” “I’m just 
curious about why it needs access to my contacts,” or “I wonder why a flashlight app 
would really need all of those permissions.” This makes sense, because the Google Play 
and NTIA interfaces do not provide specific information about how each permission is 
used. In contrast, those who cite specific permissions as major concerns in the Matrix and 
two List conditions are able to cite specific reasons why they do not feel comfortable, 
saying “I don’t want my location tracked especially when it could be used by third 
parties for ads,” “it should just need your general location for ads,” and “I don’t like 
location targeted ads or ads involving my contacts.” Interestingly, the Matrix and List 
interfaces were also used to help provide positive explanations and make some 
participants feel more comfortable about the app. There were several positive comments 
citing specific app behaviors were found in each of these conditions. Participants said “I 
can sort of see why it might want your location for ads,” and “Many apps use the phones 
location for ad presentation. This is accepted practice.” This finding is in line with past 
work [82], which found that offering explanations improved comfort levels.  

Furthermore, amongst our three newly proposed interfaces, several participants wrote that 
they found it difficult to understand the information at first. For example, participants 
wrote “it took me a minute to figure it out but once I got it, it was easy,”, “it was 
somewhat difficult to initially understand what it was saying”. However, while users may 
have felt that these interfaces were harder to understand at first, there was no evidence in 
our data. The participants in these conditions did not have significantly different 
accuracies in answering factual questions, and did not take significantly longer time to 
complete tasks. So, our results suggest that while the interface did not harm performance, 
the types of information presented in the interface were new and unfamiliar, and with 

repeated use of seeing these interfaces, users should feel better about using the 
interface. These findings also suggest there will be challenges in introducing users to 
new dimensions of mobile privacy information.  

5.6 Summary 

In this chapter, we introduced a new methodology for disclosing mobile apps’ behavioral 
information to end users. Key contributions include: 

 We identified two key features--- expectation and purpose--- that can provide 
richer information for users to make better privacy decisions. Our approach helps 
uncover gaps in the user’s mental models. We show that these gaps or 
misconceptions can help inform the design of more effective privacy decision 
interfaces.  
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 We demonstrated the feasibility of using crowdsourcing to capture people’s 
mental models of an app’s privacy-related behaviors in a scalable manner. 

 We proposed and evaluated 4 interfaces that make use of the identified key 
information. These interfaces and their evaluation also shed some light on how 
additional design elements such as UI layout, colors, order in which information 
is presented can effect users’ understanding of what an app does and also impact 
their level of comfort.  
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6 CHOICES & CONTROLS: HOW TO HELP USERS WITH 
THEIR PRIVACY SETTINGS? 

In the previous chapter, we presented the design and evaluation of several alternative user 
interfaces for informing users about an app’s privacy-related behaviors in better ways. In 
this chapter, we focus our discussion on modeling users’ mobile app privacy preferences 
in order to provide users assistance in the process of configuring privacy settings.  

6.1 Usability Challenges in Managing Privacy Settings 

Several early mobile app privacy solutions have involved allowing users to control 
individual app permission. For example, TISSA [123] and MockDroid [29] allow users to 
substitute fake information in response to API calls by an app. A similar approach has 
also been made available to users of jailbroken iPhones through an app known as “Protect 
My Privacy” [13, 19]. Most recently both iOS and Android have moved to such an 
approach. For instance, in iOS6, users have the ability to selectively toggle permissions 
on and off for individual apps, with these permissions including access to one’s location, 
calendar, photos, reminders and more. In June 2013, with the introduction of Android 
4.3, Android introduced similar settings in the context of a hidden app permission 
manager referred to as ‘App Ops”. These developments can be viewed as a direct 
reflection of the diverse privacy preferences revealed through our own research, as 
reported in the previous Chapter. While users express concerns about many permissions, 
they do not all feel the same way, hence the need to provide them with the ability to 
decide for themselves whether or not they want to grant a particular permission to a 
particular app.  

While in theory the fine-grained permission interfaces that have emerged over the past 
few years empower users to control their permission settings, they also make unrealistic 
assumptions about a user’s ability and willingness to control such a large number of 
settings. According to a report from Nielsen in 2012 [87], the average number of apps 
installed by a smartphone user was around 41 in the year of 2012. Given that on average 
4 permissions are required by an app, an average smartphone user would have to make 
over a hundred privacy decisions to configure the permissions settings of all these apps. 
For more active users, the number of decisions they need to make might be well over a 
thousand. Furthermore, users might not completely understand the privacy implications 
behind their decisions. In short, providing users with the ability to control their data is not 
sufficient. To make the privacy settings usable and practical, there is an urgent need for 
trusted tools that can guide users through the configuration process and reduce the 
number of privacy decisions a user actually has to make.  

Quantitatively modeling users’ mobile app privacy preferences is the first step we take to 
get closer to this goal. To address the usability issue, we leverage user-oriented machine 
learning techniques to identify a set of representative privacy profiles that users can 
choose as their default privacy settings. We present our techniques and key findings in 
the following sections.   
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6.2 Crowdsourcing Study 

To gather enough user preference data for machine learning analysis, we used Amazon 
Mechanical Turk to conduct a study similar to the one previously described in Chapter 
5.3. Participants were shown the app’s icon, screen shots, and description. Participants 
were asked if they expected this app to access certain type of private information and 
were also asked how comfortable they felt allowing this app to access their information 
for the given purposes. The permission usage and the purpose were based on the static 
analysis discussed in Chapter 3. We also collected demographic information of our 
participants including gender, age and education background to help us analyze our data. 
As in our previous crowdsourcing study, we restricted our participants to U.S. 
smartphone users with previous HIT approval rate higher than 90%.  

We scaled up our study to over 1200 HITs, probing 837 mobile apps that we randomly 
sampled from the top 5000 most popular free apps. Each HIT examined one app- 
permission- purpose triple. For example, in one HIT, participants were asked to express 
their level of comfort in letting Angry Birds (app) access their precise location 
(ACCESS_FINE_LOCATION permission) for delivering targeted ads (purpose). The 
data collection ran for 3 weeks starting on June 15th, 2013. After the data collection 
period, we first eliminated responses that failed the qualification questions15, and then we 
eliminated 39 HITs because they had less than 15 responses. This yielded a dataset of 
21,657 responses contributed by 725 MTurk workers.  

We did not specifically control the gender ratio or any other demographic composition of 
our participants. As shown in Figure 22, among these participants, 41% of them were 
female; 69% of participants were between 21 and 35, 16% of them are between 36 and 50 
(see Figure 22 (b)). We also observed that more than 60% of the participants were 
reported to have a bachelor’s degree or equivalent and 6% had a master’s degree or PhD. 
The average education level of our participants was significantly higher than the average 

                                                 
15 In the qualification questions, we asked participants to choose the appropriate category of the apps  to 
test if they read the app description carefully. 

   

(a) Gender (b) Age 

 
 

(c) Education 

Figure 22: Demographic information of Amazon Mturk workers who participated in 

our data collection.  
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education level of the entire U.S. population as reported in [28]. Compared to the 
demographics of crowdworkers as reported in [104], our participant pool contains more 
people with bachelor’s degrees and fewer with graduate degrees.  

This difference in demographics may be due to self-selection, since usually 
crowdworkers would be more likely to work on HITs that interest them. However, other 
data collection methods, such as Internet surveys, often have similar sampling problems.   
While this sample bias has to be taken into account when interpreting our results, we 
suspect that our study is no worse than most others in terms of the representativeness of 
our participant pool. 

6.3 Users’ Average Preferences and Their Variances 

To visualize our results, we aggregate self-reported comfort ratings by permission and 
purpose. Figure 23 (a) shows the average preferences of all 725 participants, where white 
indicates participants were very comfortable (2.0) with the disclosure, and red indicates 
very uncomfortable (-2.0). In other words, cells that are in the darker shades of red 
indicate a higher level of concern.  

The three use cases with the highest levels of comfort were: (1) apps using location 
information for their internal functionality (fine loc: M=0.90, coarse loc: M=1.16); (2) 
SNS libraries bundled in mobile apps using users’ location information so this context 
information can be used in sharing (fine loc: M=0.28, coarse loc:M=0.30); (3) apps 
accessing smartphone states, including unique phone ID, and account information for 
internal functionality (M=0.13). 

(a)   Average user preferences (b) Variances in user preferences 
  
Figure 23: (a) The average self-reported comfort ratings of different permission usages. 

The blue indicates more comfortable, and the magenta indicates more concerning. (b) 

The variances in users ratings. For most cases, there are significant variances among 

users in their privacy preferences.  
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For the remaining cases, users expressed different levels of concerns. Users were 
generally uneasy with (1) targeted advertising libraries accessing their private 
information, especially for their the contact list (M=-0.97), and accounts information that 
store on their mobile devices (M=-0.60); (2) SNS libraries that access their unique phone 
ID (M=-0.42), contact list (M=-0.56) as well as information related to their 
communication and web activities such as SMS (M=-0.17) and accounts information 
(M=-0.23); (3) mobile analytic libraries accessing their information such as location 
(M=-0.29) as well as phone states (M=-0.09).  

This aggregation of data gave us a good starting point to spot general trends in users’ 
privacy preferences. At the same time, these are averages and, as such, they do not tell us 
much about the diversity of opinions people might have.  In our previous research of 
users’ location privacy preferences, an important lesson we learned is that users’ privacy 
preferences are very diverse. Therefore, we plot the variances of user preferences of the 
same use cases in Figure 23 (b) to see the variance of people’s preferences. In this figure, 
the darker shades of yellow indicate higher variance among users’ comfort rating for 
different purposes.  

Figure 23 (b) shows that users’ preferences are definitely not unified. Variances are larger 
than 0.6 (of a rating in a [-2,+2] scale) in all cases. In 25% of cases, variances exceed 1.8. 
Users’ disagreements were highest in the following cases, including: 

(1) SNS libraries accessing users’ SMS information as well as their accounts16 
(2) targeted advertising libraries accessing users’ contact list. 
(3) users’ location information being accessed by all kinds of external libraries.  

This high variance in users’ privacy preferences suggests that having a single one-size-
fits-all privacy setting for everyone would not work well – at least for those settings with 
a high variance. We cannot simply average the crowdsourced user preferences and use 
them as default settings as suggested in [19]. This begs the question of whether users 
could possibly be subdivided into a small number of groups or clusters of like-minded 
users for which such default settings (different settings in different groups) could be 
identified.   

6.4 Clustering on Users’ Preferences 

Given the variances identified above, a natural solution is to see if there are large groups 
of people with similar preferences. In order to identify these groups, we need to properly 
encode each user’s preferences into a vector and trim the dataset to prevent over-fitting. 
More specifically, we conducted three kinds of preprocessing before feeding the dataset 
into various clustering algorithms. First, we eliminated participants who contributed less 
than 5 responses to our data collection, since it would be different to categorize 
participants if we know too little about their preferences. This step yields a total number 
of 479 unique participants with 20,825 responses. On average, each participant 

                                                 
16 In fact, SNS libraries usually use GET_ACCOUNTS permission in the process of authenticating users. 
Users had extreme responses for this use case mainly due to that they have limited knowledge of the 
authentication process. 
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contributed 43.5 responses (SD=38.2, Median=52). Second, we aggregated a 
participant’s preferences by averaging their indicated comfort levels of letting apps use 
specific permissions for specific purposes. “NA” is used if a participant did not have a 
chance to indicate his/her preferences for a give app-permission-purpose triple. Lastly, 
for each missing features (“NA”), we find the k (k=10) nearest neighbors which have that 
feature. We then impute the missing value by using the imputation function on the k 
values from the neighbors.   

After these preprocessing steps, we obtain a matrix of 77 columns and 479 rows, where 
each row of the matrix represents a participant. This preference matrix is free of missing 
values.  

Rank 

Connectivity Dunn Index Silhouette Width 

Dist- aggl-k Value Dist- aggl-k Value Dist- aggl-k Value 
Top 1 

CBR-CRT-3 8.64 CBR-AVG-4 0.60 CBR-AVG-4 0.55 
Top 2 

CBR-AVG-4 8.78 MHT-AVG-4 0.55 CBR-CTD-4 0.54 
Top 3 ECL-AVG-4 11.23 CBR-CTD-5 0.53 CBR-WAR-4 0.42 
 

Table 11: Top 3 clustering configurations for each internal measure. Clusters obtained 

by using Canberra distance and average linkage method with k=4 (CBR-AVG-4) ranks 

first in Dunn Index (should be maximized) and Silhouette Width (should be maximized) 

and ranks second in the connectivity (should be minimized). We select this configuration 

as it has the best performance overall.  

 

 
Figure 24: The resulting dendrogram produced by hierarchical clustering with 

Canberra distance and average linkage agglomerative method. Four different colors are 

used to indicate the cluster composition when k=4. We also overlay the cluster names on 

the dendrogram which will be explained in Chapter 6.4.2.  
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6.4.1 Algorithms and Clustering Results 

Just like in Section 4.2 and 4.3, because our primary objective is to identify easily 
interpretable clusters with semantically meaningful boundaries, we opt again for 
hierarchical clustering techniques. By comparing the ranking of all configurations and the 
k value (see Table 11), we obtain the best clusters by using Canberra distance and 
average linkage method with k=4.   

Figure 24 illustrates the resulting dendrogram produced by the above mentioned clustering 
configurations, where four different colors indicate the four clusters when k=4. Among 
the four identified clusters, the largest one (colored in black in Figure 24) includes 
47.81% of instances, whereas the smallest cluster (colored in red) includes 11.90% 
instances.  

We interpret the clustering results and discuss the characteristics of each of the four 
clusters in the following sub-section.  

6.4.2 Making Sense of Privacy Profiles 

To make sense of what these clusters mean, we compute the centroid of each cluster by 
averaging the features of all the instances within the same cluster. Note that the 
previously imputed missing values are excluded in computing the centroids. We call 
these centroids “privacy profiles”, since they represent the average privacy preferences of 
each group of users. We then use a heat map to visualize these privacy profiles17 in 
Figure 25. The vertical dimension of these heat maps represents the uses of different 
permissions, and the horizontal dimension represents why certain permission is used. We 
use two colors to indicate people’s preferences. Color white indicates that participants 
feel comfortable with a certain type of disclosure where as the red indicates the level of 
uncomfortable. The grid with a short dash means we do not have data for this grid. We 
also assign each privacy profile with a name that highlights its characteristics to help 
distinguish these clusters.  

The (Privacy) Conservatives: Although conservatives form the smallest group among the 
four clusters, they still take up 11.90% of our participants (top-left in Figure 25). Among 
all four heat maps, this privacy profile has the largest area covered in red (feeling 
uncomfortable). In general, this type of users feels very uncomfortable letting their 
sensitive personal information (such as location and unique phone ID) be used by 
external libraries. They also feel uncomfortable if mobile apps uses their unique phone 
ID, contact list or SMS internally if the necessity of using these sensitive personal data is 
not visible to them.  

The Unconcerned: This group of participants take up 23.34% of the all the participants 
and forms the second largest cluster in our dataset (top-right in Figure 25). The heat map 
of this privacy profile has the largest area covered in light color (feeling comfortable). In 
general, users who share this privacy profile feel comfortable disclosing their sensitive 
personal data (almost) in every case, no matter who is collecting their data and for what 

                                                 
17 In these heat map visualizations, we only display the most important six permissions and four purposes 
which strongly differentiate these privacy profiles.  
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purposes. The only concerning (red) grid in the heat map is regarding to the cases where 
SNS libraries access GET_ACCOUNTS information. We suspect this outstanding grid is 
caused by lack of data, or alternatively there might be a large portion of users do not 
understand the meaning of this permission.  

The Fence-Sitters: We named this privacy profile "The Fence-Sitters" because most 
participants within this cluster do not have strong opinions for a large portion of the use 
cases (bottom-left in Figure 25). As the largest cluster we identified, this group takes up 
nearly 50% of the population. Unsurprisingly, this group of participants feels very 
comfortable letting mobile apps access their sensitive personal data for internal 
functionality purposes. With regard to the cases where their information is consumed by 
3rd-party libraries such as for delivering targeted ads or conducting mobile analytics, 

 

Figure 25: Four privacy profiles identified through clustering. We assign each cluster a 
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Figure 26 . Summary of the four identified user clusters. 

• Most conservative group

• Do not like any external libraries

• Do not like ad and mobile 

analytic libraries

• OK with SNS libraries

• OK with disclosing coarse 

location to 3rd-parties

• Comfortable disclosing  

personal data to 3rd party 

companies

• Feel neutral to ad and 

mobile analytics

• OK with SNS libraries

they expressed attitudes very close to neutral (i.e. neither comfortable nor 
uncomfortable). This characteristic is rather visible on the heat map that large portions of 
the grids are in pink (close to the middle color in the legend). This group of participants 
also feels OK disclosing all types of sensitive personal data to SNS libraries consistently. 
Without further investigation, it is hard to know exactly why so many users belong to this 
category. We suspect that to some level it might be caused habituation (or warning 
fatigue) that a significant portion of users have already formed the habit of clicking 
through the permission screen as warned by Felt. et al. in [50]. 

The Advanced Users: The advanced user group is 17.95% of the population (bottom-
right in Figure 25). The reason we named this group as “advanced users” is because these 
users appears to have a more nuanced understanding of sensitive data usages. In general, 
most of them feel comfortable with their sensitive data being used for internal 
functionality and by SNS libraries. We believe they feel okay with the latter scenario 
because they still have control over the disclosures, since these SNS libraries often let 
people confirm sharing before transmitting data to corresponding social network sites. In 
addition, this group of users dislikes targeted ads and mobile analytic libraries, but still 
feels generally agreeable in disclosing context information in a lower granularity (i.e. 
coarse location). This observation again suggests that this group of users has more 
insights than others in expressing their privacy preferences.   

Figure 26 summarizes the outstanding characteristics of each cluster and shows the 
portions they take up in the participant pool. By identifying these four major privacy 
profiles, we have a clearer sense of how different users view various sensitive data usage 
patterns. In the following sections, we will talk about how these privacy profiles can be 
applied to benefit multiple stakeholders. 

6.5 Implications of Privacy Profiles 
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Gender Conservatives Unconcerned Advanced  Fence-Sitter Total 

Female (0) 21 42 25 101 189 

Male (1) 36 65 61 128 290 
Total 57 107 86 229 479 

SUMMARY 
   Groups Count Sum Average Variance 

Conservatives 57 36 0.63158 0.23684 

Unconcerned 107 65 0.60748 0.2407 

Advanced 86 61 0.7093 0.20862 

Fence-Sitter 229 128 0.55895 0.24761 
ANOVA 

Source of Variation SS df MS F P-value F crit 
Between Groups 1.462004 3 0.487335 2.049186 0.106169 2.623677 

Within Groups 112.9639 475 0.237819 
   Total 114.4259 478         

Table 12. Gender distributions of each user cluster and ANOVA analysis results. We see 

no statistically significant differences among the gender distribution of these groups.  

 
Age Group Conservatives Unconcerned Advanced  Fence-Sitter Total 

< 21  (1) 11 39 12 17 79 

21-35 (2) 41 62 59 170 332 

36-50 (3) 4 6 13 30 53 

51-65 (4) 1 0 2 7 10 

> 65  (5) 0 0 0 5 5 

Total 57 107 86 229 479 

SUMMARY 
   Groups Count Sum Average Variance 

Conservatives 57 107 1.877193 0.252506 

Unconcerned 107 181 1.691589 0.328513 

Advanced 86 176 2.046512 0.374282 

Fence-Sitter 229 434 1.895197 0.585459 

ANOVA             

Source of Variation SS df MS F P-value F crit 

Between Groups 6.222892 3 2.074297 4.598546 0.003482 2.623677 

Within Groups 214.2615 475 0.451077 
   Total 220.4843 478         

Table 13. Age distribution of each user group and ANOVA analysis. The unconcerned 

group on average is significantly younger, and the advanced users are on average 

significantly older than the other groups combined. 

 
In this section, we discuss how the identified four privacy profiles can be used to assist 
users in configuring their privacy settings. Ideally, if we can identify which cluster a user 
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belongs to without having them explicitly label privacy preferences for individual apps 
and permissions, an appropriate privacy profile can be directly applied to users’ privacy 
settings as a default. The question is, how can we select which privacy profile is closest 
to the user’s true privacy preferences? We discuss this issue in the following sub-
sections. 

6.5.1 Privacy profiles and demographic information 

The first approach we tried is to see if users’ demographic information --- including 
gender, age and education level --- are possibly sufficient to predict their privacy 
preferences. To test this hypothesis, we summarize the distribution of gender, age and 
education level of each user cluster and perform analysis of variance (ANOVA) to see if 
there are significant differences in these distributions. 

Table 12- Table 14 presents the results from the ANOVA test. In general, we found that 
in regard to the gender distribution, a one-way analysis of variance yield NO significant 
differences between groups, F(3, 475)=2.049, p=0.106. The detailed mean and variance 
values can be found in Table 12.  

Education Conservatives Unconcerned Advanced  Fence-

Sitter 

Total 

High School  (1) 20 39 17 67 143 
Bachelor’s (2) 37 64 56 147 304 

Master’s or higher (3) 0 4 13 15 32 

Total 57 107 86 229 479 

 

SUMMARY 
   Groups Count Sum Average Variance 

Conservatives 57 94 1.649123 0.23183 

Unconcerned 107 179 1.672897 0.297655 

Advanced 86 173 2.011628 0.364569 

Fence-Sitter 229 406 1.772926 0.299088 
 

ANOVA           
Source of 
Variation SS df MS F 

P-
value F crit 

Between Groups 6.828428 3 2.276143 7.523031 6.30E-05 2.623677 

Within Groups 143.7144 475 0.302557 
   Total 150.5428 478         

 

Table 14. Distribution of education level of each user group and ANOVA analysis. The 

conservatives and the unconcerned are both with lower education levels comparing to 

the remaining groups combine, whereas the advanced users are more likely with 

higher level of education. 
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For age distribution, we encoded the age groups as (1:= under 21, 2:= age 21-35, 3:=age 
36-50, 4:=age 51-65, 5:=above 65) in our calculation. A one-way analysis of variance 
reveals significant differences between groups in regard to age distribution, F(3, 
475)=4.598, p=0.003. Post hoc analyses also reveals that the unconcerned group on 
average are younger (M=1.69, SD=0.57) than other groups combined (M=1.91, 
SD=0.76), and the advanced user group on average are older (M=2.05, SD=0.61) than 
other groups combined (M=1.83, SD=0.71). The mean and variance of each group are 
shown in Table 13. 

We also performed a similar test on the education level of all four groups of participants. 
We encoded the education levels such that “1” stands for high school or lower level of 
education, “2” stands for bachelor or equivalent level of degrees, and “3” stands for 
master’s or higher level of degrees. An ANOVA test shows that the effect of education 
was strongly significant, F(3, 475)=7.52, p=6.3E-05 . Post hoc analyses show that the 
conservatives (M=1.65, SD=0.48) and the unconcerned (M=1.67, SD=0.54) have lower 
education levels compared to the remaining groups combined (M=1.85, SD=0.57), and 
the advanced users (M=2.01, SD=0.60) are more likely to have a higher level of 
education.  

Although there are statistically significant effects in demographics, a regression from 
demographic information to the cluster label yields accuracy no better than directly 
putting every user as Fence-Sitters. In other words, we should not directly use gender, 
age, or education level to infer which privacy profile should be applied to individual user. 
This does not mean however that in combination with other factors, these attributes 
would not be useful. Below, we seek more deterministic methods to assign privacy 
profiles in the following sub-section.  

6.5.2 Identifying privacy profiles: what questions to ask 

In Android 4.3, users are given the ability to fine-tune their privacy preferences by 
turning on and off permission usages of individual app through “App Ops” [114]; 
however, as we discussed before, the usability issues hinder the ability of lay users to 
make use of these controls. It would be extremely handy if, when a user boots up her 
Android device for the first time (or possibly at a later time), the operating system could 
ask her a small number of questions to determine which privacy profile is the best match 
for her.  The profile could then be used to select default privacy settings for her. As she 
downloads apps on her smartphone, “App Ops” or some equivalent functionality would 
then be able to automatically infer good default settings for her. 

Similar ideas have been suggested for helping users set up their location sharing rules 
[103] [92]. In particular Wilson et al. in [119] describe a simple wizard for the Locaccino 
system, where a small number of questions were asked to guide users through the 
selection of good default location sharing profiles. In this section, we suggest that a 
similar method could be used to identify a small number of questions and help identify 
good mobile app privacy profiles for individual users.   

Given the four privacy profiles that we identified in Chapter 6.4, we have several 
observations that to some extent can differentiate different groups of users: 
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 Observation 1: Regarding Advertisement 
With respect to the cases where mobile apps share users’ data with advertising 
agencies, users in general have three attitudes. Privacy conservatives and advanced 
users are very uncomfortable with this use of their information, whereas the 
unconcerned, while not completely comfortable with it, generally find it acceptable. 
For fence-sitters, attitudes are much less negative than for conservatives but still 
slightly on the negative side.   

 Observation 2: Regarding Mobile Analytics and Coarse Location 
We observe similar attitudes for mobile analytics, except that the conservatives and 
the advanced users can be further distinguished by their preferences when it comes 
to letting mobile analytics libraries collect their coarse location information.  

 Observation 3: Regarding SNS and Fine Location 
 With respect to the cases where libraries for social network sites access users’ fine 
location through mobile apps, the privacy conservatives stand out since they are the 
only group of users that generally express negative comfort values for this usage. 
Advanced users are similar to the unconcerned in this case. These two groups feel 
comfortable letting SNS libraries access their fine location, though they might have 

 

Figure 27 . Users are asked a set of general questions to determine which cluster they 

belong to.  

 

 
Figure 28 . Users are asked to rate a set of apps to determine which cluster they belongs 

to. 
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different reasons. The unconcerned feel comfortable are more likely because they do 
not care whether their data flow to SNSs, whereas the advanced users are more 
likely because they know that SNSs still need their explicit actions (e.g. pressing the 
“Share” button) to make the data disclosure happen.    

Similarly, usage patterns with regard to contact list, SMS and phone status can also to 
some level help differentiate between users in different clusters. We can leverage these 
observations by centering our questions around these findings. As illustrated in Figure 27, 
the ideal scenario is that based on their answers to these questions, users are accurately 
assigned to the most appropriate clusters. For example, we can ask one questions with 
regard to targeted advertising, such as “How do you feel letting mobile apps access your 
personal data for delivering targeted ads?” or questions about mobile analytics, such as 
“How do you feel letting mobile apps sending your approximate location for market 
analysis purpose?” Of course, the exact wording and expressions used in these questions 
require thorough user studies to verify.  

Alternatively, instead of asking users these abstract questions, we could present users 
with a small set of example apps together with the description of their privacy-related 
behaviors. Users could rate each app based on its sensitive data usages, and we could 
then classify users based on these ratings, as illustrated in Figure 28. This would work 
particularly well if we could identify a small number of particularly popular apps that are 
sufficient to differentiate between users - say just asking people whether they feel 
comfortable sharing with their location with Angry Bird for advertising purpose and 
whether they feel comfortable sharing their location on Facebook through the app Scope. 
Again, how to select the most effective set of apps and how many apps should be 
included in this process are open questions that will warrant further investigating.  

In spite of the uncertainty, we are able to quantitatively demonstrate the theoretical 
improvement we can achieve in estimating users’ true preferences by using privacy 
profiles. We compute how accurately we can predict users’ privacy preferences in three 
settings as follows: 

(1) Baseline setting (baseline): 
In the baseline setting, we take the average preferences over all users as the only 
privacy profile users can choose from. This is similar to recommendations 
currently made by ProtectMyPrivacy [13]. Then we compute the mean square 
error (MSE) between the average profile and users true preferences (i.e. the 
comfort rating they contributed for various conditions).   

(2) One question setting (Q1): 
In this setting, we are aware of the four privacy profiles identified previously. 
However, we assume that only one question can be asked to determine which 
privacy profile should be chosen. We further assume that this question can 
accurately distinguish the conservatives and the advanced users apart from the 
remaining users, thus separating users into two groups. MSE is calculated to 
evaluate the estimation. 

(3) Two question setting (Q1...Qn): 



 
 

68 
 

In this setting, we assume that we have a set of questions that can accurately 
separate and assign users to the most appropriate privacy profiles. We calculate 
the MSE between the chosen privacy profile and users real preferences to evaluate 
the estimation.    

Figure 29 illustrates the average and standard deviation of MSEs in these three 
conditions. In the baseline condition, the MSE is as high as 0.68, where adding one 
question to determine the privacy profiles reduces the average MSE by 33.8%. Further 
adding more questions can reduce the average MSE in the baseline setting by 52.9%. We 
also observe that the standard deviation of MSE in Q1 and Q1...Qn conditions are 
significantly lower than the one in the baseline. Note we should emphasize again that 
these average MSEs only provide a theoretical bound of the best we can achieve in 
estimating users real preferences by using privacy profiles. This is a big assumption that 
the questions can perfectly differentiate users and select the optimal privacy profiles for 
them. In reality, this assumption needs to be tested through thorough user studies. 

In addition to choosing appropriate privacy profile as a starting point, users’ later 
interactions with their privacy settings could be used as input into reinforcement learning 
algorithms to refine models of a user’s particular privacy preferences as suggested in [39, 
79, 92].  

6.5.3 Other potential applications 

In addition to serving as default privacy settings, we believe that the identified privacy 
profiles can also be applied to other domains.  

 
Figure 29: Privacy preference estimation in three settings. Vertical bars indicate the 

standard deviations. In the baseline setting, the grand average preferences are used as 

the only privacy profile; in Q1 setting, only one question is allowed to ask to determine 

the appropriate privacy profile; in Q1...Qn setting, we assume a perfect set of questions 

are asked. The MSEs of the latter two conditions give theoretical upper bound of the best 

performance potentially can be achieve if proper questions are chosen. 
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For instance, the privacy profile information could be integrated into an app 
recommender system. Existing app recommender systems, including the ones provided 
by Google Play, usually give recommendations only based on users’ interests in terms of 
what functionalities apps provide. This leaves users to filter out apps that they have 
privacy concerns with among all these recommended apps. By knowing what users’ 
privacy preferences are like, app recommender systems can take the privacy dimension 
into consideration, providing recommendation that are also based on whether apps’ 
behaviors align with users’ privacy preferences.  

The identified privacy profiles, as well as their approximate proportions of the user 
population, can also provide important information to app developers in making better 
design decisions. App developers can quantitatively estimate the proportion of users who 
might not install their app, or the proportion of users who might turn off certain 
permission if this app bundles with certain 3rd-party libraries. In this way, developers are 
able to make more grounded choices with regard to the trade-off between user 
experiences and profit. For example, if a developer plans to include a targeted ads library 
that aggressively collects users’ contact list, he might consider the fact that the inclusion 
of this library might turn away over 70% of users due to privacy considerations; thus he 
should further evaluate if it is worth bundling this library.  

In short, the findings that we present in this chapter provide important lessons about 
mobile app users, and also point out a way to make privacy settings potentially usable to 
end users. There is still plenty effort can be made on each step of modeling users’ privacy 
preferences. We are also aware that users’ privacy preferences might keep on evolving 
and are influenced by the introduction of new technologies and the habituation effect that 
formed through interacting with the same practices for a long time. Therefore, in addition 
to all the techniques we proposed, proper user education on mobile app privacy is still 
crucial and needs to be promoted in the long run.  
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7 CONCLUSION AND FUTURE WORK 
In this chapter, we summarize the contributions of this thesis and point out some 
directions for future work.  

7.1 Thesis Summary 

The main purpose of this thesis work is to complement existing mobile app privacy 
research by providing important knowledge on the end-use’s side and bridge the gap 
between security-oriented approach and the user research in mobile app privacy. More 
specifically, this thesis made significant contributions in the following aspects.  

Firstly, this thesis presents the results of a large scale static analysis of over 100,000 
smartphone apps across the entire Google Play store, providing detailed results regarding 
the typical usage patterns of mobile apps in consuming users’ sensitive data. We 
specifically focused on analyzing what 3rd-party libraries were bundled in apps, since the 
inclusion of 3rd-party libraries provides us some of the semantics of how sensitive data 
are used.  This analysis also produces a valuable dataset that other researchers can use to 
dig deeper in the apps’ behavior analysis.  

Secondly, this thesis contribute to the design of privacy interfaces by identifying two key 
features that can be help users make better privacy decisions. They are the “purpose” 
which refers to the reason why users’ sensitive data are used and “expectation” which 
refers to whether certain app’s behavior breaks users’ expectation. We operationalize 
privacy by capturing people’s expectations as well as reflecting other’s expectations 
directly in a privacy summary to emphasize places where an app’s behavior surprises its 
users. We propose a series of user interfaces that visualize these features in different 
layouts. Evaluation results show that our new proposed new interfaces can greatly arise 
privacy awareness and are well-received by users.  

Last but not the least, we utilize crowdsourcing to collect the mobile app privacy 
preferences of over 700 users with regard to over 875 apps. Based on the collected data, 
four distinct privacy profiles are identified, providing reasonable default settings for users 
to choose from, which significantly mitigate the usability problem suffered by permission 
level privacy configurations.   

Although this thesis focused mainly on the free Android apps in Google Play, we believe 
that the models we built based on users’ privacy preferences and the identified segments 
of users may also potentially be applied to other App Markets such as Amazon App Store 
or Apple App Store. We expect that the knowledge we discovered on apps and the 
lessons we learned in informing users of privacy-related information as well as managing 
users’ privacy settings can also help market owners to improve their current privacy 
frameworks.  Especially for Android 4.3 and onward, in which users are able to manage 
permission uses for individual apps, the operating system could naturally crowdsource 
users’ privacy preferences as one type of Google usage data that users can opt to 
contribute. A significant portion of the methodologies discussed in this thesis can be 
directly applied to these crowdsourced data to build models of mobile users in the wild.  

Meanwhile, we acknowledge that privacy has many facets. This thesis only points out 
some possible ways to address this problem. We believe other facets, such as educating 
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users and app developers, improving and enforcing laws and regulations, are also crucial 
for protecting mobile users’ privacy.     

7.2 Future Work 

This thesis work also leaves several directions worth improving and extending.  

7.2.1 Leverage NLP techniques to further understand the 
functionality of the app 

In this thesis, we only focus on the privacy aspects of mobile app. This because 
extracting high-level functionality features of apps through static analysis is challenging 
and the categories provided by Google are simply too vague and inaccurate to infer the 
functionality of apps. In Chapter 3.4, we demonstrated that by leveraging NLP techniques 
on user reviews, we can identify the functional defects or performance issues of mobile 
apps. Similarly, by applying NLP techniques on apps’ descriptions and user reviews, we 
believe more attributes can be generated to depict apps’ functionalities. These features 
can greatly enrich the dataset resulted from app analysis, hence providing more facets for 
understanding and categorizing mobile apps. 

7.2.2 User studies to evaluate identified privacy profiles 

A series of user studies can complement this thesis in two ways. First, we want to see if 
the privacy profiles we identified with crowd workers (in Chapter 6.4) are representative 
enough to describe users in the wild. Second, we want to identify the optimal set of 
questions (mentioned in Chapter 6.5.2) that can accurately guide users to the appropriate 
privacy profile, which might require multiple iterations on the question sets by using both 
qualitative and quantitative evaluation methods.  

7.2.3 Design, implement and deploy a privacy wizard 

From a more systems-oriented point of view, future work can also focus on building a 
privacy wizard with the identified questions as a module in the smartphone privacy 
framework to reinforce the privacy profiles we identified. This privacy wizard should 
also have the ability to gradually refine users’ privacy settings based on their interactions 
with privacy settings. Deploying this wizard to real users in field studies can also as part 
of the design process to evaluate the usability of this privacy wizard. It would also be 
interesting to see how such a privacy wizard influences users’ privacy preferences or 
their interaction pattern with mobile apps and smartphones in general.  
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APPENDIX. A 
Top 11 most sensitive and frequently used permissions mentioned in Chapter 4.1 

Permission Permission Group Description 

INTERNET Network communication full Internet access 
READ_PHONE_STATUS   
ACCESS_FINE_LOCATION Your location fine (GPS) location 

ACCESS_COARSE_LOCATION Your location 
coarse (network-based) 
location 

READ_CONTACT Your personal information read contact data 
GET_ACCOUNTS Your accounts discover known accounts 
READ_SMS Your messages read SMS or MMS 
SEND_SMS Your messages send SMS or MMS 

BLUE_TOOTH Network communication 
create Bluetooth 
connections 

CAMERA Hardware controls take pictures and videos 
RECORD_AUDIO Hardware controls record audio 
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APPENDIX. B  
The list of apps and relevant permissions that covered in Chapter 5.3 
 

App Name Permission App Name Permission 

Antivirus 
Brightest Flashlight Free 
Compass 
Coupons 
Dolphin Browser HD 
Earth 
Evernote 
Facebook 
Foursquare 
GasBuddy 
Goggles 
Google Sky Map 
Lookout - antivirus 
Maps 
Movies 
myYearbook 
Seesmic  
Shazam 
Skyfire Web Browser 
The Weather Channel 
Toss It 
Twitter 
WeatherBug 
WhatsApp 
Antivirus 
Backgrounds HD Wallpapers 
Barcode Scanner 
ChompSMS 
Evernote 
Facebook 
Foursquare 
GO Launcher EX 
GO SMS Pro 
Google Voice 
Handcent SMS 
KakaoTalk Messenger 
LauncherPro 
Lookout - antivirus 
Google Maps 
Pandora 
Ringdroid 
Skype 
Tango voice & video calls 
TiKL-touch to talk 
Twitter 
WhatsApp 
Wordfeud FREE 
Words with friends Free 
Zedge Ringtones & Wallpapers 
Zynga Poker 
Alchemy 
Angry Birds 
Ant Smasher 
Antivirus 
Backgrounds HD Wallpapers 
Bakery Story 
Bible 
Blast Monkeys 
Brightest Flashlight Free 
Bubble Blast 2 
ChompSMS 
Coupons 
Dictionary 

ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
ACCESS_FINE_LOCATION 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_CONTACTS 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 
READ_PHONE_STATES 

Air Control Lite 
Angry Birds 
Antivirus 
Brightest Flashlight Free 
ChompSMS 
Compass 
Coupons 
Dictionary 
Dolphin Browser HD 
Earth 
eBuddy 
Evernote 
Foursquare 
GasBuddy 
Goggles 
Horoscope 
Lookout - antivirus 
Maps 
myYearbook 
Seesmic  
Shazam 
Skyfire Web Browser 
Skype 
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