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ABSTRACT

Global network testbeds are crucial for innovative network
research. Built on the success of PlanetLab, the next genera-
tion of federated testbeds are under active development, but
very little is known about resource usage in the shared in-
frastructures. In this paper, we conduct an extensive study
of the usage profiles in PlanetLab that we collected for six
years by running CoMon, a PlanetLab monitoring service.
We examine various aspects of node-level behavior as well as
experiment-centric behavior, and describe their implications
for resource management in the federated testbeds. Our
main contributions are threefold: (1) Contrary to common
belief, our measurements show there is no tragedy of the
commons in PlanetLab, since most PlanetLab experiments
exploit the system’s network reach more than just its hard-
ware resources; (2) We examine resource allocation systems
proposed for the federated testbeds, such as bartering and
central banking schemes, and show that they would handle
only a small percentage of the total usage in PlanetLab; and
(3) Lastly, we identify factors that account for high resource
contention or poor utilization in PlanetLab nodes. We an-
alyze workload imbalance and problematic slices in Planet-
Lab, and describe the implications of our measurements for
improving overall utility of the testbed.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies, Perfor-
mance attributes

General Terms

Measurement, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’11, November 2–4, 2011, Berlin, Germany.
Copyright 2011 ACM 978-1-4503-1013-0/11/11 ...$10.00.

Keywords

PlanetLab, Network Testbeds, Characterization

1. INTRODUCTION
Building on the unprecedented success of PlanetLab [23],

the next generation of testbeds have been under active devel-
opment recently. In its design phase, the GENI [14] project
aims to federate multiple testbeds that are owned and oper-
ated by autonomous organizations. It plans to cover diverse
networks including PlanetLab-like wide-area testbeds, fiber
optics, and even sensor grids. To coordinate resource man-
agement across the organizational boundaries, the federated
infrastructure suite needs an extensive policy framework and
incentive system. However, very little is known about re-
source usage in the federated frameworks, which is required
for designing future policy engines.

In this paper, we analyze resource usage in PlanetLab
and discuss its design implications for the emerging feder-
ated testbeds. We note that PlanetLab itself is a feder-
ated platform. The nodes in PlanetLab are managed by a
trusted intermediary named PlanetLab Central (PLC), but
each site retains ultimate control over its own nodes. Since
it was launched in 2002, PlanetLab has tried to balance fair-
ness and the utility of the system without imposing strict
resource controls [6, 22]. Thus, we believe that understand-
ing resource usage in PlanetLab can help shape the policy
decisions of future testbeds that have similar design require-
ments. Since planned testbeds such as GENI have architec-
tures similar to PlanetLab, the lessons we have learned from
our analysis can be generalized beyond PlanetLab to many
federated systems that need to control shared resources do-
nated by autonomous organizations.

Characterizing PlanetLab’s resource usage is challenging
because it is highly dynamic and evolves with changes in the
underlying platform. For example, some experiments are
active year-round and consume an almost constant amount
of resources while many other experiments show heavy and
bursty demand over short time periods. As a result, large-
scale, long-term analysis is necessary to capture usage pat-
terns and their evolution.

To address this challenge, we have collected detailed statis-
tics on every online PlanetLab node and the active experi-
ments running on the node since August 2004 through the
PlanetLab monitoring system CoMon [20]. The collected
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datasets have detailed information about both node-centric
and experiment-centric data at five minutes granularity. In
addition to passively recording OS-provided metrics, CoMon
also actively gathers information about each node’s status
by periodically running a set of test programs. In this pa-
per, we analyze six years of PlanetLab usage, from 2005 to
2010. Our three main observations follow:

No tragedy of the commons Conventional wisdom sug-
gests that network testbeds should suffer from a tragedy of
the commons, and this belief has led to much development
on PlanetLab, including two deployed resource reservation
schemes [16, 27], two deployed resource discovery systems [1,
2], and papers investigating resource allocation and migra-
tion [12, 19]. This belief has even shaped the requirements
of testbeds like GENI, which are devoting much attention
and software development cost to resource reservation sys-
tems [13].

However, we observe no indication of the tragedy of the
commons on PlanetLab, and we find several measurements
indicating that these kinds of network testbeds are unlikely
to suffer such effects. Unlike compute clusters where users
try to utilize every available resource, most PlanetLab users
are not aggressive in using resources in the testbed. While
PlanetLab hosts some long running services, most Planet-
Lab experiments have bursty resource consumption, and this
resource consumption is tied to network activity. As a re-
sult, the resource consumption shows bimodal distributions
along many axes. The primary reason for the non-aggressive
behavior of PlanetLab users is that the main utility of Plan-
etLab comes from its wide network vantage points, not the
aggregate amount of resources.

Limitations of market-based resource allocation Using
data-driven analysis, we explore the effectiveness of two rep-
resentative resource allocation schemes proposed for PlanetLab-
like federated systems: pair-wise bartering and market-based
banking. We find that the bartering and banking systems
can account only for 3% and 14% of the total resource usage
respectively, because most resource usage is from sites that
do not donate the same amount of resources. Since the re-
maining 83% of the resources need to be allocated, market-
based allocation approaches are not sufficient for network
testbeds, and some mechanism must be employed to ensure
that the bulk of the testbed’s resources are used appropri-
ately.

Improving utility of PlanetLab We examine factors that
degrade the overall utility of PlanetLab, and discuss how
to mitigate their impact. We find that workload is per-
sistently unbalanced among PlanetLab nodes, resulting in
high system lags in overloaded nodes as well as inefficient
resource usage. Several factors are responsible for this im-
balance, ranging from users staying with known-good nodes
to node utility being degraded due to DNS failures, node
unreliability, bandwidth limitations, and other reasons. We
also find unstable experiments consume a disproportionately
high share of the resource, typically dwarfing stable long-
running services. We simulate pruning the problematic ex-
periments to measure their impact on other well-behaved
experiments in PlanetLab.

The rest of this paper is structured as follows. In Sec-
tion 2, we describe some background on PlanetLab and
CoMon datasets. We analyze per-slice characteristics in Sec-
tion 3, and examine several resource allocation systems in
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Figure 1: Overview of PlanetLab Architecture.

Year Nodes Slices LiveSlices Size

2005 354 (62) 215 (14) 106 (8) 164.8 GB
2006 433 (33) 278 (38) 136 (18) 232.9 GB
2007 438 (77) 371 (54) 133 (21) 260.7 GB
2008 474 (85) 254 (66) 139 (25) 291.2 GB
2009 613 (55) 349 (103) 145 (19) 430.1 GB
2010 683 (67) 421 (62) 158 (15) 503.9 GB
Total 1883.6 GB

Table 1: Summary statistics for CoMon datasets. Each row
contains means and standard deviations of online nodes, in-
memory slices, and live slices per day in each year.

Section 4. We examine the workload imbalance problem in
Section 5, and discuss policing of slices in Section 6. We
compare our observations with related work in Section 7.
Section 8 concludes the paper.

2. BACKGROUND AND DATASETS
To better understand the analysis in this paper, some

background on PlanetLab and its terminology is provided
here. Figure 1 illustrates the architecture of PlanetLab and
its components. When organizations join PlanetLab, they
host physical servers at one or more locations. Each location
is called a site, and the servers are called nodes. All account
creation and node management is handled by a centralized
database, called PlanetLab Central (PLC). Users create ac-
counts on one or more PlanetLab nodes to perform their
experiments. The nodes host one virtual machine per ac-
count, and users can run any number of processes within
their own slivers. The virtual machines are called slivers,
and the set of virtual machines assigned to one account is
called a slice. PlanetLab is a shared testbed, so multiple
slivers are running on the same node at any given time.

We classify a sliver as an in-memory sliver if it contains
at least one instantiated process, regardless of whether the
process is running or blocked. An in-memory sliver is called
a live sliver if it uses more than 0.1% of the CPU per day1.
A slice that has at least one live sliver is called a live slice.
We say that a slice uses a node if the slice has in-memory
slivers in the node. A node is considered to be live if it
responds to CoMon requests.

10.1% is the minimum CPU time that CoMon measures for
a sliver’s CPU usage at any given time.
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Figure 2: The scale of PlanetLab over time. PlanetLab node
and live slice counts have increased as more researchers have
joined the testbed in general.

In this paper, we analyze six years (2005 to 2010) of data
from CoMon, a scalable monitoring system for PlanetLab.
Since August 2004, CoMon has collected and reported statis-
tics on PlanetLab nodes to help PlanetLab users monitor
their services and spot problems. CoMon runs daemons in
every PlanetLab node to gather values that are provided by
operating systems, and values that are actively measured
by means of test programs running on the nodes. A central
CoMon server collects data from all PlanetLab nodes every
5 minutes.
CoMon monitors and collects node-centric and slice-centric

data. The node-centric datasets consist of 51 fields that
represent node health and aggregate resource consumption,
including CPU utilization, memory usage, timing behavior,
DNS resolver behavior, bandwidth consumption, etc. The
slice-centric data contains information about each sliver’s
resource usage on its node, which is an aggregate resource
used by all processes within the sliver in the node. The
measured metrics include CPU usage, memory consumption,
and transmit/receive bandwidths.
Table 1 shows the basic statistics about our datasets. The

sizes of the datasets have increased over time because Plan-
etLab’s node count has increased and more metrics have
been added to CoMon over time. The slice-centric datasets
contain resource usage of each sliver, and can be aggregated
into slices as needed. Since CoMon fetches data from all
PlanetLab nodes in parallel, the aggregated values estimate
the total amount of resources that a slice uses across mul-
tiple nodes at a given time. We associate the two kinds of
datasets to study the effect of an experiment’s behavior on
a node’s status, and vice versa.
CoMon’s task has grown over time as the testbed itself has

expanded, since CoMon tries to monitor information about
every sliver in the system. Figure 2 presents the numbers of
online nodes, live slices, sites running online nodes (labeled
as “Available Sites”), and sites having live slivers in other
remote nodes (“Active Sites”) per month. We find that the
scale of the testbed has persistently increased over the time
period (2005 to 2010) that we examine. The number of avail-
able sites and their nodes has increased by 179% and 82%.
The active site count has increased at a slower rate (95%)
because most PlanetLab users intermittently run their ex-
periments in the testbed, and their usage of the testbed is
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Figure 3: The distribution of slice total active period. While
most slices are short-lived, a number of slices were active for
an entire year.

spread over time. Similarly, the number of live slices has
increased by 48%. In particular, it is notable that live slice
count has been fluctuating over time, which implies that
resource demands on PlanetLab are synchronized to some
degree with external events such as conference submission
deadlines. Sliver count has increased at a faster rate (123%)
than slices because slivers counts grow as a result of slice
growth and node growth. Most slices only create slivers on
a fraction of the nodes, but some slices, particularly those
related to infrastructure, are typically created on every node
in the system.

3. SLICE RESOURCE USAGE
Examining the slice resource usage in PlanetLab allows us

to determine how experiments are using the system, and the
patterns of resource consumption on the testbed. We find
that PlanetLab experiments are typically bursty along sev-
eral dimensions, and that most use relatively few resources
at any given time. This likely stems from the network-
centric experiments on PlanetLab – their resource consump-
tion is tied to their network activity, rather than the total
resource pool on PlanetLab.

3.1 Active Periods
Since PlanetLab slices share nodes, we begin our per-slice

analysis by examining how long slices tend to run and ac-
tively use resources. We define a sliver’s active period to be
the number of hours during which the sliver is continuously
live on its node. Experimenters typically leave slivers instan-
tiated on nodes for long periods of time, and only use the
slivers when actively performing experiments, resulting in
multiple active periods separated by idle periods in CoMon
datasets. We consider a slice active if any of its slivers are
active, even if sliver count changes over time.

We find that slice activity is largely bimodal, with a great
many short-lived slices and a number of very long-lived slices,
as shown in Figure 3. The number of short-lived slices is
not surprising, since many classes use PlanetLab for hands-
on measurement projects and short assignments. It is also
notable that there are 26 slices that were live longer than
360 days in 2010. These slices include 6 management slices
(e.g., root and SliceStat [28]), and 20 long-running services
that run on PlanetLab [7, 8, 11, 15, 21].
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Figure 4: Per-sliver usage of CPU, memory, and bandwidth for slices in 2006, 2008, and 2010. Most slices have low resource
consumption except for the heaviest 5% of slices. The CPU usage shows the heaviest slices gaining a larger share over time,
while memory usage shows flatter curves. The heaviest bandwidth consumers typically provide services to large external user
populations.

0.0 0.2 0.4 0.6 0.8 1.0

Slice Activity

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Live / Lifetime

Live / In-memory

In-memory / Lifetime

Figure 5: CDFs of the relative activity of slices over their
lifetimes. Versus their lifetimes, most slices have relatively
small periods of activity (Live/Lifetime). The ratio of ac-
tivity is even low when compared to the time a slice is in-
stantiated (Live/In-memory).

One possible observation from this data is that short-lived
slices are an important aspect of PlanetLab usage, and that
it may serve as a training facility for future developers. As
such, all of the setup overhead on PlanetLab may be an
issue for this class of user, who has to perform these tasks
and then amortizes that effort over a relatively short usage.
Testbed designers may be well advised to focus on simplicity
as a way of gaining usage.
The other implication of this result is that most slices do

not use a significant amount of resources, even when they
are active. Shown in Figure 5 is that the total active periods
of the slices is often spread over a much longer slice lifetime
(Live/Lifetime), so many of those slices are idle for most of
their lifetimes. The ratio of activity is even low when com-
pared to the time a slice is instantiated (Live/In-memory).
Slices often tend to also disappear and re-appear over time,
with large gaps in time when they are not present at all on
the testbed. Any attempt at introducing heavyweight re-
source allocation mechanisms would therefore have two side
effects – it would burden the users of most slices, and it
would often require resource overcommitment anyway in or-
der to ensure that the resources are being used.

3.2 Local Resource Consumption
Understanding the distribution of slice resource usage and

its change over time provides insight into the workload pro-
files of PlanetLab experiments. We focus on three resources
– CPU, memory, and network bandwidth, and examine them
on a per-sliver basis when the sliver is active. We do not
include disk usage in our analysis because PlanetLab disk
space is partitioned into per-sliver quotas (5 GB), and not
shared by multiple users in a node.

Since most slivers have fairly low resource consumption,
we focus only on the heaviest quintile of resource consumers,
shown in Figure 4. The three graphs have similar character-
istics, in that the aggregate resource consumption is a few
percent at most, and increases sharply as we approach the
heaviest 5% of slices. However, important differences are
apparent when examined in closer detail. The CPU usage,
for example, shows the heaviest slices gaining a larger share
over time, while memory usage shows the exact opposite.

We believe these differences are a result of PlanetLab pol-
icy and the changes in hardware over time. PlanetLab uses
a modified CPU scheduler [22], which allocates CPU evenly
across slices (not threads/processes), and then allocates any
unused CPU on demand. Over time, as more machines en-
ter the PlanetLab testbed, and more powerful machines en-
ter the system, the aggregate CPU in the system increases.
As a result, more slices can have their CPU demands met,
and the remaining CPU is used by the heaviest consumers.
However, these heavy CPU consumers are not heavyweight
long-running services, but instead are classified as spin-loop
slivers that consume many CPUs but do not generate any
network traffic, which we cover in more detail in Section 6.
This result suggests that CPU contention in PlanetLab has
been decreasing over time.

The CDF of memory consumption differs in that the curves
are much flatter, and that the opposite effect occurs over
time, with the heaviest consumers using less of the testbed.
One reason that partly explains both features is that Planet-
Lab’s policy for memory allocation is that when a node runs
out of swap space, the heaviest consumer of physical memory
is killed on that node. As a result, slices have a tendency to
police their own memory usage to avoid being the heaviest
consumer, leading to a flatter memory consumption profile
among slices. Over time, as the memory capacities of the
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Figure 6: The average and maximum daily sliver counts for slices in 2006, 2008, and 2010. Most slices have a low average
number of slivers, but a large number of them have relatively high maximum sliver counts in their lifetimes.

nodes have increased, the self-policing behavior introduced
by the memory-killing policy results in slices consuming a
smaller fraction of memory over time.
Bandwidth consumption is related to the testbed itself

– for those experiments without a large user population,
bandwidth consumption is driven by the experiment itself
and whatever bandwidth caps the nodes have been assigned.
The heaviest bandwidth consumers typically involve large
external (non-PlanetLab) user populations, such as content
distribution networks or peer-to-peer systems, and the con-
sumption of these systems is not captured on this graph.

3.3 Slice Sizes and Dynamics
As we have seen that PlanetLab’s resource distribution

and slice distribution has many bimodal properties, it is
worth investigating whether PlanetLab is monopolized by
only a handful of researchers, or whether it has a broader
utility to the community. As we believe that PlanetLab’s
main differentiator versus other testbeds is its network reach,
one measure of this utility would be to see how different
slices use PlanetLab’s scale.
To visualize the range of sliver usage within slices, we want

to view the average and maximum daily sliver counts for
the slices. However, viewing this data sorted by only one of
these values results in garbled images since the average and
maximum values are not necessarily correlated. To address
this problem, we divide slices into 20 groups by their daily
average sliver counts. We then sort slices within each group
by their maximum sliver counts. The sort order alternates
between ascending and descending for the different groups
for aesthetic appeal. The results for 2006, 2008, and 2010
are shown in Figure 6.
These graphs show a number of interesting features – the

first is that most slices have a relatively low average number
of slivers, with 75% of the slices using less than 7% of the
available nodes on average, and only 4% use more than half
the available nodes on average. However, we also see that
the maximum number of nodes used approaches the total
size of PlanetLab for virtually every range of average node
counts. This result suggests that while much of the develop-
ment of experiments may happen at low sliver counts, many
researchers are in fact expanding their experiment to a large
fraction of the available nodes at some point in the slice’s
lifetime.
This usage pattern becomes more apparent when we ag-
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Figure 7: The distribution of network reach that PlanetLab
sites used in 2010. More than 50% of all active sites used
remote nodes in half of all available sites and every accessible
continent in PlanetLab.

gregate the slices into the sites that created them, and then
examine network reach, as shown in Figure 7. For each site,
we combine the locations of all slivers created by researchers
from that site, and examine the locations of those slivers, by
site and continent. We find that 105 sites were purely do-
nating resources in 2010, and did not run any slices of their
own on the rest of the network. At the same time, 132 sites
(35%) used more than 200 remote sites (53%). Taking the
inactive sites into account, this result implies that 50% of all
active sites used more than half of all available sites for their
experiments, which would be impossible without PlanetLab-
like global testbeds. Similarly, 73% of all active sites used
nodes in every accessible continent (North America, South
America, Europe, and Asia) in PlanetLab.

Combined, these two results demonstrate the main util-
ity of PlanetLab – it allows researchers much larger net-
work reach than they would have from just their own sites.
Snapshots over small time periods are likely to understate
this usage, since most experiments run on a small number
of nodes for most of their lifetimes, but a large number of
them expand to over half the testbed at some point in their
lifetimes. This kind of utilization of the network is not likely
to be captured by examining CPU or memory resources, as
would be appropriate for computer clusters.
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Figure 8: Total CPU consumptions by slices in 2006, 2008,
and 2010. Only 3% of all slices can account for 80% of all
CPU usage in PlanetLab.

3.4 No Tragedy of the Commons
From the details presented earlier in this section, we find

no measurement-based support for the idea that there is a
tragedy of the commons on PlanetLab. Most experiments
are relatively small most of their lifetimes, and use a large
fraction of the testbed in a bursty manner. Likewise, re-
source consumption is relatively low for most slices, and
the fact that the largest CPU consumers are runaway pro-
cesses suggests that many more slices could get more CPU
if needed.
The related question is that if PlanetLab appears to have

excess capacity, why is that capacity not being (even surrep-
titiously) tapped by non-networking researchers? We be-
lieve that several PlanetLab policies make it unappealing
for compute-intensive researchers. The first is that Planet-
Lab is organized with a small number of nodes (typically 2)
per site, and a large number of sites. This model is different
from compute grids, which have a large number of nodes per
site connected with high-bandwidth local-area networks. In
comparison, the external bandwidth capacity at many Plan-
etLab sites is in the range of 1-10 Mbps, so the ratio of CPU
to bandwidth is much different than compute grids. Not
only does PlanetLab have a worse bisection bandwidth than
LANs, but the latency between nodes is much higher due
to the physical distance. The other issue is the available
memory – a large memory footprint increases the chances of
a sliver being killed, so memory-intensive compute applica-
tions are not well-matched to PlanetLab. This combination
of high CPU and low bandwidth is typical of certain bag-
of-tasks parallel applications, such as SETI@home [26], but
volunteers can provide far more CPUs than are available on
PlanetLab.

4. RESOURCE ALLOCATION
Since the usage behavior of PlanetLab experiments is very

different from compute-intensive testbeds, decisions on re-
source allocation policy are likely to also be impacted. In
this section, we use the historical usage data to examine
the resource allocation systems that have been proposed for
federated network testbeds.

4.1 Total Resource Consumption
To understand the impact of resource allocation propos-

als, we must first understand resource consumption, which
has many dimensions, such as node count, length of run-
ning time, resource consumption per node, etc. To capture
the different usage patterns and to reduce the dimensions
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Figure 9: The distribution of each slice’s total active pe-
riod and coefficient of variation in its sliver count over time.
Long-running slices show relatively lower variability than
short-lived slices.

Slice group name Slice count Percentage

Short 718 56
Medium 370 29
Long-intermittent 171 13
Long-continuous 16 2
Total 1275 100

Table 2: The distribution of slice groups. The majority of
slices are in the short or medium slice groups.

of the problem, we focus on the contended resources, CPU
and memory, and aggregate per-slice usage across time and
across the entire testbed.

We represent a slice’s total resource usage in units of CPU-
day and MEM-day. A CPU-day means the total CPU time
that a single CPU core provides per day. Likewise, we define
a MEM-day as the total memory space that a node provides
per day. If a sliver uses 20% of CPU time and 10% of mem-
ory space in 10 nodes for 2 days, its total resource usage is
4 CPU-days and 2 MEM-days.

Figure 8a presents the distributions of per-slice total CPU
usage in decreasing order. The top 1% of slices use more
than 103 CPU-days while the medians are below 0.1 CPU-
days in the years that we examined. PlanetLab slices con-
sumed in total 0.9 × 105, 1.2 × 105, 2.2 × 105 CPU-days in
2006, 2008, and 2010 respectively. Figure 8b presents a de-
tail from the CDFs of the total CPU usage. We find that
only 3% of all slices can account for more than 80% of all
CPU usage in PlanetLab. Memory usage has a similar pat-
tern, with 4% of all slices account for more than 80% of all
memory usage.

4.2 Resource Usage by Experiment Type
To understand what kinds of slices are creating resource

demands and the extent of their demands, we categorize
slices into several groups and compare their aggregate re-
source usages.

We first divide slices along two axes, the variability in the
number of slivers and the lifetime of the slice. Using these
groupings, we would expect an infrastructure service to have
a long live and a stable sliver count, while a bursty exper-
iment would have a short life and a variable sliver count.
Figure 9 plots each slice’s total active period and variability
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Figure 10: Time series of the distributions of CPU usage
by each slice type in 2010. The y-axis represents the frac-
tion of available CPUs consumed by slices per day. The
Long-intermittent slices consume the largest amount of the
resources with high variation.

of its slivers. The variability of slivers is measured as the
coefficient of variation in a slice’s sliver count over time. We
find that long-running services show relatively lower vari-
ability than short-lived slices in general. For simplicity, we
pick some break points, with Short slices have less than a
week of total activity per year, Medium slices having be-
tween one week and 100 days of activity, and Long slices
as have more than 100 days. We further divide the long
slices into continuous or intermittent based on the normal-
ized deviation of sliver count, with continuous slices having
a deviation of less than 0.25. The number of slices in each
of these groups is shown in Table 2.
Daily aggregate CPU usage across the testbed, divided

by the slice types, is shown in Figure 10. We first calcu-
late the total CPU usages by all slices per day. The Short
slices, despite being over half of all slices, show virtually no
CPU usage, while the Long-continuous slices, at 2% of all
slices, consume roughly 5-12% of all available CPUs over
time. The Medium and Long-intermittent slices are much
more bursty in their CPU usage, with the Medium slices
showing the least activity during the summer months and
the start of the academic year. This behavior would corre-
late with PlanetLab being used for coursework and projects
during the academic year.
Upon closer inspection of the slice groups, we find that

the slices in the Long-continuous group run infrastructure
services. The slices provide package management [7], mon-
itoring [17, 20, 28], or scalable file distribution services [11,
21, 30]. These slices, while often heavy bandwidth con-
sumers, are surprisingly not a huge impact on PlanetLab
CPU, presumably because a production-quality service that
has external users must take some care to run stably. On
the other hand, the Long-intermittent slices are the primary
source of the fluctuation in the workloads of the testbeds.
For example, we find that many spin-loop slices, described
in Section 6, belong to this group.

4.3 Resource Allocation Systems
We extend our analysis to explore the effectiveness of al-

ternative resource allocation schemes in PlanetLab. Among
the various resource allocation systems proposed for feder-
ated platforms, we focus on two representative approaches
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Figure 11: Time series of the distributions of CPU usage
that could be addressed by several resource peering schemes.
Barter and Bank can account for only 17% of the total CPU
usage on PlanetLab because most CPU usage is from Slop.

in this section: pair-wise bartering and centralized banking.
Other schemes, such as chaining resources among a subset
of the nodes [12], would fall between these two extremes.
We examine how well the PlanetLab workload could be ad-
dressed by the alternative resource allocation systems if they
were widely deployed in PlanetLab.

The two schemes we have selected represent the envelope
of resource allocation schemes, since pair-wise barter is the
most restrictive and banking is the most permissive. The
two schemes assume that users trade their resources with
each other, or bid their resources to reserve remote resources
in other sites. In bartering, a site A grants a certain units
of A’s resources to site B in exchange for access to the same
units of B’s resources. This peering enables the sites to trade
their resources without central agreement. In the central
banking system, a site earns virtual currency budgets based
on the amount of its donated resources, and obtains remote
resources by spending its balance.

To calculate the amount of the PlanetLab workload that
could be addressed by the resource peering schemes, we
break each site’s total resource usage into four categories:
Self, Barter, Bank, and Slop. If a slice from site A runs
on nodes owned by the same site A, we classify the slice’s
resource usage as Self. In bartering, each site keeps sepa-
rate balances for the other sites. Site A’s balance for site
B, balAB increases when B uses resources at A’s nodes, and
decreases when A consumes B’s nodes over time. If A uses
rAB resources at B, we classify min(rAB , balAB) as Barter
at a given date. In banking, each site has a balance across
the testbed. A’s balance, balA increases when other sites
use resources at A’s nodes. If A consumes rA resources in
total at other sites, then we classify min(rA, balA) as Bank
at the given date. Lastly, the remaining resource usage is
called Slop, which is the amount of resources that sites used
beyond what they contributed.

For simplicity and generality, we make a number of as-
sumptions about the resource allocation schemes, but these
do not lead to a loss of generality in the results. For bar-
tering schemes, we assume a uniform exchange rate, rather
than a dynamic exchange rate proposed by some systems [4,
9, 16], since the dynamic rate would only restrict some of the
exchanges we observe. Similarly, in central banking, we do
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not impose any upper limit on resource balances, which al-
lows us to capture all exchanges that could be performed in
a central banking model. We consider the effect of resource
limits later in this section.
Figure 11 presents the amount of testbed-wide CPU usage

addressed by each category. As expected, the percentage of
Self usage is low, since sites would have little reason to join
PlanetLab and use solely their own machines. The Barter
approach handles on average less than 3% of the CPU usage
on PlanetLab, and the Bank approach handles an additional
14% beyond Barter. The vast majority of the CPU usage,
however, cannot be handled by any of these approaches,
and is allocated from Slop. This implies that, no matter
the underlying exchange rate mechanism, there is not much
demand for resource that the resource peering schemes are
able to handle. It also means that there has to be a policy to
handle allocation when bartering or banking fails since most
resources will be allocated via Slop. For memory usage, the
Bank and Barter schemes show slightly higher percentages
(19% total) than for CPUs, but the results are consistent
with CPU usage in that most memory usage also comes
from Slop. The underlying cause of these results is that CPU
demand is unbalanced, with most sites using a large network
reach but relatively little CPU. Schemes that attempt to
allocate resources must contend with the fact that, for the
vast majority of users, CPU is in relatively low demand.
We extend our simulation of the pair-wise bartering scheme

to examine the effectiveness of resource routing in Planet-
Lab, which enables sites to access resources in more remote
sites through some transitive ticket redemption paths. If site
A has a ticket to claim on B’s resources and B has a ticket to
claim on C’s resources, A could request C’s resources using
the chained redemption of its ticket to B (A → B → C).
For conservative evaluation, we assume that every site has
the global knowledge of the distribution of tickets at a given
time, and we set no limit on the length of the path that can
be used to claim resources.
We find that such resource routing enables PlanetLab sites

to find 3.2 times more CPUs than with the pair-wise barter-
ing scheme, but that the total usage addressable by chained
approaches is still less than 7% of total CPU usage. Even
with unlimited chain lengths, the chained bartering schemes
have a result that is much closer to pair-wise bartering than
to central banking, which suggests that the chains are likely
to be fairly short. Indeed, we find that the maximum length
of the used path was 18 hops, but most of the CPU addressed
(85% of the 7%) in bartering was found in sites within 4
hops.
Despite the Bank approach addressing only 14% beyond

Barter, any feasible implementation would achieve even less
since some limit has to be placed on the balances each site
can accumulate. Using the data for January 2010, we ex-
amine the bank balance growth in Figure 12, and show the
effect of various limits. With no limit on balances, the total
bank balances grow quickly and exceed the daily capacity of
PlanetLab (“Available CPUs”) within three days. Beyond
this limit, the virtual currency becomes inflated, as more
currency is accumulated than can ever be spent. With bal-
ance limits enforced, the total balance converges at certain
points. We find that five CPU-days limit (or lower) can pre-
vent the total balances from growing beyond what Planet-
Lab can serve. Since most nodes in PlanetLab are dual-core
or quad-core machines (82%), the five CPU-days correspond
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Figure 12: The total balances amassed at all sites. With-
out balance limits, the total balances will exceed the daily
capacity of PlanetLab within 3 days, leading to inflation of
virtual currency.
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Figure 13: The distribution of bank balances among sites.
There are bimodal distributions with most sites being near
the limits.

to two physical machines, which is what each site typically
provides.

Even if the total balance is bounded, the utility of banking
and resource auctions depends on users willing to outbid
each other in order to get access to resources. However, we
find that bank balances tend toward bimodal distributions,
as shown in Figure 13. The majority of sites hit the balance
limit, and a fraction of sites are constantly at a zero balance,
with similar patterns at balance limits of 1 CPU-day and 25
CPU-days.

If banking is intended to solve the problem of demand
before external events, such as conference submission dead-
lines, this bimodal wealth distribution suggests that auctions
will fail, since all sites have the same amount of currency to
bid on the same resource, and the utility of the resource pre-
sumably drops to zero after the paper submission deadline.

Conversely, when no external deadline exists, the bank
balances provide little benefit, since PlanetLab already has
most of its resources being allocated via Slop. So, a banking
scheme would allow all of the current demand to be satis-
fied, without providing any additional benefit beyond what
is currently present.

If banking were employed to reduce the resources being
allocated via Slop, then a policy decision has to be made
regarding the testbed. From our earlier examination of con-
sumption, the Long-continuous slices were responsible for
far less CPU consumption than the Long-intermittent slices.
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Figure 14: CDFs of system lags in nodes grouped by their average CPU load.
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Figure 15: CDFs of average CPU/Memory utilization of all
PlanetLab nodes in 2010.

One may decide that Slop should be allocated preferentially
to continuously-running services in order to increase the vis-
ibility (internally and externally) of PlanetLab. In any case,
the decision becomes how to allocate the Slop, not how to
use banking, suggesting that banking by itself provides little
utility.

5. WORKLOAD IMBALANCE
Despite the availability of resources on PlanetLab, some

level of contention does occur from the testbed being shared,
leading to workload imbalance. In this section, we examine
the workload distribution in 2010, and analyze the degree
of imbalance in PlanetLab and its effects on the system.
We analyze some reasons for the distribution, and explore
solutions based on these observations.
By measuring average CPU and memory utilization by

node, we can see a persistent difference during the year, as
shown in Figure 15. The effects of this imbalance are also
quantifiable, using CoMon’s metrics regarding system lag
and timing. These metrics are related to the responsive-
ness of networked systems, so load-induced timing problems
would degrade PlanetLab’s overall utility. The metrics used
are

• ServTest – Measure latency to make a loopback con-
nection and receive a byte from it. Calculate maxi-
mum and average values over previous 60 runs. Used
to measure connectivity responsiveness.

Field CPU-Low Med High

ServTest-max 2.71 12.95 150.57
ServTest-avg 0.29 0.62 3.66
Timer-max 38.02 282.75 3247.94
Timer-avg 10.35 10.62 15.01
SleepLoop 1.28 4.15 27.72
SpinLoop 0.49 0.98 7.48

Table 3: The 90th percentile values (in milliseconds) of the
system lag metrics in nodes with low, medium, and high
CPU load.

• Timer – Measure latency in wake-ups from 10 msec
sleeps. Calculate maximum and average values over
last 60 runs. Used to measure load on the scheduler.

• SleepLoop – Run 11 spin-loops with 10 msec sleeps
in-between. Measure gaps between the loops and cal-
culate (max - min) of the gaps. Used to simulate the
behavior of low-rate measurement activity.

• SpinLoop – Run 11 spin-loops without sleeps. Calcu-
late a diff value like SleepLoop. Used to simulate the
behavior of high-rate measurement activity.

We divide PlanetLab nodes into three groups based on
their CPU load shown in Figure 15: top 25%, bottom 25%,
and the remaining 50% of all nodes. Then we compare the
values of the lag-related metrics between the groups (Fig-
ure 14). It is noticeable that the nodes with high CPU
load show two orders of magnitude of increase in the met-
rics compared to other lightly loaded nodes. This latency
may degrade responsiveness of network services or add mea-
surement noise to running experiments. Table 3 summarizes
the 90th percentile values of all the metrics in each group.
We observe similar results in the nodes grouped by their
memory load. Such timing increases complicate experiment
design and add noise to measurements. On the positive side,
long-running services will have to develop mechanisms to
deal with these issues, which are also likely to occur in the
real world, thereby making their services more robust out-
side of testbed environments.

5.1 Origins of Imbalance
While one may expect that a certain amount of workload

imbalance is naturally to be expected in a large testbed, we
believe that the imbalance on PlanetLab has other more
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Figure 16: The number of live slivers per node in 2010. The
recently registered nodes serve lower number of live slivers
than older nodes. The error bars represent standard devia-
tions.

identifiable causes. Identifying these causes can help re-
searchers in improving the resources their experiments use,
and it can help future testbed operators determine policies
that would help alleviate imbalance.
One of our observations regarding PlanetLab nodes is that

newer, more powerful nodes are often very lightly used, and
that older, less capable nodes are in heavy demand, which
is the opposite behavior of what one would expect from re-
searchers seeking out the most available CPU resources. We
can quantify this behavior by examining the sliver counts on
different nodes. Figure 16 shows the number of live slivers
per node, broken down by the year the node entered Plan-
etLab. We see that the older nodes have more than twice as
many slivers as the newer nodes, and this metric understates
the difference, since these sliver counts include many of the
long-running services.
The same behavior is evident if we examine the type of

machine involved, since older nodes would tend to have fewer
CPU cores, and newer machines would have more cores. Fig-
ure 17 plots the numbers of slivers in nodes, based on the
number of CPU cores per node. The trend is clear – not
only do fewer slices run on the more powerful machines,
but even if we look at just the instantiated slices (the in-
memory slivers), fewer of those exist on the more power-
ful machines. Even the most powerful nodes (labeled as
“Other”) are the least popular among the nodes. This break-
down is even more apparent when calculated the slivers per
core, with the 8-core nodes serving only 1.53 slivers per core
at a given time while single-core machines were busy with
running 23.16 slivers.
We observe similar patterns in memory usage when com-

pared to node memory size. Figure 18 shows the average
memory usage of nodes, grouped by the memory size of the
node. We see that nodes with more memory see relatively
little extra usage of that memory. We believe that the rea-
son that more memory is not used is because experiments
that are deployed across multiple nodes have to plan for
the lowest common denominator, and therefore restrict their
memory usage to avoid being killed. At the same time, the
reason we see any growth in memory usage on larger nodes
is likely due to more memory-intensive experiments avoiding
the smaller nodes, perhaps as a result of having found their
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Figure 17: The distribution of slivers in nodes based on the
number of CPU cores per node. The number of in-memory
and live slivers shows a generally decreasing trend as the
number of cores increases, which is responsible for some of
the measured workload imbalance. The error bars represent
standard deviations.
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Figure 18: The memory usage by node memory size. The
nodes with more memory see relatively little extra usage of
that memory. The error bars represent standard deviations.

slivers killed on those nodes. Regarding live sliver counts,
we see some of the same trends observed for the node’s CPU
cores. The nodes with the largest memory space (“Other”)
host only 6.64 live slivers on average while the most memory-
constrained nodes (“0.5 - 1GB”) are busy with running 20.14
live slivers.

Several possible explanations can explain this behavior,
ranging from the history of PlanetLab to human nature.
One may expect that users obtain a list of working nodes,
and do not regularly update their lists, leading to a bias
against newly-introduced nodes. Older nodes may also re-
flect more established hosting sites that joined PlanetLab
earlier since they had more active network research groups.
These sites may have a larger user population keeping their
nodes well-maintained, and may be connected to the Inter-
net using better-quality links. Users may also flock to more
busy nodes precisely because other users have found them
desirable – knowing nothing else about two nodes, the one
with more active users may actually be the better node to
use, because other users have already found the node to be
more useful for their experiments.
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Figure 19: Popularity of nodes based on failure modes. Plan-
etLab users avoid nodes with high DNS failures, low band-
width, and unstable operation. The error bars represent
standard deviations.

5.2 Nodes with Failures
While it may be argued that there is little harm letting

users flock to known-good nodes, it can also be useful to
explore why users avoid other nodes. From a policy per-
spective, the testbed itself has reasons to encourage a flatter
load balance, because it can increase the capacity of the
testbed, reduce experimental variance, and alleviate conges-
tion. The testbed operators may also want to ensure that
the participating sites are really contributing resources of
value, instead of pro-forma resources that are useless to the
rest of the testbed.
Since resource pressure on a node is not a main concern

for users, we focus on the types of failures that could sig-
nificantly limit network experiments on the node. CoMon
records a set of metrics about node health. Among them,
we selected four fields that we believe users are likely to
correlate with the stability and the quality of network con-
nections that a node provides. They are DNS failure rates,
provisioned bandwidth, system uptime, and availability of
each PlanetLab node.
We define several failure modes for nodes. A node is con-

sidered to have a non-working DNS system if its DNS failure
rate is over 90% on average in the node. A node has low
bandwidth if its 90th percentile of the achieved bandwidth
in the node is less than 1 Mbps. For stability, we define a
node to be unstable if its average system uptime is less than
a week. Lastly, a node’s availability is classified as low if the
node was online for less than a month in total during 2010.
These choices are meant to be conservative, in that users
may still prefer higher quality values than our thresholds.
We classify PlanetLab nodes based on each failure mode

that we define, and compare their popularity using sliver
counts as a proxy. Figure 19 presents the average number of
live slivers in both failed nodes and healthy nodes. In con-
trast to resource availability, we find that PlanetLab users
do react to the failures in the nodes. We find that healthy
nodes have twice as many live slivers compared to failing
nodes, and since many of these slivers are due to infrastruc-
ture services, the difference in experimental slivers is likely
to be even higher. The “all-bad” nodes in the combination
failures (labeled as “comb.”) represent nodes that exhibit all
the four failures. Those nodes had only 3 live slivers while
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Figure 20: CDFs of node popularity. Each node’s popularity
is measured as its sliver count.

other healthy nodes hosted 18.5 live slivers on average. Fig-
ure 20 plots the distribution of node popularity measured
as live slivers per node and in-memory slivers per node. We
find that the all-bad nodes are in the bottom 3% of the un-
popular nodes. Roughly 65% of nodes were “all-good”nodes
that do not have any failures. Those nodes serve 20 live
slivers on average, which is in the 64th percentile in node
popularity.

5.3 Alternative Experiment Placement
In the previous sections, we showed that PlanetLab users

seem to stay with the nodes they have been known to work
well over time while avoiding non-working nodes for their
experiments. However, this conservative placement strategy
can collectively lead to inefficient resource allocation and un-
desirable system lags in the popular nodes. Also, the manual
deployment prevents a new participant’s nodes from being
adopted by existing users, which can hamper the growth of
the testbed in the long term.

We examine how the workload would change if researchers
were to deploy their systems in a different manner. In Plan-
etLab, heavily loaded nodes are easily avoidable because
there are available services to help users identify such nodes.
CoMon provides a set of interfaces to allow users to pick
lightly loaded nodes based on web-based queries. Similarly,
CoMon provides interfaces to filter out failing nodes in us-
ing various metrics. Some available execution management
systems [1, 2] locate resources based on high-level queries in
XML given by users.

We consider a “what if” scenario that all PlanetLab users
query a CoMon-like monitoring systems to find the set of
lightly loaded all-good nodes when they deploy their exper-
iments. We simulate the scenario using the CoMon data of
2010. We assume that a sliver is placed on the node se-
lected by a monitoring service only when it is started, and
that continuously live slivers do not migrate between nodes
in our simulation.

Figure 21 plots the distribution of slivers with several
alternative service-placement policies. Original plots the
number of live slivers per core that we observed in the datasets.
BestFit represents a policy that places a new sliver in the
least loaded all-good node regardless of its location. How-
ever, it is not always desirable to deploy services in this
way, because users may want to deploy their experiments at
a certain range of network vantage points. Continent and
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Figure 21: CDFs of live slivers per core in simulations of
alternative node placement policies. Since lightly loaded and
all-good nodes are selected, the workload is well balanced
among nodes while any undesirable failures are avoided.

Country represent policies that find nodes from the same
continent or the same country as its original node in the
dataset, respectively. Lastly, since some countries have a
large number of nodes, we simulate a policy to find a node
for a sliver within a configurable distance, 100 Kilometers,
from its initial node. We compare against an ideal policy,
BestFit, in which all good nodes host an equal number of
slivers, and any nodes that exhibit failures (201 in total) are
avoided entirely.
Our simulation result shows that the dynamic experiment

placement could greatly improve the load balancing in Plan-
etLab while still largely avoiding problematic nodes. The
90th percentile of per-node live slivers decreases from 16.1
to 13.7 (in 100 km) and 10.3 (in Country). As the placement
restrictions are loosened, not only does it become possible to
more evenly distribute load, but it also becomes more likely
that the bad nodes are avoided entirely. The 100-km policy
still allocates a substantial fraction of nodes from the bad
set, whereas continent-level placement avoids them almost
entirely. If a user wants to use a set of specific nodes, she
should be able to deploy her service on the nodes, but many
other users could benefit from the intelligent service place-
ment. The primary reason for the improved load-balancing
is that most experiments are short-lived (Section 3), so the
dynamic experiment placement can help spread well the load
over available nodes.

6. POLICING OF SLICES IN PLANETLAB
In this section, we show that PlanetLab’s resources are

affected by a few problematic slices. We examine the impact
of those slices on PlanetLab and consider the implications
for policing of resource usage in the testbed. We also explore
how PlanetLab’s workloads would change if stricter form of
policing is introduced in PlanetLab.

6.1 Spin-loop Slices in PlanetLab
PlanetLab is a shared infrastructure, and while it pro-

vides some mechanisms to prevent experiments from inter-
fering with each other, it also relies on the cooperation of
researchers. For example, local tests and incremental roll-
outs are recommended before a new service is fully deployed
in PlanetLab [29]. We observed that most slices follow this
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Figure 22: The distribution of per-day CPU loads on Plan-
etLab nodes in 2010. Each day, nodes are divided into five
categories according to their per-day CPU usage. The nodes
with more than 90% CPU usage account for up to 49% of
all PlanetLab nodes (July 22).
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Figure 23: The CPU consumption of spin-loop slices in 2010.
Although there are only a few spin-loop slices (4.8 slices
among 152.7 live slices per day), the average CPU consump-
tion of the spin-loop slices accounts for 31% of the total CPU
usage of all slices.

practice well in Figure 6. To minimize centralized control,
PlanetLab typically does not police resource usage of a slice
unless there are significant risks of system crashes or security
concerns that need to be addressed immediately.

However, some experiments may behave poorly because of
design or implementation flaws, and negatively affect many
other well-behaved experiments. We analyze the problem
using CoMon data collected in 2010. We divide nodes into
several categories according to their per-day CPU usage, and
observe the distribution of the nodes over time. Figure 22
presents the distribution of per-day CPU loads on PlanetLab
nodes in 2010. In this analysis, we define a node to be over-
loaded on a given date if its per-day CPU usage is over 90%,
and up to 49% of all live PlanetLab nodes are overloaded.
The number of overloaded nodes varies over time, but we did
not find any noticeable correlation between the numbers of
overloaded nodes and live slices a day (the graph is omitted
for brevity). This implies that the overloaded nodes are not
caused by the increase of active users.

The largest testbed-wide CPU consumers are often a few
slices that use many aggregate CPU cycles without gen-
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Figure 24: Time series of the updated distributions of per-
day CPU loads after pruning spin-loop slices. The number of
overloaded nodes is reduced by 71% (150 to 43) on average.

erating network traffic. We define a spin-loop sliver as a
sliver that consumes more than 20% of a CPU and has an
average bandwidth consumption (Tx + Rx) below a mini-
mum value, 1 Kbps a day. We classify a slice as a spin-loop
slice if the majority of its slivers are spin-loop slivers. Fig-
ure 23 presents the CPU consumption of the spin-loop slices
in 2010. We find that the problematic slices accounted for
on average 31% of the total CPU across all of PlanetLab.
Since spin-loop slices average 4.8 per day among the 152.7
live slices per day, the 31% resource consumption is signifi-
cantly large.

6.2 Pruning Spin-loop Slices
We simulate pruning the spin-loop slices to measure their

impact on other slices. For a spin-loop slice, we subtract
its sliver’s CPU consumption from the node’s CPU usage.
If a spin-loop sliver had been pruned by PlanetLab, more
CPUs might have been available to non-spinloop slivers in
the node. Therefore, for each non-spinloop sliver, we select
the larger of its CPU usage in a day or the median of its
CPU usage throughout the year, to recompute the node’s
CPU usage after pruning.
Figure 24 plots the updated distribution of CPU load af-

ter spin-loop slices are pruned by PlanetLab. We find that
the number of overloaded nodes is reduced from 150 to 43
nodes by policing only 4.8 spin-loop slices a day on aver-
age. It is notable that there are still some overloaded nodes
even after pruning all identified spin-loop slices on Planet-
Lab nodes. We examine the nodes in order to understand
what other factors made them remain overloaded. We find
that 56% of the overloaded nodes are single core machines,
which represent only 13% of all PlanetLab nodes.

7. RELATED WORK
Several resource management frameworks have been pro-

posed for PlanetLab-like federated distributed computing
infrastructures. In Sharp [12], multiple autonomous parties
can exchange their resources using tickets. A ticket repre-
sents the holder’s claim over a certain amount of resources in
other peers, which can be issued, delegated, and redeemed
in a cryptographically secure manner. Millennium [10], Mi-
rage [9], Tycoon [16], and Bellagio [4] propose market-based
mechanisms for trading resources in an economically efficient

way. The systems focus on maximizing the values delivered
to users by providing a means to express their valuation
of resources. In Bellagio, participating users receive virtual
currency budgets based on their resources that they con-
tributed, and submit their preferences in the form of auction
bids. The market-based systems are not widely deployed in
PlanetLab because user valuation of resources is useful in
the systems where resource demand exceeds resource supply
(e.g., sensor network testbed). We expect that our analysis
results will provide insights into user behavior in the feder-
ated infrastructures, which is required for designing similar
economic resource allocation models.

Previous studies in traditional cluster resource manage-
ment largely focused on resource utilization for compute-
intensive applications in time-sharing or batch-queue sys-
tems. The job scheduling and resource allocation in the
systems are designed to improve performance metrics such
as throughput and mean response time. Distributed batch
queue systems (Condor [18], Matchmaking [25]) provide re-
source sharing across loosely coupled pools of distributively
owned machines. Load balancing systems (MOSIX [5], LSF [24])
balance CPU load across nodes in cluster by actively mi-
grating processes across cluster machines. However, these
cluster resource management systems do not address non-
aggressive user behavior in wide-area network testbeds that
are much different from compute clusters.

Our work relates to research projects that help PlanetLab
users monitor and locate resources in the testbed. SWORD [2]
is a resource discovery service deployed in PlanetLab. In
SWORD, users describe desired resources such as per-node
characteristics in XML and submit the queries, and then the
service locates an appropriate set of resources for the user
based on the given specification. CoMon [20] provides a
comprehensive view of statistics about every node and slice
in PlanetLab. It also provides a mechanism to select nodes
based on queries provided by users. Also, several execution
management systems [1, 3, 7] are available to provide GUI
interfaces to help users deploy and monitor their systems
across multiple remote nodes.

8. SUMMARY
In this work, we conduct an extensive and in-depth anal-

ysis of six years of PlanetLab measurements to understand
and characterize PlanetLab’s resource usage. Based on our
analysis, we discuss the implications for designing resource
management policies in new federated network testbeds. We
find that the usage is much different from shared compute
clusters, that conventional wisdom does not hold for Planet-
Lab, and that several properties of PlanetLab as a network
testbed are largely responsible for this difference. We find
that experiments typically utilize PlanetLab to expand their
network reach, and that this metric of utility is a far better
indicator of PlanetLab’s effectiveness than compute-oriented
metrics like CPU utilization.

We also find that approaches focusing on compute-oriented
metrics are likely to be inapplicable to PlanetLab-like work-
loads. In particular, we find that resource usage is very
bursty, and that the vast majority of experiments consume
very little resources over much of their lifetimes. Based on
the measurement of total resource usage, we explore the ef-
fectiveness of several resource allocation systems, and find
that both pair-wise bartering and centralized banking sys-
tems can address only a small percentage of total resource
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usage. This result implies that resource management sys-
tems in federated network testbeds still need policies to
fairly allocate available resources for the vast majority of
the workload. We examine some policies for better resource
discovery and, node management, and pruning of runaway
experiments.
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Reviewer #1 
Strengths: This is a very unique, extensive, and interesting 

dataset. PlanetLab as a platform has been a tremendous boost to 

networking/measurement research and a retrospective 

measurement study of usage there is very relevant. The problem 

of how a federated test bed will be used is important and timely 

given the interest in deploying more of these. 

 

Weaknesses: I do not see any strong weaknesses in terms of 

techniques/results, other than the description of some of the 

results can be improved and I would like to see some more in-

depth analysis of a few more interesting aspects of the problem 

instead of too many figures making the same, somewhat obvious 

observations. 

 

Comments to Authors: In the introduction, I would tone down 

some of the claims about “conventional wisdom”/”tragedy of 

commons” etc, because it seems fairly obvious that the workloads 

for PlanetLab are very different from traditional compute clusters! 

 

I found Section 3.2 very confusing. Maybe this is a 

terminology/writing problem – you have “slice” but really you are 

doing a “sliver”/node level analysis here. The writing goes back 

and forth and its confusing me a bit. Also, what is the “average” 

being computed over - across time for each sliver or across 

nodes? 

Would it also be useful to just look at average over “active 

periods” instead of the overall average?  

 

In Section 3.2, how you generate this visualization is very 

confusing.  

 

I agree with the observation made in Section 3.4, but I feel that 

you are overselling the analysis by saying that this flies in the 

face of conventional wisdom etc.  

 

When you calculate the timeseries of bank/barter/slop etc. – are 

these based on “instantaneous” measurements or over a sliding 

window or cumulative over history? 

 

Fig 14 seems to suggest that most sites are incredibly altruistic – 

i.e. that they have a huge balance that they have not claimed. I 

wonder if you can correlate this with papers/projects that the sites 

have generated that use PlanetLab to verify. 

 

In Section 5.2, I found your choice “memory” imbalance very 

puzzling. I imagine that most PlanetLab workloads are not really 

memory bound, so it’s not terribly surprising that there is a 

memory imbalance. I would much rather see the corresponding 

result for network resources or CPU. 

 

I agree with the overall notion of dynamic experiment placement; 

an obvious concern is w.r.t repeatability/correctness when you 

end up choosing different nodes over different runs of the same 

experiment/measurement. E.g., you could see network 

latency/congestion effects from different nodes being different. In 

fact, I am guessing this could be one motivation for manually 

choosing nodes. Could you comment on this, or try a dynamic-

but-stable strategy, where the system also tries to find sites that 

overlap with the prior choice? 

 

Also, I have heard and seen anecdotal evidence that people 

manually choose nodes because many nodes are inherently 

“unreliable”. Can you comment on this?  

 

 

You have an amazing dataset! I really hope that this dataset will 

be made public. I would try to cut some of the figures that are 

making more obvious points to try and fit in other aspect. Here 

are some potential directions to increase the depth of analysis that 

I could think of: 

 

1. I wonder if you could characterize the slices into common 

buckets of “operating models”. The goal is that if we have a few 

standard “configuration modes” and an interface for choosing 

these, then researchers could choose from these typical use cases 

for an easy to use dynamic resource allocation strategy.   

 

2. There are two dimensions to your analysis space: Space (nodes) 

and Time. Would it help to try different ways of combining 

these — you have chosen specific points to e.g., average over 

time or max over time of sum over nodes etc.  For example, it 

could be useful to look max over time max over nodes? I.e., when 

a slice is active does it hog a particular node? 

 

3. Are there “runaway” experiments or slices that people have 

forgotten to turn off long after a deadline? 

 

Reviewer #2 
Strengths: PlanetLab is widely used. For every researcher 

working on PlanetLab there is a need to know what bias the 

system introduces. The paper looks at CPU and memory 

workloads. 

 
Weaknesses: The study is more a sophisticated sysadmin report 

for the PlanetLab central administration, than a measurement 

paper for the research community. 
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Comments to Authors:  In the current form the paper is written 

more from a system administration perspective and not for a user 

point of view. The authors study mainly CPU-days and Memory-

days of users using the system. The authors warn several times of 

measurement errors that could be created by an overloaded 

system. For example, on page 10, the authors say: “This latency 

may degrade responsiveness of network services or add 

measurement noise to running experiments”.  

Admittedly, it is a very difficult task to estimate any boundaries 

on network performance errors that might be created due to an 

overloaded system, but it would have been nice to see some form 

of quantification.  

 

It is certainly up to the experimenter to critically review the 

measurement results and understand the bias introduced by the 

system, but for a research paper it would have been nice to give at 

least an anecdotal flavor for what the upper bounds might be. 

 

Reviewer #3 
Strengths: Very cool data set, and an interesting topic. Clearly 

future testbeds can benefit from improved understanding of how 

PlanetLab has been put to use and working out over the past 

years. 

Weaknesses: I find the authors discuss basic findings in too much 

depth, from too many angles, for too long, with too many plots, 

while I have a hard time following some of the more interesting 

analyses because of their resulting terseness. 

Comments to Authors: My main problem with this paper is that 

I find some elementary findings eating too much space at the cost 

of interesting things that ended up overly terse. For example, one 

can sum up virtually all of Section 3 by the 80/20 rule - a small 

number of heavy users, along all dimensions, while everything 

else is intermittent. Do you really need 4 pages for that?  Most of 

the paper is similarly one-dimensional. 

When it matters, I found things brief and superficial. Your 

analysis of barter and banking systems for resource management, 

while interesting, feels quite simplistic. I feel that instead of 

adding a plot for virtually every paragraph of text, the paper 

would be a more productive experience for the reader if you had 

left out a good handful of plots and instead integrated analyses 

that go a bit beyond your dataset. 

I disagree with your suggested expectation of a Tragedy of the 

Commons in PlanetLab.  That model simply does not apply. 

General lack of resource-hogging is very much what I expected to 

see, simply from PlanetLab’s intended purpose. 

It would really help if instead of the overlong Sections 3 and 4 

you put in a little more background on PlanetLab. If it is clear 

from the outset that experimenters pick nodes manually, you are 

eliminating a lot of the guesswork. 

I find Figures 11 and 12 unsurprising. It seems unreasonable to 

expect a single site to contribute equal amounts of resources as it 

consumes in the entire remaining network, so clearly the slop 

fraction is highest. Surely you could come up with better banking 

schemes that factor this imbalance into the budget 

earning/spending calculation? 

I do not understand your definition of bank. A provides resources 

in its nodes, and consumes resources elsewhere. Why is “bank” 

the minimum of the two, and not the difference? Any normal 

balance can be positive or negative. Did you just pick really 

unfortunate terminology? 

I don’t understand Figure 13. So PlanetLab’s available CPU 

capacity was around 1,800 CPU-days per day, throughout. You 

also have the CPU consumptions accumulating at each node over 

the course of a month. I see no explanation on how the limits you 

mention would result in the curves you show. Is this simulation, 

as you are mentioning it in the next paragraph? I find the rest of 

that section too compressed to follow. 

In Section 6.2 you refer back to Section 3, stating that you 

discussed how experiments follow the guideline of testing in-the-

small and expanding gradually for d-day. You do not actually 

show that; you say it is true for one slice doing IPOP experiments 

(in Sec. 3.3). 

Figure 23 is not surprising. If a program spins instead of blocking 

on I/O or otherwise behaving “nicely”, then obviously its CPU 

contribution skyrockets. 

It would have been nice to see some orthogonal analyses. For 

example, do people signing up actually run experiments? How 

often do they succeed in deploying something long-running? How 

often was that actually the goal? PlanetLab requires experimental 

descriptions for the studies it hosts. Does this fit with high CPU 

consumption at all? I.e., do they suggest obvious bugs, or are they 

openly declared CPU crunching? 

 

Reviewer #4 
Strengths: Fantastic dataset; thorough analysis of resource usage 

and slice classes; resource management in federated distributed 

testbeds is an important and persistent problem. 

 

Weaknesses: Nothing obvious.  

Comments to Authors: This is a great piece with many 

interesting findings on the use of PlanetLab and the effectiveness 

of policies and potential algorithms. There are a few issues with 

the presentation here and there, but all of them could be addressed 

in a camera-ready version. 

It is surprising not to see references to all the work done in 

cluster-based and grid systems in you related work section (and 

only one in your overall reference list); particularly given your 

comments about how this is different from what you see in 

PlanetLab. A quick web search points to Hart’s paper on 

measuring TeraGrid, which would seem appropriate even if to say 

how they were different. What is the length of the measurement 

period (less than 5’, I know, but what). Is 0.1% CPU utilization a 

magic number? Seems alright to me but I tend to dislike these sort 

of constants. 
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There seem to be a neat shift in CPU usage over the three years 

and I wonder if there is a learning process there.  

Fig 5 took me a while partially due to the short and unclear 

discussion and the heavy reliance on color. The reading of slices 

with more than 200 nodes helps a bit but it may be better to pick 

another point as well, perhaps the 200 slices that use over 200 

nodes 50% of the time (or something like that). 

“fly in the face of the common expectations” seems to be a bit too 

strong; if you are going to make this claim I think you should 

have references to work arguing this. It is either that or you soften 

your lines. And you probably want to speak ‘of common 

expectations’ and not ‘of the common expectations’.  

I agree with the reading in p. 8-9 about the effectiveness of 

different resource management systems. It is surprising and a bit 

disappointing, however, that a service aimed to the whole 

research community seems to be driven by a small set of 

synchronized deadlines. 

I really like the analysis of Sec. 5.2, particularly the simulation-

based study of alternative placement policies.  

The paper seems to need a summary of findings as a way of 

closing a long list of interesting findings. For instance, I would 

like to see there a discussion of how your observations can be 

generalize to other federated systems and what would be the 

potential issues with those generalizations. 

Reviewer #5 
Strengths: Extensive characterization of resource usage based on 

long term and detailed measurement. 

 

Weaknesses: Implications of some of the findings are not clear. 

 

Comments to Authors: The paper examines a wide range of 

characteristics of resource usage. Overall, this paper is well 

organized and well written. The main issue for this reviewer is the 

limited discussion on the implications of some of the findings. 

 

Response from the Authors 
 

Most of the comments that we received from the reviewers were 

questions about our measurement results presented in the paper. 

We revised our descriptions of the results to answer those 

questions and make them clearer. To address the comment 

“…anecdotal evidence that people manually choose nodes 

because many nodes are inherently unreliable.”, we added a new 

result in Section 5 to show that PlanetLab users seemingly avoid 

nodes in exhibiting various failure modes. At the same time, we 

also demonstrated other biases that may not be entirely 

appropriate. For a deeper analysis of bartering/banking systems, 

we extended the analysis by adding resource routing to bartering 

system. We discussed the effectiveness of the resource routing in 

PlanetLab by comparing the enhanced bartering with simple pair-

wise resource exchange in Section 4. Besides resource 

consumption, we analyzed each site’s usage of network reach in 

terms of remote sites and continents. The added result helps better 

explain the usage patterns seen and the reason why a tragedy of 

commons is not visible in PlanetLab. 
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