
UNDERSTANDING AND CONTROLLING SOFTWARE COSTS

BARRY W. BOEHM, TRW INC.

Abstract

Understanding of software costs is important because of the overall magnitude

of these costs (in 1985, roughly $70 billion per year in the U.S. and over $140
billion per year worldwide) and because of the fundamental impact software will
have on our future quality of life. Section 1 of this paper discusses these issues.

Section 2, the main portion of the paper, discusses the two primary ways of
understanding software costs. The "black-box" or influence-function approach

provides useful experimental and observational insights on the relative software

productivity and quality leverage of various management, technical, environ-
mental, and personnel options. The "glass-box" or cost distribution approach
helps identify strategies for integrated software productivity and quality
improvement programs, via such structures as the value chain and the software

productivity opportunity tree.

The most attractive individual strategies for improving software productivity

identified in Section 2 are:

0 Writing less code;

Getting the best from people;

Avoiding rework;

0 Developing and using integrated project support environments.

Section 2 provides overall surveys of early and recent progress along these and
other lines identified by the opportunity tree.

Better understanding of software costs leads to better methods of controlling

software project costs, and vice versa. Section 3 discusses these issues. It

points out that some good frameworks of techniques exist for controlling

software budgets, schedules, and work completed, but that a great deal of

further progress is needed to provide an overall set of planning and control

techniques covering software product qualities and end-user system objectives.

1. THE NEED T O UNDERSTAND AND CONTROL SOFTWARE

COSTS

In this section, we will explore three main reasons why it is important to under-

stand and control software costs:

Software costs are big and growing. Thus, any percentage cost

savings will be big and growing, also.

Many useful software products are not getting developed.

Helping good software people work more efficiently will provide time

for them to attack this backlog of needed software.

Understanding and controlling software costs can get us

better software, not just more software. As our lives and lifes-

tyles continue to depend more and more on software, this factor

becomes the most important of all.

1.1. Software Cost Trende

A number of studies have indicated that software costs are large and rapidly

increasing. For the United States in 1980, using two separate approaches and

relatively conservative assumptions, (Boehm, 19831 derived a total of 900,000 -
1,000,000 software personnel, with a resulting annual cost of $40 billion, or

roughly 2% of the U.S. Gross National Product. [Jones, 19831 derived a compar-

able figure of 900,000 professional programmers in the U.S., and a total world

programmer population of 3,250,000 (another 900,000 in Western Europe,

500,000 in the Far East, and about 950,000 elsewhere).

[Jones, 19831 estimated the rate of growth of programming personnel a t roughly

7% per year, which would yield a U.S. professional programmer population of

roughly 3,000,000 people by the year 2000, and a world programmer population

in the year 2000 of roughly 10,000,000 people. Recent estimates of the dollar

growth in U.S. software costs have typically indicated around a 12% per year

increase (indicating a 5% annual increase in personnel cost plus the 7% increase

in number of personnel). This is consistent with the trends in U.S. Defense

Department costs, which went from roughly $3.3 billion in 1974 [Fisher, 19741 to

roughly $10 billion in 1984 [Lieblein, 19851. The recent Electronic Industries

Association study of U.S. Defense Department mission critical software costs

also predicted a 12% annual growth rate from $11.4 billion in 1985 to $36 bil-

lion in 1995 [EN, 19851.

Using a 12% annual growth rate, the annual U.S. software cost would be

roughly $70 billion in 1985 and $125 billion in 1990. Comparable world software

costs are difficult to calculate due to differing salary scales, but they would be

a t least twice this high: over $140 billion in 1985 and over $250 billion in 1990.

Clearly, these costs are sufficiently large to merit serious efforts to understand

and control them.

1.2. The Software Backlog

Several studies (e.g. [Boehm, 1981; Martin, 19831) have indicated that the

demand for new software is increasing faster than our ability to develop it. For

example, the U.S. Air Force Data Systems Design Office has identified a four-

year backlog of important business data processing software functions which

cannot be implemented because of a limited supply of personnel and funding,

much of which must currently be devoted to supporting the evolution of existing

software (often misleadingly called "software maintenance"). A number of

other government and commercial organizations have identified similar back-

logs.

This software backlog exacerbates two serious problems. First, it acts as a

brake on our ability to achieve productivity gains in other sectors of the econ-

omy. It has been estimated that roughly 20% of the productivity gains in the

U.S. are achieved via automation and data processing. The software backlog

means that many non-software people's jobs still have a great deal of tedious,

repetitive, and unsatisfying content, because the software to eliminate those

parts of the job cannot be developed.

Second, and more serious, the software backlog creates a situation which yields

a great deal of bad software, with repercussions on our safety and quality of

life, specifically, the backlog creates a personnel market in which just about any-

body can get a job to work off this software backlog, whether they are capable or

not.

Several studies have shown that , as with productivity, differences between peo-

ple account for the largest source of variation in software quality. For example,

the [Brown-Lipow, 1973] comparative experiment showed a 10:l difference in

error rates between personnel. The numerous instances of risks to the public

summarized by Neumann in ACM Software Engineering Notes provide graphic

examples of how serious a problem we have created by unleashing unqualified

software personnel onto projects producing critical applications software. This

leads us to two primary conclusions:

0 We need to understand and control software costs as a way of reduc-
ing software backlog, and thus of reducing the chances that bad pro-
grammers will continue to provide us with more and more bad
software to live with;

0 We need to understand and control software qualities as well as
software costs.

1.3. Understanding and Controlling Software Coete and Qualities

The interactions between software cost and the various software qualities (relia-
bility, ease of use, ease of modification, portability, efficiency, etc.) are quite
complex--as are the interactions between the various qualities themselves.
Overall, though, there are two primary situations which create significant

interactions between software costs and qualities:

a. A project which tries to reduce software development costs a t the

expense of quality can do so, but only in ways which increase opera-

tional and life-cycle costs.

b. A project which tries to simultaneously reduce software costs and
improve software quality can do so, by intelligent and cost-effective

use of modern software techniques.

Going for Low-Cost, Low-Quality Software

One example of situation (a) is provided by the [Weinberg-Schulman, 19741

experiment, in which several teams were asked to develop a program to perform
the same filnction, but each team was asked to optimize a different objective.
Almost uniformly, each team finished first on the objective they were asked to

optimize, and fell behind on the other objectives. In particular, the team asked
to minimize effort finished with the smallest effort to complete the program, but

also finished last in program clarity, second to last on program size and required

storage, and third to last in output clarity.

Another example is provided by the COCOMO data base of 63 development

projects and 24 evolution or maintenance projects [Boehm, 19811. This analysis
showed that if the effects of other factors such as personnel, use of tools, and
modern programming practices were held constant, then the cost to develop
reliability-critical software was almost twice the cost of developing minimally

reliable software. However, the trend was reversed in the maintenance projects;

low-reliability software required considerably more budget to maintain than

high-reliability software.

Achieving Low-Cost, High-Quality Software

Certainly, though, if we want better software quality a t a reasonable cost, we

are not going to hold constant our use of tools, modern programming practices,

and better people. This leads to situation (b), in which many organizations

have been able to achieve simultaneous improvements in both software quality

and productivity. For example, the extensive [GUIDE, 19791 survey of about

800 user installations found that the four most strongly experienced effects of

using modern programming practices were "code quality", "early error detec-

tion", "programmer productivity", and "maintenance time or cost".

However, getting the right mix of the various qualities (reliability, efficiency,

ease of use, ease of change) can be a very complex job. Several studies have

explored these qualities and their interactions, e.g. [Boehm e t al, 19781 and

[McCall-Richards-Walters, 19771. Also, some initial approaches have had some

success in providing methods for reconciling and managing to multiple quality

objectives, such as Design by Objectives [Gilb, 19851 and the GOAZIS approach

[Boehm, 1981, Chapter 31. An excellent review of the state of the a r t in

software quality metrics is [Frewin et all 19851.

2. UNDERSTANDING SOFTWARE COSTS

We can consider two primary ways of understanding software costs:

The "black-box" or influence-function approach, which performs com-

parative analyses on the overall results of a number of entire software
projects, and which tries to characterize the overall effect on software

costs of such factors as team objectives, methodological approach,
hardware constraints, turnaround time, or personnel experience and

capability.

The "glass-box" or cost-distribution approach, which analyzes one or
more software projects to characterize their internal distribution of
costs among such sources as labor vs. capital costs, code vs. documen-

tation costs, development vs. maintenance costs, or other distribu-

tions of costs by phase or activity.

These two primary perspectives complement each other, and certainly both are
needed to achieve a thorough understanding of software costs. The two parts
of this Section will explore each of these perspectives in greater detail.

2.1. Software Cost Influence Functions

The study of software cost influence functions similarly branches in two main

directions: controlled experimentation and observational analysis. We shall dis-
cuss the results of each approach in turn below.

2.1.1. Experimental Reeulta

Some of the earliest experimental results on software cost influence functions

were the [Grant-Sackman, 19661 studies comparing the effects of batch vs.
time-sharing computer operation on programming productivity. The experi-

ments typically indicated a 20% productivity gain due to time shared interac-

tive operation, but a much more remarkable variation in productivity (up to

26: l) due to differences in programming personnel.

Another set of significant insights resulted from the [Weinberg-Schulman, 19741

experiment discussed earlier, showing the striking effect of team objectives on

project productivity and product quality.

During the late 19701s, a number of experiments helped to illuminate the pro-

gramming process, investigating the effects of code structuring, programming

language constructs, code formatting. commentary, and mnemonic variable

names on programming productivity, program comprehensibility, and error

rates. A good summary of these experiments is given in [Shneiderman, 19801.

Some initial experiments have explored the effects on productivity of prototyp-

ing and fourth-generation languages. A seven-project experiment comparing a

specification-oriented vs. a prototyping-oriented approach to the development of

small, user-intensive application software products [Boehm-Gray-Seewaldt,

19841 found primarily that (See Figure 1):

0 Both approaches resulted in roughly equivalent "prod~ct ivi ty '~ in

delivered source instructions per man-hour (DSI/MH);

0 The prototyping projects developed products with roughly equivalent

performance, but requiring roughly 40% fewer DSI and 40% fewer

manhours;

0 The specifying projects had less difficulty in debugging and integra-

tion due to their development of good interface specifications.

A six-project experiment comparing the use of a third-generation programming

language (COBOL) and a fourth-generation language (FOCUS) on a mix of

small business-application projects involving both experts and beginners

developing both simple and complex applications (Harel-McLean, 19821 found

primarily that (See Figure 2):

0 On an overall average, the fourth-generastion approach produced

equivalent products to the third-generation approach, with about

60% fewer DSI and 60% fewer manhours (again with roughly

equivalent "Productivity" in DSI/MH); ,

0 From project to project, there was a significant variation in the ratio

of third generation:fourth generation DSI (0.9:l to 27:1), manhours

(1.5:l to 8:l) and DsI/MH (0.5:l to 5:l).

Implications for Software Productivity Metrics

These two experiments and the earlier Weinberg experiments make it clear that

we need better metrics for software productivity than DSI/MH. A number of

Figure 1. Prototyping vs. Specifying Sise and Effort Comparimons

SPECIFYING /
-\

\ 1 6 DSIIMI
PROJECTS /a

I S3

\
\

PROTOTYPING @--
\

PROJECTS 0' ~2 S4. 1 '
--od

d

0'

f
I

I
0

.
I I I t I I I 1 I

200 400 600 800

DEVELOPMENT EFFORT, (MANHOURS)

Figure 4. Effect of Fourth-Generation Languages on
Program Sise and Effort: UCLA Experiment,

8 Business Applications, 1982

o COBOL

A FOCUS 4GL

EFFORT (MANHOURS)

alternative metrics have been suggested, such as:

0 "Software science" or program information-content metrics [Halstead,

19771;

0 Program control-flow complexity metrics [McCabe, 19781;

Design complexity metrics [DeMarco, 19821;

0 Program-external metrics, such as number of inputs, outputs, files,

reports, or function points (a linear combination of those four quanti-

ties) [Albrecht, 1979; Jones, 19861;

Work-transaction metrics [Doherty-Kelisky, 1979; Thadhani, 18841.

In comparing the relative effectiveness of these productivity metrics t o a

DSI/MH metric, the following conclusions t o date can be advanced:

0 Each has advantages over DSI/MH in some situations;

0 Each has more difficulties than DSI/MH in some situations;

Each has equivalent difficulties to DSI/MH in relating software

achievement units to measures of the software's value added to the

user organization.

Thus, the area of software productivity metrics remains in need of further

research and experimentation in search of more robust and broadly relevant

metrics.

2.1.2. Observational Analyses

Having summarized the major experimental investigation of software cost

drivers, let us look a t the related observational studies.

A major early observational analysis of software productivity factors.was the

study done by SDC for the U.S.Air Force in the mid-1960's [Nelson, 19661. This

study collected over 100 attributes of 169 software projects. Although the study

was not successful in establishing a definitive set of software cost influence func-

tions robust enough for accurate cost estimation, it did identify some of the

more significant candidate influence functions for further investigation, such as

requirements and design volatility and concurrent hardware development.

Similar early studies which helped to identify significant candidate software cost

influence factors were those of [Aron, 19691 and [Wolverton, 19741. As an exam-

ple, the [Wolverton, 19741 analyses yielded a set of quantitative software cost

influence factors (number of object instructions, type of application, novelty of

application, and degree of difficulty) and relationships which were able to sup-

port practical software cost estimates across a range of command-control type

applications. Some concurrent studies [Williman-O'Donnell, 1970; Boehm, 19731

established a reasonably definitive relationship showing the asymptotic increase

in software cost as hardware speed and storagc constraints approached 100%.

A landmark study in analyzing the effect of modern programming practices on

software costs was the IBM [Walston-Felix, 19771 study of over 50 software pro-

jects. It provided conclusive evidence that the use of such practices as struc-

tured code, top-down design, structured walkthroughs, and chief programmer

teams correlated with software productivity increases on the order of 50%. The

study also confirmed the significant impact of such factors as personnel capabil-

ity and hardware constraints on software productivity, as well as such addi-

tional factors as personnel experience and database siee.

In the late 1970's a number of software cost models were developed, represent-

ing a further level of predictive understanding of the factors influencing

software costs. Besides the IBM model based on the [Walston-Felix, 19771

results, these included the Doty model [Herd et al, 19771, the Boeing model

[Black et al, 19781, the SLIM model [Putnam, 19781, the RCA PRICE S model

[Freiman-Park, 19791, and the COCOMO model [Boehm, 19811. More recently,

some further software cost estimation models have been developed, such as the

Jensen model [Jensen, 19831, the Estimacs model [Rubin, 19851 and the SPQR
model [Jones, 19861. A comparison of these models (except the the two most

recent models) in terms of their primary cost driver factors, has been provided

in [Boehm, 19841.

Software Productivity Ranges

In the context of understanding and controlling software costs, a significant

feature of some of these models is the productivity range for a software cost

driver: the relative multiplicative amount by which that cost driver can

influence the software project cost estimated by the model. An example of a set
of recently-updated productivi ty ranges for the COCOMO model is shown in

Figure 8. COCOMO Software Llfe-Cycle Productivity Ranges, 1986

1.20 LANG EXPER

1.23 SCHED CONST -
1.23 DATA BASE

1.34 VIRTUAL MACHINE EXPERIENCE

1.47 TURNAROUND TIME

1.49 VIRTUAL MACHINE VOLATILITY

1.56 STORAGE CONSTRAINT

1.57 APPLICATIONS EXPERIENCE

1.65 SOFTWARE TOOLS

1.66 TIMING CONSTRAINT

1.78 REQUIREMENTS VOLATILITY

1.87 REQUIRED RELIABILITY

1.92 MODERN PROGRAMMING PRACTICES

2.36 PRODUCT COMPLEXITY

PERSONNELfrEAM CAPABILITY

I NUMBER OF SOFTWARE SOURCE INSTRUCTIONS DEVELOPED 0

Figure 3.*

Similar productivity ranges have been provided for some other cost models, e.g.,

[Jensen-Lucas, 19831.

The primary conclusions that can be drawn from the productivity ranges in Fig-

ure 3 are:

The most significant influence on software costs is the number of

source instructions one chooses to program. This leads to cost-

reduction strategies involving the use of fourth-generation languages

or reusable components to reduce the number of source instructions

developed; the use of prototyping and other requirements analysis

techniques to ensure that unnecessary functions are not developed,

and the use of already-developed software products.

0 The next most significant influence by far is that of the selection,

motivation, and management of the people involved in the software

process. In particular, employing the best people possible is usually a

bargain, because the productivity range for people uaually is much

wider than the range of people's salaries. An overall discussion of the

concerns involved here is provided in [Boehm, 1981; Chapter 331.

More extensive treatments of personnel and management considera-

tions are provided in [Weinberg, 19711, [Couger-Zawacki, 19801,

[Metzger, 1981] and [Reifer, 19811.

0 Some of the factors, such as product complexity, required reliability,

and data base size, are largely fixed features of the software product

and not management controllables. Even here, though, appreciable

savings can be achieved by reducing unnecessary complexity, and by

focusing on appropriate cost-quality tradeoffs as discussed in Section

1.

Requirements volatility is an important and neglected source of cost

savings and control. A great deal can be done in particular in using

 h he differences between Figure 3 and its counterpart in [Boehm, 19811 are the inclusion of

the Requirements Volatility factor, the extension of the Modern Programming Practices range

to cover life-cycle costs (using a 30:70 development-maintenance life-cycle cost ratio, this ranges

from 1.57 for 2 KDSI products to 1.92 for 512 KDSI products), a widening of the Software Tools

and Turnaround Time ranges to reflect recent experience with advanced software support

environments [Boehm e t all 1984; Boehm, 19851, and the addition of the open-ended range

representing the number of software source instructions developed by the project.

incremental development to control requirements volatility. Fre-

quently, users request (or demand, or require) new features while a

software product is under development. In a single-shot full-product

development, it is very hard to refuse these requests; as a result, the

developers are continually thrashing as the ripple effects of the

changes are propagated through the product (and through the

project's highly interlocked schedules). With incremental develop-

ment, on the other hand, it is relatively easy to say, "Fine, that 's a

good feature. We will schedule it for Increment 4." This allows each

increment to operate to a stable plan, thus significantly decreasing

the requirements volatility cost escalation factor.

0 The other cost driver variables in Figure 3 are also quite significant,

particularly if they are addressed in an integrated manner. For more

details, see [Boehm, 1981; Chapter 331 for a discussion of potential

productivity strategies for each cost driver, and [Boehm e t al, 19841

for an example of their successful application to an integrated

software productivity improvement program.

0 The productivity ranges can also be used to assess the impact of

other proposed software strategy changes, such as a transition to Ada

(and its associated support-environment and modern programming

practices). Two such studies have been done for Ada to date.

[Douville-Salasin-Probert, 19851, using the COCOMO framework and

an expert-consensus approach, estimated a typical 30% cost penalty

for using Ada in the near term and a cost reduction of a t least 40%

for using Ada in the long-term. [Jensen, 19851, using the Jensen-model

framework, estimated a significantly larger cost penalty for using Ada

in the near term, and a typical 25% cost reduction for using Ada in

the long term.

2.2. Software Cost Distribution Insights

Having looked a t the experimental and observational "blac k-box" approaches

to understanding software costs, let us now look within the software-production

"glass box" for further insight.

There are several approaches to analyzing the distribution of software costs

which have provided valuable insights on software cost control. In this Section,

we will summarize some of the insights gained from analyzing the distribution

of:

(I) Development and rework costs;

(2) Code and documentation costs;

(3) Lahor and capital costs;

(4) Software costs by phase and activity.

We will conclude by presenting a particular type of phase and activity distribu-

tion called the value chain, and show how it leads to a useful characterieation

of productivity improvement avenues called here the software productivity

opportunity tree.

2.2.1. Development vs. Rework Costs

One of the key insights in improving software productivity is t ha t a large frac-

tion of the effort on a software project is devoted to rework. This rework effort

is needed either to compensate for inappropriately-defined requirements, or to

fix errors in the specifications, code or documentation. For example, [Jones,

19861 provides da ta indicating tha t the cost of rework is typically over 50% on

very large projects.

A significant related insight is tha t the cost of fixing or reworking software is

much smaller (by factors of 50 to 200) in the earlier phases of the software life

cycle than in the later phases [Boehm, 1976; Fagan, 1976; Daly, 19771. This has

put a high premium on early error detection and correction techniques for

software requirements and design specification and verification such as the

Software Requirements Engineering Methodology, or SREM [Alford, 1977;

Alford, 19841 and the Problem Statement Language/Problem Statement

Analyzer [Teichroew-Hershey, 19771. More recently, it has focussed attention on

such techniques as rapid prototyping [Zelkowitz-Squires, 1982; Boehm-Gray-

Seewaldt, 1984; Boar, 19841 and rapid simulation [Zave, 1984; Swinson, 19851,

which focus on getting the right user requirements early and ensuring tha t their

performance is supportable, thus eliminating a great deal of expensive down-

stream rework.

Another important point is that rework instances tend to follow a Pareto distri-

bution: 80% of the rework costs typically result from 20% of the problems. Fig-

ure 4 shows some typical distributions of this nature from recent TRW software

projects; similar trends have been indicated in [Rubey et al, 1975],[Formica,

19781, and [Basili-Weiss, 19811. The major implication of this distribution is

Figure 4. Rework Costs are Concentrated in a Few High-Risk Items

% OF
60

COST
TO
FIX
SPR's 40

TRW PROJECT B

TRW PROJECT A

0 10 20 30 40 60 N! 70 80 90 100

% OF SPR's (SOFTWARE PROBLEM REPORTS)

that software verification and validation activities should focus on identifying

and eliminating the specific high-risk problems to be encountered by a software

project, rather than spreading their available early-problem-elimination effort

uniformly across trivial and severe problems. Even more strongly, this implies

that a risk-driven approach to the software life-cycle such as the spiral model

[Boehm, 19863 is preferable to a more document-driven model such as the tradi-

tional waterfall model.

The Spiral Model

The spiral model is i l lu~t~rat e d in Figure 5. The radi a1 dimension in Figure 5

represents the cumulative cost incurred in accomplishing the steps to date; the

angular dimension represents the progress made in completing each cycle of the

spiral. The model holds that each cycle involves a progression through the

same sequence of steps, for each portion of the products and for each of its lev-

els of elaboration, from an overall concept-of-operation document down to the

coding of each individual program.

Each cycle of the spiral begins with the identification of:

The objectives of the portion of the product being elaborated (perfor-

mance, functionality, ability to accommodate change, etc).

The alternative means of implementing this portion of the product

(design A, design B, reuse, buy, etc).

The constraints imposed on the application of the alternatives (cost,

schedule, interface, etc.).

The next step is to evaluate the alternatives with respect to the objectives and

constraints. Frequently, this process will identify areas of uncertainty which

are significant sources of project risk. If so, the next step should involve the

formulation of a cost-effective strategy for resolving the sources of risk. This

may involve prototyping, simulation, administering user questionnaires, analytic

modeling, or combinations of these and other risk-resolution techniques.

Once the risks are evaluated, the next step is determined by the relative risks

remaining. If performance or user-interface risks strongly dominate program

development or internal interface-control risks, the next step may be an evolu-

tionary development step: a minimal effort to specify the overall nature of the

product, a plan for the next level of prototyping, and the development of a

Figure 6. Spiral Model of the Software Proce~s (Not to Scale)

CUMULATIVE
f COST

PLAN
NEXT PHASES

D€TERMINE
OBJECTIVES.

e - p

PROGRESS
THROUGH
STEPS

EVALUATE ALTERNATIVES:

IMNTIFY. RESOLVE RISKS
ALTERNATIVES.
CONSTRAINTS

COMMITMENT

PARTITION

LIFE CYCLE OPERATION ----

DEVELOP, VERIFY
NEXT-LEVEL PRODUCT

more detailed prototype to continue to resolve the major risk issues. On the

other hand, if previous prototyping efforts have already resolved all of the per-
formance or user-interface risks, and program development or interface-control
risks dominate, the next step follows the basic waterfall approach, modified as
appropriate to incorporate incremental development.

The spiral model also accommodates any appropriate mixture of specification
oriented, prototype-oriented, simulation-oriel] Led, automatic transformation

oriented, or other approaches to software development, where the appropriate

mixed strategy is chosen by considering the relative magnitude of the program

risks, and the relative effectiveness of the various techniques in resolving the

risks. (In a similar way, risk-management considerations determine the amount

of time and effort which should be devoted to such other project activities as
planning, configuration management, quality assurance, formal verification, or
testing).

An important feature of the spiral model is tha t each cycle is completed by a

review involving the primary people or organizations concerned with the pro-

ducts. This review covers all of the products developed during the previous

cycle, including the plans for the next c y c l e and the resources required to carry

them out. The major objective of the review is to ensure tha t all concerned

parties are mutually committed to the approach to be taken for the next phase.

The plans for succeeding phases may also include a partition of the product into

increments for successive development, or components to be developed by indivi-
dual organizations or persons. Thus, the review and commitment step may
range from an individual walkthrough of the design of a single programmer

component, to a major requirements review involving developer, customer, user,
and maintenance organizations.

2.2.2. Code ve. Documentation Costs

Most of the efforts to date in developing software support environments have
been focussed on capabilities to improve people's productivity in developing

code. However, recent analyses have shown that most projects to develop

production-engineered software products spend more of the project's effort in

activities leading to a document as their immediate end product, as compared

to activities whose immediate end product is code. These documenti include
not only specifications and manuals, but also plans, studies, reports,

memoranda, letters, and a wide variety of forms. Their volume with respect to
lines of code tends to vary by application; [Jones, 19861 reports a typical 28

pages of documentation per thousand instructions (pp/KDSI) for internal

commercial programs and a typical 66 pp/KDSI for commercial software pro-

ducts of the same size (50 KDSI).

The proportion of document-related to code-related effort averaged about 60:40

over the COCOMO data base of projects [Boehm, 1981) and about 67:33 for

large TRW projects [Boehm et all 19841. These proportions have caused some

recent software development environments such as the Xerox Cedar system

(Teitelman, 19851 and the TRW Software Productivity System [Boehm e t

a1,1984] to focus on the provision of extensive documentation and office-

automation aids, and on the close integration of these functions with code-

oriented functions.

2.2.3. Labor vs. Capital Costs

It is generally recognized that software development and evolution are

extremely labor-intensive activities, and that a great deal of productivity lever-

age can be gained by making software production a more capital-intensive

activity. Typically, capital investment per software worker has been little

different from the $2,000-3,000 per person typical of office workers in general.

However, a number of organizations such as Xerox, TRW, IBM, and Bell

Laboratories have indicated that significantly higher investments per person

have more than recaptured the investment via improved software productivity.

Similar results on the payoffs of capital investments in better facilities and sup-

port capabilities have been reported in [Manley, 19851 and [DeMarco-Lister,

19851. An excellent overall survey of software capitalization strategies is pro-

vided in [Wegner, 19841.

2.2.4. Software Costs by Phase and Activity

A great deal of insight into controlling software costs has come from analyses of

the distribution of costs by phase and activity. Some of the earliest results,

such as [Benington, 19561, indicated the high proportion of project effort

devoted to integration and test, and the importance of good test planning, test

support, and interface specification. (Another early paper, [Hosier, 1961], stated

that "a good software interface specification was quite literally worth its weight

in gold.")

Subsequent analysis of software development effort distribution such as [Wolver-

ton, 1974) indicated the significant fraction of project effort devoted to non-

programming activities (configuration management, quality assurance, planning

and control, etc.), and the high potential leverage involved in making these

activities more productive.

Another major insight has been the recognition that most of the cost of a

software product is incurred after its initial development is complete [Elshoff,

1976; Boehm, 1976; Daly, 19771. Subsequent analyses of the sources and distri-

bution of these software life-cycle evolution costs (often misleadingly called

maintenance costs) such as [Belady-Lehman, 19791 and [Lientz-Swanson, 19801,

provided a number of insights on how to reduce software evolution costs.

Several recent sources such as /Glass-Noiseux, 19811, and [Arnold, 19831 have

provided more specific detail on software evolution cost reduction activities.

2.2.6. The Software Product Value Chain

The value chain, developed by Porter and his associates a t the Harvard Busi-

ness School [Porter, 1980; Porter, 19851, is a useful method of understanding

and controlling the costs involved in a wide variety of organicational enter-

prises. It identifies a canonical set of cost sources or value activities, represent-

ing the basic activities an organieation can choose from to create added value

for its products. Figure 6 shows a value chain for software development

representative of experience a t TRW. Definitions and explanations of the com-

ponent value activities are given below. These are divided into what [Porter,

19851 calls primary activities (inbound logistics, outbound logistics, marketing

and sales, service, and operations) and support activities (infrastructure, human

resource management, technology development, and procurement).

Primary Activities

Inbound logistics covers activities associated with receiving, storing, and dissem-

inating inputs to the products. This can be quite large for a manufacturer of,

say, automobiles; for software it consumes less than 1% of the development

outlay. (For software, the related support activity of procurement is also

included here).

Outbound logistics covers activities concerned with collecting, storing, and physi-

cally distributing the product to buyers. Again, for software, this consumes less

than 1% of the total.

Marketing and sales covers activities associated with providing a means by

which buyers can purchase the product and inducing them to do so. A 5%

figure is typical of government contract software organizations. Software pro-

duct houses would typically have a higher figure; internal applications-

Figure 6. Software Development Value Chain

I INFRASTRUCTURE
8

HUMAN RESOURCE MANAGEMENT \
TECHNOLOGY DEVELOPMENT

7
MANAGEMENT

QA. C M
5

1 -
4

RQTS

-

3

8

PRELIM.
DESIGN

REWORK

8

13

DETAILED 7
DESIGN CODE AND

UNIT TEST
INTEGRATION

AND TEST

programming shops would typically have a lower figure.

Service covers activities associated with providing service to enhance or main-

tain the value of the product. For software, this comprises the activities gen-

erally called software maintenance or evolution. For simplicity, Figure 6 avoids

including a service cost component in the development value chain; a life-cycle

value chain is presented and discussed as Figure 7 below.

Operations covers activities associated with transforming inputs into the final

product form. For software, operations typically involves roughly four-fifths of

the total development outlay.

In such a case, the value-chain analysis involves breaking up a large component

into constituent activities. Figure 6 shows such a breakup into management

(7%), quality assurance and configuration management (5%), and the distribu-

tion of technical effort among the various development phases. This phase

breakdown also covers the cost sources due to rework. Thus, for, example, of

the 20% overall cost of the technical effort during the integration and test

phase, 13% is devoted to activities required to rework deficiencies in or reorien-

tations of the requirements, design, code, or documentation; the other 7%

represents the amount of effort required to run tests, perform integration func-

tions, and complete documentation even if no problems were detected in the

process.

Support Activities

Infrastructure covers such activities as the organization's general management

planning, finance, accounting, legal, and government affairs. The 8% figure is

typical of most organizations.

Human resource management covers activities involved in recruiting, hiring,

training, development, and compensation of all types of personnel. Given the

labor-intensive and technology-intensive nature of software development, the

3% figure indicated here is a less-than-optimal investment.

Technology development covers activities devoted to creating or tailoring new

technology to improve the organizations products or processes. The 3% invest-

ment figure here is higher than many software organizations, but still less than

optimal as an investment to improve software productivity and quality.

Figure 7. Software Life-Cycle Value Chain

SERVICE

("MAINTENANCE")

Margin and Service

Margin in the value chain is the difference between the value of the resulting

product and the collective cost of performing the value activities. As this

difference varies widely among software products, it is not quantitatively

defined in Figure 6. As discussed above, service is best quantified as a software

life-cycle value chain as shown as Figure 7, with roughly 70% of the value

activity devoted to service or evolution-related activity. However, since the

component activities involved during evolution do not differ markedly from

those which go on during software development, we will continue to focus on

Figure 6 as a source of insights into understanding and controlling software

costs.

Software Development Value Chain Implications

The primary implication of the software development value chain is that the

"Operations" component is the key to significant improvements. Not only is it
the major source of software costs, but also most of the remaining components

such as "Human Resources" will scale down in a manner proportional to the

scaling down of Operations cost.

Another major characteristic of the value chain is that virtually all of the com-

ponents are still highly labor-intensive. Thus, as discussed in Section 2.2.3,

there are significant opportunities in providing automated aids to make these

activities more efficient and capital-intensive. Further, it implies that human-

resource and management activities have much higher leverage than their 3%

and 7% investment levels indicate.

The breakdown of the Operations component indicates that the leading stra-

tegies for cost savings in software development involve:

0 Making individual steps more eficient, via such capabilities as

automated aids to software requirements analysis or testing.

Eliminating steps, via such capabilities as automatic programming or

automatic quality assurance.

0 Eliminating rework, via early error detection, or via such capabilities

as rapid prototyping to avoid later requirements rework.

In addition, further major cost savings can be achieved by reducing the total
number of elementary Operations steps, by developing products requiring the
creation of fewer lines of code. This has the effect of reducing the overall size
of the Value Chain itself. This source of savings breaks down into two primary

options:

Building simpler products, via more insightful front-end activities such

as prototyping or risk management.

Reusing software components, via such capabilities as fourth-

generation languages or component libraries.

2.2.6. T h e Sof tware P roduc t iv i ty Improvemen t O p p o r t u n i t y Tree

This breakdown of the major sources of software cost savings leads t o the

Software Productivity Improvement Opportunity Tree shown in Figure 8. This

hierarchical breakdown helps us to understand how to fit the various attractive
productivity options into an overall integrated software productivity improve-

ment strategy.

Most of the individual productivity options have been discussed in earlier sec-

tions of this paper. Here, we will provide a recap of the previous options, and

further discussion of the additional options identified in the Opportunity Tree.

M a k i n g People M o r e Effective

The major sources of opportunity in dealing with people were covered in dis-
cussing the large productivity range due to personnel capability in Section 2.1.2,
and the labor vs. ca.pita1 costs discussion in Section 2.2.3. Additional facilities-
oriented gains were covered in the discussions of interactive software develop-
ment in Section 2.1.1, and of avoiding hardware constraints in Section 2.1.1.

Providing software personnel with private offices is another cost-effective facili-

ties opportunity, leading to productivity gains of roughly 11% a t IBM-Santa

Teresa [Jones, 19861 and 8% a t TRW [Boehm, et all 19841. In addition, the pro-

ductivity leverage of creative incentive structures can be quite striking. For
example, a program to provide extra bonuses for people who reuse rather than

rebuild software has led to significant increases in the amount of software

reused from previous applications.

Figure 8. Productivity Improvement Opportunity Tree

I IMPROVE

PRODUCTIVITY

INCENTIVES, STAFFING, TRAINING

PEOPLE MORE FACILITIES

MANAGEMENT

MAKE STEPS SOFTWARE TOOLS. ENVIRONMENTS

WORKSTATIONS

EFFICIENT OFFICE AUTOMATION

AUTOMATED DOCUMENTATION, QUALITY ASSURANCE
ELIMINATE

STEPS
AUTOMATED PROGRAMMING

I 1 - 7 KNOWLEDGE-BASED SOFTWARE ASSISTANT

INFORMATION HIDING, MODERN PROGRAMMING PRACTICES
ELIMINATE

REWORK
SOFTWARE COMPUTER AIDED DESIGN

I I FRONT-END LANGUAGES

I u INCREMENTAL DEVELOPMENT

I RAPID PROTOTYPING

SIMPLER
PROCESS MODELS

- COMPONENT LIBRARIES

REUSE - COMPONENTS
- APPLICATION GENERATORS

- FOURTH-GENERATION LANGUAGES

L

Making Steps More EfRcient

The primary leverage factor in making the existing software process steps more

efficient is the use of software tools to automate the current repetitive and

labor-intensive portions of each step. Such tools have a long history of develop-

ment; some good surveys of various classes of tools are given in [Kernighan-

Plauger, 19761 and [Reifer-Trattner, 19771.

More recently, it has become clear that such tools are much more effective if

they are part of an Integrated Project Support Environment (IPSE). The pri-

mary features which distinguish an IPSE from an ad-hoc collection tools are:

A set of common assumptions about the software process model being

supported by the tools (or, more strongly, a particular software

development method being supported by the tools);

An integrated Project Master Data Base or Persistent Object Base

serving as a unified repository of the entities created during the

software process, along with their various versions, attrlbutes, and

relationships;

Support of the entire range of users and activities involved in the

software project, not just of programmers developing code;

A unified user interface providing easy and natural ways for various

classes of project personnel (expert programmers, novice librarians,

secretaries, managers, planning and control personnel, etc) to draw on

the tools in the IPSE;

A critical-mass ensemble of tools, covering significant portions of

software project activities;

A computer-communication architecture facilitating user access to

data and resources in the IPSE.

Some good references describing the nature and functions of IPSE'S are [Bux-

ton, 19801, [Wasserman, 19811, [Hunke, 1981], [NOSC, 19821, and [STARS, 19851.

Some good examples of IPSE7s with extensive usage experience include CADES

[McGuffin et all 19791, Interlisp [Teitelman-Masinter, 19811, the AT&T Unix

environment [Kernighan-Mashey, 1981], the U.S. Navy FASP system [Steubing,

19841, the TRW Software Productivity System [Boehm et all 19841, and the

Xerox Cedar System ITeitelman, 19851. Some early examples of advanced

concepts and prototype environments are found in [Wasserman, 19811. Later
examples are so abundant that it is virtually impossible to summarize them con-

cisely; a good recent source is [Barstow-Shrobe-Sandewall, 19841.

Eliminating Steps

A good many automated aids go beyond simply making steps more efficient, to
the point of fully eliminating previous manual steps. If we compare software
development today with its counterpart in the 19501s, we see that assemblers
and compilers are excellent examples of ways of vastly improving productivity
by eliminating steps. More recent examples of eliminating steps are process
construction systems [Williams, 1975; Feldman, 19791, software standards check-

ers and other quality assuranw fimctions [Boehm e t al, 1978; Sneed-Marey,

19851; and requirements and design consistency checkers [Alford, 1977; Bell-

Bixler-Dyer, 1977; Teichroew-Hershey, 19771.

More ambitious efforts to eliminate steps involve the automation of the entire

programming process, by providing capabilities which operate directly on a set

of software specifications to automatically generate computer programs. There
are two major branches to this approach: domain-specific and domain-

independent automatic programming.

The domain-specific approach gains advantages by capitali~ing on domain

knowledge in transforming specifications into programs, and in constraining the

universe of programming discourse to a relatively smaller domain. In the limit,
one reaches the boundary with fourth-generation languages such as Visicalc,
which are excellent automatic programming systems within a very narrow
domain, and relatively ineffective outside that domain. A good example and
survey of more general approaches to domain-specific automatic programming is
given in [Barstow, 19851.

The domain-independent approach offers much broader payoff in the long run,

but has more difficulty in achieving efficient implementations of larger-scale pro-

grams. Some good progress is being made in this direction, such as the USC-IS1
work culminating in the FSD system [Balzer, 19851, the Kestrel Institute work

on the PSI and CHI system [Green, 1976; Smith-Kotik-Westfold, 19851, and the

MIT Programmer's Apprentice project [Rich-Shrobe, 1978; Waters, 19851. An
excellent summary of automatic programming approaches can be obtained from
the November, 1985 issue of the IEEE Transactions on Software Engineering.

Eliminating Rework

One can also extend automatic programming in a direction which provides

expert assistance to programmers (and more generally, to all software project

members) to aid them in making the right decisions in algorithm selection, data

structuring, choice of reusable components, change control, test planning, and

overall software project planning and control. This concept of a Knowledge

Based Software Assistant (KBSA) has been thoroughly described in [Green e t all

19831. The primary benefit of a KBSA will be the elimination of much of the

rework currently experienced on software projects due to the belated apprecia-

tion that a previous programming or project decision was inappropriate, result-

ing in work that needs to be redone. A number of prototype KBSA's are

currently under development.

If we specialize the KBSA concept to the area of software design, we find the

rich area of software computer aided design (CAD). In the hardware area, CAD

has been a major source of improving productivity by eliminating rework via

automated design checking and simulation, and also of promoting better designs

via better visualization of a design and its effects. Recent examples of software

CAD capabilities include interactive graphics support systems such as the Xerox

CEDAR system [Teitelman, 19851, the Brown PECAN system [Reiss, 19851, the

Carleton CAEDE system [Buhr et all 19851, and such commercial systems as

Excelerator, CASE, Ada Graph, and PRISM; rapid simulation capabilities such

as RSA [Swinson, 19841; and executable specification capabilities such as PAIS-

LEY [Zave, 19841.

A short step from software CAD systems are the requirements and design

language-oriented systems, which eliminate a great deal of rework through more

formal and unambiguous specifications, automa.ted consistency and complete-

ness checking and automated traceability of requirements to design. Probably

the most extensive of these systems is the Distributed Computing Design System

[Alford, 19841, which includes a system specification language (SSL), a software

requirements specification language (RSL), a distributed-system design language

(DDL), and a module description language (MDJ,).

One of the main difficulties in developing good software CAD systems is our

incomplete understanding of the software design process. Examples of recent

progress in this direction can be found in [Curtis, 19841, [Adelson-Soloway,

19851, and [Kant, 19851.

A most powerful technique for eliminating rework is the information-hiding

approach developed by Parnas [Parnas, 19791 and applied in the U.S. Navy A-7

project [Parnas-Clements-Weiss, 19851. This approach minimizes rework by

hiding implementation decisions within modules; thus minimizing the ripple

effects usually encountered when software implementation decisions need to be

changed. The information hiding approach can be particularly effective in elim-

inating rework during software evolution, by identifying the portions of the

software most likely to undergo change (characteristics of workstations, input

data formats, etc.) and hiding these sources of evolutionary change within

modules.

Some other sources for eliminating rework have been discussed earlier, such as

the use of modern programming practices in Sections 1.3 and 2.1.2, the use of

incremental development to reduce requirements volatility in Section 2.1.2, and

the use of rapid prototyping and risk-driven software process models in the dis-

cussion of development vs. rework costs in Section 2.2.1.

Building Simpler Producte

The last two approaches involving rapid prototyping and improved software

process models can also be very effective in improving bottom-line productivity

by eliminating software gold-plating: extra software which not only consumes

extra effort, but also reduces the conceptual integrity of the product. The

[Boehm-Gray-Seewaldt, 19841 prototyping vs. specifying experiment discussed in

Section 2.1.1 indicated that prototyping resulted in an average of 40% less code,

40% less effort, and a set of products that were easier to use and learn. One of

the telling insights in this experiment was the comment of one of the partici-

pants using the specification approach: "Words are cheap." During the

specification phase, it is all too easy to add gold-plating functions to the pro-

duct specification, without a good understanding of their effect on the product's

conceptual integrity or the project's required effort. As expressed in the excel-

lent book, The Elements of Friendly Software Design [Heckel, 19841:

"Most programmers . . . defend their use of a software feature by

saying, 'You don't have to use it if you don't want to, so what

harm can it do?' I t can do a great deal of harm. The user might

spend time trying to understand the feature, only to decide it isn't

needed, or he may accidentally use the feature and not know what

has happened or how to get out of the mistake. If a feature is

inconsistent with the rest of the user interface, the user might

draw false conclusions about the other commands. The feature

must be documented, which makes the user's manual thicker. The

cumulative effect of such features is to overwhelm the user and

obscure communication with your program . . ."

A further discussion of typical sources of software gold-plating, and an
approach for evaluating potential gold-plating features, is provided in [Boehm,

1981; Chapter 111. A related phenomenon to avoid is the "second system syn-

drome" discussed in [Brooks, 19751. A recent useful technique for product

feature prioritization called the Request-Success Grid is provided in [Spadaro,

19851. Further useful principles of good user-interface design are provided in

[Draper-Norman, 19851 and [Gould-Lewis, 19851.

Some of the newer software process models stimulate the development of simpler

products. One of the difficulties of the traditional waterfall model is that its

specification-driven approach can frequently lead one along the "Words are

cheap" road toward gold-plated products, as discussed above. The Evolution-

ary Development model [McCracken-Jackson, 19821 emphasizes the use of proto-

typing capabilities to converge on the necessary or high-leverage software pro-

duct features essential to the user's mission. The related Transformational

model [Balzer-Cheatham-Green, 19831 shortcuts the problem by providing

(where available) a direct transformation from specification to executing code,

thus supporting both a specification-based and an evolutionary-development

approach. The Spiral model [Boehm, 19861 focuses on a continuing determina-

tion of users' mission objectives, and a continuing cost-benefit analysis of candi-

date software product features in terms of their contribution to mission objec-

tives. Further information on recent progress in software process models can be

found in [Lehman-Stenning-Potts, 19841 and [Dowson-Wileden, 19861.

Reusing Components

Another key to improving productivity by writing less code involves the reuse of

existing software components. The simplest approach in this direction involves

the development and use of libraries of software components. A great deal of

progress has been made in this direction, particularly in such areas as

mathematical and statistical routines and operating system related utilities. A
great deal of further progress is possible via similar capabilities in user-

application areas. For example, Raytheon's library and system of reusable

business-application components has achieved typical figures of 60% reusable

code for new applications [Lanergan-Grasso, 19841, and typical cost savings of

10% in the design phase, 50% in the code and test phase, and 60% in the

maintenance phase [Raytheon, 19831. Toshiba's system of reusable components

for industrial process control [Matsumoto, 19841 has resulted in typical produc-

tivity rates of over 2000 source instructions per man-month for high-quality

industrial software products.

At this level of sophistication, such systems should better be called application

generators, rather than component libraries, because they have addressed

several system-oriented component-compatibility issues such as component

interface conventions, data structuring, and program control and error handling

conventions. Similar characteristics have made Unix a particularly strong foun-

dation for developing application generators [Kernighan, 1984; Wartik-Penedo,

19861.

One can proceed even further in this direction to create a Very High Level

Language or Fourth Generation Language (4GL) by adding a language for speci-

fying desired applications and a set of capabilities for interpreting user

specifications, configuring the appropriate set of components, and executing the

resulting program. Currently, the most fertile areas for 4GL's are in the areas

of spread-sheet calculators (Visicalc, Multiplan, 1-2-3, etc.), and small-business

systems typically featuring a DBMS, report generator, database query language,

and graphics package (NOMAD, RAMIS, FOCUS, ADF, DBase 11, etc). A good

survey of these latter 4GL's is [Horowitz-Kemper-Narasirnhan, 19851.

As discussed in Section 2.1.1, the most definitive experiment to date comparing

a 3GL (COBOL) and a 4GL (FOCUS) found an average reduction of about 60%

in both lines of code developed and in manhours expended to develop a sample

of six applications. [Guimaraes, 19851 provides further evidence from a survey

of 43 organizations that such 4GL's reduce personnel costs, reduce user frustra-

tions, and more quickly satisfy user information needs within their domain of

applicability. On the other hand, the survey found 4GL's extremely inefficient

of computer resources and difficult to interface with conventional applications

programs. Some major disasters have occurred in attempting to apply 4GL's to

large, high-performance applications such as the New Jersey motor vehicle

registration system [Babcock, 19851.

Overall, though, 4GL's offer an extremely attractive option for significantly

improving software productivity, and attempts are underway to create 4GL

capabilities for other application areas. Short of a 4GL capability, the other

more limited approaches to reusability such as component libraries and applica-

tion generators can both generate near-term cost savings and serve as a founda-

tion for more ambitious 4GL capabilities in the long run. A very good collection

of articles on reusability in software development is the September 1984 issue of

the IEEE Transactions on Software Engineering.

3. CONTROLLING SOFTWARE COSTS

Now that we have a better understanding of the primary sources of software

costs and of the ways of reducing them, how can we use this understanding to

improve our ability to control software costs? There are two primary avenues

for doing this, as discussed below:

(1) Building our understanding into a framework of objectives, which

serve as a basis for a set of Management-By-Objectives (MBO) con-

trol loops.

(2) Optimizing our software development and evolution strategy around

predictability and control.

3.1. Management By Objectives (MBO)

The simplest sort of MBO for software project predictability and control is

exemplified by the earned-value framework discussed in [Boehm, 1981, Chapter

321, and illustrated in Figure 9. In this framework, a set of cost and schedule

estimates by phase, activity, and product components are used to generate a

set of PERT charts, Work Breakdown Structures, personnel plans, summary

task planning sheets, and other scarce-resource allocations which determine a

set of "should-cost" targets for each job. As the project progresses, various

instruments such as Unit Development Folders and Earned Value Systems are

used to compare actual progress and expenditure of time, cost, personnel, or

other scarce resources versus the plans. Then, comparing the actual progress

and expenditure versus the plans can generate a set of exception reports which

flag key areas for MBO attention.

This generic approach has been highly successful in many situations, but it fre-

quently needs extension to balance cost, schedule, and functionality objectives

with other important quality-oriented objectives. The best approach to date in

handling these additional objectives has been to incorporate them as additional

specific MBO targets, as in Design By Objectives [Gilb, 19851 and the GOALS

approach [Boehm, 1981; Chapter 31.

Actually, it is even better to do this in terms of t'he software end-users? mission

objectives. This implies that the users must perform an analysis of the relative

costs and benefits of alternative software product functions and features, to

relate these to incremental gains in mission cost-effectiveness, and to use this

information in an overall MBO control loop in which the software is only a part.

For examples of this type of approach, see [Lundeberg-Goldkuhl-Nilsson, 19811,

Figure 9. Software Project Planning and Control Framework

DISK #65 -2 BOEHY WE2 -AC 1

[Allen-Lientz, 19781 [Jackson, 19831 and (Lavi, 19841.

3.2. Optimizing Around Software Predictability and Control

Frequently, software customers are more concerned about predictability and

control of software cost and schedule than they are about the absolute values of

the cost and schedule [Munson, 19831. Such customers prefer a project which

may cost a bit more, but which allows them to confidently synchronize their

software development with other critical developments such as a satellite

launch, a factory opening, or a major service cutover. In such situations, custo-

mers will generally prefer a risk-driven development approach which invests

some additional early time and effort into identifying and eliminating the pri-

mary sources of project risk--as contrasted with a "success-oriented" approach

which will be very efficient if all the project's optimistic assumptions are true,

but very costly if reality turns out otherwise (as it frequently does). The spiral

model discussed in Section 2.2.1 is an example of such a risk-driven development

approach.

Another option which can be derived from the risk-driven spiral approach is the

option t o trade marginal product functionality for project predictability and

control, using a design-to-cost or design-to-schedule approach. Thus, if the

highest project risk is associated with exceeding the available budget or with

missing a crucial delivery date, the project can reduce risk by designating bord-

erline product capabilities as a management reserve to be traded against budget

and schedule pressures as necessary.

4. CONCLUSIONS

The information and discussions above support the following primary conclu-

sions:

Understamding and controlling software costs is extremely important, not

just from an economic standpoint, but also in terms of our future quality of

life.

Understanding and controlling software costs inevitably requires us to

understand and control the various aspects of software quality as well.

There are two primary ways of understanding software costs. The "black

box" or influence function approach provides useful insights on the relative

productivity and quality leverage of various management, technical,

environment, and personnel options. The "glass box" or cost distribution

approach helps identify strategies for integrated software productivity and

quality improvement programs, via such structures as the value chain and

the software productivity opportunity tree.

The most attractive individual strategies for improving software produc-

tivity are:

0 Writing less code, by reusing software components, developing and

using Very High Level Languages, and avoiding software gold-plating;

0 Getting the best from people, via better management, staffing, incen-

tives, and work environments;

Avoiding rework, via better risk management, prototyping, incremen-

tal development, software computer aided design, and modern pro-

gramming practices, particularly information hiding;

0 Developing and using integrated project support environments.

Good frameworks of techniques exist for controlling software budgets,

schedules, and work completed. There have been some initial attempts to

extend these to support control with respect to software quality objectives

and end- user system objectives, but a great deal more progress is needed

in these directions.

(6) The better we are able to understand software costs and qualities, the
better we are able to control them -- and vice versa.

(Adelson-Soloway, 19851. B. Adelson and E. Soloway, "The Role of Domain

Experience in Software Design," IEEE Trans. Software Engineering,

November 1985, pp. 1351-1360.

[Albrecht, 1979l.A. J. Albrecht, "Measuring Application Development Pro-

ductivity," Proceedings, SHARE-GUIDE Applications Development Sympo-

sium, October 1979, pp. 83-92.

[Alford, 19771. M. W. ALFORD, "A Requirements Engineering Methodology

for Real-Time Processing Requirements", IEEE Trans Software Engineering,

January 1977, pp. 60-68.

[Alford, 19841. M. W. ALFORD, "SREM a t the Age of Eight: the Distri-

buted Computing Design System", Computer, April 1985.

[Allen-Lientz, 19781. J. ALLEN and B. P. LIENTZ, Systems in Action: A

Managerial and Social Approach, Goodyear, 1978.

[Arnold, 19831. R. S. ARNOLD (ed), Software Maintenance Workshop

Record, IEEE, December 1983.

[Aron, 19691. J. D. ARON, Estimating Resources for Large Programming

Systems. NATO Science Committee, Rome, Italy, October, 1969.

[Babcock, 19851. C. BABCOCK, "New Jersey Motorists in Software Jam",

Computerworld, September 30, 1985. pp. 1,6.

[Balzer, 19851. R. M. BALZER, "A 15 Year Perspective on Automatic Pro-

gramming", IEEE Trans. Software Engineering, November 1985, pp. 1357-

1268.

[Balzer-Cheatham-Green, 19831 R. BALZER, T. E. CHEATHAM, and C.

GREEN, "Software Technology in the 1990's: Using a New Paradigm",

Computer, November 1983 pp. 39-45.

[Barstow, 19851. D. R. BARSTOW, "Domain-Specific Automatic Program-

ming," IEEE Trans. Software Engineering, November 1985, pp. 1321-1336.

[Barstow-Shrobe-Sandewall, 19841. D. R. BARSTOW, H. SHROBE, and E.

SANDEWALL, Interactive Programming Environments, McGraw-Hill, 1984.

[Basili-Weiss, 19811. V. R. BASIL1 and D. M. WEISS, "Evaluation of a

Software Requirements Document by Means of Change Data", Proceedings,

Fifth International Conference on Software Engineering, lEEE, March 1981,

pp. 314-323.

[Belady-Lehman, 19791. L. A. BELADY and M. M. LEHMAN, "Charac-

teristics of Large Systems", in P. Wegner (ed), Research Directions in

Software Technology, M.I.T. Press, Cambridge, MA. 1979.

[Bell-Bixler-Dyer, 19771. T. E. BELL, D. C. BIXLER, and M. E. DYER,

"An Extendible Approach to Computer-Aided Software Requirements

Engineering", IEEE Trans. Software Engineering, January 1977, pp. 49-59.

[Renington, 19561. H. D. BENINGTON, "Production of Large Computer

Program", in Proc. ONR Symp. Advanced Programming Methods for Digi-

tal Computers, June 1956, pp. 15-27.

[Black e t al, 1978). R. K. D. BLACK. R. P. CURNOW, R. KATZ and M. D.

GRAY, BCS Software Production Data, Final Technical Report, RADC-

TR-77-116, Boeing Computer Services, Inc., March 1977, NTIS No. AD-

A039852.

[Boar, 19841. B. H. BOAR, Application Prototyptng, John Wiley and Sons,

1984.

[Boehm et al, 19781. B. W. BOEHM, J. R. BROWN, H. KASPAR, M.
LIPOW, E. J. MACLEOD, and M. J. MERRITT, Characteristics of

Software Quality, North Holland, 1978.

(Boehm e t al, 19841. B. W. BOEHM, M. H. PENEDO, E. D. STUCKLE, R.

D. WILLIAMS, and A. H. PYSTER, "A Software Development Environ-

ment for Improving Productivity", Computer, June 1984, pp. 30-44.

[Boehm, 19731. B. W. BOEHM, "Software and it Impact: A Quantitative

Assessment", Datamation, May 1973, pp. 48-59.

[Boehm, 19761. B. W. BOEHM, "Software Engineering", IEEE Trans.

Computers. December 1976, pp. 1226-1241.

[Boehm, 19811. B. W. BOEHM, "Software Engineering Economics", Prentice

Hall, 1981.

[Boehm, 19831. B. W. BOEHM, "The Hardwarelsoftware Cost Ratio: Is It

a Myth?", Computer, March 1983, pp. 78-80.

[Boehm, 19843. B. W. BOEHM, Software Engineering Economics, IEEE
Trans. Software Engineering, January 1984, pp. 4-21.

[Boehm, 1985). H. Mi. BOEHM, "COCOMO: Answering the Most Frequent

Questions", Proceedings, COCOMO Users' Group, Wang Institute, May

1985.

[Boehm, 19861. B. W. BOEHM, "A Spiral Model of Software Development

and Enhancement", Proceedings, IEEE Second Software Process Workshop,

ACM Software Engineering Notes, March 1986.

[Boehm-Gray-Seewaldt, 1984). B. W. BOEHM, T. E. GRAY, and T.
SEEWALDT, "Prototyping vs. Specifying: A Multi-Project Experiment",

IEEE Trans. Software Engineering, May 1984, pp. 133-145.

[Brooks, 19751. F. P. BROOKS, JR., The Mythical Man-Month, Addison

Wesley, Reading, MA, 1975.

[Brown-Lipow, 19731. J. R. BROWN and M. LIPOW, "The Quantitative

Measurement of Software Safety and Reliability", TRW Report QR 1776,

August 1973.

[Buhr et al, 19851. R. J. A. BUHR, C. M. WOODSIDE, G. M. KARAM, K.

VAN DER LOO, and D. G . LEWIS, "Experiments with Prolog Design

Descriptions and Tools in CAEDE: An Iconic Design Environment for Mul-

titasking, Embedded Systems", Proceedings, 8th International Conference

in Software Engineering, August 1985, pp. 62-67.

[Buxton, 19801. J. BUXTON, "Requirements for Ada Programming Support

Environments: 'Stoneman'", U.S. Department of Defense, OSD/R&E,

Washington, D.C., February 1980.

[Couger-Zawacki, 19801. J. D. COUGER and R. A. ZAWACKI, Motivating

and Managing Computer Personnel, John Wiley and Sons, 1980. .

[Curtis, 19841. B. CURTIS, "Fifteen Years of Psychology in Software

Engineering: Individual Differences and Cognitive Science", Proceedings,

7th International Conference on Software Engineering, March 1984, pp. 97-

[Daly, 19771. E. B. DALY, "Management of Software Engineering", IEEE
Trans. Software Engineering, May 1977, pp. 229-242.

[DeMarco, 19821. T. DE MARCO, Controlling Software Projects, New York:

Yourdon, 1082.

[DeMarco-Lister, 19851. T. A. DE MARCO and T. LISTER, "Programmer

Performance and the Effects of the Workplace", Proceedings, 8th Interna-

tional Conference on Software Engineering, August 1985, pp. 268-272.

[Doherty-Kelisky, 19791. W. J. DOHERTY and R. P. KELISKY, "Managing

VM/CMS for User Effectiveness", IBM System J. 18, 1, 1979, pp. 143-163.

[Douville-Salasin-Probert, 19851. A. DOUVILLE, J. SALASIN, and T. H.
PROBERT, "Ada Impact on COCOMO Workshop Report", Institute for

Defense Analysis, May 1985.

[Dowson-Wileden, 19861. M. DOWSON and J.C.. WILEDEN (ed.), Proceed-

ings of Second Software Process Workshop, ACM Software Engineering

Notes, March 1986.

[Draper-Norman, 19851 S. W. DRAPER and D. A. NORMAN, "Software

Engineering for User Interfaces", IEEE Trans. Software Engineering, March

1985.

[EN, . 19851, Electronic Industries Association, "DoD Computing Activities

and Programs: Ten Year Market Forecast Issues, 1986-1985", October

1985.

[Elshoff, 1976). J. L. ELSHOFF, "An Analysis of Some Commercial PL/I

Programs", IEEE Trans. Software Engineering, June 1976, pp. 113-120.

[Fagan, 19761. M. R. FAGAN, "Design and Code Inspections to Reduce

Errors in Program Development", IBM System J, 15, 3, 1976, pp. 182-211.

[Feldman, 19791. S. I. FELDMAN, "MAKE - A Program for Maintaining

Computer Programs", Unix Programmers' Manual, Vol. 8, April 1979, pp.

255-265.

[Fisher, 19741. D. FISHER, "Software Costs in the Department of

Defense", IDA Report R-1079, 1974.

[Formica, 19781. G. FORMICA, "Software Management by the European

Space Agency: Lessons Learned and Future Plans", Proceedings, Third

International Software Management Conference, AIAA/RAeS, London,

October 1978, pp. 15-35.

[Freiman-Park, 19791. F. R. FREIMAN and R. E. PARK, "PRICE Software

Model Version 3: An Overview", Proceedings, IEEE-PINY Workshop on

Quantitative Software Models, IEEE Catalog No. TH0067-9, October 1979,

pp. 32-41.

[Frewin etal, 19851. E. FREWIN, P. HAMER, B. KITCHENHAM, N.

ROSS, and L. WOOD, ''Quality Measurement and Modeling - State of the

Art Report", ESPRIT Report REQUEST/STC-gdf/~~1/51/QL-RP/00.7,
July 1985.

[GUIDE, 19791. "GUIDE Survey of New Programming Technologies",

GUIDE Proceedings, GUIDE, Inc., Chicago, IL, 1979, pp. 306-308.

[Gilb, 19851. T. GILB, Design by Objectives, North Holland, 1985.

[Glass-Neiseux, 19811 R. L. GLASS and R. A. NOISEUX, Software Mainte-

nance Guidebook, Prentice-Hall, 1981.

[Gould-Lewis, 19851. J. D. GOULD and C. LEWIS, "Designing for Usabil-

ity: Key Principles and What Designers Think", Comm ACM, March 1985,

pp. 300-311.

[Grant-Sackman, 19661. E. GRANT and H. SACKMAN, "An Exploratory

Investigation of Programmer Performance Under On-Line and Off-Line

Conditions", Report SP-2581, System Development Corporation, September

1966.

[Green e t al, 19831. C. C. GREEN, D. LUCKHAM, R. BALZER, T.
CHEATHAM, and C. RICH, "Report on a Knowledge-Based Software

Assistant", USAF/RADC Report RADC-TR-195, August 1983.

[Green, 19761. C. C. GREEN, "The Design of the PSI Program Synthesis

System", Proceedings, 2nd International Conference on Software

Engineering, October 1976, pp. 4-18.

[Guimaraes, 19851. T. GUIMARAES, "A Study of Application Program

Development Techniques", Comm ACM, May 1985, pp. 494-499.

[Halstead, 19771. M. H. HALSTEAD, Elements of Software Science, Elsevier,

New York 1977.

[Harel-McLean, 19821. E. HAREL and E. R. MC LEAN, "The Effects of

Using a Nonprocedural Language on Programmer Productivity", UCLA

Graduate School of Management, Information Systems Working Paper #3-

83, November 1982.

[Heckel, 19841. P. HECKEL, The Elements of Friendly Software Design,

Warner Books, 1984.

[Herd et al, 19771. J. R. HERD, J. N. POSTAK, W. E. RUSSEL, and K. R.

STEWART, Software Cost Estimation Study - Study Results, Final Techn-

ical Report, RADC-TR-77-220, Vol. I (of two), Doty Associates, Inc., Rock-

ville, MD, June 1977.

[Horowitz-Kemper-Narasirnhan, 19851. E. HOROWITZ, A. KEMPER, and

B. Narasimhan, "A Survey of Application Generators", Software, January

1985, pp. 40-54.

[Hosier, 19611. W. A. HOSIER, "Pitfalls and Safeguards in Real-Time Digi-

tal Systems with Emphasis on Programming", IRE Transactions on

Engineering Management, June 1.961, pp. 99-115.

[Hunke, 19811. H. HUNKE, ed., Software Engineering Environments, North

Holland, 1981.

[Jackson, 19831. M. A. JACKSON, System Development, Prentice Hall,

1983.

[Jensen, 19831. R. W. JENSEN, "An Improved Macrolevel Software

Development Resource Estimation Model", Proceedings 5th ISPA Confer-

ence, April 1983, pp. 88-92.

[Jensen, 19851. R. W. JENSEN, "Projected Productivity Impact of Near-

Term Ada Use in Software System Development", Proceedings 7th ISPA

Conference, May 1985.

[Jensen-Lucas, 19831. R. W. JENSEN and S. LUCAS, "Sensitivity Analysis

of the Jensen Software Model", Proceedings 5th ISPA Conference, April

1983, pp. 384-389.

[Jones, 19831. T. C. JONES, "Demographic and Technical Trends in the

Computing Industry", Software Productivity Research, Inc., July 1983.

[Jones, 19851. T. C. JOENS, Programming Productivity, McGraw-Hill, 1986.

[Kant, 19851. E. KANT, "Understanding and Automating Algorithm

Design", IEEE Trans. Software Engineering, November 1985, pp. 1361-1374.

[Kernighan, 19841. B. W. KERNIGHAN, "The Unix System and Software

Reusability", IEEE Trans. Software Engineering, September 1984, pp. 513-

518.

[Kernighan-Mashey, 1981]. B. W. KERNIGHAN and J.R. MASHEY, "The

Unix Programming Environment", Computer, April 1981, pp. 12-24.

[Kernighan-Plauger, 19761. B. W. KERNIGHAN and P. J. PLAUGER,

Software Tools, Addison-Wesley, Reading, MA, 1976.

[Lanergan-Grasso, 19841. R. G. LANEGRAN and C. A. GRASSO,

"Software Engineering with Reusable Design and Code", IEEE Trans.

Software Engineering, September 1984, pp. 498-501.

[Lavi, 19841. J. Z. LAVI, "A Systems Engineering Approach to Software

Engineering", Proceedings, IEEE Software Process Workshop, February

1984, pp. 49-57.

[Lehman-Stenning-Potts, 19841. M. M. LEHMAN, V. STENNING, and C.

POTTS (ed.), Proceedings of Software Process Workshop, IEEE, February

1984.

[Lieblein, 19851. E. LIEBLEIN, "STARS Program Overview", Proceedings,

DoD/Industry STARS Workshop, EM, May 1985.

[Lientz-Sw:snson, 19801. B. P. LIENTZ and E. B. SWANSON, Software

Maintenance Management: A Study of the Maintenance of Computer

Application Software in 487 Data Processing Organizations, Addison-

Wesley, Reading, MA 1980.

(Lundeberg-Goldkuhl-Nilsson, 1981

and A. NILSSON, Information

Approach, Prentice-Hall, 1981.

1. M. LUNDEBERG, G. GOLDKUHL,

Systems Development: A Systematic

[Manley, 19851. J. H. MANLEY, "Software Engineering Provisioning Pro-

cess", Proceedings, 8th International Conference on Software Engineering,

August 1985, pp. 273-284.

[Martin, 19831. E. W. MARTIN, "Strategy for a DoD Software Initiative",

Computer, March 1983, pp. 52-59.

[Matsumoto, 19841. Y. MATSUMOTO, "Management of Industrial Software

Production", Computer, February 1984, pp. 59-70.

[McCabe, 19761. T. J. MCCABE, "A Complexity Measure", IEEE Trans.

Software Engineering, December 1976, pp. 308-320.

[McCall-Richards-Walters, 19771. J. A. MCCALL, P. K. RICHARDS, and

G. F. WALTERS, "Factors in Software Quality" (GE-TIS-77 CIS 02), Gen-

eral Electric, Co., 1977.

(McCracken-Jackson, 19821. D. D. MCCRACKEN and M. A. JACKSON,

"Life Cycle Concept Considered Harmful", Software Engineering Notes,

ACM, April 1982, pp. 29-32.

[McGuffin e t al l 19791. R. W. MCGUFFIN, A. E. ELLISTON, B. R.

TRANTER, and P. N. WESTMACOTT, "CADES-Software Engineering in

Practice", Proceedings 4th International Conference on Software Engineer-

ing, September 1979, pp. 136-144.

[Metzger, 19811. P. J. METZGER, Managing a Programming Project (2nd

ed), Prentice-Hall, 1981.

[Munson, 19831. J. MUNSON, "Report of the USAF Scientific Advisory

Board Committee on the High Cost and Risk of Mission-Critical Software",

December 1983.

[NOSC, 19821. NAVAL OCEAN SYSTEMS CENTER, "SEATECS:

Software Engineering Automation for Tactical Embedded Computer Sys-

tems", 31 August 1982.

[Nelson, 19661. E. A. NELSON, Management Handbook for the Estimation

of Computer Programming Costs, Ad-A648750, Systems Development Cor-

poration, Oct. 31, 1966.

[Parnas, 19791. D. L. PARNAS, "Designing Software for Ease of Extension

and Contraction", IEEE Trans. Software Engineering, March 1979, pp.

128-137.

[Parnas-Clements-Weiss, 19851. D. L. PARNAS, P. C. CLEMENTS, and D.
M. WEISS, "The Modular Structure of Complex Systems", IEEE Trans.

Software Engineering, March 1985, pp. 259-266.

[Porter, 1980). M. E. PORTER, Competitive Strategy: Techniques for

Analyzing Industries and Competitors, New York: The Free Press, 1980.

[Porter, 19851. M. E. PORTER, Competitive Advantage, New York: The

Free Press, 1985.

[Putnam, 19781. L. H. PUTNAM, "A General Empirical Solution to the

Macro Software Sizing and Estimating Problem", IIEEE Trans. Software

Engineering, July 1978, pp. 345-361.

[Raytheon, 19831. Raytheon Computer Services, 'LReusable Software:

Theory and Implementation", Raytheon Co., 1983.

(Reifer, 19811. D. J. REIFER, Tutorial: Software Management, IEEE Com-

puter Society, 1981.

[Reifer-Trattner, 19771. D. J. REIFER and S. TRATTNER, "A Glossary of

Software Tools and Techniques", Computer, July 1977, pp. 52-60.

[Reiss, 19851. S. P. REISS, "PECAN: Program Development Systems tha t

Support Multiple Views", IEEE Trans. Software Engineering, March 1985,

pp. 276-285.

[Rich-Shrobe, 19781. C. RICH and H. E. SHROBE, "Initial Report on a

Programmer's Apprentice", IEEE Trans. Software Engineering, November

1978, pp. 456-467.

[Rubey e t all 19751. R. J. RUBEY, J. A. DANA, and P. W. BICHE, "Quan-

titative Aspects of Software Validation", IEEE Trans. Software Engineer-

ing, June 1975, pp. 150-155.

[Rubin, 19851. H. A. RUBIN, "A Comparison of Cost Estimation Tools",

Proceedings, 8th International Conference on Software Engineering, August

1985, pp. 174-180.

[Shneiderman, 19801. B. SHNEIDERMAN, Software Psychology: Human

Factors in Computer and Information Systems, Winthrop Press, Cambridge,

MA, 1980.

[Smith-Kotik-Westfold, 19851. D. R. SMITH, G. B. KOTIK, and S. J.
WESTFOLD, "Research on Knowledge-Based Software Environments a t

Kestrel Institute", IEEE Trans. Software Engineering, November 1985, pp.

1278-1295.

[Sneed-Marey, 19851. H. M. SNEED and A. MAREY, "Automated Software

Quality Assurance", IEEE Trans. Software Engineering, September 1985,

pp. 909-916.

[Spadaro, 19851. D. SPADARO, "Project Evaluation Made Simple", Data-

mation, November 1985, pp. 121-124.

[Steubing, 19841. H. G. STEUBING, "A Software Engineering Environment

(SEE) for Weapon System Software", IEEE Trans. Software Engineering,

July 1984, pp. 384-397.

[Swinson, 19841. G. E. SWINSON, "Workstation - Based Rapid Simulation

Aids for Distributed Processing Networks", Proceedings, IEEE Simulation

Conference, 1984.

[STARS, 19851. STARS JOINT PROGRAM OFFICE, "STARS - SEE

Operational Concept Document7', 2 October 1985.

[Teichroew-Hershey, 19771. D. TEICHROEW and E. A. HERSHEY 111,

"PSL/PSA: A Computer-Aided Technique for Structured Documentation

and Analysis of Information Processing Systems", IEEE Trans. Software

Engineering, January 1977, pp. 41-48

[Teitelman, 19851. W. TEITELMAN, "A Tour Through Cedar", IEEE
Trans. Software Engineering, March 1985, pp. 285-302.

[Teitelman-Masinter, 19811. W. TEITELMAN and L. MASINTER, "The

Interlisp Programming Environment", Computer, April 1981, pp. 25-33.

[Thadhani, 19841. A. J. THADHANI, "Factors Affecting Programmer Pro-

ductivity During Application Development", IBM Systems J, Vol. 23,

November 1984, pp. 19-35.

[Walston-Felix, 19771. C . E. WALSTON and C. P. FELIX, "A Method of

Programming Measurement and Estimation", IBM System J, 16, 1, 1977,

pp. 54-73.

[Wartik-Penedo, 19861. S. P. WARTIK and M. H. PENEDO, "Fillin: A

Reusable Tool for Form-Oriented Software", Software, March 1986, pp. 61-

69.

[Wasserman, 19811. A. I. WASSERMAN, Tutorial: Software Development

Environments, IEEE Computer Society, 1981.

[Waters, 19851. R. G. WATERS, "The Programmer's Apprentice: A Session

with KBEmacs", IEEE Trans. Software Engineering, November 1985, pp.

1296-1320.

[Wegner, 1984). P. WEGNER, "Capital-Intensive Software Technology",

Software, July 1984, pp. 7-45.

[Weinberg, 19711. G. M. WEINBERG, The Psychology of Computer Pro-

gramming, Van Nostrand Reinhold, New York, 1971.

[Weinberg-Schulman, 19741. G. M. WEINBERG and E. L. SCHULMAN,

"Goals and Performance in Computer Programming", Human Factors,

1974, 16 (I), 70-77.

[Williams, 19751. R. D. WILLIAMS, "h4anaging the Development of Reli-

able Software", Proceedings, 1975 International Conference on ' Reliable

Software, IEEE/ACM, April 1975, pp. 3-8.

[Williman-0-Donnell, 19701. A. 0. WILLIMAN and C. OIDonnell, "Through

the Central 'Multiprocessor' Avionics Enters the Computer Era",

Astronautics and Aeronautics, July 1970.

[Wolverton, 19741. R. W. WOLVERTON, "The Cost of Developing Large-

Scale Software", IEEE Trans. Computers, June 1975, pp. 615-636.

[Zave, 19841. P. ZAVE, 'The Operational Versus the Conventional

Approach to Software Development", Comm ACM, February 1984, pp.

104-118.

[Zelkowitz-Squires, 19821. M. ZELKOWITZ and S. SQUIRES (ed), Proceed-

ings, ACM Rapid Prototyping Symposium, ACM, October 1982.

