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Abstract 

Understanding of software costs is important because of the overall magnitude 

of these costs (in 1985, roughly $70 billion per year in the U.S. and over $140 
billion per year worldwide) and because of the fundamental impact software will 
have on our future quality of life. Section 1 of this paper discusses these issues. 

Section 2, the main portion of the paper, discusses the two primary ways of 
understanding software costs. The "black-box" or influence-function approach 

provides useful experimental and observational insights on the relative software 

productivity and quality leverage of various management, technical, environ- 
mental, and personnel options. The "glass-box" or cost distribution approach 
helps identify strategies for integrated software productivity and quality 
improvement programs, via such structures as the value chain and the software 

productivity opportunity tree. 

The most attractive individual strategies for improving software productivity 

identified in Section 2 are: 

0 Writing less code; 

Getting the best from people; 

Avoiding rework; 

0 Developing and using integrated project support environments. 

Section 2 provides overall surveys of early and recent progress along these and 
other lines identified by the opportunity tree. 

Better understanding of software costs leads to better methods of controlling 

software project costs, and vice versa. Section 3 discusses these issues. It 

points out that some good frameworks of techniques exist for controlling 

software budgets, schedules, and work completed, but that a great deal of 

further progress is needed to provide an overall set of planning and control 

techniques covering software product qualities and end-user system objectives. 



1. THE NEED T O  UNDERSTAND AND CONTROL SOFTWARE 

COSTS 

In this section, we will explore three main reasons why it is important to under- 

stand and control software costs: 

Software costs are big and growing. Thus, any percentage cost 

savings will be big and growing, also. 

Many useful software products are not getting developed. 

Helping good software people work more efficiently will provide time 

for them to attack this backlog of needed software. 

Understanding and controlling software costs can get us 

better software, not just more software. As our lives and lifes- 

tyles continue to  depend more and more on software, this factor 

becomes the most important of all. 

1.1. Software Cost Trende 

A number of studies have indicated that  software costs are large and rapidly 

increasing. For the United States in 1980, using two separate approaches and 

relatively conservative assumptions, (Boehm, 19831 derived a total of 900,000 - 
1,000,000 software personnel, with a resulting annual cost of $40 billion, or 

roughly 2% of the U.S. Gross National Product. [Jones, 19831 derived a compar- 

able figure of 900,000 professional programmers in the U.S., and a total world 

programmer population of 3,250,000 (another 900,000 in Western Europe, 

500,000 in the Far East, and about 950,000 elsewhere). 

[Jones, 19831 estimated the rate of growth of programming personnel a t  roughly 

7% per year, which would yield a U.S. professional programmer population of 

roughly 3,000,000 people by the year 2000, and a world programmer population 

in the year 2000 of roughly 10,000,000 people. Recent estimates of the dollar 

growth in U.S. software costs have typically indicated around a 12% per year 

increase (indicating a 5% annual increase in personnel cost plus the 7% increase 

in number of personnel). This is consistent with the trends in U.S. Defense 

Department costs, which went from roughly $3.3 billion in 1974 [Fisher, 19741 to 

roughly $10 billion in 1984 [Lieblein, 19851. The recent Electronic Industries 

Association study of U.S. Defense Department mission critical software costs 

also predicted a 12% annual growth rate from $11.4 billion in 1985 to  $36 bil- 

lion in 1995 [EN,  19851. 



Using a 12% annual growth rate, the annual U.S. software cost would be 

roughly $70 billion in 1985 and $125 billion in 1990. Comparable world software 

costs are difficult to calculate due to  differing salary scales, but they would be 

a t  least twice this high: over $140 billion in 1985 and over $250 billion in 1990. 

Clearly, these costs are sufficiently large to merit serious efforts to  understand 

and control them. 

1.2. The Software Backlog 

Several studies (e.g. [Boehm, 1981; Martin, 19831) have indicated that  the 

demand for new software is increasing faster than our ability to  develop it. For 

example, the U.S. Air Force Data Systems Design Office has identified a four- 

year backlog of important business data processing software functions which 

cannot be implemented because of a limited supply of personnel and funding, 

much of which must currently be devoted to  supporting the evolution of existing 

software (often misleadingly called "software maintenance"). A number of 

other government and commercial organizations have identified similar back- 

logs. 

This software backlog exacerbates two serious problems. First, it acts as a 

brake on our ability to achieve productivity gains in other sectors of the econ- 

omy. It has been estimated that  roughly 20% of the productivity gains in the 

U.S. are achieved via automation and data processing. The software backlog 

means that  many non-software people's jobs still have a great deal of tedious, 

repetitive, and unsatisfying content, because the software to  eliminate those 

parts of the job cannot be developed. 

Second, and more serious, the software backlog creates a situation which yields 

a great deal of bad software, with repercussions on our safety and quality of 

life, specifically, the backlog creates a personnel market in which just about any- 

body can get a job to work off this software backlog, whether they are capable or 

not. 

Several studies have shown that ,  as with productivity, differences between peo- 

ple account for the largest source of variation in software quality. For example, 

the [Brown-Lipow, 1973] comparative experiment showed a 10:l  difference in 

error rates between personnel. The numerous instances of risks to  the public 

summarized by Neumann in ACM Software Engineering Notes provide graphic 

examples of how serious a problem we have created by unleashing unqualified 

software personnel onto projects producing critical applications software. This 

leads us to two primary conclusions: 



0 We need to understand and control software costs as a way of reduc- 
ing software backlog, and thus of reducing the chances that  bad pro- 
grammers will continue to provide us with more and more bad 
software to live with; 

0 We need to understand and control software qualities as well as 
software costs. 

1.3. Understanding and Controlling Software Coete and Qualities 

The interactions between software cost and the various software qualities (relia- 
bility, ease of use, ease of modification, portability, efficiency, etc.) are quite 
complex--as are the interactions between the various qualities themselves. 
Overall, though, there are two primary situations which create significant 

interactions between software costs and qualities: 

a. A project which tries to  reduce software development costs a t  the 

expense of quality can do so, but only in ways which increase opera- 

tional and life-cycle costs. 

b. A project which tries to simultaneously reduce software costs and 
improve software quality can do so, by intelligent and cost-effective 

use of modern software techniques. 

Going for Low-Cost, Low-Quality Software 

One example of situation (a) is provided by the [Weinberg-Schulman, 19741 

experiment, in which several teams were asked to develop a program to perform 
the same filnction, but each team was asked to optimize a different objective. 
Almost uniformly, each team finished first on the objective they were asked to  

optimize, and fell behind on the other objectives. In particular, the team asked 
to minimize effort finished with the smallest effort to complete the program, but 

also finished last in program clarity, second to last on program size and required 

storage, and third to last in output clarity. 

Another example is provided by the COCOMO data base of 63 development 

projects and 24 evolution or maintenance projects [Boehm, 19811. This analysis 
showed that if the effects of other factors such as personnel, use of tools, and 
modern programming practices were held constant, then the cost to develop 
reliability-critical software was almost twice the cost of developing minimally 

reliable software. However, the trend was reversed in the maintenance projects; 



low-reliability software required considerably more budget to maintain than 

high-reliability software. 

Achieving Low-Cost, High-Quality Software 

Certainly, though, if we want better software quality a t  a reasonable cost, we 

are not going to  hold constant our use of tools, modern programming practices, 

and better people. This leads to situation (b), in which many organizations 

have been able to achieve simultaneous improvements in both software quality 

and productivity. For example, the extensive [GUIDE, 19791 survey of about 

800 user installations found that  the four most strongly experienced effects of 

using modern programming practices were "code quality", "early error detec- 

tion", "programmer productivity", and "maintenance time or cost". 

However, getting the right mix of the various qualities (reliability, efficiency, 

ease of use, ease of change) can be a very complex job. Several studies have 

explored these qualities and their interactions, e.g. [Boehm e t  al, 19781 and 

[McCall-Richards-Walters, 19771. Also, some initial approaches have had some 

success in providing methods for reconciling and managing to multiple quality 

objectives, such as Design by Objectives [Gilb, 19851 and the GOAZIS approach 

[Boehm, 1981, Chapter 31. An excellent review of the state of the a r t  in 

software quality metrics is [Frewin et all 19851. 



2. UNDERSTANDING SOFTWARE COSTS 

We can consider two primary ways of understanding software costs: 

The "black-box" or influence-function approach, which performs com- 

parative analyses on the overall results of a number of entire software 
projects, and which tries to characterize the overall effect on software 

costs of such factors as team objectives, methodological approach, 
hardware constraints, turnaround time, or personnel experience and 

capability. 

The "glass-box" or cost-distribution approach, which analyzes one or 
more software projects to  characterize their internal distribution of 
costs among such sources as labor vs. capital costs, code vs. documen- 

tation costs, development vs. maintenance costs, or other distribu- 

tions of costs by phase or activity. 

These two primary perspectives complement each other, and certainly both are 
needed to achieve a thorough understanding of software costs. The two parts 
of this Section will explore each of these perspectives in greater detail. 

2.1. Software Cost Influence Functions 

The study of software cost influence functions similarly branches in two main 

directions: controlled experimentation and observational analysis. We shall dis- 
cuss the results of each approach in turn below. 

2.1.1. Experimental Reeulta 

Some of the earliest experimental results on software cost influence functions 

were the [Grant-Sackman, 19661 studies comparing the effects of batch vs. 
time-sharing computer operation on programming productivity. The experi- 

ments typically indicated a 20% productivity gain due to  time shared interac- 

tive operation, but a much more remarkable variation in productivity (up to 

26: l )  due to differences in programming personnel. 

Another set of significant insights resulted from the [Weinberg-Schulman, 19741 

experiment discussed earlier, showing the striking effect of team objectives on 

project productivity and product quality. 



During the late 19701s, a number of experiments helped to  illuminate the pro- 

gramming process, investigating the effects of code structuring, programming 

language constructs, code formatting. commentary, and mnemonic variable 

names on programming productivity, program comprehensibility, and error 

rates. A good summary of these experiments is given in [Shneiderman, 19801. 

Some initial experiments have explored the effects on productivity of prototyp- 

ing and fourth-generation languages. A seven-project experiment comparing a 

specification-oriented vs. a prototyping-oriented approach to the development of 

small, user-intensive application software products [Boehm-Gray-Seewaldt, 

19841 found primarily that  (See Figure 1): 

0 Both approaches resulted in roughly equivalent "prod~ct ivi ty '~  in 

delivered source instructions per man-hour (DSI/MH); 

0 The prototyping projects developed products with roughly equivalent 

performance, but requiring roughly 40% fewer DSI and 40% fewer 

manhours; 

0 The specifying projects had less difficulty in debugging and integra- 

tion due to  their development of good interface specifications. 

A six-project experiment comparing the use of a third-generation programming 

language (COBOL) and a fourth-generation language (FOCUS) on a mix of 

small business-application projects involving both experts and beginners 

developing both simple and complex applications (Harel-McLean, 19821 found 

primarily that  (See Figure 2): 

0 On an overall average, the fourth-generastion approach produced 

equivalent products to the third-generation approach, with about 

60% fewer DSI and 60% fewer manhours (again with roughly 

equivalent "Productivity" in DSI/MH); , 

0 From project to project, there was a significant variation in the ratio 

of third generation:fourth generation DSI (0.9:l to 27:1), manhours 

(1.5:l to 8:l) and DsI/MH (0.5:l to 5:l). 

Implications for Software Productivity Metrics 

These two experiments and the earlier Weinberg experiments make it clear that  

we need better metrics for software productivity than DSI/MH. A number of 



Figure 1. Prototyping vs. Specifying Sise and Effort Comparimons 
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alternative metrics have been suggested, such as: 

0 "Software science" or program information-content metrics [Halstead, 

19771; 

0 Program control-flow complexity metrics [McCabe, 19781; 

Design complexity metrics [DeMarco, 19821; 

0 Program-external metrics, such as number of inputs, outputs, files, 

reports, or function points (a linear combination of those four quanti- 

ties) [Albrecht, 1979; Jones, 19861; 

Work-transaction metrics [Doherty-Kelisky, 1979; Thadhani, 18841. 

In comparing the relative effectiveness of these productivity metrics t o  a 

DSI/MH metric, the following conclusions t o  date can be advanced: 

0 Each has advantages over DSI/MH in some situations; 

0 Each has more difficulties than DSI/MH in some situations; 

Each has equivalent difficulties to  DSI/MH in relating software 

achievement units to  measures of the software's value added to  the 

user organization. 

Thus, the area of software productivity metrics remains in need of further 

research and experimentation in search of more robust and broadly relevant 

metrics. 

2.1.2. Observational Analyses 

Having summarized the major experimental investigation of software cost 

drivers, let us look a t  the related observational studies. 

A major early observational analysis of software productivity factors.was the 

study done by SDC for the U.S.Air Force in the mid-1960's [Nelson, 19661. This 

study collected over 100 attributes of 169 software projects. Although the study 

was not successful in establishing a definitive set of software cost influence func- 

tions robust enough for accurate cost estimation, it did identify some of the 

more significant candidate influence functions for further investigation, such as 



requirements and design volatility and concurrent hardware development. 

Similar early studies which helped to identify significant candidate software cost 

influence factors were those of [Aron, 19691 and [Wolverton, 19741. As an exam- 

ple, the [Wolverton, 19741 analyses yielded a set of quantitative software cost 

influence factors (number of object instructions, type of application, novelty of 

application, and degree of difficulty) and relationships which were able to  sup- 

port practical software cost estimates across a range of command-control type 

applications. Some concurrent studies [Williman-O'Donnell, 1970; Boehm, 19731 

established a reasonably definitive relationship showing the asymptotic increase 

in software cost as hardware speed and storagc constraints approached 100%. 

A landmark study in analyzing the effect of modern programming practices on 

software costs was the IBM [Walston-Felix, 19771 study of over 50 software pro- 

jects. It provided conclusive evidence that  the use of such practices as struc- 

tured code, top-down design, structured walkthroughs, and chief programmer 

teams correlated with software productivity increases on the order of 50%. The 

study also confirmed the significant impact of such factors as personnel capabil- 

ity and hardware constraints on software productivity, as well as such addi- 

tional factors as personnel experience and database siee. 

In the late 1970's a number of software cost models were developed, represent- 

ing a further level of predictive understanding of the factors influencing 

software costs. Besides the IBM model based on the [Walston-Felix, 19771 

results, these included the Doty model [Herd et  al, 19771, the Boeing model 

[Black et  al, 19781, the SLIM model [Putnam, 19781, the RCA PRICE S model 

[Freiman-Park, 19791, and the COCOMO model [Boehm, 19811. More recently, 

some further software cost estimation models have been developed, such as the 

Jensen model [Jensen, 19831, the Estimacs model [Rubin, 19851 and the SPQR 
model [Jones, 19861. A comparison of these models (except the the two most 

recent models) in terms of their primary cost driver factors, has been provided 

in [Boehm, 19841. 

Software Productivity Ranges 

In the context of understanding and controlling software costs, a significant 

feature of some of these models is the productivity range for a software cost 

driver: the relative multiplicative amount by which that  cost driver can 

influence the software project cost estimated by the model. An example of a set 
of recently-updated productivi ty  ranges for the COCOMO model is shown in 



Figure 8. COCOMO Software Llfe-Cycle Productivity Ranges, 1986 
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Figure 3.* 

Similar productivity ranges have been provided for some other cost models, e.g., 

[Jensen-Lucas, 19831. 

The primary conclusions that  can be drawn from the productivity ranges in Fig- 

ure 3 are: 

The most significant influence on software costs is the number of 

source instructions one chooses to  program. This leads to  cost- 

reduction strategies involving the use of fourth-generation languages 

or reusable components to  reduce the number of source instructions 

developed; the use of prototyping and other requirements analysis 

techniques to ensure that  unnecessary functions are not developed, 

and the use of already-developed software products. 

0 The next most significant influence by far is that  of the selection, 

motivation, and management of the people involved in the software 

process. In particular, employing the best people possible is usually a 

bargain, because the productivity range for people uaually is much 

wider than the range of people's salaries. An overall discussion of the 

concerns involved here is provided in [Boehm, 1981; Chapter 331. 

More extensive treatments of personnel and management considera- 

tions are provided in [Weinberg, 19711, [Couger-Zawacki, 19801, 

[Metzger, 1981] and [Reifer, 19811. 

0 Some of the factors, such as product complexity, required reliability, 

and data base size, are largely fixed features of the software product 

and not management controllables. Even here, though, appreciable 

savings can be achieved by reducing unnecessary complexity, and by 

focusing on appropriate cost-quality tradeoffs as discussed in Section 

1. 

Requirements volatility is an important and neglected source of cost 

savings and control. A great deal can be done in particular in using 

 h he differences between Figure 3 and its counterpart in [Boehm, 19811 are the inclusion of 

the Requirements Volatility factor, the extension of the Modern Programming Practices range 

to cover life-cycle costs (using a 30:70 development-maintenance life-cycle cost ratio, this ranges 

from 1.57 for 2 KDSI products to  1.92 for 512 KDSI products), a widening of the Software Tools 

and Turnaround Time ranges to  reflect recent experience with advanced software support 

environments [Boehm e t  all 1984; Boehm, 19851, and the addition of the open-ended range 

representing the number of software source instructions developed by the project. 



incremental development to control requirements volatility. Fre- 

quently, users request (or demand, or require) new features while a 

software product is under development. In a single-shot full-product 

development, it is very hard to  refuse these requests; as a result, the 

developers are continually thrashing as the ripple effects of the 

changes are propagated through the product (and through the 

project's highly interlocked schedules). With incremental develop- 

ment, on the other hand, it is relatively easy to  say, "Fine, that 's a 

good feature. We will schedule it for Increment 4." This allows each 

increment to operate to a stable plan, thus significantly decreasing 

the requirements volatility cost escalation factor. 

0 The other cost driver variables in Figure 3 are also quite significant, 

particularly if they are addressed in an integrated manner. For more 

details, see [Boehm, 1981; Chapter 331 for a discussion of potential 

productivity strategies for each cost driver, and [Boehm e t  al, 19841 

for an example of their successful application to an integrated 

software productivity improvement program. 

0 The productivity ranges can also be used to assess the impact of 

other proposed software strategy changes, such as a transition to  Ada 

(and its associated support-environment and modern programming 

practices). Two such studies have been done for Ada to  date. 

[Douville-Salasin-Probert, 19851, using the COCOMO framework and 

an expert-consensus approach, estimated a typical 30% cost penalty 

for using Ada in the near term and a cost reduction of a t  least 40% 

for using Ada in the long-term. [Jensen, 19851, using the Jensen-model 

framework, estimated a significantly larger cost penalty for using Ada 

in the near term, and a typical 25% cost reduction for using Ada in 

the long term. 

2.2. Software Cost Distribution Insights 

Having looked a t  the experimental and observational "blac k-box" approaches 

to understanding software costs, let us now look within the software-production 

"glass box" for further insight. 

There are several approaches to analyzing the distribution of software costs 

which have provided valuable insights on software cost control. In this Section, 

we will summarize some of the insights gained from analyzing the distribution 

of: 



( I )  Development and rework costs; 

(2) Code and documentation costs; 

(3) Lahor and capital costs; 

( 4 )  Software costs by phase and activity. 

We will conclude by presenting a particular type of phase and activity distribu- 

tion called the value chain, and show how it leads to  a useful characterieation 

of productivity improvement avenues called here the software productivity 

opportunity tree. 

2.2.1. Development vs. Rework Costs 

One of the key insights in improving software productivity is t ha t  a large frac- 

tion of the effort on a software project is devoted to  rework. This rework effort 

is needed either to compensate for inappropriately-defined requirements, or to  

fix errors in the specifications, code or documentation. For example, [Jones, 

19861 provides da ta  indicating tha t  the cost of rework is typically over 50% on 

very large projects. 

A significant related insight is tha t  the cost of fixing or reworking software is 

much smaller (by factors of 50 to  200) in the earlier phases of the software life 

cycle than in the later phases [Boehm, 1976; Fagan, 1976; Daly, 19771. This has 

put a high premium on early error detection and correction techniques for 

software requirements and design specification and verification such as the 

Software Requirements Engineering Methodology, or SREM [Alford, 1977; 

Alford, 19841 and the Problem Statement Language/Problem Statement 

Analyzer [Teichroew-Hershey, 19771. More recently, it has focussed attention on 

such techniques as rapid prototyping [Zelkowitz-Squires, 1982; Boehm-Gray- 

Seewaldt, 1984; Boar, 19841 and rapid simulation [Zave, 1984; Swinson, 19851, 

which focus on getting the right user requirements early and ensuring tha t  their 

performance is supportable, thus eliminating a great deal of expensive down- 

stream rework. 

Another important point is that  rework instances tend to follow a Pareto distri- 

bution: 80% of the rework costs typically result from 20% of the problems. Fig- 

ure 4 shows some typical distributions of this nature from recent TRW software 

projects; similar trends have been indicated in [Rubey et  al, 1975],[Formica, 

19781, and [Basili-Weiss, 19811. The major implication of this distribution is 



Figure 4. Rework Costs are Concentrated in a Few High-Risk Items 
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that  software verification and validation activities should focus on identifying 

and eliminating the specific high-risk problems to be encountered by a software 

project, rather than spreading their available early-problem-elimination effort 

uniformly across trivial and severe problems. Even more strongly, this implies 

that  a risk-driven approach to the software life-cycle such as the spiral model 

[Boehm, 19863 is preferable to a more document-driven model such as the tradi- 

tional waterfall model. 

The Spiral Model 

The spiral model is i l lu~t~rat  e d  in Figure 5. The radi a1 dimension in Figure 5 

represents the cumulative cost incurred in accomplishing the steps to  date; the 

angular dimension represents the progress made in completing each cycle of the 

spiral. The model holds that  each cycle involves a progression through the 

same sequence of steps, for each portion of the products and for each of its lev- 

els of elaboration, from an overall concept-of-operation document down to  the 

coding of each individual program. 

Each cycle of the spiral begins with the identification of: 

The objectives of the portion of the product being elaborated (perfor- 

mance, functionality, ability to  accommodate change, etc). 

The alternative means of implementing this portion of the product 

(design A, design B, reuse, buy, etc). 

The constraints imposed on the application of the alternatives (cost, 

schedule, interface, etc.). 

The next step is to evaluate the alternatives with respect to  the objectives and 

constraints. Frequently, this process will identify areas of uncertainty which 

are significant sources of project risk. If so, the next step should involve the 

formulation of a cost-effective strategy for resolving the sources of risk. This 

may involve prototyping, simulation, administering user questionnaires, analytic 

modeling, or combinations of these and other risk-resolution techniques. 

Once the risks are evaluated, the next step is determined by the relative risks 

remaining. If performance or user-interface risks strongly dominate program 

development or internal interface-control risks, the next step may be an evolu- 

tionary development step: a minimal effort to  specify the overall nature of the 

product, a plan for the next level of prototyping, and the development of a 



Figure 6. Spiral Model of the Software Proce~s  (Not to  Scale) 
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more detailed prototype to  continue to resolve the major risk issues. On the 

other hand, if previous prototyping efforts have already resolved all of the per- 
formance or user-interface risks, and program development or interface-control 
risks dominate, the next step follows the basic waterfall approach, modified as 
appropriate to  incorporate incremental development. 

The spiral model also accommodates any appropriate mixture of specification 
oriented, prototype-oriented, simulation-oriel] Led, automatic transformation 

oriented, or other approaches to  software development, where the appropriate 

mixed strategy is chosen by considering the relative magnitude of the program 

risks, and the relative effectiveness of the various techniques in resolving the 

risks. (In a similar way, risk-management considerations determine the amount 

of time and effort which should be devoted to  such other project activities as 
planning, configuration management, quality assurance, formal verification, or 
testing). 

An important feature of the spiral model is tha t  each cycle is completed by a 

review involving the primary people or organizations concerned with the pro- 

ducts. This review covers all of the products developed during the previous 

cycle, including the plans for the next c y c l e  and the resources required to  carry 

them out. The major objective of the review is to  ensure tha t  all concerned 

parties are mutually committed to the approach to be taken for the next phase. 

The plans for succeeding phases may also include a partition of the product into 

increments for successive development, or components to be developed by indivi- 
dual organizations or persons. Thus, the review and commitment step may 
range from an  individual walkthrough of the design of a single programmer 

component, to  a major requirements review involving developer, customer, user, 
and maintenance organizations. 

2.2.2. Code ve. Documentation Costs 

Most of the efforts to  date in developing software support environments have 
been focussed on capabilities to improve people's productivity in developing 

code. However, recent analyses have shown that  most projects to  develop 

production-engineered software products spend more of the project's effort in 

activities leading to a document as their immediate end product, as compared 

to activities whose immediate end product is code. These documenti include 
not only specifications and manuals, but also plans, studies, reports, 

memoranda, letters, and a wide variety of forms. Their volume with respect to  
lines of code tends to  vary by application; [Jones, 19861 reports a typical 28 

pages of documentation per thousand instructions (pp/KDSI) for internal 



commercial programs and a typical 66 pp/KDSI for commercial software pro- 

ducts of the same size (50 KDSI). 

The proportion of document-related to code-related effort averaged about 60:40 

over the COCOMO data base of projects [Boehm, 1981) and about 67:33 for 

large TRW projects [Boehm et all 19841. These proportions have caused some 

recent software development environments such as the Xerox Cedar system 

(Teitelman, 19851 and the TRW Software Productivity System [Boehm e t  

a1,1984] to focus on the provision of extensive documentation and office- 

automation aids, and on the close integration of these functions with code- 

oriented functions. 

2.2.3. Labor vs. Capital Costs 

It is generally recognized that  software development and evolution are 

extremely labor-intensive activities, and that  a great deal of productivity lever- 

age can be gained by making software production a more capital-intensive 

activity. Typically, capital investment per software worker has been little 

different from the $2,000-3,000 per person typical of office workers in general. 

However, a number of organizations such as Xerox, TRW, IBM, and Bell 

Laboratories have indicated that significantly higher investments per person 

have more than recaptured the investment via improved software productivity. 

Similar results on the payoffs of capital investments in better facilities and sup- 

port capabilities have been reported in [Manley, 19851 and [DeMarco-Lister, 

19851. An excellent overall survey of software capitalization strategies is pro- 

vided in [Wegner, 19841. 

2.2.4. Software Costs by Phase and Activity 

A great deal of insight into controlling software costs has come from analyses of 

the distribution of costs by phase and activity. Some of the earliest results, 

such as [Benington, 19561, indicated the high proportion of project effort 

devoted to  integration and test, and the importance of good test planning, test 

support, and interface specification. (Another early paper, [Hosier, 1961], stated 

that  "a good software interface specification was quite literally worth its weight 

in gold.") 

Subsequent analysis of software development effort distribution such as [Wolver- 

ton, 1974) indicated the significant fraction of project effort devoted to non- 

programming activities (configuration management, quality assurance, planning 

and control, etc.), and the high potential leverage involved in making these 



activities more productive. 

Another major insight has been the recognition that  most of the cost of a 

software product is incurred after its initial development is complete [Elshoff, 

1976; Boehm, 1976; Daly, 19771. Subsequent analyses of the sources and distri- 

bution of these software life-cycle evolution costs (often misleadingly called 

maintenance costs) such as [Belady-Lehman, 19791 and [Lientz-Swanson, 19801, 

provided a number of insights on how to reduce software evolution costs. 

Several recent sources such as /Glass-Noiseux, 19811, and [Arnold, 19831 have 

provided more specific detail on software evolution cost reduction activities. 

2.2.6. The Software Product Value Chain 

The value chain, developed by Porter and his associates a t  the Harvard Busi- 

ness School [Porter, 1980; Porter, 19851, is a useful method of understanding 

and controlling the costs involved in a wide variety of organicational enter- 

prises. It identifies a canonical set of cost sources or value activities, represent- 

ing the basic activities an organieation can choose from to create added value 

for its products. Figure 6 shows a value chain for software development 

representative of experience a t  TRW. Definitions and explanations of the com- 

ponent value activities are given below. These are divided into what [Porter, 

19851 calls primary activities (inbound logistics, outbound logistics, marketing 

and sales, service, and operations) and support activities (infrastructure, human 

resource management, technology development, and procurement). 

Primary Activities 

Inbound logistics covers activities associated with receiving, storing, and dissem- 

inating inputs to the products. This can be quite large for a manufacturer of, 

say, automobiles; for software it consumes less than 1% of the development 

outlay. (For software, the related support activity of procurement is also 

included here). 

Outbound logistics covers activities concerned with collecting, storing, and physi- 

cally distributing the product to buyers. Again, for software, this consumes less 

than 1% of the total. 

Marketing and sales covers activities associated with providing a means by 

which buyers can purchase the product and inducing them to do so. A 5% 

figure is typical of government contract software organizations. Software pro- 

duct houses would typically have a higher figure; internal applications- 



Figure 6. Software Development Value Chain 
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programming shops would typically have a lower figure. 

Service covers activities associated with providing service to  enhance or main- 

tain the value of the product. For software, this comprises the activities gen- 

erally called software maintenance or evolution. For simplicity, Figure 6 avoids 

including a service cost component in the development value chain; a life-cycle 

value chain is presented and discussed as Figure 7 below. 

Operations covers activities associated with transforming inputs into the final 

product form. For software, operations typically involves roughly four-fifths of 

the total development outlay. 

In such a case, the value-chain analysis involves breaking up a large component 

into constituent activities. Figure 6 shows such a breakup into management 

(7%), quality assurance and configuration management (5%), and the distribu- 

tion of technical effort among the various development phases. This phase 

breakdown also covers the cost sources due to  rework. Thus, for, example, of 

the 20% overall cost of the technical effort during the integration and test 

phase, 13% is devoted to  activities required to rework deficiencies in or reorien- 

tations of the requirements, design, code, or documentation; the other 7% 

represents the amount of effort required to  run tests, perform integration func- 

tions, and complete documentation even if no problems were detected in the 

process. 

Support Activities 

Infrastructure covers such activities as the organization's general management 

planning, finance, accounting, legal, and government affairs. The 8% figure is 

typical of most organizations. 

Human resource management covers activities involved in recruiting, hiring, 

training, development, and compensation of all types of personnel. Given the 

labor-intensive and technology-intensive nature of software development, the 

3% figure indicated here is a less-than-optimal investment. 

Technology development covers activities devoted to  creating or tailoring new 

technology to  improve the organizations products or processes. The 3% invest- 

ment figure here is higher than many software organizations, but still less than 

optimal as an investment to  improve software productivity and quality. 



Figure 7. Software Life-Cycle Value Chain 
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Margin and Service 

Margin in the value chain is the difference between the value of the resulting 

product and the collective cost of performing the value activities. As this 

difference varies widely among software products, it is not quantitatively 

defined in Figure 6. As discussed above, service is best quantified as a software 

life-cycle value chain as shown as Figure 7, with roughly 70% of the value 

activity devoted to  service or evolution-related activity. However, since the 

component activities involved during evolution do not differ markedly from 

those which go on during software development, we will continue to  focus on 

Figure 6 as a source of insights into understanding and controlling software 

costs. 

Software Development Value Chain Implications 

The primary implication of the software development value chain is that  the 

"Operations" component is the key to significant improvements. Not only is it 
the major source of software costs, but also most of the remaining components 

such as "Human Resources" will scale down in a manner proportional to  the 

scaling down of Operations cost. 

Another major characteristic of the value chain is that  virtually all of the com- 

ponents are still highly labor-intensive. Thus, as discussed in Section 2.2.3, 

there are significant opportunities in providing automated aids to  make these 

activities more efficient and capital-intensive. Further, it implies that  human- 

resource and management activities have much higher leverage than their 3% 

and 7% investment levels indicate. 

The breakdown of the Operations component indicates that  the leading stra- 

tegies for cost savings in software development involve: 

0 Making individual steps more eficient, via such capabilities as 

automated aids to  software requirements analysis or testing. 

Eliminating steps, via such capabilities as automatic programming or 

automatic quality assurance. 

0 Eliminating rework, via early error detection, or via such capabilities 

as rapid prototyping to avoid later requirements rework. 



In addition, further major cost savings can be achieved by reducing the total 
number of elementary Operations steps, by developing products requiring the 
creation of fewer lines of code. This has the effect of reducing the overall size 
of the Value Chain itself. This source of savings breaks down into two primary 

options: 

Building simpler products, via more insightful front-end activities such 

as prototyping or risk management. 

Reusing software components, via such capabilities as  fourth- 

generation languages or component libraries. 

2.2.6. T h e  Sof tware  P roduc t iv i ty  Improvemen t  O p p o r t u n i t y  Tree 

This breakdown of the major sources of software cost savings leads t o  the 

Software Productivity Improvement Opportunity Tree shown in Figure 8. This 

hierarchical breakdown helps us to  understand how to fit the various attractive 
productivity options into an overall integrated software productivity improve- 

ment strategy. 

Most of the individual productivity options have been discussed in earlier sec- 

tions of this paper. Here, we will provide a recap of the previous options, and 

further discussion of the additional options identified in the Opportunity Tree. 

M a k i n g  People  M o r e  Effective 

The major sources of opportunity in dealing with people were covered in dis- 
cussing the large productivity range due to  personnel capability in Section 2.1.2, 
and the labor vs. ca.pita1 costs discussion in Section 2.2.3. Additional facilities- 
oriented gains were covered in the discussions of interactive software develop- 
ment in Section 2.1.1, and of avoiding hardware constraints in Section 2.1.1. 

Providing software personnel with private offices is another cost-effective facili- 

ties opportunity, leading to  productivity gains of roughly 11% a t  IBM-Santa 

Teresa [Jones, 19861 and 8% a t  TRW [Boehm, et  all 19841. In addition, the pro- 

ductivity leverage of creative incentive structures can be quite striking. For 
example, a program to provide extra bonuses for people who reuse rather than 

rebuild software has led to significant increases in the amount of software 

reused from previous applications. 
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Making Steps More EfRcient 

The primary leverage factor in making the existing software process steps more 

efficient is the use of software tools to automate the current repetitive and 

labor-intensive portions of each step. Such tools have a long history of develop- 

ment; some good surveys of various classes of tools are given in [Kernighan- 

Plauger, 19761 and [Reifer-Trattner, 19771. 

More recently, it has become clear that  such tools are much more effective if 

they are part of an Integrated Project Support Environment (IPSE).  The pri- 

mary features which distinguish an IPSE from an ad-hoc collection tools are: 

A set of common assumptions about the software process model being 

supported by the tools (or, more strongly, a particular software 

development method being supported by the tools); 

An integrated Project Master Data Base or Persistent Object Base 

serving as a unified repository of the entities created during the 

software process, along with their various versions, attrlbutes, and 

relationships; 

Support of the entire range of users and activities involved in the 

software project, not just of programmers developing code; 

A unified user interface providing easy and natural ways for various 

classes of project personnel (expert programmers, novice librarians, 

secretaries, managers, planning and control personnel, etc) to draw on 

the tools in the IPSE; 

A critical-mass ensemble of tools, covering significant portions of 

software project activities; 

A computer-communication architecture facilitating user access to 

data and resources in the IPSE. 

Some good references describing the nature and functions of IPSE'S are [Bux- 

ton, 19801, [Wasserman, 19811, [Hunke, 1981], [NOSC, 19821, and [STARS, 19851. 

Some good examples of IPSE7s with extensive usage experience include CADES 

[McGuffin et all 19791, Interlisp [Teitelman-Masinter, 19811, the AT&T Unix 

environment [Kernighan-Mashey, 1981], the U.S. Navy FASP system [Steubing, 

19841, the TRW Software Productivity System [Boehm et all 19841, and the 

Xerox Cedar System ITeitelman, 19851. Some early examples of advanced 



concepts and prototype environments are found in [Wasserman, 19811. Later 
examples are so abundant that it is virtually impossible to  summarize them con- 

cisely; a good recent source is [Barstow-Shrobe-Sandewall, 19841. 

Eliminating Steps 

A good many automated aids go beyond simply making steps more efficient, to 
the point of fully eliminating previous manual steps. If we compare software 
development today with its counterpart in the 19501s, we see that assemblers 
and compilers are excellent examples of ways of vastly improving productivity 
by eliminating steps. More recent examples of eliminating steps are process 
construction systems [Williams, 1975; Feldman, 19791, software standards check- 

ers and other quality assuranw fimctions [Boehm e t  al, 1978; Sneed-Marey, 

19851; and requirements and design consistency checkers [Alford, 1977; Bell- 

Bixler-Dyer, 1977; Teichroew-Hershey, 19771. 

More ambitious efforts to eliminate steps involve the automation of the entire 

programming process, by providing capabilities which operate directly on a set 

of software specifications to automatically generate computer programs. There 
are two major branches to this approach: domain-specific and domain- 

independent automatic programming. 

The domain-specific approach gains advantages by capitali~ing on domain 

knowledge in transforming specifications into programs, and in constraining the 

universe of programming discourse to a relatively smaller domain. In the limit, 
one reaches the boundary with fourth-generation languages such as Visicalc, 
which are excellent automatic programming systems within a very narrow 
domain, and relatively ineffective outside that domain. A good example and 
survey of more general approaches to domain-specific automatic programming is 
given in [Barstow, 19851. 

The domain-independent approach offers much broader payoff in the long run, 

but has more difficulty in achieving efficient implementations of larger-scale pro- 

grams. Some good progress is being made in this direction, such as the USC-IS1 
work culminating in the FSD system [Balzer, 19851, the Kestrel Institute work 

on the PSI and CHI system [Green, 1976; Smith-Kotik-Westfold, 19851, and the 

MIT Programmer's Apprentice project [Rich-Shrobe, 1978; Waters, 19851. An 
excellent summary of automatic programming approaches can be obtained from 
the November, 1985 issue of the IEEE Transactions on Software Engineering. 



Eliminating Rework 

One can also extend automatic programming in a direction which provides 

expert assistance to programmers (and more generally, to all software project 

members) to  aid them in making the right decisions in algorithm selection, data  

structuring, choice of reusable components, change control, test planning, and 

overall software project planning and control. This concept of a Knowledge 

Based Software Assistant (KBSA) has been thoroughly described in [Green e t  all 

19831. The primary benefit of a KBSA will be the elimination of much of the 

rework currently experienced on software projects due to the belated apprecia- 

tion that  a previous programming or project decision was inappropriate, result- 

ing in work that  needs to be redone. A number of prototype KBSA's are 

currently under development. 

If we specialize the KBSA concept to the area of software design, we find the 

rich area of software computer aided design (CAD). In the hardware area, CAD 

has been a major source of improving productivity by eliminating rework via 

automated design checking and simulation, and also of promoting better designs 

via better visualization of a design and its effects. Recent examples of software 

CAD capabilities include interactive graphics support systems such as the Xerox 

CEDAR system [Teitelman, 19851, the Brown PECAN system [Reiss, 19851, the 

Carleton CAEDE system [Buhr et all 19851, and such commercial systems as 

Excelerator, CASE, Ada Graph, and PRISM; rapid simulation capabilities such 

as RSA [Swinson, 19841; and executable specification capabilities such as PAIS- 

LEY [Zave, 19841. 

A short step from software CAD systems are the requirements and design 

language-oriented systems, which eliminate a great deal of rework through more 

formal and unambiguous specifications, automa.ted consistency and complete- 

ness checking and automated traceability of requirements to design. Probably 

the most extensive of these systems is the Distributed Computing Design System 

[Alford, 19841, which includes a system specification language (SSL), a software 

requirements specification language (RSL), a distributed-system design language 

(DDL), and a module description language (MDJ,). 

One of the main difficulties in developing good software CAD systems is our 

incomplete understanding of the software design process. Examples of recent 

progress in this direction can be found in [Curtis, 19841, [Adelson-Soloway, 

19851, and [Kant, 19851. 

A most powerful technique for eliminating rework is the information-hiding 

approach developed by Parnas [Parnas, 19791 and applied in the U.S. Navy A-7 

project [Parnas-Clements-Weiss, 19851. This approach minimizes rework by 



hiding implementation decisions within modules; thus minimizing the ripple 

effects usually encountered when software implementation decisions need to  be 

changed. The information hiding approach can be particularly effective in elim- 

inating rework during software evolution, by identifying the portions of the 

software most  likely to undergo change (characteristics of workstations, input 

data  formats, etc.) and hiding these sources of evolutionary change within 

modules. 

Some other sources for eliminating rework have been discussed earlier, such as 

the use of modern programming practices in Sections 1.3 and 2.1.2, the use of 

incremental development to reduce requirements volatility in Section 2.1.2, and 

the use of rapid prototyping and risk-driven software process models in the dis- 

cussion of development vs. rework costs in Section 2.2.1. 

Building Simpler Producte 

The last two approaches involving rapid prototyping and improved software 

process models can also be very effective in improving bottom-line productivity 

by eliminating software gold-plating: extra software which not only consumes 

extra effort, but also reduces the conceptual integrity of the product. The 

[Boehm-Gray-Seewaldt, 19841 prototyping vs. specifying experiment discussed in 

Section 2.1.1 indicated that  prototyping resulted in an average of 40% less code, 

40% less effort, and a set of products that  were easier to use and learn. One of 

the telling insights in this experiment was the comment of one of the partici- 

pants using the specification approach: "Words are cheap." During the 

specification phase, it is all too easy to  add gold-plating functions to  the pro- 

duct specification, without a good understanding of their effect on the product's 

conceptual integrity or the project's required effort. As expressed in the excel- 

lent book, The Elements of  Friendly Software Design [Heckel, 19841: 

"Most programmers . . . defend their use of a software feature by 

saying, 'You don't have to use it if you don't want to, so what 

harm can it do?' I t  can do a great deal of harm. The user might 

spend time trying to understand the feature, only to decide it isn't 

needed, or he may accidentally use the feature and not know what 

has happened or how to get out of the mistake. If a feature is 

inconsistent with the rest of the user interface, the user might 

draw false conclusions about the other commands. The feature 

must be documented, which makes the user's manual thicker. The 

cumulative effect of such features is to overwhelm the user and 

obscure communication with your program . . ." 



A further discussion of typical sources of software gold-plating, and an 
approach for evaluating potential gold-plating features, is provided in [Boehm, 

1981; Chapter 111. A related phenomenon to avoid is the "second system syn- 

drome" discussed in [Brooks, 19751. A recent useful technique for product 

feature prioritization called the Request-Success Grid is provided in [Spadaro, 

19851. Further useful principles of good user-interface design are provided in 

[Draper-Norman, 19851 and [Gould-Lewis, 19851. 

Some of the newer software process models stimulate the development of simpler 

products. One of the difficulties of the traditional waterfall model is that  its 

specification-driven approach can frequently lead one along the "Words are 

cheap" road toward gold-plated products, as discussed above. The Evolution- 

ary Development model [McCracken-Jackson, 19821 emphasizes the use of proto- 

typing capabilities to converge on the necessary or high-leverage software pro- 

duct features essential to  the user's mission. The related Transformational 

model [Balzer-Cheatham-Green, 19831 shortcuts the problem by providing 

(where available) a direct transformation from specification to  executing code, 

thus supporting both a specification-based and an evolutionary-development 

approach. The Spiral model [Boehm, 19861 focuses on a continuing determina- 

tion of users' mission objectives, and a continuing cost-benefit analysis of candi- 

date software product features in terms of their contribution to  mission objec- 

tives. Further information on recent progress in software process models can be 

found in [Lehman-Stenning-Potts, 19841 and [Dowson-Wileden, 19861. 

Reusing Components 

Another key to  improving productivity by writing less code involves the reuse of 

existing software components. The simplest approach in this direction involves 

the development and use of libraries of  software components. A great deal of 

progress has been made in this direction, particularly in such areas as 

mathematical and statistical routines and operating system related utilities. A 
great deal of further progress is possible via similar capabilities in user- 

application areas. For example, Raytheon's library and system of reusable 

business-application components has achieved typical figures of 60% reusable 

code for new applications [Lanergan-Grasso, 19841, and typical cost savings of 

10% in the design phase, 50% in the code and test phase, and 60% in the 

maintenance phase [Raytheon, 19831. Toshiba's system of reusable components 

for industrial process control [Matsumoto, 19841 has resulted in typical produc- 

tivity rates of over 2000 source instructions per man-month for high-quality 

industrial software products. 



At this level of sophistication, such systems should better be called application 

generators, rather than component libraries, because they have addressed 

several system-oriented component-compatibility issues such as component 

interface conventions, data structuring, and program control and error handling 

conventions. Similar characteristics have made Unix a particularly strong foun- 

dation for developing application generators [Kernighan, 1984; Wartik-Penedo, 

19861. 

One can proceed even further in this direction to create a Very High Level 

Language or Fourth Generation Language (4GL) by adding a language for speci- 

fying desired applications and a set of capabilities for interpreting user 

specifications, configuring the appropriate set of components, and executing the 

resulting program. Currently, the most fertile areas for 4GL's are in the areas 

of spread-sheet calculators (Visicalc, Multiplan, 1-2-3, etc.), and small-business 

systems typically featuring a DBMS, report generator, database query language, 

and graphics package (NOMAD, RAMIS, FOCUS, ADF, DBase 11, etc). A good 

survey of these latter 4GL's is [Horowitz-Kemper-Narasirnhan, 19851. 

As discussed in Section 2.1.1, the most definitive experiment to date comparing 

a 3GL (COBOL) and a 4GL (FOCUS) found an average reduction of about 60% 

in both lines of code developed and in manhours expended to  develop a sample 

of six applications. [Guimaraes, 19851 provides further evidence from a survey 

of 43 organizations that  such 4GL's reduce personnel costs, reduce user frustra- 

tions, and more quickly satisfy user information needs within their domain of 

applicability. On the other hand, the survey found 4GL's extremely inefficient 

of computer resources and difficult to  interface with conventional applications 

programs. Some major disasters have occurred in attempting to apply 4GL's to 

large, high-performance applications such as the New Jersey motor vehicle 

registration system [Babcock, 19851. 

Overall, though, 4GL's offer an extremely attractive option for significantly 

improving software productivity, and attempts are underway to create 4GL 

capabilities for other application areas. Short of a 4GL capability, the other 

more limited approaches to  reusability such as component libraries and applica- 

tion generators can both generate near-term cost savings and serve as a founda- 

tion for more ambitious 4GL capabilities in the long run. A very good collection 

of articles on reusability in software development is the September 1984 issue of 

the IEEE Transactions on Software Engineering. 



3. CONTROLLING SOFTWARE COSTS 

Now that  we have a better understanding of the primary sources of software 

costs and of the ways of reducing them, how can we use this understanding to 

improve our ability to control software costs? There are two primary avenues 

for doing this, as discussed below: 

( 1 )  Building our understanding into a framework of objectives, which 

serve as a basis for a set of Management-By-Objectives (MBO) con- 

trol loops. 

(2) Optimizing our software development and evolution strategy around 

predictability and control. 

3.1. Management By Objectives (MBO) 

The simplest sort of MBO for software project predictability and control is 

exemplified by the earned-value framework discussed in [Boehm, 1981, Chapter 

321, and illustrated in Figure 9. In this framework, a set of cost and schedule 

estimates by phase, activity, and product components are used to  generate a 

set of PERT charts, Work Breakdown Structures, personnel plans, summary 

task planning sheets, and other scarce-resource allocations which determine a 

set of "should-cost" targets for each job. As the project progresses, various 

instruments such as Unit Development Folders and Earned Value Systems are 

used to compare actual progress and expenditure of time, cost, personnel, or 

other scarce resources versus the plans. Then, comparing the actual progress 

and expenditure versus the plans can generate a set of exception reports which 

flag key areas for MBO attention. 

This generic approach has been highly successful in many situations, but it fre- 

quently needs extension to balance cost, schedule, and functionality objectives 

with other important quality-oriented objectives. The best approach to  date in 

handling these additional objectives has been to incorporate them as additional 

specific MBO targets, as in Design By Objectives [Gilb, 19851 and the GOALS 

approach [Boehm, 1981; Chapter 31. 

Actually, it is even better to  do this in terms of t'he software end-users? mission 

objectives. This implies that  the users must perform an analysis of the relative 

costs and benefits of alternative software product functions and features, to 

relate these to incremental gains in mission cost-effectiveness, and to use this 

information in an overall MBO control loop in which the software is only a part. 

For examples of this type of approach, see [Lundeberg-Goldkuhl-Nilsson, 19811, 



Figure 9. Software Project Planning and Control Framework 
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[Allen-Lientz, 19781 [Jackson, 19831 and (Lavi, 19841. 

3.2. Optimizing Around Software Predictability and Control 

Frequently, software customers are more concerned about predictability and 

control of software cost and schedule than they are about the absolute values of 

the cost and schedule [Munson, 19831. Such customers prefer a project which 

may cost a bit more, but which allows them to  confidently synchronize their 

software development with other critical developments such as a satellite 

launch, a factory opening, or a major service cutover. In such situations, custo- 

mers will generally prefer a risk-driven development approach which invests 

some additional early time and effort into identifying and eliminating the pri- 

mary sources of project risk--as contrasted with a "success-oriented" approach 

which will be very efficient if all the project's optimistic assumptions are true, 

but very costly if reality turns out otherwise (as it frequently does). The spiral 

model discussed in Section 2.2.1 is an  example of such a risk-driven development 

approach. 

Another option which can be derived from the risk-driven spiral approach is the 

option t o  trade marginal product functionality for project predictability and 

control, using a design-to-cost or design-to-schedule approach. Thus, if the  

highest project risk is associated with exceeding the available budget or with 

missing a crucial delivery date, the project can reduce risk by designating bord- 

erline product capabilities as a management reserve to  be traded against budget 

and schedule pressures as necessary. 



4. CONCLUSIONS 

The information and discussions above support the following primary conclu- 

sions: 

Understamding and controlling software costs is extremely important, not 

just from an economic standpoint, but also in terms of our future quality of 

life. 

Understanding and controlling software costs inevitably requires us to  

understand and control the various aspects of software quality as well. 

There are two primary ways of understanding software costs. The "black 

box" or influence function approach provides useful insights on the relative 

productivity and quality leverage of various management, technical, 

environment, and personnel options. The "glass box" or cost distribution 

approach helps identify strategies for integrated software productivity and 

quality improvement programs, via such structures as the value chain and 

the software productivity opportunity tree. 

The most attractive individual strategies for improving software produc- 

tivity are: 

0 Writing less code, by reusing software components, developing and 

using Very High Level Languages, and avoiding software gold-plating; 

0 Getting the best from people, via better management, staffing, incen- 

tives, and work environments; 

Avoiding rework, via better risk management, prototyping, incremen- 

tal development, software computer aided design, and modern pro- 

gramming practices, particularly information hiding; 

0 Developing and using integrated project support environments. 

Good frameworks of techniques exist for controlling software budgets, 

schedules, and work completed. There have been some initial attempts to 

extend these to support control with respect to software quality objectives 

and end- user system objectives, but a great deal more progress is needed 

in these directions. 



( 6 )  The better we are able to understand software costs and qualities, the 
better we are able to control them -- and vice versa. 
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