

Aalto University publication series
DOCTORAL DISSERTATIONS 24/2012

Understanding and Debugging
Concurrent Programs through
Visualisation

Jan Lönnberg

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Science for public examination and debate in Auditorium T2 at the
Aalto University School of Science (Espoo, Finland) on the 16th of
March 2012 at 12 noon.

Aalto University
School of Science
Department of Computer Science and Engineering
Learning + Technology Group

Supervisor
Professor Lauri Malmi

Instructor
Associate Professor Mordechai Ben-Ari

Preliminary examiners
Professor Jürgen Börstler, Umeå University, Sweden
Professor Jeffrey Magee, Imperial College London, United Kingdom

Opponent
Associate Professor Arnold Pears, Uppsala University, Sweden

Aalto University publication series
DOCTORAL DISSERTATIONS 24/2012

© Jan Lönnberg
Cover photo "Atropos (Washington, DC)" copyright by Jim Kuhn:
http://www.flickr.com/photos/takomabibelot/4934344773/
Used under terms of Creative Commons Attribution 2.0 licence:
http://creativecommons.org/licenses/by/2.0/deed.en

ISBN 978-952-60-4529-0 (printed)
ISBN 978-952-60-4530-6 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)

Unigrafia Oy
Helsinki 2012

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Jan Lönnberg
Name of the doctoral dissertation
Understanding and Debugging Concurrent Programs through Visualisation
Publisher Aalto University School of Science
Unit Department of Computer Science and Engineering
Series Aalto University publication series DOCTORAL DISSERTATIONS 24/2012
Field of research Software Systems
Manuscript submitted 15 November 2011 Manuscript revised 20 January 2012
Date of the defence 16 March 2012 Language English

Monograph Article dissertation (summary + original articles)

Abstract
In this thesis, the development and evaluation of a visualisation system intended to support
students in understanding and debugging concurrent programs is presented. The first phase of
development consisted of examining how students understand and develop concurrent
programs through phenomenographic research. The resulting outcome spaces included the
students' understandings of tuple spaces, the purpose of a programming assignment and what
developing, debugging and testing a concurrent program involves. The outcome spaces
included categories ranging from simple understandings containing only what is necessary to
complete the assignments to understandings that placed the program in a larger context beyond
the assignment.

These outcome spaces were used in a classification of defects in students' concurrent
programs. The defects found in the students' programs were classified by the underlying
human error and by the type of program failure the defect causes. This analysis of defects was
used to determine appropriate measures to support students in avoiding such defects. Many of
the students' defects were related to misunderstanding the goals of the assignment, so they
were rewritten to clarify the goals. To give the students a more concrete demonstration of the
situations their programs had to deal with, test packages were provided to them.

Many of the students' defects were related to incorrect use of concurrency. To help students
understand and correct these defects and learn from their mistakes, the visualisation system
Atropos was developed. Atropos is intended to help students understand concurrent program
behaviour in Java. Atropos supports backward debugging of concurrent Java programs through
interactive exploration of a dynamic dependence graph. A solution for replay and dynamic
dependence analysis of concurrent Java programs that may include data races was devised.

Atropos was evaluated through a mixed-methods analysis of the behaviour of pairs of
students using Atropos to debug concurrent programs. The results include a description of the
ways in which students successfully made use of Atropos and suggestions for how it could be
improved to better support their debugging approaches. While students appear to understand
the dependence graph representation and how to apply it in debugging, they need more support
from Atropos for eliding the implementation of data structures in order to examine their use.

Keywords software visualisation, concurrent programming, dynamic dependence analysis,
computer science education, phenomenography

ISBN (printed) 978-952-60-4529-0 ISBN (pdf) 978-952-60-4530-6
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Espoo Location of printing Helsinki Year 2012
Pages 180 The dissertation can be read at http://lib.tkk.fi/Diss/

Sammandrag
Aalto-universitetet, PB 11000, 00076 Aalto www.aalto.fi

Författare
Jan Lönnberg
Doktorsavhandlingens titel
Programvisualisering för att hjälpa studenter förstå och avlusa jämlöpande program
Utgivare Aalto-universitetets högskola för teknikvetenskaper
Enhet Institutionen för datateknik
Seriens namn Aalto University publication series DOCTORAL DISSERTATIONS 24/2012
Forskningsområde Programsystem
Inlämningsdatum för manuskript 15.11.2011 Datum för disputation 16.03.2012
Datum för det korrigerade manuskriptet 20.01.2012 Språk Engelska

Monografi Sammanläggningsavhandling (sammandrag plus separata artiklar)

Sammandrag
I denna avhandling presenteras utvecklingen och utvärderingen av ett visualiseringssystem
som skapats för att hjälpa studenter förstå och avlusa jämlöpande program. I den första
utvecklingsfasen undersöktes genom en fenomenografisk undersökning hur studenter
uppfattar och utvecklar jämlöpande program. Utfallsrummen från denna undersökning
handlade om hur studenter uppfattar tupelrymder, avsikten med ett övningsarbete i
programmering och vad som ingår i utvecklandet, avlusandet och testandet av ett jämlöpande
program. Utfallsrummen innehöll beskrivningskategorier från enkla uppfattningar som bara
omfattar det som krävs för att utföra övningarna till uppfattningar som satt programmet i ett
sammanhang som sträcker sig bortom övningen.

Utfallsrummen användes för att klassificera buggarna i studenternas jämlöpande program.
Buggarna klassificerades enligt det bakomliggande mänskliga felet och enligt det felaktiga
uppförandet i programmet buggen ger upphov till. Denna analys av buggarna användes för att
finna lämpliga medel för att hjälpa studenter undvika att skapa dylika buggar. Många av
buggarna kom från att studenterna missförstått övningsarbetenas mål, så de skrevs om för att
förtydliga målen. Studenterna gavs testpaket som gav dem en mer konkret demonstration av
övningsarbetenas mål.

Många av studenternas buggar var kopplade till felaktigheter i samverkan mellan
exekveringstrådar. För att hjälpa studenter förstå och korrigera dessa buggar och lära sig från
sina misstag utvecklades visualiseringssystemet Atropos. Atropos är tänkt att hjälpa studenter
förstå hur jämlöpande program i Java uppför sig. Atropos stöder baklänges avlusning av
jämlöpande Java-program genom interaktiv utforskning av en dynamisk beroendegraf. En
lösning skapades för återuppspelning och dynamisk beroendeanalys av jämlöpande Java-
program som kan innehålla datatävlingssituationer.

Atropos utvärderades genom en analys av hur par av studenter använde Atropos för att avlusa
jämlöpande program. Analysen gjordes med kvalitativa och kvantitativa metoder.
Utvärderingens resultat omfattar bland annat en beskrivning av hur studenterna utnyttjade
Atropos och förslag för hur Atropos bättre kunde stöda deras sätt att avlusa. Fastän
studenterna verkar förstå beroendegrafsrepresentationen och hur den kan utnyttjas i
avlusning, borde Atropos ha bättre stöd för att dölja implementationen av datastrukturer då
användningen av dem undersöks.

Nyckelord programvisualisering, jämlöpande programmering, dynamisk beroendeanalys,
datadidaktik, fenomenografi

ISBN (tryckt) 978-952-60-4529-0 ISBN (pdf) 978-952-60-4530-6
ISSN-L 1799-4934 ISSN (tryckt) 1799-4934 ISSN (pdf) 1799-4942
Utgivningsort Esbo Tryckort Helsingfors År 2012
Sidantal 180 Tillgänglig på nätet: http://lib.tkk.fi/Diss/

Preface

Looking back on my postgraduate work, it seems that it can be divided

into two phases: working backwards and forwards. My master’s thesis was

based entirely on visualisation technology with only a little discussion of

the human part of the human-computer interaction involved. My initial

plans for my doctoral thesis were essentially my master’s thesis writ large:

a complex visual debugging tool comprised of several visualisations of

varying degrees of novelty. My supervisor, Lauri Malmi, and my instructor,

Mordechai Ben-Ari, convinced me that the scientific and practical contri-

bution of a visualisation tool would be greater if it were based on empirical

studies of the needs of its users. This led me to analyse the defects in a set

of concurrent programs written by students. While doing this analysis, I

found that I lacked the necessary understanding of how students under-

stood and approached concurrent programming. This encouraged me to

take a further step back and perform a phenomenographic study on this

topic. My licentiate’s thesis instructor, Anders Berglund, was particularly

helpful during this phase by introducing me to phenomenography and

guiding me through the entire study.

Armed with a greater understanding of the human issues involved in the

students’ programming process, I could start moving forward and finish

my defect analysis. Much of this work was based on the assessments

made by the teaching assistants of the Concurrent Programming course:

Teemu Kiviniemi, Kari Kähkönen, Sampo Niskanen, Pranav Sharma, Yang

Lu, Ari Sundholm and Pasi Lahti. I could then move on to design and

implement a visualisation of a concurrent program’s execution as originally

planned. Like my master’s thesis work, the visualisation was based on the

algorithm visualisation framework Matrix developed by my master’s thesis

instructor, Ari Korhonen, and other members of the Software Visualization

Group. Finally, I did a study of how students use the visualisation in order

7

Preface

to evaluate it.

While the process of writing this thesis has been longer and more complex

than I expected, it is clear that the result is also much better in many ways

because of this, and I am deeply grateful to all the aforementioned people

for their guidance and assistance. Furthermore, without taking the scenic

route through computing education, I would never have had a chance to

become a part of the computing education community; a particularly tight-

knit and friendly community. I would like to thank the many people I have

had pleasant and productive discussions with, in particular the research

groups to which I’ve belonged at TKK and Aalto: the aforementioned Soft-

ware Visualization Group (SVG), Computer Science Education Research

Group (COMPSER) and the Learning + Technology Group (LeTech) that

was formed out of the previous two, as well as the groups that I have had

the opportunity to visit: Uppsala Computing Education Research Group

and the Computer Science Group of the Department of Science Teaching of

Weizmann Institute of Science. Hecse, the Helsinki Doctoral Programme

in Computer Science, also arranged for Ilkka Niemelä and Keijo Heljanko

to provide additional advice. I’d also like to thank Judy Sheard, Simon

and Margaret Hamilton for inviting me to join them in their literature

analysis.

I am grateful to the pre-examiners, professors Jürgen Börstler and Jeffrey

Magee, for taking the time to check my thesis and for their constructive

feedback.

I thank TES, the Finnish Foundation for Technology Promotion, for

providing funding for a year of my postgraduate studies. Aalto University

and its predecessor TKK provided most of the rest of the funding. Hecse

also provided some funds.

Finally, I would like to thank my parents for their continuing support,

without which I doubt I could have got this far.

Espoo, February 17, 2012,

Jan Lönnberg

8

Contents

Preface 7

Contents 9

List of Publications 13

Author’s Contribution 15

1. Introduction 17

1.1 Consequences of Nondeterministic Execution 17

1.2 Goal and Approach . 18

1.3 Evolution of the Research Process 20

2. Background 23

2.1 Concurrent Programming . 23

2.1.1 Java Memory Model 24

2.2 Software Defects . 25

2.3 Debugging Strategies . 27

2.3.1 Slicing . 28

2.4 Debugging Techniques . 28

2.4.1 Execution Replay . 28

2.4.2 Visual Debugging . 30

2.5 Evaluating Visualisations in an Educational Context 31

2.6 How Students and Professional Programmers Debug 32

2.7 How Students Determine Correctness in Concurrent Pro-

gramming . 33

3. Setting 35

3.1 Programming Assignments 36

3.1.1 Trains . 37

9

Contents

3.1.2 Reactor . 38

3.1.3 Tuple Space . 38

3.2 Weekly Exercises . 39

4. Understanding Students Working with Concurrent Programs 41

4.1 Students’ Understandings and Approaches 41

4.1.1 Phenomenography . 42

4.1.2 Data Collection . 43

4.1.3 Analysis . 44

4.1.4 Students’ Understandings of Tuple Spaces 45

4.1.5 Students’ Understandings of the Goal of Program

Development . 46

4.1.6 Students’ Approaches to Developing Programs 47

4.2 Students’ Defects in Concurrent Programs 50

4.2.1 Data Collection . 50

4.2.2 Analysis . 51

4.2.3 Results . 52

4.3 Conclusions . 58

5. Visualisation System Design and Implementation 61

5.1 Collecting and Replaying Execution Traces with Dynamic

Dependence Analysis . 63

5.1.1 Instrumentation and Execution Trace Collection . . . 64

5.1.2 Replay and Dynamic Dependence Analysis 66

5.1.3 Technical Evaluation 67

5.1.4 Performance Loss Caused by Instrumentation 68

5.1.5 Effect on Failure Occurrence 68

5.2 Visualising Dynamic Dependence Graphs 69

5.2.1 Visual Representations 69

5.2.2 Navigating the DDG 70

5.3 Discussion . 74

6. How Students Make Use of the Visualisation 77

6.1 Data Collection . 78

6.2 Analysis . 79

6.3 Results . 81

6.3.1 What Students Try to Achieve with Atropos 82

6.3.2 Identifying Incorrect Behaviour 82

6.3.3 Debugging Process . 84

10

Contents

6.3.4 Successful and Unsuccessful Use of Atropos 84

7. Validity 87

7.1 Descriptive Validity . 87

7.1.1 Recordings . 87

7.1.2 Code Analysis . 88

7.1.3 Affecting the Students 88

7.2 Interpretive Validity . 89

7.3 Theoretical Validity . 90

7.4 Researcher Bias . 90

7.5 Internal Validity and Credibility 91

7.6 External Validity, Transferability and Dependability 92

7.7 Construct validity . 92

8. Conclusions 95

8.1 Understanding and Debugging Needs of the Students 95

8.2 Addressing the Students’ Needs through Visualisation . . . 95

8.3 Evaluating the Visualisation 96

8.4 Implications for Teaching . 97

8.5 Future Work . 98

Bibliography 99

A. Assignment Used in Visualisation Evaluation 107

A.1 Tasks . 107

A.2 ConcurrentSelectionSort.java 107

B. Second.java 109

Errata 111

Publications 113

11

Contents

12

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Jan Lönnberg and Anders Berglund. Students’ understandings of concur-

rent programming. In Proceedings of the Seventh Baltic Sea Conference

on Computing Education Research (Koli Calling 2007), pp 77–86, Koli,

Finland, April 2008.

II Jan Lönnberg, Anders Berglund and Lauri Malmi. How students de-

velop concurrent programs. In Proceedings of the Eleventh Australasian

Computing Education Conference (ACE2009), pp 129–138, Wellington,

New Zealand, January 2009.

III Jan Lönnberg. Defects in Concurrent Programming Assignments.

In Proceedings of the Ninth Koli Calling International Conference on

Computing Education Research (Koli Calling 2009), pp 11–20, Koli,

Finland, November 2009.

IV Jan Lönnberg, Mordechai Ben-Ari and Lauri Malmi. Java Replay

for Dependence-based Debugging. In Proceedings of PADTAD IX —

Workshop on Parallel and Distributed Systems: Testing, Analysis, and

Debugging, pp 15–25, Toronto, Ontario, Canada, July 2011.

V Jan Lönnberg, Mordechai Ben-Ari and Lauri Malmi. Visualising Con-

current Programs with Dynamic Dependence Graphs. In Proceedings

of 6th IEEE International Workshop on Visualizing Software for Under-

13

List of Publications

standing and Analysis (VISSOFT 2011), 4 pp, Williamsburg, Virginia,

USA, September 2011.

VI Jan Lönnberg, Lauri Malmi and Mordechai Ben-Ari. Evaluating a

Visualisation of the Execution of a Concurrent Program. Proceedings

of the Eleventh Koli Calling International Conference on Computing

Education Research, pp 39–48, Koli, Finland, November 2011.

14

Author’s Contribution

Publication I: “Students’ understandings of concurrent

programming”

Lönnberg performed the data collection and analysis himself and wrote

most of the paper, with Berglund providing feedback and suggestions

throughout the process.

Publication II: “How students develop concurrent programs”

Lönnberg performed the data collection and analysis himself and wrote

most of the paper, with Berglund and Malmi providing feedback and

suggestions throughout the process.

Publication III: “Defects in Concurrent Programming Assignments”

Lönnberg did the analysis and wrote the paper himself. The analysis used

assessments made by teaching assistants of the Concurrent Programming

course of students’ programs as data; the author was the assistant only

one year out of three.

Publication IV: “Java Replay for Dependence-based Debugging”

Lönnberg designed and implemented the system and performed the eval-

uation himself and wrote the paper, with Ben-Ari and Malmi providing

feedback and suggestions throughout the process.

15

Author’s Contribution

Publication V: “Visualising Concurrent Programs with Dynamic

Dependence Graphs”

Lönnberg designed and implemented the system and performed the eval-

uation himself and wrote the paper, with Ben-Ari and Malmi providing

feedback and suggestions throughout the process.

Publication VI: “Evaluating a Visualisation of the Execution of a

Concurrent Program”

Lönnberg performed the evaluation himself and wrote the paper, with

Malmi reanalysing some of the data and both Malmi and Ben-Ari providing

feedback and suggestions throughout the process.

16

1. Introduction

There are many ways in which writing concurrent programs can be chal-

lenging. Dividing the work of a program between different processors

or distributed nodes adds complexity to a program. Furthermore, the

separate processes or threads of execution1 must be co-ordinated so that

they communicate correctly with each other when necessary, often through

shared resources such as memory, yet do not interfere with each other.

1.1 Consequences of Nondeterministic Execution

Co-ordinating processes correctly is particularly difficult, since most con-

current programs and systems involve nondeterminism; they are not guar-

anteed to behave the same way every time they are executed, even if the

same input is given to them. This is typically due to unpredictable differ-

ences in timing caused by a wide variety of sources, such as variation in

time needed to process different data elements, the behaviour of sched-

ulers in operating systems, and, especially in distributed systems, delays

in communication.

Nondeterminism has strong implications for the development of concur-

rent programs. Testing certain inputs (test cases) once is not enough to

reliably detect a defect that manifests itself nondeterministically, since

only some of the possible interleavings of threads or processes will result

in a failure. In order to effectively test for defects that manifest themselves

nondeterministically, steps must be taken to ensure coverage of differ-

ent interleavings in addition to the usual coverage criteria. This may be

done using stress testing or by modifying thread scheduling behaviour to

1In this thesis, I follow common usage in using the term ‘process’ for both pro-
cesses and threads in situations where the distinction is irrelevant, such as when
discussing many concurrent algorithms and concepts on a general level. In specific
cases where the distinction clearly exists, such as when discussing a program
implemented using Java [27], I use the term ‘thread’.

17

Introduction

increase the chances of concurrency defects being exposed [22, 26, 68, 74].

Deductive proofs (done by hand or with automated theorem proving tools

such as the SPARK tools [13]) and model checking (using a model checker

such as Spin [30] or JPF [77]) are two alternative approaches to checking

the correctness of a program that can be used to check that all interleavings

lead to the desired behaviour. There are also static analysis tools, such

as Jlint [4] and FindBugs [31], that look for specific patterns in code that

are commonly associated with defects. None of these approaches is clearly

superior to others; they detect different types of defects and make different

trade-offs between generating false positives and false negatives [65].

Studying the execution of a program for debugging purposes is also af-

fected. If a program behaves differently when re-executed, debugging

techniques that rely on repeatedly re-executing a program to examine its

behaviour become difficult to apply. This not only makes debugging concur-

rent programs harder than debugging sequential programs, it also makes

it hard to learn concurrency by examining the behaviour of concurrent

programs.

It is obvious that students must learn how concurrency mechanisms are

to be used in order to effectively use them in their programs. However, as

noted above, the most important way in which concurrent programming

differs from sequential programming is in its nondeterministic behaviour.

In order to be able to develop correct concurrent programs, a programmer

must understand the implications of concurrency described in this section.

Hence, helping students understand how to deal with concurrency is an

important goal of teachers of concurrent programming.

1.2 Goal and Approach

The long-range goal of the work described in this thesis is to help program-

mers produce correct concurrent programs. The approach used is to develop

methods and tools to help programmers understand what happens during

the execution of a concurrent program. This serves two purposes: support-

ing the debugging of programs, allowing programmers to find the bugs in

their programs and correct them, and helping programmers understand

the behaviour of concurrent programs.

There are several reasons why students of concurrent programming are

an obvious target audience for this type of research. Most obviously, they

are still learning about concurrent programming and are likely to need help

18

Introduction

in understanding what happens when a concurrent program is executed.

Introducing them to a new way of debugging is likely to have more of a

(hopefully positive) effect on them than on seasoned programmers, since

students do not yet have ingrained ways of working and have more of their

career ahead of them to apply the new techniques in. Furthermore, they

have more difficulties due to incomplete knowledge and lack of experience,

so they are in greater need of help.

Price et al. [63] note that while software visualisation (SV) “has tremen-

dous potential to aid in the understanding of concurrent programs”, few

SV systems are actually in production use, especially by professional pro-

grammers. They also note that when a SV system is designed, the content

to be shown must be selected according to the goals of the system, which

in turn are based on the requirements of the users.

Similarly, Hundhausen et al. [32] note that a lot of visualisation research

involves exploring new visualisation techniques based on what the re-

searchers feel would be useful or filling a niche in a taxonomy rather than

studies of the requirements of programmers.

Based on this reasoning, the work described here consists of three parts:

1. Gaining an understanding of how students understand (and fail to

understand) concurrent programming and what they need help with in

debugging and understanding concurrent programs. This is described in

Chapter 4, Publication I, Publication II and Publication III. This answers

the question: What needs do students have with regard to understanding

and debugging concurrent programs?

2. Designing and implementing a visualisation tool to support the students

in understanding concurrent programs, using empirical studies to deter-

mine the students’ needs. This is described in Chapter 5, Publication V

and Publication IV. The question here is: How can the needs from the

previous part best be addressed through visualisation?

3. Evaluating the visualisation tool and finding out what aspects of it

are helpful to students by examining how students make use of the

visualisation tool. This is described in Chapter 6 and Publication VI. The

question here is: In what ways did the visualisation tool in the previous

part assist the students?

19

Introduction

Before describing my own work, I will summarise the previous work in

the relevant fields on which this work builds (Chapter 2) and the setting

in which all this work has been done (Chapter 3). I finish by discussing

validity issues (Chapter 7 and presenting the conclusions of the thesis

(Chapter 8).

1.3 Evolution of the Research Process

My initial goal and plan was to explore the possibilities of visual debugging

and testing and create a new debugging tool that integrated all of this,

essentially as a continuation of MVT, the tool I developed as part of my

master’s thesis [49]. In this original plan, the focus would have been on

increasing the abstraction level of the data visualisation, visualising execu-

tion traces and controlling the execution of the program and manipulating

the data through the visualisation tool. The target group was professional

programmers, although a controlled experiment using advanced students

as an approximation of professionals was planned to provide statistically

significant proof of the system’s ability to improve debugging.

After extensive discussions with other researchers, it became clear that

this extended MVT would have been, much like MVT itself, a solution

in search of a problem; an example of system roulette. Hence, two ma-

jor changes were made to the plan: the decision was made to focus on

concurrency-related issues in Java and, to avoid system roulette, a study

of the defects in students’ programs was added. At this point, the planned

system would have visualised both execution traces and states in the

execution.

Having attempted, as described in Sections 4.1 and 4.2, to analyse the

defects in students’ programs, I was encouraged to perform a qualitative

study to examine how students actually understand and approach con-

current programming so I could use that as a basis for the rest of my

work. This work is described in Section 4.1. The revised defects analysis is

presented in Section 4.2.

I could finally return to what I had originally planned to focus on, visual-

isation development. However, at this point, the focus of the development

had changed to reflect changes in my values; mostly a shift from a software

developer’s perspective to an academic one. Specifically, I now saw stu-

dents as the intended users, rather than professional programmers, and

the focus of the research was no longer to build new tools but to examine

20

Introduction

how visualisation can support students. At this point, the research goals

became those described in Section 1.2.

Once the visualisation tool was functional enough to evaluate, I per-

formed a small-scale usability test with a few students. The results were

encouraging and suggested a few small changes that would improve usabil-

ity. This allowed me to proceed with the evaluation described in Chapter 6.

The plan for the evaluation involved a comparison between users and

non-users of Atropos as well as a broader qualitative analysis. In addition

to the operation foci that were examined, the students’ activities were also

analysed for interaction and transactive discourse. The latter was left

out when preliminary analysis suggested that our students had very little

transactive discourse. The former was left out since its results overlapped

with the operation foci, but seemed less relevant to the research questions.

21

Introduction

22

2. Background

In this chapter, I present background information relevant to understand-

ing this thesis. Section 2.1 is a brief summary of the aspects of concurrent

programming relevant to the research described here. Section 2.2 defines

terminology for discussing defects in software and presents studies of

defects in software.

Section 2.3 is an overview of debugging strategies. Section 2.4 describes

several debugging techniques with a focus on visualisation. The remain-

ing sections present empirical studies of the use of visualisation (2.5),

debugging (2.6) and how students determine the correctness of a program

(2.7).

2.1 Concurrent Programming

This section briefly summarises the aspects of concurrent programming

students are expected to understand and make use of when writing con-

current programs and those necessary to understand the explanations in

this thesis.

Concurrent programs may be run on anything from a single processor to

a distributed system connected only by the Internet. Most of the concurrent

programs discussed in this thesis run on one or more processors in shared

memory, typically within a single Java Virtual Machine (JVM). Some run

in a distributed context.

In order for concurrent programs to be useful, the processes in the pro-

grams need to be able to communicate with each other. Hence, mechanisms

for interprocess communication (IPC) are necessary. Many of these mech-

anisms focus on ensuring synchronisation of processes; the avoidance of

incorrect interleavings of processes. The simplest form is the lock or mutex,

which allows programmers to designate parts of a program as critical

23

Background

sections. Execution of critical sections protected by a lock is mutually

exclusive; only one critical section per lock is active at a time. Monitors

extend locks by including condition variables. A condition variable pro-

vides a queue in which processes can wait until another process notifies

the condition variable, which allows one of the processes to proceed. In

some systems, a process can notify all the processes waiting on a condition

variable at once.

Semaphores contain a non-negative integer value and two operations

that make use of it: P (‘prolaag’ or ’try-to-decrease’; also known as ‘wait’ or

‘down’), and V (‘verhoog’ or ’increase’; also known as ‘signal’ or ‘up’) [3, 5,

18, 53]. V increments the value of the semaphore by one. P waits until the

value of the semaphore is positive and then decrements it by one.

Synchronisation constructs are often used in conjunction with shared

memory; memory that can be read and written by several processes. Con-

currency in Java is based on shared memory and monitors [27, §17].

An alternative approach is message passing, in which messages are sent

between processes. These messages both contain data and can be used as

signals for synchronisation. Tuple spaces [24] can be seen as an extension

of message passing in which messages (tuples) can be stored in a shared

storage space and accessed by specifying a pattern describing the tuples to

fetch. Traditionally, a tuple space can be accessed through (at least) three

operations: in(), out() and read(). out() takes a tuple as an argument

and inserts it in the tuple space. in() takes as its argument a pattern

consisting of a tag and zero or more data values or formal parameters. As

soon as a matching tuple is found, in() fills all the formal parameters with

the corresponding values from the matching tuple, removes the tuple from

the space and returns. read() behaves like in(), but does not remove the

tuple from the space.

More detailed explanations of these concepts can be found in almost any

textbook on concurrent programming (e.g. [3, 5, 53]).

2.1.1 Java Memory Model

While Java uses shared memory, using it to transfer data between threads

is not a straightforward matter of writing in one thread and reading in

another. This is something that we expect our students to be able to take

into account when writing concurrent Java programs. Also, tools that

analyse Java programs must be designed to take the Java memory model

into account.

24

Background

The memory model of Java 1.5 [27, §17.4] describes the conditions that

need to be met for inter-thread actions to be guaranteed to be visible to

each other; i.e. for operations to see the changes to the program state made

by each other. All synchronisation actions (acquiring and releasing locks,

starting and joining threads and reading or writing volatile variables)

are totally ordered in each execution. However, many actions that can be

affected by other threads (such as reading non-volatile variables) do not

have a total order. Also, in many cases (e.g. two threads acquiring two

different locks at the same time), the order of two synchronisation actions

cannot be distinguished, in which case the JVM may, in practice, allow

these actions to occur simultaneously. The behaviour of shared memory

is defined using the happens-before relationship, which is a partial order

between inter-thread actions that is consistent with the synchronisation

order. If an action happens-before another, the effects of the first are visible

to the second. Naturally, operations in a thread happen-before each other

in the execution order of the thread. Synchronisation between threads

induces happens-before relationships between threads; most importantly,

releasing a lock in one thread happens-before it is next acquired. Similarly,

starting a thread happens-before its first operation. As long as the results

are consistent with this memory model, the actual JVM implementation

may reorder and parallelise operations arbitrarily.

If a read and a write or two writes are made to the same variable and

neither happens-before the other, a data race occurs. In this situation, the

result of reading this variable is not defined.

2.2 Software Defects

A programmer may make an error [11, 33, 59] (mistake [33, 59], break-

down [42], failure [59])—“a mistake, misconception, or misunderstand-

ing on the part of a software developer” [11]—while writing a program.

This may cause a defect [11, 59] (error [33, 42], bug [11, 33, 59, 80],

fault [11, 33, 59])—a discrepancy between the actual program and a correct

program1—to be introduced in the program. When the code containing

the defect is executed, a fault [42] or failure [33]—a discrepancy between

the actual execution and the behaviour of a correct program—may occur.

This may then manifest itself as a symptom [59] (failure [11, 33, 42, 59],

1For the sake of simplicity, it is assumed in this thesis that an unambiguous
definition of what constitutes a correct program, such as a specification, exists.

25

Background

error [33, 80])—incorrect behaviour that someone or something notices,

such as incorrect output or an exception.

It is clear that the terminology is somewhat inconsistent; the terminology

not in parentheses in the previous paragraph is the one used in this thesis.2

In this thesis, the focus is on errors that lead to runtime failures. One can

examine the resulting programs in terms of their errors, defects, failures

and symptoms. If a program contains a defect that prevents it from being

compiled or executed, there can be no failure and symptom, except, ar-

guably, the diagnostic output from the compiler or execution environment.

Finding and correcting this type of problem involves different approaches

and tools, such as improving compiler error messages (see e.g. [19]).

Knuth [40] made use of introspection to classify his own errors accord-

ing to the aspect of his programming process he failed in and found the

following categories of error:

• Algorithm Awry

• Blunder/Botch

• Data structure Debacle (violation of data structure invariants)

• Forgotten Function (missing code)

• Language Liability

• Mismatch between Modules (conflicting assumptions in modules)

• Reinforcement of Robustness

• Surprising Scenario (unexpected interactions between program parts)

• Trivial Typo

Eisenstadt [21] analysed anecdotal descriptions of bugs that professional

programmers found hard to find. The most common reasons for this were

related to the symptoms:

• Cause and symptom are separated in space or time;

• The incorrect behaviour does not consistently manifest itself;

• The programmer gets stuck by misinterpreting what he sees.

Several studies have been made of students’ errors in programming assign-

ments, such as those by Grandell et al. [28], Ko and Myers [42], Spohrer

and Soloway [71]. These studies are intended to help develop an under-

standing of why students make the mistakes they do, which can then be

2See the Errata for cases where I do not follow the above terminology.

26

Background

used to help develop teaching to help students develop the knowledge or

skills that the errors demonstrate are problematic.

The goal/plan analysis of Spohrer and Soloway [71] and Spohrer et al.

[72] uses the part of the program design that is incorrect as a basis for

analysis; a program has a goal. For every goal, the programmer chooses a

plan to solve it, which in turn involves subgoals that must be solved, until

the plans are small enough to be translated directly into code.

Grandell et al. [28], Spohrer and Soloway [71], Spohrer et al. [72] used

the students’ code as data; either the final versions submitted by the

students [28] or every syntactically correct version compiled by the stu-

dents [71]. This code was then (mostly manually) analysed for defects.

Grandell et al. found that most students’ logic errors could be attributed to

accepting erroneous input and incorrect or missing algorithms. Spohrer

et al. [72] found that novice programmers who tried to address several

goals with the same code often did so incorrectly. Spohrer and Soloway

[71] found that few of the bugs produced by novices can be explained as

misunderstandings of programming language constructs.

In contrast, Ko and Myers [42] set up experiments with students perform-

ing a programming task, who were videotaped while encouraged to think

aloud. This allowed Ko and Myers to determine the errors the students

made and the cognitive breakdowns that led to these errors, such as not

applying rules to construct or modify Boolean expressions correctly.

An overview of studies of what bugs occur and why has been done by Mc-

Cauley et al. [57].

2.3 Debugging Strategies

In this section, I summarise the different approaches and strategies that

can be used to debug programs and justify the choice of strategy underlying

the visualisation design described in Chapter 5.

There are two main approaches to finding ways a program can fail:

dynamic (in which programs are executed and the results analysed) and

static (in which the analysis is done on program code without executing

it). This thesis focuses on dynamic methods, as most work with a focus

on concurrency belongs to this category and the focus of static methods

is typically on finding patterns in the code that correspond to common

mistakes [65].

Metzger [59] describes many different strategies for debugging a pro-

27

Background

gram. Most of them are based either on dividing program code into parts,

searching through these parts and ruling them out as the site of the bug

or on generating hypotheses and disproving them. These strategies do not

specify what information is collected, making it hard to develop software

tools to help programmers to apply them. However, one strategy, the slic-

ing strategy, is different in many ways, and will be discussed in detail in

the following subsection.

2.3.1 Slicing

A (static) slice of a program with respect to a variable at a specific point

in the program is the part of the program that could have affected the

value of the variable at this point. A dynamic slice similarly is the part of

the execution of a program that was involved in determining the value of

the variable at a particular point in the execution. By repeatedly using

slices, programmers can trace the propagation of incorrect behaviour back

through the program or its execution from a symptom to the fault and thus

identify the defective code [1, 59, 79, 80].

In order to calculate a dynamic slice, one must first find the corresponding

dynamic dependence graph (DDG). A DDG is a directed graph whose

vertices are operations (executions of statements) and whose edges are the

data and control dependencies between these operations. A dynamic slice

of a program is the lines of code that appear as operations in a DDG.

Effectively, a DDG explains why each operation did what it did by ex-

plaining why it was executed (how the program branched to this code) and

where it got the data it operated on.

2.4 Debugging Techniques

I present in this section an overview of debugging techniques for concurrent

programs, with the focus on those that are applied in Chapter 5: execution

replay and visual debugging.

2.4.1 Execution Replay

Since the first debugger, FLIT [73], debuggers have been based on break-

points and single-stepping. The user of the debugger often finds himself

having to re-execute a program to examine something that happened ear-

lier in the program’s execution. A similar issue is even more common

28

Background

among programmers who debug by adding debug code such as print state-

ments to examine program execution. While this is not a problem if the

input can easily be replicated and the program is deterministic, the nonde-

terminism of concurrent programs makes this approach difficult to apply

to them.

Since a concurrent execution can be hard to reproduce, collecting a trace

of the execution of a program is particularly useful for debugging concur-

rent programs. The trace is typically used to replay the execution of the

program and examine it in another debugging tool. The quality of the

replay is determined by its accuracy (how closely the replay matches the

original) and precision (how much the execution is changed by collecting

information on it). Accuracy can be ensured by collecting sufficient infor-

mation on the nondeterministic aspects of the execution to reconstruct the

execution completely. Precision is less clear-cut and can be affected by e.g.

unnecessary instrumentation [14].

Execution traces can be generated by modifying the execution environ-

ment to collect the information needed to reconstruct an execution. For

example, DejaVu [14] and jreplay [67] use modified JVMs to keep track of

thread switches and other nondeterministic behaviour. DejaVu can then

replay the trace for examination in, for example, a traditional debugger.

Precision and compatibility may suffer if one has to use a different JVM for

debugging. Also, these systems are limited to single-processor execution,

limiting the precision of debugging on multiprocessor systems, and do not

collect the information needed for accurate replay of data races.

Instead of modifying the JVM, one can use instrumentation: the addition

of code to collect information, as done by e.g. JaRec [25]. JaRec also

uses instrumentation to perform replay by enforcing the original order on

synchronisation operations. JaRec cannot handle data races, either.

RetroVue [12] and ODB (Omniscient Debugger) [46] use instrumentation

to generate execution traces. Instead of replaying the execution, these

tools enable the programmer to examine the execution history through

a graphical debugger. Both debuggers can also show execution traces as

a list of operations and enable the user to examine all the states of the

program in the same way a traditional debugger enables the examination

of the current program state. The instrumentation used by ODB causes

precision problems by adding extensive synchronisation to the program

that is being examined. MVT [52] is similar, but lacks the list view of

RetroVue and ODB.

29

Background

In short, DejaVu and jreplay use modified JVMs to trace uniprocessor

execution, while JaRec, RetroVue, ODB and MVT use instrumentation to

trace execution on any JVM. None of these can trace data races accurately.

2.4.2 Visual Debugging

Both traditional debuggers and visual debuggers such as DDD [82] typi-

cally show only the current state of the program. RetroVue [12] provides a

tree view of all executed operations and, as noted in Subsection 2.4.1, the

ability to examine all the states of the program. It also provides a thread

display that shows the times each thread executed and locking interactions

between them.

Query-based debugging (QBD) is based on the idea of allowing a program-

mer to perform queries on the data in the program that is being debugged.

Lencevicius et al. [45] have implemented a QBD tool for Java based on

instrumenting the program to be debugged with debugger code wherever a

change relevant to the query is made.

The Whyline [41] uses a DDG-based visualisation (together with the other

elements of the Alice IDE, and, in a later version, Java [43]) to answer

queries such as “Why was this statement (not) executed?” or “Why does this

variable have this value?”. The answer is (part of) a dynamic dependence

graph (DDG). In many cases, this DDG enables the programmer to find

the reason for incorrect behaviour of a program very quickly by tracing

the cause-effect chain from the bug to the symptom backwards along the

DDG. The DDG can further be used to quickly navigate to sections of

the program and its execution relevant to the bug. Evaluations suggest

that the Whyline substantially speeds up the debugging process for novice

programmers.

A few debuggers and program visualisation systems have been designed

with concurrency in mind. Most of them (e.g. JAVAVIS [62] and JAN [48])

use sequence diagrams or message sequence charts to display method calls

and object diagrams to show program state; JaVis [58] uses collaboration

diagrams to show interactions between objects. These diagrams have a

level of detail suitable for debugging, but become cumbersome for complex

executions. Kraemer [44] describes many visualisations for specific aspects

of concurrent programs such as call graphs and time-process diagrams

for message traffic; these visualisations are primarily designed to give an

overview of thread interactions and thus have too little detail to readily

identify the code or data involved in individual interactions.

30

Background

Name Data shown Data collection Visualisation type

DDD (Java) Program state JDI State view, object graph

RetroVue Program execution Instrumentation Execution history tree, state

view

Lencevicius Program execution Instrumentation Query responses

Whyline (Java) Program execution Instrumentation DDG

JAVAVIS Program execution JDI Sequence diagram, object dia-

gram

JAN Program execution Instrumentation Sequence diagram, object dia-

gram

JaVis Program execution JDI Sequence diagram, collabora-

tion diagram

Bogor Counterexample Model checker Execution history tree, object

graph

Spin Counterexample Model checker MSC

Table 2.1. Comparison of visual debuggers

DDD, JAVAVIS and JAN use the Java Debug Interface (JDI; part of the

Java Platform Debugger Architecture [75]) built into Sun’s JVM to collect

information on program execution. The others use instrumentation of Java

bytecode.

Finding a defect from a model checker counterexample is similar to

debugging in that the program is known to behave incorrectly and the

programmer seeks to find the underlying defect. Assuming the program

one wishes to debug can be effectively analysed by a model checker and a

similar visualisation can be used to examine the model checker’s output,

a model checker can also be used for visual debugging. Bogor [64], for

example, enables the user to examine the counterexample using visualisa-

tions similar to those of DDD [82] and RetroVue). Spin [30] can produce

message sequence charts that show interactions between processes.

A full summary of all visual debuggers is beyond the scope of this thesis,

see [49] for more. This subsection is summarised in Table 2.1.

2.5 Evaluating Visualisations in an Educational Context

Many empirical evaluations have been made of software visualisation [32,

69], and it is beyond the scope of this thesis to present them all. The

focus is on the methods used in the evaluation described in Chapter 6.

Hundhausen et al. [32] describe in their meta-study many different evalu-

ations of algorithm visualisations based on empirical techniques. Many of

these, such as [60], are controlled experiments that attempt to determine

whether changing e.g. the learning or debugging medium affects a mea-

31

Background

sure of success such as post-test accuracy or debugging time by comparing

different groups of students. However, in order to help identify how the

visualisation helps students and support future development, it would be

useful to examine how the students make use of the visualisation in more

detail.

Kiesmüller [39] and Yehezkel et al. [81] have examined how the use of

visualisation tools in an educational context affects students’ activities

when defining and testing a program. In both cases, the activities of the

students were recorded and the focus of the students’ operations (what

activities the students performed) and—in the latter study—the students’

conversation (what the students talked about) was determined. Yehezkel

et al. found that students working without the EasyCPU visualisation

primarily used the data input and instant run operations with a strategy

of trial and error, while the students using EasyCPU tended to run the

program step by step and investigated the program’s execution more.

Kiesmüller identified different problem-solving strategies, such as bottom-

up, trial and error and hill climbing.

Isohanni and Knobelsdorf [34] examined how students make use of the

program visualisation tool VIP by interviewing them and observing and

video recording them completing a short programming assignment. They

found that when instructed to use VIP, the students ran their program in

VIP. However, not all students used VIP to examine the program execution,

and only one used VIP as intended (single stepping).

2.6 How Students and Professional Programmers Debug

Several studies have been made of students’ debugging strategies [69]. As

in many subfields of computer science education, most of the work on how

students debug focuses on novice programmers [57].

Eisenstadt [21] found that what the programmers did to track down

the difficult bugs they reported was to examine what happened when the

program was executed through traditional debugging techniques such as

single-stepping, adding print statements, adding conditional breakpoints

to the program and inspecting the data when the breakpoint is triggered

and comparing dumps of the program’s state.

Both von Mayrhauser and Vans [78] and Eisenstadt [21] have shown

that programmers spend a lot of time tracing the data and control flow of

programs in order to find causes for bugs. They also show that program-

32

Background

mers often require information on the causes of an event and connections

between parts of a program or its execution when looking for hard-to-find

defects. Eisenstadt in particular emphasises that complex cause-effect

relations that can be computed (e.g. data flow links) should be computed

by the debugger rather than forcing the programmer to work them out.

He also points out that the information needed is often at a higher level

of abstraction and granularity than the values of individual variables.

This suggests that tool support for tracing data and control flow could be

very useful in debugging, which is one of the justifications for the design

presented in Chapter 5.

Fitzgerald et al. [23] used interviews including both a programming

exercise and a debugging exercise to investigate the debugging skills

and approaches of novice programmers. Strategies used by the students

included mental tracing (with and without print statements), hand tracing

and tracing using the debugger. The students exhibited both forward

(tracing) and backward (causal) reasoning.

Ahmadzadeh et al. [2] examined programs compiled by students working

on a similar debugging task and a programming task. They compared

students’ work in the roles of programmer and debugger. They found that

weak debuggers had difficulties applying their knowledge of programming

and debugging unless they were working with programs with a familiar

structure. While most good programmers were better at debugging than

weak programmers, the good programmers who were weak debuggers did

not appear to understand the program to debug well enough to find or fix

the bugs.

Murphy et al. [61] studied the debugging strategies of students who had

completed 15–20 weeks of Java instruction using a debugging exercise and

a semi-structured interview. They found that students made extensive

use of testing, tracing and print statements. However, they often did

not use these techniques rigorously or efficiently. They also sometimes

used counterproductive approaches such as rewriting code they did not

understand.

2.7 How Students Determine Correctness in Concurrent

Programming

When determining whether a program is correct or not, the definition of

‘correct’ being used obviously has a strong effect on the approach used.

33

Background

Indeed, as will be demonstrated later in this thesis, many defects in

students’ programs can be explained as consequences of students having

different understandings of correctness. In such cases, explaining to the

student how a program behaves incorrectly may be of secondary importance

to explaining why the behaviour is incorrect. Ben-David Kolikant [7]

writes that students define a “correct program” as a program that exhibits

“reasonable I/O for many legal inputs” and that roughly a third of the

students did not even run their programs to check whether they worked; if

it compiled, they were satisfied that it was correct.

Ben-David Kolikant [6] describes learning concurrent programming as

entering a community of computer science practitioners. Students initially

approach the concurrent programming assignment from a user’s perspec-

tive, since that is what they are familiar with. Only one of the two students

in the study was able to switch to a programmer’s perspective and reason

correctly about synchronisation goals and interleavings.

34

3. Setting

The work described in this thesis revolves around the Concurrent Pro-

gramming course (T-106.5600, before 2006 T-106.420) at Aalto University

(before 2010 Helsinki University of Technology).1 The goal of this course is

to teach students:

• The principles of concurrent programming;

• Synchronisation and communication mechanisms;

• Concurrent and distributed algorithms;

• Concurrent and distributed systems.

The course is for many students their first exposure to writing concurrent

programs, which, as explained in Section 1.2, makes it a good target for

improvements to teaching and tools based on empirical research.

The course is arranged once every year, in the autumn. Roughly 50–

80 students, mostly students who have completed a bachelor’s degree or

an equivalent part of a master’s degree, enrol each year. The research

described here started with the 2005 instance of the course, so earlier

versions are not described here.

The following description of the course uses the normal numeric grades

0 (fail) and the integers 1–5 (passing, from worst to best). A numeric

equivalent has been provided for nonstandard grades (e.g. “pass with

honours”).

The course grade is, as of 2007, a weighted average of the exam (60

%), a programming assignment (2007–2009) or a set of weekly exercises

(2010–2011) (10 %) and two programming assignments (15 % each). A

passing grade is required in all parts to get a passing grade in the course.

In 2005 and 2006, the course grade was the exam grade and there were

1Course web site at: https://noppa.aalto.fi/noppa/kurssi/t-106.5600/

35

Setting

2005 2006 2007 2008 2009 2010 2011

Exam grade (e) 0–5

Assignment 1 Trains Weekly exercises

Report Always Resubmit Always N/A

Grade (a1) 0/3/5 0/1 (late)/3/5 0–5

Resubmissions ∞ 1 0

Assignment 2 Reactor

Report Always Resubmit Always

Grade (a2) 0/3/5 0/1 (late)/3/5 0–5

Resubmissions ∞ 1 0

Assignment 3 Tuple space

Report Always Resubmit Always

Grade (a3) 0/3/5 0/1 (late)/3/5 0–5

Resubmissions ∞ 1 0

Course grade Exam grade 0.6e+ 0.1a1 + 0.15a2 + 0.15a3

Table 3.1. Parts of the Concurrent Programming course

three mandatory programming assignments from which students could

also get bonus points for the exam by getting the best grade (5) for the

assignment. Students could also pass the assignment without bonus points

(3) or fail it (0). In 2007, an additional grade of 1 was introduced for late

and resubmitted assignments. Since 2008, all six integers from 0 to 5

(inclusive) have been used as assignment grades.

The parts of the course are summarised in Table 3.1.

The course is based on a textbook by Ben-Ari [5] (before 2006 by Andrews

[3]).

3.1 Programming Assignments

Since 2005, the course has contained programming assignments which

students did alone or in pairs. Initially, they were three; the first one was

replaced in 2010 by a set of programming exercises. Students are required

to implement a specification as a Java program and write a brief report

(roughly two pages) describing their solution; the report was not required

in 2006, except in the form of an explanation of errors corrected when

resubmitting.

Initially, students were allowed to submit corrected versions of incorrect

assignments. Since 2008, students are only given one attempt at each

assignment. To compensate, they are given access to the test packages

previously used only by the course staff for assessment. The test package

for each assignment contains test cases for each assignment intended

both to check that the specified interface has been followed and stress

36

Setting

Figure 3.1. tsim (left) and tsim2 (right) showing track used in Assignment 1

tests intended to help expose concurrency-related problems. Giving the

students access to the test packages was, in particular, intended to make

the requirements of the assignment more concrete and allow students to

check that, for example, they implemented the Reactor API correctly. The

introduction of the test packages is described in further detail in Section 4.2.

The implementation of the test packages is described in Section 5.1.

3.1.1 Trains

Trains was the first assignment from 2005 to 2009. In this assignment,

the students are given a simulated train track with two trains and two

stations. The simulator, tsim, was created in 1990 for a similar assignment

in a similar concurrent programming course at Chalmers University of

Technology. A simplified version written in Java, tsim2, was introduced

in 2008. The students’ task is to write code that drives the simulated

trains from one station to another by receiving sensor events and setting

the speed of the trains and the direction of the switches on the track.

The trains are to communicate with each other only through semaphores

provided by the simulator. The track used in the assignment, as displayed

by the simulator, is shown in Figure 3.1.

A typical solution to this assignment uses binary semaphores to ensure

that segments of the track bounded by switches are used by only one

train at a time. When a train has left a track segment, the corresponding

semaphore is released, and before passing the point at which it must start

braking to avoid entering a segment, it stops until it can acquire (one of)

37

Setting

the following segment(s).

3.1.2 Reactor

Reactor was the second assignment from 2005 to 2009 and became the first

in 2010, due to the removal of Trains. The assignment concentrates on the

Reactor design pattern [66] and its application to a simple multi-player

Hangman game, in which multiple players (using TCP to communicate)

collaborate in trying to guess a word known to the server, letter by letter.

The students’ task is to, using the synchronisation primitives built into the

Java language, implement a dispatcher and demultiplexer that can read

several handles that have blocking read operations at the same time and

sequentially dispatch the events read from these handles to event handlers

and to implement a server program for a simple networked Hangman

game that uses this Reactor pattern implementation.

This assignment is intended to give students an understanding of a

pattern commonly used to cope with concurrency in a simple and reliable

way and let them practise writing a multithreaded server program.

Since blocking read operations are used, the Reactor implementation

must create helper threads to wait for data and then collect this infor-

mation for sequential dispatching in the main thread. The Hangman

implementation is single-threaded except for the read handles.

3.1.3 Tuple Space

Tuple space was the third assignment from 2005 to 2009 and is, as of 2010,

the second assignment. The student implements a simple tuple space (see

Subsection 2.1) containing only blocking get and put operations on tuples

implemented as String arrays. He or she is to do this using Java synchro-

nisation primitives and use this tuple space implementation to construct

the message passing section of a distributed chat server. The student’s

message passing code communicates with the rest of the chat system using

method calls; a simple GUI front-end to the system (shown in Figure 3.2)

is provided to the students for testing purposes. This GUI contains a main

window from which messages can be sent and new listeners created as

well as windows showing the messages received by each listener.

This assignment lets students familiarise themselves with writing dis-

tributed systems using message passing.

Most students implement the tuple space as a collection of tuples (often

38

Setting

Figure 3.2. Chat UI for testing of Assignment 3

without any indexing). Their get operation typically repeatedly checks

whether a matching tuple is found and waits if not. The put operation

wakes all the waiting threads. Only a few students wrote solutions that,

when a tuple is added, wake only waiting threads with a matching pattern.

The chat system has been implemented either using the tuple space for

message passing, in which case the amount of listeners is tracked and a

copy of each message sent to them, or using a shared buffer in the tuple

space in which all unread messages are kept and removed when they can

no longer be accessed.

3.2 Weekly Exercises

The weekly exercises focus on examining the possible behaviour of con-

current programs and on writing or modifying programs to solve simple

concurrency-related tasks. To make the exercises more concrete, Java is

used in addition to the more abstract concurrency model used by Ben-Ari.

In the 2010 instance of the course, there were five rounds of exercises.

Two or three sessions with at least one teaching assistant present were

arranged for each round. Students were allowed to choose which sessions

to participate in. The topics of the rounds were:

1. Concurrency models and critical sections

2. Semaphores

3. Monitors

4. Channels

39

Setting

5. Tuple spaces

Each exercise session consisted of four tasks, most of which were exercises

from (or adapted from) the textbook [5].

In each session, the assistants presented the problem and any applicable

tools, and then left the students to work on the exercises in pairs; when

called on by the students, they assisted the students and evaluated their

work. The students presented their solutions to the assistants who then

provided feedback on the students’ solutions which the students could use

to improve their solutions.

40

4. Understanding Students Working

with Concurrent Programs

As described in Section 1.2, the first phase of the work behind this thesis

was motivated by a desire to understand the problem before construct-

ing a solution. It consisted of gaining an understanding of how students

approach concurrent programming and what difficulties they have in cre-

ating correct concurrent programs. This work was previously summarised

in [51].

The research questions of this part of the research were:

1. What kind of defects do programmers inexperienced in concurrent pro-

gramming introduce in their concurrent programs, and why?

2. Which of these defects are hard to find or understand and why?

This part of the research answers the question: “What needs do students

have with regard to understanding and debugging concurrent programs?”,

which is used as a basis for the visualisation design in Chapter 5.

The answer to that question, in the form of the problems students have

with our concurrent programming assignments, as well as solutions to

some of the students’ problems, are described at the end of this chapter,

in Subsection 4.2.3. Those that are addressed by the visualisation are

discussed in Chapter 5.

4.1 Students’ Understandings and Approaches

Originally, my intent was to simply perform a quantitative analysis of the

defects in our students’ concurrent programming assignments and use this

directly to determine in what area the students’ skills or knowledge was

insufficient. Unfortunately, when I did this quantitative analysis, less than

41

Understanding Students Working with Concurrent Programs

half of the defects could be classified by the area in which the student made

an error, due to my lack of understanding of the students’ understandings

of and approaches to developing concurrent programs. Since I only used

the students’ explanations of how their programs work as a basis for

determining their errors, I had limited information on many errors. In

particular, I had almost no explanations of errors of omission, such as

not taking a requirement into account. Also, I attempted to distinguish

between errors made in constructing an algorithm and implementing it

without any indication that students make this distinction [50].

In order to gain the necessary understanding, a qualitative analysis was

added to construct a model of how students approach programming assign-

ments. This model was then used as a basis for the revised classification

of the defects described in Section 4.2. More details on this study, such as

illustrative quotes, can be found in Publication I and Publication II.

4.1.1 Phenomenography

The qualitative analysis is based on phenomenography, an approach which

aims to reveal the different ways in which something is understood in

a cohort [55]. Interest in phenomenographic research has increased in

the computing education research community in the last decade, since

phenomenography produces qualitative results that focus both on the

learners and what they learn about and these results have been shown to

be useful in computing education [9, 10, 69].

An experience involves distinguishing a phenomenon from its context,

which involves a focus on an aspect of or a viewpoint on the phenomenon

grounded in a framework that describes the context in which the phe-

nomenon is experienced. Different people experience the world in different

ways, none of which are complete understandings [55]. There is no effective

way to deduce how different people think about the world from what we

know about it [54].

Phenomenography is “research which aims at description, analysis, and

understanding of experiences” and its focus is on understanding the vari-

ation in these experiences [54]. The outcome of a phenomenographic

research project is a set of categories of description grouped into outcome

spaces, where each category describes a qualitatively different way in which

a phenomenon is understood or experienced. Each outcome space contains

the different understandings or experiences found for a phenomenon or

an aspect of it, typically organised in a hierarchy of complexity; each

42

Understanding Students Working with Concurrent Programs

individual may have zero or more of these understandings [55]. Sorva

[70] extends this organisation by adding branches out from the hierar-

chy to represent incorrect extensions of understandings. In other words,

phenomenography is used to understand the qualitative and collective

variation of understandings or experiences of a phenomenon.

According to Berglund [9], phenomenographic research in computer sci-

ence education consists of a data collection phase and an analysis phase.

In the data collection phase, the researcher interviews students about a

phenomenon or a set of phenomena. A diverse sample of students (10–15

is an adequate amount [76]) is selected in order to get a rich variation

of experiences. The researcher transcribes the interviews and looks for

quotes that illuminate the students’ various understandings and classifies

the quotes into categories of description. The tentative categories usually

change repeatedly as the researcher refines his analysis.

4.1.2 Data Collection

At the end of the 2006 instance of the course, I interviewed eight students

regarding the Tuple space assignment (see Subsection 3.1.3). The inter-

views were conducted after the results of the initial submissions were

published, but before the deadline for submitting correct solutions. The

focus of the interviews was on how the students approached the program-

ming assignment, especially the reasoning behind their design, with a

focus on the defects found in their programs.

Twelve groups of students (eight students who did the assignment alone

and four pairs who collaborated on the assignment) were selected for

interview based on the defects found in their solutions for the Tuple space

assignment. In order to maximise the variation of experiences, I chose

groups with different types of problems with their code, as determined

by the teaching assistant who graded the assignments. Ten out of 31

groups that failed the (initial submission of the) assignment and two out

of 24 that had passed the assignment were invited to an interview. Out

of these groups, seven of the failing groups (six single students and one

pair; a total of eight students) agreed to participate and were interviewed.

The pair of students was interviewed together. This sampling process is

summarised in Tables 4.1 and 4.2. Although no students who had passed

the assignment in their first attempt participated (and the sample was

smaller than intended), the results in Subsections 4.1.4, 4.1.5 and 4.1.6

show that even the students from the failing groups had a diverse set

43

Understanding Students Working with Concurrent Programs

Groups Fail Pass Total

Group size 1 2 Total 1 2 Total 1 2 Total

Did assignment 19 12 31 12 12 24 31 24 55

Selected 7 3 10 1 1 2 8 4 12

Participated 6 1 7 0 0 0 6 1 7

Table 4.1. Overview of student groups selected for interviews

Students Fail Pass Total

Group size 1 2 Total 1 2 Total 1 2 Total

Did assignment 19 24 43 12 24 36 31 48 79

Selected 7 6 13 1 2 3 8 8 16

Participated 6 2 8 0 0 0 6 2 8

Table 4.2. Overview of students selected for interviews

of understandings, including advanced ones (which is hardly surprising

since more than half of the groups had failed the assignment). In other

words, the sample appears to have been adequate despite having fewer

participants (especially successful ones) than intended.

The interviews were in the form of a free-form conversation based on a

set of prepared questions that were used to open up topics for discussion,

and lasted roughly 30–60 minutes. The first questions in the interviews

established the students’ backgrounds in programming, particularly con-

current programming. The rest of the questions were about tuple spaces,

the design decisions made by the students in solving the assignment,

their approach in determining whether their solution was satisfactory, and

problems found by the students or the teaching assistant.

I recorded the interviews using a single microphone and transcribed

them. I also wrote down the main points of the interview directly after the

interview. To make it easier to discuss the students’ development process

and programs, the students were, before the interview, given printed

copies of the code they submitted. Before the interview, I also explained

the purpose of the interview and confirmed that the student accepted

that I recorded the interview, allowed collaborating researchers access to

anonymised transcripts and published selected anonymised quotations.

4.1.3 Analysis

I did the analysis in discussion with Anders Berglund and, in a later stage,

Lauri Malmi. After discussing the contents of two interview transcripts,

the iterative phase of the analysis was performed. In each iteration, I read

through the transcripts looking for relevant quotes and formed categories

based on these, building on the results of the previous iteration. I grouped

44

Understanding Students Working with Concurrent Programs

the categories into outcome spaces by the issue they describe. Berglund

and Malmi then examined these categories and made suggestions on how

to improve them. The resulting categories from the last iteration are

presented in the following section.

In the first iterations, the analysis focused on finding as many quotes

as possible that illustrated ways in which the interviewees understood

concurrent programming and approached the assignment. First, quotes

were grouped together if they appeared to express similar standpoints.

They were then grouped together into tentative categories representing

similar understandings. These understandings were then grouped by

phenomenon into tentative outcome spaces.

The categories changed in many ways during the analysis process. Start-

ing from the third iteration, the emphasis of the analysis shifted to refining

the preliminary categories. Quotes we deemed not to fit the research ap-

proach or area of interest of this particular study were left out. Phenomena

with only a few quotes were left out due to insufficient data.

Most of the quotes fit into a phenomenographic framework. However,

the sources of failures taken into account by students are several related

phenomena and are therefore described in a different fashion.

The results of this study are in the form of phenomenographic outcome

spaces describing how students understand tuple spaces (Subsection 4.1.4),

how they understand the goal of the programming task (Subsection 4.1.5)

and how they understand developing a program (Subsection 4.1.6).

4.1.4 Students’ Understandings of Tuple Spaces

Tuple spaces were described by the interviewees in a number of different

ways that all describe the same data structure from different viewpoints.

Tuple spaces can be seen as a ‘black box’ with operations (a specification of

an interface), an implementation, something that can be used in a program

to achieve a goal and as one of many possible ways to achieve something

in a program. The categories are summarised in Table 4.3. For details,

see Publication I.

The first three categories are more or less required by the assignment,

as a specification is provided for the students to implement and use. The

fourth category was not required and is an encouraging sign of students

going beyond the immediate requirements of the assignment.

45

Understanding Students Working with Concurrent Programs

Label What is the tuple

space described as?

What is in focus? Framework

Specification Operations on tuples The properties of the op-

erations

-

Implementation Data structures and

code

How a tuple space imple-

mentation works or could

work

Part of a program

Usage A tool to achieve a spe-

cific subgoal in a pro-

gram

What a tuple space can

be used for in a program

A program

Evaluation A better way of co-

ordinating distributed

systems

The advantages of using

the tuple space

Other communication

and distributed data

storage mechanisms

Table 4.3. Categories of tuple spaces

Label The purpose of the pro-

gramming task

What is in focus? Framework

Assignment To meet the requirements of

the university setting

The university set-

ting’s requirements

University setting

Ideal prob-

lem

To produce a program that

functions within the university

setting’s requirements

The program itself University setting

Working so-

lution

To produce a solution to a prob-

lem beyond the university set-

ting

The program itself An environment beyond

the university setting

Possibilities To solve a problem with poten-

tial for future development

Possibilities for fu-

ture development

An environment beyond

the university setting

Table 4.4. Purposes of the programming task

4.1.5 Students’ Understandings of the Goal of Program

Development

The interviewees express the purpose of a programming assignment in

different ways shown in Table 4.4, reflecting different perspectives on

both learning and programming. The different purposes can be seen as

a progression that starts with a focus solely on meeting the university’s

requirements. In the second category, the program’s functioning becomes

the focus. In the third, the program is seen beyond the university setting.

Finally, the focus shifts from the program itself to the possibilities for

future development it raises.

The students mentioned three types of failure sources: other systems,

the user and the programmer. They are summarised in Table 4.5. This

list of failure sources is closely related to the outcome space of purposes of

Source Effect on program design

Systems Tolerate other systems’ failures

Programmer Minimise chances and/or consequences of programmer error

User Tolerate user error

Table 4.5. Sources of failure

46

Understanding Students Working with Concurrent Programs

Label What is developing and

debugging described

as?

What is in focus? Framework

Implementation Writing and debugging

code

The code and its exe-

cution

Relevant program-

ming language

constructs

Solving technical

problems

Finding solutions to a se-

ries of technical problems

Central ideas of con-

current programming

The program, seen as

a technical entity

Producing an ap-

plication

Finding solutions to real-

life problems

What users need from

the program

Context in which pro-

gram is used

Table 4.6. Categories of developing and debugging

the programming task in that they both describe the context in which the

students’ programs are expected to function.

In order to keep the assignment simple, students were told that they

could ignore the possibility of network failure in the assignment. Some

students took the possibility into account anyway. Similarly, students

were told not to bother with checking for user error in these assignments.

Nevertheless, user error was used by one student as a reason to ignore

the specification in the handling of a special case (empty messages in the

chat system). In both cases, students have gone beyond the assignment’s

requirements and designed their code to deal with ‘real-world’ problems.

I did, however, expect that students would try to minimise the conse-

quences of programmer error by sticking to simple solutions, since this

also decreases development time and improves the chances of meeting the

assignment deadline.

These understandings are described in more detail in Publication II.

4.1.6 Students’ Approaches to Developing Programs

The interviewees understand the process of developing and debugging

their program in many different ways: as simply writing and debugging

code, as solving a technical problem and as producing an application. Each

category differs from the previous in that it moves further from the actual

program code toward a user-oriented ‘big picture’. This is summarised in

Table 4.6. For details, see Publication I.

Software engineering emphasises ways of managing complexity and

quality that rely on different perspectives on the software that is being

developed. The categories of developing seen here are similar to several

of the different views needed in many common software development

processes.

The implementation categories of both developing and tuple spaces are

47

Understanding Students Working with Concurrent Programs

obviously necessary for practical software development and in an assign-

ment where students are required to implement a tuple space. The solving

technical problems category can be seen as design. The specification the

students are provided with is more or less a finished architecture design.

Hence, students need not do any design other than determining the appro-

priate data structures and algorithms to use.

The change in perspective between solving technical problems and pro-

ducing an application parallels the change in perspective to include a

usage context outside the university seen in Subsection 4.1.5. The first two

categories of developing can also be considered facets of what Ben-David

Kolikant [6] calls the programmer’s perspective, which includes reasoning

in terms of both the concurrency model and the implementation.

The application production category, which is suited for requirements

analysis, is another unexpected example of going beyond the assignment’s

requirements into the real world. In assignments like this one, it can

distract students from the intended goal of producing a reliable imple-

mentation of a specification. The student may run into trouble when

programming professionally if he chooses to ignore specifications in favour

of his own interpretation of the requirements for the program. In this case,

the expectation that the student or programmer does not deviate from

the specification should be made clear. However, it can be argued that

students should be given opportunities in programming courses to practise

determining system requirements, as this is a useful skill for them.

The students showed a wide range of understandings of how a program is

developed, which was reflected in their development processes. The process

understandings are summarised in Table 4.7. For details, see Publication

II.

The six categories of development process models can be seen as a progres-

sion from an unstructured or informal development process to a structured

one. In the first category, the students saw no need for a structured process.

In the next two, they saw their lack of a structured process as a problem.

In the following category, a solution from the student’s earlier work is used

but found problematic. The two final categories reflect well-known and

accepted ways to find a solution to a programming problem.

The students had approaches to testing that reflected different under-

standings of the intent of testing. These are shown in Table 4.8. The

testing approaches range from the superficial and, by the students’ own

admissions, inadequate, to testing with increasing degrees of purposeful-

48

Understanding Students Working with Concurrent Programs

Label What is the process under-

stood as?

What is in focus? Framework

No design

needed

Writing code directly based on

requirements

Writing code Requirements and

code

Trial and error Writing code to find a solution

that meets requirements

What code works? Requirements and

code

Coding to un-

derstand

Writing code to understand the

requirements

Understanding

the requirements

Requirements and

code

Inertia from

previous work

Writing code based on own previ-

ous work

Writing code Requirements, code,

own experiences

Apply known

technique

Using a known technique to

structure the solution before im-

plementing it in code

Structuring the so-

lution

Requirements, code,

ways to structure code

Adapt known

solution

Writing code based on others’

previous work

Structuring the so-

lution

Requirements, code,

solution archetypes

Table 4.7. Software development process models

Label What is testing understood

as?

What is in focus? Framework

Unplanned Trying out the program to see if

it works

How program reacts to

input

Features, test

inputs and out-

puts

Breaking the

system

Trying to get defects to manifest

as failures

Finding inputs that

make the system fail

Features, test

inputs and out-

puts

Covering differ-

ent cases

Trying to show the program can

not fail

Finding a set of inputs

that gives sufficient reas-

surance the program will

not fail

Features, test

inputs, outputs

and coverage

External test-

ing support

needed

Trying to show the program can

not fail, which a programmer

cannot reliably do alone

Getting someone else to

find a set of inputs that

gives sufficient reassur-

ance the program will

not fail

Own testing

ability and

others’

Testing inade-

quate

Part of ensuring the program is

correct

Limitations of testing Own testing

ability and

others’

Proof necessary A complement to a correctness

proof

Limitations of testing Testing and

proving correct-

ness

Table 4.8. Testing approaches

49

Understanding Students Working with Concurrent Programs

ness, awareness of the limitations of testing and, finally, complementary

approaches to determining program correctness. Especially the last few

categories show an understanding of how nondeterministic program be-

haviour affects testing. For details, see Publication II.

4.2 Students’ Defects in Concurrent Programs

In order to determine what types of defects exist in students’ programs and

then work out how to effectively address them through e.g. changes to the

assignments or teaching or visualisation tools, I analysed the programs

written by students for all of the programming assignments in the 2005,

2007 and 2008 instances of the Concurrent Programming course.

As described in Section 4.1, this part was originally intended to be a

self-contained empirical study, but the classification of defects was found

to be difficult to perform and the phenomenographic study was done to

help understand how students approach the assignment in order to form

a meaningful classification of defects. For further details, see Publica-

tion III. How the classification changed is described in more detail in

Subsection 4.2.3.

4.2.1 Data Collection

The obvious source of information on defects in students’ programs is the

programs themselves. Furthermore, since students’ programming assign-

ments are graded by checking them for defects, the grading process already

incorporates much of the necessary defect detection work. This work was

done primarily by hand by myself and the other teaching assistants in the

Concurrent Programming course working according to specifications I pro-

vided. I checked the other assistants’ work and helped them as needed. For

the 2005 course, I did all the assessment myself. In 2006, another teaching

assistant did most of the assessment, in part using his own classification.

The results for this year are therefore omitted. Since 2007, assessment

of assignments in the course has been divided between several teaching

assistants. To ensure consistency, a defect classification I made based on

the 2005 results has been used as the basis for assessment.

Only the initial submissions of each assignment were considered, since re-

submissions would (hopefully) not add defects and would have complicated

the quantitative analysis.

50

Understanding Students Working with Concurrent Programs

4.2.2 Analysis

I have classified the defects found in the students’ programs using two

separate classifications. One classification is by the underlying error (to the

extent it can be determined), which helps determine what understanding

or skill the student lacks. In the other classification, defects are divided

based on whether the failures they cause occur deterministically.

Non-functional requirements (such as using a mechanism that is not

allowed) can be interpreted as resulting in failure by considering the ex-

ecution of a call to a forbidden feature as a failure or by considering the

operation to behave incorrectly. For example, threads that are supposedly

running on different machines would see separate locks instead of one.

Since many of the non-functional requirements in programming assign-

ments are based on a notional execution environment, it is natural to

use the failure induced by this type of error in the notional environment

for classification purposes. This also makes this classification by failure

consistent when notional limitations are made real, as in our Concurrent

Programming course.

Defects and failure are defined here with respect to the written assign-

ment specification, as interpreted by the person assessing the assignment.

Classifying Defects by Error

Errors can be classified by the task the programmer was performing when

he made the error. This allows one to easily determine the knowledge and

skills involved and provide feedback to the student to help him understand

his error.

Inadequate testing can be considered a separate problem as it does not

introduce defects into the code, although it (by definition) may prevent

defects from being found.

I initially formed this classification by grouping together defects based

on similarities in how they deviate from the corresponding correct so-

lution; this is conceptually similar to the goal/plan analysis of Spohrer

and Soloway [71]. With some minor refinements and additional defect

classes, this classification was used as a basis for assessment in 2007 and

2008. I combined these defect classes into larger classes based on the

distinctions I wanted to make when assessing the students’ programs. As

this classification proved to be impractical, I revised this classification

based on the refined classification of the defects and the results of the

phenomenographic study.

51

Understanding Students Working with Concurrent Programs

These classifications are presented in Subsection 4.2.3.

Classifying Defects by Failure

An alternative classification is by the type of failure; this is relevant for

testing and debugging.

Deterministic failures occur consistently with certain inputs and are

thus easy to reproduce. This allows traditional debugging, based on

repeated executions, single-stepping and breakpoints and examining

program states, to be used.

Nondeterministic failures are hard to duplicate. Debugging from ex-

ecution traces is thus easier than traditional debugging, since the

failure only needs to occur once while logging is being done.

This classification was done by examining the effect of each defect class

on program execution through testing and by reasoning about the effect of

the defect on the program’s behaviour.

4.2.3 Results

Initially, I constructed a classification based on the assessment criteria of

the Concurrent Programming course and on the classification of Eisenstadt

[21]. The results of this analysis can be found in [50]. Errors were divided

into:

Concurrency errors Concurrency-related misconceptions or design er-

rors

General programming errors Misconceptions or errors related to the

programming language or non-concurrent algorithms

Environment errors Errors related to the environment in which the

assignment was performed

Goal misunderstandings Misunderstandings of the requirements of the

assignment

Slips Slips or other careless errors

Unfortunately, only a small amount of the students’ errors could be unam-

biguously placed in one of the above categories; asking students to explain

the reasoning behind their entire solution in a written report did not give

52

Understanding Students Working with Concurrent Programs

enough information to reconstruct their errors. Another problem was that

some errors can fit into many classes.

As described in Section 4.1, one of the goals of the phenomenographic

analysis was to provide an understanding of how students understand

concurrent programming in order to analyse their defects meaningfully.

Hence, the outcome spaces described earlier in this chapter led to some

changes to the classification. While it would be possible to distinguish

between errors made in designing an algorithm to solve a problem and

implementing it, students did not seem to make this distinction in the way

they worked, as seen in Table 4.7. Hence, this distinction was removed.

Similarly, since no evidence was found that students divide programs or

the development thereof into sequential and concurrent parts, that distinc-

tion was also removed. Also, in a concurrent programming assignment,

most programming errors are in some way related to concurrency; the

question of where to draw the line has no clear answer. Some students

did, however, show an awareness of the difference between deterministic

and nondeterministic failures, as seen in Table 4.8. Table 4.7 also shows

that students may find understanding the requirements of the assignment

to be a source of difficulties that is great enough to structure their work

around. In Tables 4.4 and 4.5, examples of alternative understandings of

the goal of an assignment, which lead to understanding the requirements

differently, can be seen.

The distinction between the programming and the assignment envi-

ronments is made in order to determine which errors are irrelevant in

assessing the students’ concurrent programming knowledge and skill and

could be reduced or eliminated by changing the assignment.

The resulting categories are:

Requirement-related error A part of a specification has not been un-

derstood correctly or not been taken into account properly when

designing or implementing. Some understandings of the goals of a

programming task can lead to this. Explaining the requirement and

a failure in which it is violated should be enough to explain this type

of error to the programmer. Communicating requirements as tests

with a clear pass/fail indication can help programmers detect these.

Eliminating this type of error should be a priority when designing

programming assignments.

Programming environment-related error Misconceptions of the goals

53

Understanding Students Working with Concurrent Programs

of a programming task that relate to the target environment, such

as considering unbounded memory usage to not be a problem, can

result in this type of errors. Alternatively, there may be something

about the language, API or other aspect of the execution environment

the programmer has not understood, in which case explaining the

relevant aspect (e.g. by referencing a specification) may help. Finding

problems in students’ knowledge of a programming environment in

general can be helpful to them, but secondary in many advanced

courses to the actual topic of the course.

Assignment environment-related error Misconceptions about the frame-

work provided for a programming assignment can also result in errors.

These are distinguished from errors in the previous category in that

they relate to systems that are only used in this particular program-

ming assignment. Therefore, these errors, like the requirement-

related errors above, can be seen as indications that the assignment

is confusing. This type of error is avoided if no framework is provided

(as in the Reactor assignment); large amounts of this error suggest

that the framework is confusing and should be simplified.

Incorrect algorithm or implementation Programmers may introduce

errors when creating or implementing an algorithm. These errors

vary from creating an algorithm that does not work in all necessary

cases to forgetting to handle a case. Showing a programmer how his

code fails is enough if the error is not due to insufficient or incorrect

knowledge. A programming assignment should allow students to

make errors of this type, as they provide valuable indications of

deficiencies in the students’ knowledge or skill.

In each assignment, different subtypes of the aforementioned errors can be

distinguished. They are described in the following to the extent they merit

interest either by being common, surprising or because they have conse-

quences for the teaching or visualisation development. A more detailed

list of defects can be found in [51].

Table 4.9 shows, for the three yearly instances of the course that I have

analysed, the total amount of submitted programs and the amount of

defects found in each class in both the error- and failure-based classifica-

tions. Note that the amount of students decreases each year between the

assignments; this is due to students dropping out of the course.

54

Understanding Students Working with Concurrent Programs

Trains Reactor Tuple space

2005 2007 2008 2005 2007 2008 2005 2007 2008

Submissions 128 60 52 107 51 40 84 49 39

Requirement 53 10 11 93 112 38 93 49 21

Programming 3 0 0 15 11 1 0 0 0

Assignment 70 20 10 0 0 0 3 0 0

Incorrect 28 16 5 51 56 17 70 51 36

Deterministic 39 2 0 94 102 8 98 58 28

Nondeterministic 115 44 26 65 77 49 68 42 29

Total 154 46 26 159 179 57 166 100 57

Table 4.9. Defects found in assignments

The large amount of nondeterministically manifesting defects in students’

programs demonstrates a clear need for debugging tools that do not rely

on repeated execution and stepping as is the traditional approach. Instead,

the information needed for debugging should be captured for post-mortem

examination from a failing execution when it occurs.

Understanding Requirements

Initially, students had problems understanding the requirements of the

tasks correctly. Many of these problems were resolved by making it easier

for students to notice that they had misunderstood the requirements

by providing them with a testing environment in which following the

requirements was necessary to make the program work correctly. In other

words, notional limitations were made real. In the Trains assignment,

students’ code could easily access information about the simulated trains

that was not supposed to be available and communicate with each other

in ways that students were not allowed to use in the assignment. These

problems were eliminated in the 2006 version of the assignment through a

redesign of the simulator API. Similarly, in the Chat assignment, about

half of the requirement-related errors in 2005 were due to the requirement

to pretend that the chat system was running in a distributed environment.

In later years, the example code provided to the students set up a system

‘distributed’ over several processes, making this error much less common.

The intended semantics of the methods the students were to implement

were hard for some students to understand. These problems were easily

mitigated by clarifying the assignments and related material. A few of the

submitted Reactor implementations in 2005 submitted all events to all

event handlers. It was found that Schmidt’s pseudo-code for the Reactor

implementation [66] can also be interpreted this way; for the 2006 course,

I wrote a simpler explanation of the Reactor pattern that eliminated this

ambiguity. A similar ambiguity involved the amount of events to dispatch

55

Understanding Students Working with Concurrent Programs

for each call to handleEvents().

Until the students were provided with test packages in 2008, many

made changes to the Reactor API or the way it uses threads to simplify

the Reactor or the Hangman server. These errors account for roughly a

third of the requirement-related errors. Similarly, problems with input

and output formats and the rules of the Hangman game were common

until the test packages were introduced. The semantics of the tuple space

also caused problems. Most of these errors involved limiting the tuples in

some way, such as considering the first element in a tuple to be a String

used as a key as in the textbook. Some solutions changed the blocking,

matching or copying semantics of the get operation. The most commonly

ignored requirement of the chat system’s functionality was that messages

stay in order. Again, the test packages helped students discover their

misunderstandings.

Many problems were related to keeping memory use under control. The

most commonly ignored requirement was to ensure that the Reactor does

not buffer an arbitrary amount of data if it cannot handle events quickly

enough. In 2005 and 2006, this was not considered a problem, but in 2007

and 2008 it was found to occur in the majority of submitted solutions. The

fact that it remained common in 2008 is probably due to the fact that the

test package did not include a test case for this scenario, which it does now.

The increase in defects between 2005 and 2007 can be mostly ascribed to

this change in requirements.

Cleaning up after a handle is removed from use also appears to often

have problems, as does ensuring memory use stays within reasonable

limits. Similarly, getting rid of unused tuples is a difficult area, accounting

for roughly a third of the errors in this category. In some cases (especially

those where no cleaning up is done at all), this could be because cleanup

is not considered by the student to be relevant to the assignment (i.e. the

intended execution environment is not understood to have limited mem-

ory). However, most of the reports of students with this error suggest

an awareness of memory limitations and a choice to use a simple algo-

rithm that wastes memory rather than a complex one that conserves it,

suggesting this is a compromise to save time and/or decrease chances of

a programming error. This and the understandings of goals in Table 4.6

suggest that one could encourage students to be more careful with memory

management by demonstrating how failure to clean up unused data can

lead to failure and that it will be considered an important factor when

56

Understanding Students Working with Concurrent Programs

their assignments are assessed.

In the Trains assignment, a deterministic failure would occur in every

possible execution, making it easy to detect. It is therefore not surprising

that all the deterministic failures are due to misunderstandings of the

requirements.

Understanding the Programming Environment

In line with the results of Spohrer and Soloway [71], very few of the errors

were programming environment-related. Example code was provided to

illustrate the use of problematic constructs (opening sockets on free TCP

ports, the break statement in Java).

Understanding the Assignment Environment

The train simulator used in the first assignment proved to pose problems of

its own by introducing issues of train length, speed and timing that cause

problems for students unrelated to the learning goals of the assignment

and hence distract the student from the concurrent programming the

assignment is about. This was one reason why the Trains assignment was

replaced.

Incorrect Algorithms or Implementations

Errors involving incorrect algorithms or implementations are of particular

interest for several reasons. Unlike the other categories of error described

above, it is not desirable to modify the assignments to eliminate these

errors. On the contrary, the assignments can be seen as a test of the

students’ understandings and skills; errors of this type are symptoms

of insufficient or incorrect understandings or lack of skill. These are

the errors we want students to understand and learn from. Hence, the

visualisation design in Section 5 is strongly affected by these.

A large part of the errors in the Train assignment were in the train

segment reservation code. Some solutions consisted of subsolutions that

did not combine properly (Mismatch between Modules as described by

Knuth [40]) or relied on train events happening in a specific order. Oth-

ers had more localised problems. A few unnecessarily complex solutions

introduced the possibility of deadlock by making segment reservation or

release involve a sequence of operations that could be interrupted by the

other train.

Similarly, many Reactor solutions, especially in 2007, failed to correctly

handle events that were left undispatched after handle removal or received

57

Understanding Students Working with Concurrent Programs

after handle removal. Some failed in other ways to correctly remove

handles from use. The increase in 2007 may be due to improved assessment

guidelines. Again, the testing package makes this type of error easier to

detect but not necessarily understand or correct.

Several different cases were found of incorrect buffer management algo-

rithms in the Reactor implementation, such as misusing status variables,

circular locking dependencies, notifying the wrong thread or at the wrong

point, or overwriting or losing messages. Only a few cases of using col-

lections or variables without necessary synchronisation were, however,

found.

The tuple space proved to be unproblematic to implement. Only a few

cases of critical sections having the wrong extent and notify() being used

instead of notifyAll() were found. More common was for the tuple space

to match patterns against tuples incorrectly. A few solutions also corrupted

their own data structures while executing.

Initialisation proved to be surprisingly problematic, especially, interest-

ingly enough, the ChatServer constructor for connecting to an existing chat

system, which often did not replace all the tuples it got. This invariably

causes the system to deadlock when the third server node is connected.

Outside this method, forgetting to replace tuples was uncommon.

The buffer of messages that the chat system has to maintain for each

channel proved to be problematic, with failure to handle a full buffer or

simultaneous writes, insufficient locking of the buffer or related sequence

numbers and indices being common in 2005 and 2007. The reason for the

sudden decrease in 2008 is unknown. Circular locking dependencies, on

the other hand, became much more common in 2008.

Only a few errors were obvious implementation slips, such as forgetting a

break or else, parenthesising a logical expression wrong, making an array

one element too small or accidentally duplicating or commenting out code,

starting a thread twice, and using a stack instead of a queue.

4.3 Conclusions

Students often misunderstand requirements. Without a way to easily check

that their program meets all the requirements, it is hard for students to

notice that they have made an error in understanding the requirements.

Giving the students test code helps them discover such errors. However,

they may still decide to ignore a requirement if doing so makes the as-

58

Understanding Students Working with Concurrent Programs

signment simpler. In particular, students are often accepting of memory

leaks.

The Trains assignment introduced several needless complications, such

as inertia and sensor positioning. Errors related to these complications

resulted in several defects that were hard to detect and diagnose. This

contributed to the decision to replace this assignment.

Incorrect interactions between different parts of students’ solutions ac-

counted for many of the defects in students’ programs. This was in part

because many such defects do not result in failure unless different features

of the program are combined in a certain way. Also, such failures often

involve causes and effects that are in separate parts of the program. Both

of these are reasons that Eisenstadt [21] presents for bugs being hard to

find. Many defects involve incorrect algorithms.

Many of these defects do not consistently result in failure, making them

hard to detect and analyse. Also, the symptoms of many failures are dead-

locks and involve incorrect interaction between threads. In the following

chapter, I describe the program visualisation tool I constructed to help

students deal with these defects.

59

Understanding Students Working with Concurrent Programs

60

5. Visualisation System Design and

Implementation

Based on the empirical results in Chapter 4, I designed and implemented

a visualisation system called Atropos to help students understand what

happens in a concurrent program, especially when it does not behave as

expected.

The research questions for this part of the research were:

3. What is a ‘good’ visualisation of incorrect executions of concurrent pro-

grams, where ‘good’ means a visualisation that can enable students to

find and to understand the underlying defects in their programs?

4. How can such a visualisation be created algorithmically from an execu-

tion of a program?

This answers the question: “How can the needs from the previous part

best be addressed through visualisation?”

In this chapter, I present the reasoning why it seems that Atropos pro-

duces a ‘good’ visualisation in this sense and how it does it. Whether

Atropos actually is ‘good’ is addressed in Section 5.3 and Chapter 6.

The design is described in more detail in Publication V and the imple-

mentation in Publication IV.

The visualisation is primarily intended for errors related to incorrect

algorithms or implementation or the programming environment, as ex-

plained in Subsection 4.2.3, since showing students how their programs

behave in this context is most likely to help them. In contrast, changes to

the assignments were made and students provided with test packages in or-

der to eliminate requirement-related and assignment environment-related

errors.

Atropos is primarily intended to be used by students independently to

61

Visualisation System Design and Implementation

��������	��
��
����� ���	�
���	�� ������	�
���	��������������

�������� �������������������
�����������

�������������������
���
�����	���

Figure 5.1. Information flow between parts of Atropos

find and correct defects in their programs and learn from their mistakes.

In addition, it can be used by teaching staff to explain how concurrent

programs work or why a student’s program fails to work correctly, or by

students to explore the behaviour of concurrent programs.

As noted in Section 2.3.1, the slicing strategy provides a clearly-defined

systematic way to trace backwards through a program from a symptom to

the failure that caused it and hence identify the underlying defect. It also

requires tool support to be effective, and, as noted in Section 2.4.2, it has

been shown to help novice programmers at least.

DDGs are of particular interest for concurrent programs, as interactions

between threads are clearly shown as edges. This means that a DDG can

help students identify unexpected interactions between threads. By show-

ing how different parts of a program interact, they can also help find causes

for program behaviour even if they are in another part of the program

(which would be useful, as explained in Section 4.3) and isolate relevant

information from a large trace. Using execution traces also removes the

need to re-execute the program when examining defects that nondetermin-

istically manifest as failure; as noted in Subsection 4.2.3 they constitute

a large part of the defects students fail to eliminate from their programs.

Also, many defects involve insufficient or incorrect synchronisation and

can result in data races.

For these reasons, Atropos was designed to enable its users to explore a

DDG and help them effectively apply a backward debugging strategy to a

concurrent program. In essence, for every line of code that was executed in

a program, Atropos can show why it was executed and where the data it

used came from.

Atropos, like the replay systems described in Subsection 2.4.1, generates

an execution trace file that can be replayed at a later date. This is partic-

ularly useful in our context: a teaching assistant can send a student an

execution trace file that demonstrates defects that the assistant found in

the student’s code, allowing the student to examine the failing execution

in more detail.

62

Visualisation System Design and Implementation

The execution traces are collected through bytecode instrumentation

of class files. For simplicity, compatibility and ease of debugging the

instrumenter, this is done by creating instrumented copies of the class files

before execution.

The trace files are then used to direct the replay and dependence analysis

of the program; the result of this is a dynamic dependence graph of the

execution. This graph can then be explored through the visualisation.

This process is summarised in Figure 5.1. In the following sections, I

explain the parts of the process in detail. As a running example, I use the

program in Appendix B.

5.1 Collecting and Replaying Execution Traces with Dynamic

Dependence Analysis

In this section, I describe how Atropos collects execution traces and pro-

duces a dynamic dependence graph from them. Details can be found

in Publication IV.

The replay and runtime analysis-based tools mentioned in Subsection 2.4.1

proved problematic due to their modifications to the JVM, instrumentation

or their assumptions on the programs they collect information on, espe-

cially their inability to handle data races. These issues limit the possible

executions in such a way that many educationally relevant types of failure

can not be examined. The instrumentation used by ODB [46] effectively

prevents data races through the synchronisation it uses. RetroVue was

ruled out because its source code is not available.

Another problem with most of the existing replay software is that it

is geared toward reproducing execution to allow it to be examined in a

traditional, state-oriented, debugger. This is impractical for more complex

analysis of data flow or inter-thread interaction.

Since bytecode instrumentation is a more appropriate approach, it makes

sense to extend an existing bytecode-based execution tracing system. Al-

though ODB would also have been appropriate as the basis for imple-

menting the tool we need, I chose to extend the instrumenter used in my

previous tool MVT. In addition to the advantage of familiarity, it has two

additional advantages. Its instrumenter was already in use in the test

packages in our Concurrent Programming course, which makes it easier

to integrate Atropos with the tests used in the course. The test packages

primarily consist of JUnit [38] tests using the GroboUtils [29] extensions

63

Visualisation System Design and Implementation

for multithreading. In order to improve the chances of interleavings that

result in failure occurring, a bytecode instrumenter derived from MVT is

used to add random delays in a manner similar to that described by Goetz

et al. [26] or Stoller [74]. Also, MVT was developed with the intention of

extending it to generate DDGs [49].

5.1.1 Instrumentation and Execution Trace Collection

Atropos uses BCEL [15] to instrument Java programs to collect execution

traces. The execution trace consists of a partially ordered sequence of

executed JVM operations and any data manipulated by these other than

operand stack values and local variables (i.e. any data that cannot be

easily reconstructed by executing simple and deterministic operations).

The sequence is partially ordered because, as noted in Subsection 2.1.1,

the behaviour of shared memory in Java is based on the partial order of

the happens-before relationship, and some operations can occur simultane-

ously.

Also, it is desirable for the instrumentation to not induce additional

happens-before relationships between existing actions, as this could elimi-

nate data races that we wish to examine. To do this, the instrumentation

must use thread-local data structures to collect information on thread-local

operations. Obviously, shared data structures are necessary to collect

information on inter-thread interaction. If a happens-before b, the in-

strumentation can record this by storing an identifier for a in a variable

associated with the mechanism used to induce the happens-before rela-

tionship with b. The instrumentation can then, after b is executed, safely

read this identifier, thanks to the happens-before relationship, at which

point the instrumentation for b has identified the happens-before relation-

ship. Atropos adds fields to objects to track who last held a lock and when

try released it. Similarly, volatile variables are replaced with objects

containing a value of the original variable and which operation wrote the

value.

In the example in Appendix B, the instrumenter replaces volatile

boolean variables wantp and wantq with volatile VolatileBoolean vari-

ables called $_$volwantp and $_$volwantq. The VolatileBoolean objects

contain long fields identifying the thread and operation that wrote the

last value to the original variable as well as a boolean field containing the

value itself. Read and write operations are also replaced. For example,

in line 19, the original wantp = true compiles to the following (simplified

64

Visualisation System Design and Implementation

from the output of javap):

12: iconst_1

13: putstatic boolean Second.wantp

After instrumentation, this becomes:

49: iconst_1

50: invokestatic void DebugCalls.preNoInputs()

53: new VolatileBoolean

56: dup_x1

57: dup_x1

58: pop

59: invokestatic long DebugCalls.getId()

62: invokestatic long DebugCalls.getOp()

65: invokespecial VolatileBoolean(boolean, long, long)

68: putstatic VolatileBoolean Second.$_$volwantp

71: invokestatic void DebugCalls.postNoValue()

Methods DebugCalls.preNoInputs() and DebugCalls.postNoValue() are

used to log that an operation was started and finished (in order to deter-

mine whether the thread reached and executed this instruction), but what

instruction was executed and the value that was written can be recon-

structed from the results of earlier operations.

The read of wantq is similarly converted from:

0: getstatic boolean Second.wantq

to:

9: invokestatic void DebugCalls.preNoInputs()

12: getstatic VolatileBoolean Second.$_$volwantq

15: dup

16: ifnonnull 26

19: pop

20: getstatic boolean Second.wantq

23: goto 29

26: invokevirtual boolean VolatileBoolean.readObject()

29: nop

30: dup

31: invokestatic void DebugCalls.postIntOut(int)

65

Visualisation System Design and Implementation

Note that the original volatile variables are used in the read operation

if the replacement does not have a value; this allows the default values

of these variables to be handled as usual. VolatileBoolean.readObject()

not only returns the value encapsulated in the VolatileBoolean, it logs

the thread that wrote it. DebugCalls.postIntOut(int) is used to log an

int value that cannot be reconstructed.

When a thread’s list of operations exceeds the size limit or the thread or

JVM terminates, the thread’s list of operations is dumped to disk. At this

point, object references are resolved to unique id numbers using a global

table of weak references, allowing objects that are no longer in use to be

garbage collected. This table is protected by a synchronized lock; in order

to minimise the effect of the instrumentation on how threads interleave, it

is desirable to minimise accesses to it while a thread is still running. After

the JVM terminates, the lists of operations are compressed in a ZIP file.

5.1.2 Replay and Dynamic Dependence Analysis

Rather than performing straightforward replay of a concurrent execution,

Atropos replays the program in its own interpreter, which constructs a

dynamic dependence graph of the execution. Any thread is allowed to

execute for which everything that should have happened-before the cur-

rent operation has already been executed; in other words, everything is

executed in an order consistent with the happens-before order. In the

absence of data races, this ensures that whenever a variable is read, it

has an unambiguous value and the last write that was performed is the

value that was read. In the example, when the log entry generated by

VolatileBoolean.readObject() is reached, the replay engine only contin-

ues the execution after the write operation indicated in the log entry has

been executed.

The replay in happens-before order allows a vector timestamp for each

operation to be created as described by Mattern [56], with happens-before

relationships forming the messages of Mattern’s vector clock algorithm.

However, since we allow data races to occur, many different values for a

variable may be available for reading at a time. When a read is performed,

the corresponding write operation must be found from the set of writes

that it is allowed to observe [27, §17.4]. This set of observable writes can

easily be determined by using the vector timestamps described above to

find the last operations in each thread that happened-before the read.

Re-ordering of operations may cause writes that are later than reads [27,

66

Visualisation System Design and Implementation

§17.4.5]; the data dependency must then be determined at a later time.

This does not affect the replay itself; it merely means a placeholder must

be left for replacement with the correct data dependency after the right

write operation has been performed. In this case, it becomes necessary

to make sure the write does not happen-after the read, but otherwise the

process is the same as above.

Control dependencies are traditionally calculated statically, and in any

case, as explained in the following section, they are not relevant to our

visualisation.

5.1.3 Technical Evaluation

In order to determine whether using Atropos is technically feasible in

our context, I collected traces from stress tests of all 40 of the students’

solutions to the Reactor assignment of our Concurrent Programming course

in 2010. The stress test (from the test package provided to the students)

feeds 1000 messages from each of 20 threads into one of 20 handles in an

attempt to find synchronisation problems. This is repeated 50 times. The

issues examined were the sizes of the traces, how much slower the testing

was when collecting execution traces and whether collecting the traces

prevented the tests from failing in the presence of defects.

The tests described in this section were all done on a 64-bit Ubuntu 10.04

workstation with an Intel Core 2 Quad Q9400 CPU and 4 GB of RAM.

Size of Traces

The execution traces were, unsurprisingly, very large in the case of stress

tests. The traces had an uncompressed mean size of 1.7 GB, a maximum

size of 13 GB and a median size of 0.93 GB. When compressed, the mean

was 110 MB, the maximum 460 MB and the median 85 MB. Although this

means a large chunk (limited by how much data can be written before

the test times out) of temporary disk space is necessary, the final file

size is manageable. Also, most of the executions that were aborted due

to incorrect output had traces of only 2–3 MB (uncompressed), since the

stress test caused a failure early in the execution. This suggests that trace

size is unlikely to be a problem if stress tests are divided into smaller parts

to avoid having to store and replay several minutes of correct behaviour

that is of little relevance when debugging.

Performing the dependence analysis is often problematic since Atropos

constructs the entire DDG in memory. In practice, this means that traces

67

Visualisation System Design and Implementation

may not be larger than a few megabytes. Again, this can be mitigated by

finding test cases in which failures occur and are detected as quickly as

possible.

5.1.4 Performance Loss Caused by Instrumentation

Considering only the executions that completed successfully (since the fail-

ures were not necessarily in the same place), instrumenting the programs

to trace the execution caused the time used by the stress test to increase

on average to 10.2 times the original execution time; the median slowdown

factor was 5.27. One test was only 25% slower; the Reactor implementation

in question is otherwise efficient but creates a new thread for each event,

causing an overhead that dwarfs that of the instrumentation. The two

worst slowdowns were by factors of 69.5 and 35.4, both with Reactor imple-

mentations that allow each thread to feed unlimited amounts of data into

the buffer without ever waiting for it to be processed. While there is very

little overhead from switching between threads in this type of solution,

they run the risk of running out of memory.

While the instrumentation introduces noticeable overhead, much of this

is masked by overhead from e.g. creating or switching between threads.

The mean time for the instrumented stress tests was 127 seconds, the

median 75.5 seconds, the minimum 44.9 seconds and the maximum 739

seconds. Without instrumentation, the mean was 17.9 seconds, the median

15.0 seconds, the minimum 3.8 seconds and the maximum 59.9 seconds.

This means that for most students, the stress test will be completed within

a reasonable time despite the instrumentation.

5.1.5 Effect on Failure Occurrence

To evaluate whether the execution tracing prevents failures from mani-

festing in incorrect programs, I reran the stress test 10 times with and

without instrumentation on the Reactor implementations in which a fail-

ure caused by a race condition was detected by the test package (without

the instrumentation). All three programs exhibited race conditions that

consistently caused the stress test to fail both with and without the tracing.

One of the programs, a very inefficient implementation, was slow enough

that the overhead from the instrumentation consistently caused the test to

time out before a failure occurred. This can be remedied by adjusting the

timeouts to compensate for the instrumentation overhead.

68

Visualisation System Design and Implementation

5.2 Visualising Dynamic Dependence Graphs

When Atropos has replayed the execution of the program and constructed

its DDG, it can be explored using the visualisation facilities of Atropos. As

the full DDG of a program execution is likely to be very large, only a small

portion that the user has explicitly requested is shown. Essentially, the

visualisation explains what happened in an operation in terms of previous

operations. Once the user has found an operation that does the wrong

thing despite being executed at the right time and operating on the right

data, he has found code involved in a defect.

5.2.1 Visual Representations

Since a DDG is a graph, one can make use of well-known visual representa-

tions for graphs in visualising a DDG. Operations and dependencies must

be labelled so that the user can identify them. Directed labelled graphs

are often represented as labels (often surrounded by a rectangle or similar

container) representing vertices connected by arrows representing edges.

Operations are by default grouped together by lines, as is traditional

in debuggers. Each operation is labelled with the number of the line of

code and the line itself. The shape of the line of code makes a rectangle a

natural choice of container.

In order to show execution order in an intuitive fashion, vertices are

arranged chronologically from top to bottom as a layered graph [16]. If one

operation happened before another, it will be above it. Two vertices being

next to each other means that neither is known to have preceded the other.

The vertical layout uses space more efficiently than a horizontal one when

there are many vertices in a thread and labels are long.

Vertices are horizontally positioned by thread. Above the vertices that

belong to the execution of a method call, the name of the method and the

object or class on which it was called is shown, together with the arguments

to the call. Indentation is used to indicate nesting of method calls.

Dependencies between operations are shown as arrows between vertices.

Data produced by one operation and used by another are labelled with the

variable name (where applicable) and the value.

69

Visualisation System Design and Implementation

Figure 5.2. Atropos showing the ends of the thread executions in a trace of Second

5.2.2 Navigating the DDG

The visualisation uses the termination of the threads in the program as

starting points. It is assumed that at least one of these corresponds to a

symptom. This could be:

• A thread terminating abnormally due to an uncaught exception;

• A thread detecting incorrect behaviour and aborting itself or the whole

program; unit tests and other assertions usually behave like this;

• A thread being stuck in a deadlock.

Once the user has opened a trace, the list at the top of the window shows

the starting points for the DDG. By choosing the right thread to examine,

the user can work backwards from the thread termination to the failure

that caused it.

Let us look at one possible execution of the example in Appendix B,

Second. Opening the trace of this execution in Atropos results in the

view in Figure 5.2. For debugging purposes, the interesting operation is

the one in thread 5 (highlighted) that terminated the program by calling

System.exit(1).

To keep the visible graph manageable, all dependencies of vertices are

hidden unless the user requests that they be shown, which may cause more

vertices to be shown. To show where a value read by an operation came

from, one can choose the relevant value from the list of data sources of the

vertex. Similarly, to show where a value written by the operation was used,

one can select the value from the list of data uses of the vertex. There

are also commands to show all data sources and uses. The last branching

operation, such as if or while can be shown. This is easier to understand

70

Visualisation System Design and Implementation

Figure 5.3. Atropos showing an incorrect value causing the program to abort

Figure 5.4. Atropos showing unexpected changes in a counter variable

and calculate than a control dependency.

In the example, it is obvious that the value of inCS is of interest, since

the program specifically aborted its execution because the value was out of

range. By checking the value of inCS that was read by this condition, we

see that it was found to be -1, which is an incorrect value for a count of

threads in a critical section. This is shown in Figure 5.3.

The next step is to determine why the value of inCS is incorrect. If inCS

was decreased from 0 to -1 when exiting a critical section, the value of

inCS must be been incorrect earlier. Using this reasoning, the changes to

inCS are examined, revealing a sequence in which an increment of inCS

is followed by two decrements; in other words, two threads exiting the

critical section after each other without anyone entering it. This is shown

in Figure 5.4.

71

Visualisation System Design and Implementation

Figure 5.5. Atropos showing failure to uphold mutual exclusion

This raises the question of how the example program got into a state

where two threads are in the critical section at once. By checking how

the program branched to reach these two successive decrements of inCS,

one can find the operations where the threads exited their wait loops. By

checking which values were read by these operations, one can see that

the value of wantq that was read was the initial value of false and the

value of wantp was written on exiting the critical section. These values

are both correct in the situation where both threads are at the start of

their cycles. Indeed, the problem seems to be that the threads do not see

the other thread trying to enter the critical section. By examining what

happens after the threads decide to enter the critical section, one can see

that the threads do not indicate their intent to enter the critical section

until the other has already decided to do so; by almost simultaneously

checking whether they can enter the critical section, they can both do so at

once. The result of these steps is shown in Figure 5.5.

Although this explains the problem with the mutual exclusion in the

example, it does not explain why inCS became negative. By checking where

the different values of inCS were used, it can be found that both threads

read, incremented and wrote inCS at the same time, causing one of the

increments to be lost. This is shown in Figure 5.6.

72

Visualisation System Design and Implementation

Figure 5.6. Atropos showing a race between two increment operations

Since students work with concurrent data structures such as tuple spaces

at multiple levels of abstraction, as noted in Subsection 4.1.4, Atropos

provides a way for users to raise the level of abstraction and remove

implementation details from the visualisation by grouping together lines

executed as part of a method call to a single vertex.

Figure 5.7 shows a visualisation of another example trace. The graph

shows an execution of the incorrect concurrent sorting program used in

the evaluation in Chapter 6 and reproduced in Section A.2. The program

contains a circular locking dependency: the input tuple removed from the

tuple space on line 19 and returned to it on line 40 may be needed by

another thread at line 30.

Here, the place where two threads deadlock has been used as a starting

point for exploration. By following the data dependencies backwards

(the arrows shown, labelled with the data that was transferred), it has

been determined which tuples are being waited for (the index i in the

for loops). The tuples removed at the start of the execution of these two

threads are also shown, together with the sources of the indices of the

tuples that were removed. To keep the screenshot simple, many of the

dependencies explored to find this information have been hidden. The

process we expected students to use with Atropos is described further in

Subsection 6.3.4.

73

Visualisation System Design and Implementation

Figure 5.7. Atropos showing a deadlocked sorting algorithm

5.3 Discussion

Simplicity was a key criterion in the design of Atropos. One aspect of this

was that it should contain only the DDG visualisation and the features

necessary to support a backward debugging strategy. This would allow

the DDG visualisation to be evaluated on its own, rather than as one

potentially ignored feature among many. Also, keeping the feature set

small decreased both development time and the time to learn the system.

However, as shown in Chapter 6, using only a DDG is not practical, and it

would have been more useful to have complementary visualisations. This

is discussed further in Subsection 6.3.4.

One problem with the layered graph layout is that vertices often overlap

each other or edge labels. This was addressed by adding the ability to drag

vertices to other positions.

The traces collected by Atropos typically contain a very large amount of

74

Visualisation System Design and Implementation

data values that have been read under data-race free conditions. These

values can be reconstructed based on the happens-before order, which

means that they can be removed from the trace files. This ought to make

the trace files roughly as small as those in data-race-unaware replay

systems.

The size of the in-memory representation of the DDG is a much larger

scalability problem and one for which no easy solution exists. This can be

avoided, in part, by keeping executions short.

75

Visualisation System Design and Implementation

76

6. How Students Make Use of the

Visualisation

Once Atropos was implemented and working, evaluating it was clearly the

next step. The research questions addressed in this chapter are:

5. How does the visualisation of program executions help students under-

stand and debug defective concurrent programs?

6. How could the visualisation be improved to further help students in

these tasks?

Using the answers to these questions, we can answer the question: “In

what ways did the visualisation in the previous part assist the students?”

To answer these research questions, a study of how students use Atropos

was made. The additional research questions were:

7. What information and understandings do students get when using

Atropos?

8. What information are they looking for? In particular, what information

do they try to get, but fail?

9. How are they using Atropos? What operations are they using? What is

their strategy for finding the information they want?

The evaluation was done during the sessions for the last round of exercises

in the 2010 instance of the course, as described in Section 3.2. The tasks

in this round are described in Appendix A.

Originally, the study was intended to include a quantitative comparison

of student performance using Atropos and not using Atropos. Hence, the

77

How Students Make Use of the Visualisation

students were divided into two groups: A and B. The first and third tasks

were intended to evaluate what the students know, while the second and

fourth tasks were intended to compare how the students work with and

without visualisation. Group A used Atropos in task 2 but not in task 4.

Group B used Atropos in task 4 but not in task 2. However, since only 21

students participated in the sessions (in part, due to students dropping out

of the course; 79 students registered for the course, but only 37 students

took the exam at the end of the course), the quantitative comparison was

left out of the study.

Also, even though the sessions were extended from the original two hours

to allow students to complete their work (in one case almost up to four

hours), none of the pairs completed task 4. Hence, the focus in this study

is on a qualitative analysis of task 2, which is the task most relevant to

the research questions.

A mixed-method research design [37] that is primarily qualitative was

used. Some quantitative analysis was added to support the conclusions of

the qualitative analysis.

For more details, especially quotes that illustrate the categories, see Pub-

lication VI.

6.1 Data Collection

The conversations of the participating pairs of students and the contents

of the screen(s) of the computer(s) they used were recorded using a micro-

phone and video screen capture software. The students were required to

work in pairs; the students themselves chose whom to work with. This was

done in order to encourage them to verbalise their thoughts and to discuss

their plans and approaches to the tasks.

Ten pairs of students participated. Two of the pairs have been left

out due to lack of usable recordings of conversations to analyse, caused

by technical problems in recording. One of the groups that was left out

conversed in French, which would have been problematic to analyse. Four

of the remaining pairs of students were in group A and four in group B. The

following analysis focuses on the qualitative aspects and on evaluating the

visualisation, specifically the second task as performed by the three pairs

in group A who worked on task 2 during the sessions: Charles and Ada

(46 minutes), Peter and John (45 minutes) and Brian and Dennis (51–53

minutes; these students worked independently on different tasks at some

78

How Students Make Use of the Visualisation

points)1. They were all in group A and spoke Finnish.

6.2 Analysis

The analysis was based on determining the operation foci of the students;

what they are doing in terms of concrete activities that are part of con-

structing a solution to their problem. Operation foci are determined by the

subgoal students are trying to achieve at a given time.

The first version of the operation foci was created before the data were

collected, based on the operation foci described by Yehezkel et al. [81] and

the activities of Kiesmüller [39]. During the analysis, the categories were

refined to form the categories shown in Table 6.1. The foci are identified

by numbers; in the case of subfoci, a letter is appended.

The descriptions of students’ operation foci form a large part of the

answer to RQs 7, 8 and 9. Also, the operation foci related to Atropos

highlight issues that answer RQs 5 and 6. In preparation for analysis,

the usable parts of the recordings were transcribed and translated into

English. Actions performed on the computers by the students and their

results were added to the transcript to aid in the analysis.

Initially, the analysis was done by attempting to place each statement in

one category for each of the above classifications using a spreadsheet. This

emphasised individual statements outside their context and gave little

support for effectively expressing structure within categories. Hence, we

switched to expressing the transcript like a script and forming quotations

from contiguous stretches of text. The quotations were linked to codes that

were organised into the categories presented below. I did this analysis

using ATLAS.ti.

The categories changed somewhat during the analysis based on the data.

In particular, the foci that did not fit into the original categories were used

to refine the categories. The operation foci and the coding of one group of

students were checked by Lauri Malmi and adjusted until a consensus was

reached.

1The students’ names have been changed.

79

How Students Make Use of the Visualisation

1 Understand Program Code E.g. reading the source code and looking at how parts

interrelate

1A Understand the Program to Debug Understanding the program that the students

should debug (in static terms)

1B Understand Other Available Code Understanding other code involved in the task

(e.g. library code, concurrency constructs)

2 Add Debug Code

3 Modify Code

3A Fix Bugs

4 Formulate Hypotheses Formulate and discuss hypotheses about what a program

does and how it differs from the intended behaviour

5 Run the Program

6 Observe Program Behaviour Observe the program behaviour e.g. by reading console

output or log files or by looking at the visualisation

6A Explore a Trace Decide what to look at next in an execution trace, including trying

out different commands in Atropos to find something useful

6B Interpret Observations Discussion of representations of program behaviour and

what they mean in terms of the program’s execution

6C Unexpected Atropos Behaviour Discussion of how Atropos does not behave as

expected by the students and working to get it to act as expected

7 Determine Correctness Check that a program works correctly

7A Compare Desired and Observed behaviour

7B Create Test Cases Plan and set up test cases and executions

7C Analyse a Class of Scenarios Statically Discuss and examine how the code reacts

to a type of situation

8 Determine Goals Any activity related to understanding the desired behaviour of the

program

9 Understand Atropos All activities with the goal of understanding Atropos, not

directly trying to achieve anything related to the task (e.g. reading Atropos’s manual)

10 Present Solution to Assistant

11 Prepare Prepare for other operation focus

11A Create a Trace Work on and discuss how to create a trace, assuming the test case

has already been decided

11B Prepare Code Prepare code or software for another operation focus

11C Set Up and Start Atropos Get Atropos running, up to and including loading a

trace

Table 6.1. Operation foci

80

How Students Make Use of the Visualisation

� � � � � � � 	
 �� ��

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�������
���
	���
��������
�
	
����
��

������

��
������

���������
�

�
��
����	��
�
������������
���

�
��������
�
�	��
�

��������
���

�
���
���

(a) Charles and Ada

� � � � � � � 	
 �� ��

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��������	

�����	
���
�����
������	

����������

�������
�
��	

��
���	

��������	
����
�
������

��������	
���	���
���������

�����	
��������	

���
�����	

�������

(b) Peter and John

� � � � � � � 	
 �� ��

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��������	

����
���	

����	

���
�����	

����
�

(c) Brian and Dennis

Figure 6.1. Operation foci over time for each group

6.3 Results

In this section, the results of the analysis are summarised in the form of

diagrams of operation foci over time for groups of students (see Figure 6.1).

In the diagrams, the Y axis shows time from the start of the recording

(in hours and minutes). The X axis is labelled with the number of the

operation focus (as shown in Table 6.1). Sections of student activity for

which an operation focus has been found are marked as vertical lines

with start and end markers. To aid in understanding the diagrams, the

students’ activities have been divided into parts marked with red boxes

labelled with a description of the activities.

81

How Students Make Use of the Visualisation

6.3.1 What Students Try to Achieve with Atropos

One approach to answering RQ 8 is to look at why students use Atropos;

how it fits into their process of solving a debugging task.

Like Isohanni and Knobelsdorf [34] found, some students do not use the

provided visualisation tool even when instructed to do so or only use it in a

limited fashion. Students seem to use Atropos because they are told to do

so, not because they see a need for it. Some of the students did not even

start Atropos until after they felt they had identified the bug. Considering

that they are clearly trying to Understand Atropos (9) for much of the

beginning of the task, this suggests that most of the students had never

used Atropos before. This is strange, since Atropos was used in one of

the tasks in the previous round of exercises. This suggests that Atropos

would need to be better integrated with the rest of the course to convince

students to use it. Indeed, one of the students explicitly suggested that

the course should include at least a mini-lecture on how to apply Atropos

effectively. The experiences of Isohanni and Knobelsdorf [34] suggest that

this may not be enough, but their experiences may be due to the fact that

VIP was not directly connected to debugging strategies. Giving students

a visualisation tool that supports a new way of working (for example, a

debugging strategy) is probably not sufficient to teach them this way of

working unless the visualisation tool explicitly provides guidance on how

it can be used. I will return to the question of how the visualisation can

guide students in Subsection 6.3.4.

6.3.2 Identifying Incorrect Behaviour

Once the students believe they have fixed a bug, they will hopefully Deter-

mine Correctness (7) of the program. As noted by Ben-David Kolikant

[7], Ben-David Kolikant and Ben-Ari [8], students may not agree with the

professional definition of correctness, which is that the program is effi-

cient, legible, documented, modular and always produces the right output

irrespective of input and thread interleavings. Some students’ behaviour

seems to be more consistent with seeing a correct program as one a teaching

assistant will accept as correct or simply not, as suggested by Ben-David

Kolikant and Ben-Ari [8], considering the possibility that they may have

made an error. For example, at the end of the task, Charles and Ada make

a change to the program, run it and then decide to present their change to

the assistant without discussing whether it is correct at all. In terms of

82

How Students Make Use of the Visualisation

the purposes of programming assignments described in Subsection 4.1.5,

this is seeing the programming task in the framework of the university’s

requirements (“Assignment”). This is reflected in their testing style and in

terms of the testing approaches described in Subsection 4.1.6, this suggests

an additional category below “Unplanned”: “Testing not required”. Lack

of experience with concurrent programming probably accounts for this

behaviour.

Even the students who tested their solution did not verify that their

corrected program correctly handled the type of interleaving that caused

the incorrect program to fail. However, Brian did run the fixed program

several times to confirm it did not deadlock where the incorrect program

did.

Students are used to relying on external support such as automated

assessment systems for their testing. If there is no consequence to not

testing, students do not bother to test. Students can be encouraged to test

their programs by making the thoroughness of their testing an evaluation

criterion [20].

In a debugging task, some students will attempt to work around or fix

a bug without confirming their hypothesis of what the bug is through

examination of program execution. Atropos is thus largely irrelevant to

their needs. Working around a bug can be prevented by specifically requir-

ing that the corrected program has similar time and space requirements,

which would preclude making copies of data or making the concurrent

execution sequential.

It is hardly surprising that students have simplistic ways to Determine

Correctness (7) in these tasks compared to, for example, those described

in Subsection 4.1.6, which involved programming assignments in which

students were told to explain how they had ensured the correctness of their

solution, e.g. by testing. Also, each weekly exercise round was intended

to be about two hours of work, while each programming assignment was

supposed to be 20 hours. The availability of almost instant feedback from

teaching assistants and lack of consequences of submitting an incorrect

solution may also have contributed to the general lack of interest in testing.

One response to RQ 6 is thus: in order to encourage students to make use

of testing and debugging tools, the effort needed to get started must (seem

to) be less than other options, such as asking an assistant to look at the

program.

83

How Students Make Use of the Visualisation

6.3.3 Debugging Process

The students’ debugging processes, which are relevant to answering RQ

9, are shown in Figure 6.1. The large-scale structure of their processes

appears to be sound. One would expect, that after initially having to

Understand Atropos (9), Determine Goals (8) and Prepare (11), that

the students would make sure they Understand Program Code (1) and

then Run the Program (5) in order to Determine Correctness (7).

Once the program has been found to fail, the resulting execution would

then be used to track down the bug; a process in which the students

would Formulate Hypotheses (4) based on what they learn when they

Observe Program Behaviour (6) and Determine Correctness (7).

Once they are satisfied they have confirmed their hypothesis of what

the defect is, they would Fix Bugs (3A) and Run the Program (5) and

Observe Program Behaviour (6) in order to Determine Correctness

(7) of their corrected program. What the students have done mostly fits this

pattern, which would suggest that Atropos would fit well into their large-

scale approach to debugging. In line with the results of Ahmadzadeh et

al. [2], Brian and Dennis did not take the time to Understand Program

Code (1) first (see Figure 6.1) and hence had difficulties debugging.

6.3.4 Successful and Unsuccessful Use of Atropos

As a basis for comparison, I will first explain how I expected students to

apply Atropos in the debugging task (task 2 in Section A.1):

1. Determine that the program has deadlocked by having all threads

waiting for another thread to insert a tuple in the space. This can easily

be deduced by checking where the threads’ execution blocked.

2. Identify which tuples are being waited for and in which place in the

main program. This can be done by determining from where the blocked

operations were called. It should be noted that examining the call stack

at the time the program deadlocked is also sufficient to collect the infor-

mation required so far; this can be done using e.g. Eclipse’s debugger like

Brian did.

3. Identify that the reason why these tuples cannot be found is that they

were removed from the space earlier and where this happens.

84

How Students Make Use of the Visualisation

4. Finally, the problem can be fixed by returning the missing tuples to the

space before getting others. This fix can then be verified by running the

program and confirming that it still runs correctly even when threads

are interleaved in ways that caused the bug to manifest in the original

version of the program.

A view of Atropos illustrating the failure is shown in Figure 5.7.

In order to answer RQs 7, 8 and 9, and hence RQ 5 and RQ 6, properly,

one must look at how students used and failed to use Atropos. Students

were able to use Atropos to extract information to help clear up some mis-

understandings of, for example, what threads exist in a running program.

However, this information is derived from the list of how threads ended,

not from the dependence graph view itself. This happened even though the

students used a debugging style that relied heavily on examining source

code, trying to reason about it statically and rewriting suspicious parts of

the program (cf. [23]). Peter and John spent 11 minutes (Charles and Ada

5 minutes) trying to Understand Program Code (1), but both groups

only spent 3 minutes trying to Observe Program Behaviour (6).

Several students were effectively prevented from finding the relevant

data in step 2 using Atropos by difficulties caused by the visualisation

displaying implementation details of the tuple space as a consequence of

following data and control dependencies of the wait operations in which

the program deadlocked. Dennis managed to group the operations in the

tuple space method executions together, but the sheer amount of data

dependencies of a method execution put a stop to his progress. Grouping

operations by method execution is specifically intended to address the

former case, but is apparently not something students can easily discover,

especially since the examples of using Atropos did not require this. Ada

suggested that a more intuitive operation would be to show the operation

that invoked the method execution to which a selected operation belongs.

In the latter case, grouping together multiple reads of the same values in

the context menu could have made it far easier to navigate. In both cases,

one can argue that the problem is that the students are being shown what

is happening in the tuple space even though they are interested in how it

is used.

To assist students unfamiliar with backward debugging, it would be

helpful if Atropos itself provided more explicit guidance on how it can be

effectively applied. To help users get started, Atropos could explicitly iden-

85

How Students Make Use of the Visualisation

tify symptoms, such as deadlocks or incorrect behaviour, and recommend

these as starting points for backward debugging. The backward debugging

process could be supported by providing the option to mark operations as

correct or incorrect behaviour, making it easier to see what possible causes

of an incorrect operation’s behaviour have been explored.

Similarly, to help users examine executions at an appropriate level of

abstraction, it would be useful if users could select, before starting to

explore a trace, for which classes the execution of methods is shown by

default; in other words, which classes’ execution the user wants to examine.

A third option would be to start exploring a thread from not just the last

operation, but all the running method calls in that thread; in other words,

all the operations that would be shown in a stack trace.

It would be worthwhile to investigate how to support forward debugging

strategies more effectively, perhaps by supporting forward navigation along

dependencies to complement the backwards navigation already available.

Another possible approach is to complement the DDG with an overview

of the program’s execution trace, for example in the form of the tree view

of RetroVue [12] or as a list of operations performed by a specific thread,

at a specific line of code or on a specific variable. This would enable users

to skip to interesting parts of the program execution rather than find a

route back along the DDG from a symptom. The lists of operations would

also provide an overview of program execution that some students tried to

achieve by repeatedly requesting the previous line until they had a list of

what a thread had done.

86

7. Validity

In this chapter, I reflect on validity issues involved in this research, based

on the presentation of validity by Johnson and Christensen [35]. Lincoln

and Guba [47] use a similar framework as a basis for their own quality

criteria.

7.1 Descriptive Validity

The problem of ensuring descriptive validity, describing what the re-

searchers saw and heard accurately, is to a great extent avoided in this

research by using artefacts and recordings of the students as data rather

than notes made by the researcher.

7.1.1 Recordings

The recordings include noise from equipment and the environment, espe-

cially in the exercise sessions, where many students were working at the

same time. Due to speakers’ movements, the microphone was, at worst,

several meters from the speaker. Hence, some recordings (especially the

exercise session of Charles and Ada) could not be completely transcribed.

Technical issues also prevented two recordings from being analysed.

Miscommunication can be caused by requiring people to express them-

selves in an unfamiliar language. The students were allowed to choose

between Finnish, Swedish and English to mitigate this. In most cases, the

students used their native Finnish or were otherwise fluent in Finnish.

One of the interviewees (labelled Elena) mentioned having difficulty com-

municating in English.

87

Validity

7.1.2 Code Analysis

It is possible to make use of established practices for software quality

assurance to find defects in students’ programs, as described in e.g. [11].

Defects may pass unnoticed through testing, code review and other mea-

sures to find them. However, combining different techniques is known to

increase the chances of finding errors noticeably. Both automated testing

and code review were used. Combining both approaches as well as having

the classification of each defect checked by two people also helps ensure

that defects are correctly identified.

7.1.3 Affecting the Students

On the path from a student’s mind to a publication describing his under-

standings, several steps occur that can introduce misinterpretations. The

first is the student’s own expression of his understandings; he may be

miscommunicating on purpose or communicating incorrectly or unclearly.

Johnson and Christensen [35] note that the former can become a problem

if the student does not trust the researcher, or if he perceives that the

researcher or someone else is pressuring him to answer in a specific way.

He may also believe that he can gain something by misrepresenting his

own perceptions.

This is particularly problematic if an interviewee does not see the re-

searcher as a neutral party because, for example, the researcher deter-

mines the student’s grades. However, when studying learning in the

context of a university course, it is advantageous for the researcher to be

familiar with the subject matter and how it is taught; it is hard to accu-

rately interpret something one does not understand. While I designed the

assignment used in this research, my influence on the assessment of the

course is small, since I only help the actual teaching assistants as required.

In particular, the year the interviews were done, I did not participate in

teaching the course.

However, at least one interviewee appeared to perceive the interviewer

as one of many assistants on the course (despite being told, like all the

other interviewees, several times, both in person and in writing, that the

interviewer is not a member of the course staff and the interview will not

affect the interviewee’s grade on the course) and was reluctant to offer

information.

For practical reasons, the code analysis has been done solely on the

88

Validity

final version of the code submitted by the students before the deadline,

leaving any defects that the students themselves found and corrected out of

consideration. Although it would be possible to require students to submit,

for example, every version of their program that compiled successfully (like

in [71]), this is impractical as students often work on their own computers

instead of those provided by the university. Also, the students would have

to collect all the different versions of their code; in both cases, the students

would be well aware that their code is being collected for analysis. This

awareness could then affect their way of working and skew the results.

7.2 Interpretive Validity

Interpretive validity is the accuracy of the interpretation and presentation

done by the researcher. Johnson and Christensen [35, 36] note that the

obvious way for a researcher to avoid incorrect interpretation is to use

descriptions that are as close as possible to the student’s own words. In-

terpretive validity is often ensured by using quotes from the people being

studied. The quotes must be presented with sufficient context to allow

correct interpretation. This has been applied both in the analysis and

reporting in this work. Another way a researcher can improve interpretive

validity is to ask the subject whether the researcher’s interpretation is (in

the subject’s opinion) correct. In my interviews, I confirmed my interpreta-

tion of some unclear statements made by the interviewees by asking them

questions like “Do you mean. . . ?”.

Interpretive validity is much more difficult to ensure when the data

consists of code and descriptions of its underlying design and the desired

result of the interpretive process is, essentially, what the programmer was

thinking at the time he wrote the code. In cases where the programmer has

explicitly described his reasoning (in comments or in a design report), little

interpretation is needed. However, in the data I collected in Autumn 2005,

I only found statements from the students for roughly half the observed

defects, and even then, they were not always sufficient to pinpoint the exact

error the student made other than in general terms (e.g. failure to correctly

design a concurrent data structure) [50]. The other half of the errors was

classified by generalising from similar errors or forming hypotheses about

the underlying errors. The interpretive validity of classification of the

latter half of the errors may therefore have been very bad. This led to the

additional phenomenographic research described in Chapter 4.

89

Validity

7.3 Theoretical Validity

Theoretical validity is the degree to which the theories the researcher

has formed from the data fit the data. In the case of my research, the

qualitative theories are mostly explanations for different defects in terms

of a chain leading from cause(s) of an error to the error and from there to

the defect. The corresponding quantitative theories are quantifications of

the qualitative theories: how common are the defects, errors and causes,

and what are the probabilities of one leading to another?

The strategies suggested by Johnson and Christensen [35] to ensure the-

oretical validity are extended fieldwork, which in my case means studying

the same assignments over several different years, theory triangulation

(using multiple theories and perspectives), pattern matching (checking

whether complex or unique predictions hold in the data) and peer review.

A variant of pattern matching that is natural when possible problems

with the teaching or assignments in a university course are involved is to

change the teaching or assignments to avoid the problem the theory states

and see whether the students’ performance changes as the theory predicts.

Extraneous variables, such as other changes to the course or participating

students, are likely to complicate this assessment.

7.4 Researcher Bias

Researcher bias is a researcher finding what he wants to or expects to

find and is a threat to the confirmability of Lincoln and Guba [47] (their

equivalent of objectivity). Bias can be divided into finding things that are

untrue and not finding things that are true (and relevant). The former

is particularly a risk when interpreting results (and is addressed in that

section) and can be addressed through mechanisms to ensure that results

are correct. The latter is more problematic, as it involves ignoring parts

of the data or possible theories. The solutions suggested by Johnson and

Christensen [35] are reflexivity (the researcher tries to determine what

his (potential) biases are and minimise their effects) and negative-case

sampling (trying to find the unexpected). The fact that my results include

the unexpected result that half the students’ errors on the Autumn 2005

course were due to misunderstanding the requirements of the assignment

has led to negative-case sampling in the sense that the initially unexpected

case has become the expected case.

90

Validity

Bias in the analysis of students’ programs was mitigated by making use

of the students’ own comments, explanations and solutions as well as the

results of the phenomenographic study to form subgoals and plans.

7.5 Internal Validity and Credibility

Internal validity is the degree to which the researcher is justified in saying

that an observed relationship is causal. This is not usually considered

relevant to phenomenographic research, where it is replaced with credi-

bility: whether the findings are believable to the people they describe [47].

However, similar approaches can be used to ensure both.

Internal validity and credibility can be improved through the use of

multiple methods or data sources. In my case, the multiple methods are

collecting data on a large (roughly 50–100 for each assignment) number

of students in the form of both code and reports describing the way they

reasoned as well as using interviews and video recording to collect sup-

plementary information directly from a small number of students. The

multiple data sources are students from different instances of the same

course. It would probably be beneficial to study concurrent programming

outside the course studied here; this is discussed further in the following

section.

Internal validity may be threatened by a wide range of issues [35]. In

my research, the most severe threats appear to be related to the lack of a

proper control group. For example, improvements in student’s solutions

for the assignments may be due to e.g. changes to the lectures or course

literature, differences in scheduling, and a number of changes to the

assignments. Each change to the course is an extraneous variable when

attempting to determine the effect of another change. Arranging many

different versions of the same course that differ only in one way is highly

impractical. However, throughout the time the students’ programs and

reports were collected, the lecturer has been the same, the contents of the

course mostly the same and roughly the same assignments have been used.

Also, it is somewhat implausible that other factors would result in precisely

the changes in students’ work that were observed as consequences of the

changes to the teaching and assignments described in Section 4.2.

91

Validity

7.6 External Validity, Transferability and Dependability

External validity is important if results are to be useful outside the re-

search setting. One approach is to describe the setting in detail and allow

the reader to compare his own situation to yours and determine whether

your research is applicable (naturalistic generalisation). This is the ap-

proach I have used here. This corresponds to the transferability of Lincoln

and Guba [47].

Replication is also used to ensure external validity [35] and dependability

(the equivalent to reliability) [47]; in my case, I have studied the same

assignments in different annual instances of the same course, allowing

me to assess how well the results generalise between different years.

Replicating the experiment in another university would give a better idea

of whether the results generalise outside our concurrent programming

course. This applies both to quantitative and qualitative results.

Transferability is ensured by purposive sampling: choosing people to

examine or interview in such a way that the widest range of information is

collected [47]. How I did this is explained in Section 4.1.

7.7 Construct validity

Construct validity is the degree to which the characteristic or construct

under examination is accurately represented in the study; in other words,

how well the characteristic was operationalised. This is not relevant to the

phenomenographic study in Section 4.1. However, the interpretation of

the results on students’ defects in Section 4.2 is affected by questions of

construct validity, unless one takes the position that the study is specifically

intended to measure the defects in students’ solutions to these particular

assignments, not concurrent programs in general as stated in the research

questions of Chapter 4.

The research questions for the defect analysis refer to all the concurrent

programs that will ever be written by each student. Since answering this

directly would almost certainly require data collection over an unaccept-

ably long time, the question must be operationalised. A way is needed to

estimate a student’s future performance in as yet unknown programming

tasks; this is the same problem that teachers face when assessing the

skills of their students. The programming assignments described here are

designed for this purpose and include the concurrency-related aspects of

92

Validity

different real-world programming tasks. The assignments, due to limits

on the time students can spend on them, are quite simple compared to

many real-life problems. Hence, there is less potential for incorrect in-

teraction with other parts of a program. Also, the specifications of the

assignments force students to use a specific design; in real life, they may

have the option to avoid many concurrency-related problems by making

design choices such as avoiding concurrency entirely or using different

concurrency mechanisms.

Using multiple operationalisations of a construct is a commonly used

approach to improving construct validity. The three different assignments

that have been used can be considered different operationalisations of the

desired construct. An individual assignment does not cover, for example, all

concurrency mechanisms. Together, the assignments cover many different

aspects of concurrent programming.

By comparing the results of the defect analyses of the different assign-

ments and different versions of the same assignments, one can draw some

useful conclusions about the effect of the choice of assignments on the

results. It is clear that requirement-related defects are strongly affected

by how the assignment is explained to students and that providing tests

helps students detect certain types of defect. The Trains assignment also

shows how other issues specific to an assignment can account for many

defects.

There are, however, several types of defect that occur in many different

assignments, such as incorrect memory management and incorrectly inter-

acting parts of programs. This would suggest that these defects are likely

to show up in other concurrent programming assignments as well.

93

Validity

94

8. Conclusions

In this chapter I summarise the results of the thesis in terms of the

questions posed in Section 1.2 and the contributions made. I also present

possible directions for future work.

8.1 Understanding and Debugging Needs of the Students

The first question was: “What needs do students have with regard to under-

standing and debugging concurrent programs?”. In Chapter 4, I presented

a mostly phenomenographic analysis of how students understand and

approach concurrent programming and an analysis of what students do

wrong in their concurrent programs.

Students were found to think about the concurrency constructs they

implemented at several levels of abstraction; any tools provided to the stu-

dents should allow students to work at these different levels of abstraction.

The students’ programs initially contained large amounts of requirement-

related defects that got in the way of learning from the assignment, many

of which were eliminated by communicating requirements more clearly,

especially in the form of packages of unit tests. The remaining defects

largely manifested themselves nondeterministically and due to incorrect

algorithms or implementation; these were indicative of difficulties the

students had with concurrent programming. Many of these were cases of

solutions to subproblems conflicting with each other.

8.2 Addressing the Students’ Needs through Visualisation

To answer the question “How can the needs from the previous part best be

addressed through visualisation?”, I designed a visualisation tool based

on interactive exploration of dynamic dependence graphs, presented in

95

Conclusions

Chapter 5, to help students understand the execution of concurrent Java

programs and debug them. This tentatively answered the question.

Atropos introduces several improvements on the previous state of the

art. As described in Section 5.1, Atropos can, unlike previous systems,

produce execution traces and hence reconstruct executions of concurrent

Java programs that include data races, making it an improvement on

other Java replay systems described in Subsection 2.4.1. Atropos can

also produce and visualise dynamic dependence graphs of these programs,

distinguishing it from the previous DDG-based debugger, the Whyline [43].

The development of Atropos can also be seen as an example of the devel-

opment of a software visualisation based on empirical studies of its users

and their needs, which Hundhausen et al. [32] argue would be a useful

approach to take in SV research. In particular, the design of Atropos is

based on empirical data on the defects in the target audience’s programs,

which is an uncommon approach but similar to the work of Ko and Myers

[42].

8.3 Evaluating the Visualisation

Determining whether the students’ needs actually were addressed was

done in Chapter 6, in which I asked “In what ways did the visualisation

tool in the previous part assist the students?” and how the tool could be

improved.

This was done through a mixed-method-based evaluation, inspired by

similar studies by Yehezkel et al. [81] and Kiesmüller [39], that sheds

light on how students make use of the visualisation tool and pinpoints the

strengths and weaknesses of the current design. Evaluation studies of

this type seem to be common in the CS education research community, as

noted in Section 2.5, but uncommon otherwise (no evaluation studies of

the debuggers mentioned in Subsection 2.4.1 appear to have been done).

While it seems that the visual representation used by Atropos can be in-

terpreted by students without undue effort, navigating through a program

is still difficult. While the dependence graph visualisation would seem to

be useful for understanding short causal chains at the level of proficiency

with the visualisation our students showed, it is necessary to develop ways

to support students in navigating the graph before they can make full use

of Atropos.

I suggest several approaches to helping students navigate execution

96

Conclusions

traces. One is to complement the DDG with an overview of the program’s

execution trace such as the tree view of RetroVue [12]. Another is to

provide the ability to examine all operations done on a particular variable.

Both approaches would provide an overview of program execution that

some students tried to achieve by repeatedly requesting the previous line

or branch. A third approach would be the ability to examine the data

structures in the program at a certain time as in most debuggers. This

would enable the user to check, for example, whether several values form a

consistent state, which is hard to do in Atropos. Currently Atropos assumes

that all symptoms are at the end of execution: the program terminates

or hangs; allowing output operations to be used as starting points would

remove the need to add explicit assertions on all output to get a useful

starting point. Finally, providing explicit guidance on how to apply a slicing

debugging strategy would help students learn this strategy and how to

apply it in Atropos.

All of these approaches are straight-forward to implement since Atropos

already has all the relevant information available to its current visualisa-

tion, suggesting that Atropos could easily be made much more easy to use

for students, which would allow them to make full use of its potential.

8.4 Implications for Teaching

The results presented in Subsection 6.3.1 support the result in Subsec-

tion 4.1.5 that students primarily see programming assignments as a task

to be completed to get a grade and that they will avoid any tasks they see

as extraneous such as testing their program or examining its behaviour

in detail. Hence, if a teacher wants students to test their programs or ex-

amine the behaviour of a program in detail, this must be made an explicit

part of the task with clearly defined requirements.

Like Isohanni and Knobelsdorf [34] noted, students seem to avoid using

visualisation even when instructed to do so. Instead, they prefer reasoning

about the program statically. Simply giving students exercises in which

to use a visualisation tool is therefore not enough to get them to use it.

To avoid this, I recommend integrating the use of a visualisation tool into

lectures so that it is familiar to the students when they are expected to use

it.

As noted in Section 4.2, communicating the requirements of assignments

to students is difficult. Students may not realise that they have misunder-

97

Conclusions

stood or missed a requirement unless they are given a representation of

the requirements in an unambiguous and easily applied form such as a set

of unit tests.

8.5 Future Work

The improvements to the visualisation of Atropos suggested in Section 8.3

should improve the usability of the tool, allowing students to find what

they are looking for more easily. It would then be appropriate to perform

a similar evaluation on the improved Atropos, but with a larger amount

of students and tasks to allow quantitative comparisons of e.g. students’

debugging time and effectiveness.

There are several other ways in which Atropos could be improved. At-

ropos uses a lot of memory for its dependence graph representation. This

could be improved by e.g. performing the dependence analysis or storing

its results using more coarse-grained operations than bytecode operations.

Also, storing the entire dependence graph in RAM may not be necessary;

reconstructing parts of it as needed or storing some of it on disk could

significantly decrease the memory requirements of Atropos. The execution

trace files could be made smaller by removing variable values in cases

where no data races occurred.

Atropos could be adapted for other contexts such as distributed systems

by piggybacking vector clock information onto messages in a similar fashion

to what Atropos currently does for shared variables and locks. Model

checker counterexamples, especially from Java PathFinder, would be an

obvious alternative source of execution traces to visualise. Model checker

counterexamples are likely to be much shorter than stress test execution

traces, which would make them easier to process, navigate and understand.

The effects on learning of using visualisation tools such as Atropos are

also a possible subject for future work. In particular, it would be interesting

to examine how students’ understandings of concurrency change as they

use the tool and whether use of visualisation has any effects on post-course

skills. This would help establish how the visualisation tools aid in learning

in practice.

98

Bibliography

[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. Dynamic

slicing in the presence of unconstrained pointers. In TAV4: Proceedings of

the symposium on Testing, analysis, and verification, pages 60–73, New York,

NY, USA, 1991. ACM. ISBN 0-89791-449-X. doi: http://doi.acm.org/10.1145/

120807.120813.

[2] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. An analysis of

patterns of debugging among novice computer science students. In ITiCSE

’05: Proceedings of the 10th annual SIGCSE conference on Innovation and

technology in computer science education, pages 84–88, New York, NY, USA,

2005. ACM Press. ISBN 1-59593-024-8. doi: http://doi.acm.org/10.1145/

1067445.1067472.

[3] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Dis-

tributed Programming. Addison-Wesley, 2000.

[4] Cyrille Artho and Klaus Havelund. Applying Jlint to space exploration

software. In Bernhard Steffen and Giorgio Levi, editors, Verification, Model

Checking, and Abstract Interpretation, volume 2937 of Lecture Notes in

Computer Science, pages 297–308. Springer Berlin / Heidelberg, 2004. ISBN

978-3-540-20803-7. URL http://dx.doi.org/10.1007/978-3-540-24622-0_

24.

[5] Mordechai Ben-Ari. Principles of Concurrent and Distributed Programming.

Pearson Education, second edition, 2006.

[6] Yifat Ben-David Kolikant. Learning concurrency as an entry point to the

community of computer science practitioners. Journal of Computers in

Mathematics and Science Teaching, 23(1):21–46, 2004.

[7] Yifat Ben-David Kolikant. Students’ alternative standards for correctness.

In The Proceedings of the First International Computing Education Research

Workshop, pages 37–46, 2005.

[8] Yifat Ben-David Kolikant and Mordechai Ben-Ari. Fertile zones of cultural

encounter in computer science education. Journal of the Learning Sciences,

17(1):1–32, January 2008.

[9] Anders Berglund. Phenomenography as a way to research learning in

computing. Bulletin of Applied Computing and Information Technology,

4(1), July 2006.

99

Bibliography

[10] Anders Berglund, Ilona Box, Anna Eckerdal, Raymond Lister, and Arnold

Pears. Learning educational research methods through collaborative re-

search: the PhICER initiative. In Simon and Margaret Hamilton, editors,

Proc. Tenth Australasian Computing Education Conference (ACE 2008), vol-

ume 78 of Conferences in Research and Practice in Information Technology,

pages 35–42, Wollongong, NSW, Australia, 2008. Australian Computer Soci-

ety.

[11] Ilene Burnstein. Practical Software Testing. Springer, 2003.

[12] John Callaway. Visualization of threads in a running Java program. Master’s

thesis, University of California, June 2002.

[13] Bernard Carré, Jon Garnsworthy, and William Marsh. SPARK — a safety-

related Ada subset. In Ada in transition: Proceedings of the 1992 Ada UK

International Conference, pages 31–45, London, UK, October 1992. IOS

Press.

[14] Jong-Deok Choi, Bowen Alpern, Ton Ngo, Manu Sridharan, and John Vlis-

sides. A perturbation-free replay platform for cross-optimized multithreaded

applications. In Proceedings of the 15th International Parallel and Dis-

tributed Processing Symposium, San Fransisco, USA, April 2001. IEEE

Computer Society.

[15] Markus Dahm. Byte code engineering with the BCEL API. Technical Report

B-17-98, Institut für Informatik, Freie Universität Berlin, April 2001.

[16] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing:

Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle

River, NJ, 1999.

[17] Edsger W. Dijkstra. Cooperating sequential processes. circulated privately,

1965. URL http://www.cs.utexas.edu/~EWD/ewd01xx/EWD123.PDF.

[18] Edsger W. Dijkstra. Over seinpalen. circulated privately, 1965. URL http:

//www.cs.utexas.edu/users/EWD/ewd00xx/EWD74.PDF.

[19] Thomas Dy and Ma. Mercedes Rodrigo. A detector for non-literal Java errors.

In Carsten Schulte and Jarkko Suhonen, editors, Proceedings of the 10th

Koli Calling International Conference on Computing Education Research

(Koli Calling 2010), pages 118–122, Koli, Finland, October 2010. ACM.

[20] Stephen H. Edwards. Improving student performance by evaluating how

well students test their own programs. Journal on Educational Resources in

Computing, 3(3):1–24, 2003.

[21] Marc Eisenstadt. My hairiest bug war stories. Communications of the ACM,

40(4):30–37, 1997. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/248448.

248456.

[22] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns and

how to test them. In Proceedings of 2003 IEEE International Symposium on

Parallel & Distributed Processing (IPDPS 2003). IEEE, April 2003.

[23] Sue Fitzgerald, Gary Lewandowski, Renée McCauley, Laurie Murphy, Beth

Simon, Lynda Thomas, and Carol Zander. Debugging: Finding, fixing and

flailing, a multi-institutional study of novice debuggers. Computer Science

Education, 18(2):93–116, June 2008.

100

Bibliography

[24] David Gelernter. Generative communication in Linda. ACM Transactions on

Programming Languages and Systems, 7(1):80–112, January 1985.

[25] Andy Georges, Mark Christiaens, Michiel Ronsse, and Koen De Bosschere.

JaRec: a portable record/replay environment for multi-threaded Java appli-

cations. Software — Practice and Experience, 34(6):523–547, May 2004.

[26] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and

Doug Lea. Java Concurrency in Practice. Addison-Wesley, 2006.

[27] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language

Specification. Sun Microsystems, third edition, 2005.

[28] Linda Grandell, Mia Peltomäki, and Tapio Salakoski. High school pro-

gramming — a beyond-syntax analysis of novice programmers’ difficulties.

In Proceedings of the Koli Calling 2005 Conference on Computer Science

Education, pages 17–24, 2005.

[29] GroboUtils Project. GroboUtils home page. http://groboutils.

sourceforge.net/, 2003.

[30] Gerard Holzmann. The model checker Spin. IEEE Trans. on Software

Engineering, 23(5):279–295, May 1997.

[31] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN

Notices, 39(12):92–106, December 2004. ISSN 0362-1340. doi: http://doi.acm.

org/10.1145/1052883.1052895.

[32] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-

study of algorithm visualization effectiveness. Journal of Visual Languages

and Computing, 13(3):259–290, June 2002.

[33] IEEE. IEEE standard glossary of software engineering terminology. Std

610.12-1990, IEEE, 1990.

[34] Essi Isohanni and Maria Knobelsdorf. Behind the curtain: Students’ use of

VIP after class. In ICER ’10: Proceedings of the Sixth International Workshop

on Computing Education Research, pages 87–95, Aarhus, Denmark, August

2010. ACM.

[35] Burke Johnson and Larry Christensen. Educational Research: Quantitative,

Qualitative and Mixed Approaches. Pearson Education Inc., second edition,

2004.

[36] R. Burke Johnson. Examining the validity structure of qualitative research.

Education, 118(2):282–292, 1997.

[37] R. Burke Johnson and Anthony J. Onwuegbuzie. Mixed methods research:

A research paradigm whose time has come. Educational Researcher, 33(7):

14–26, 2004.

[38] JUnit. JUnit. http://junit.sourceforge.net/.

[39] Ulrich Kiesmüller. Diagnosing learners’ problem-solving strategies using

learning environments with algorithmic problems in secondary education.

Trans. Comput. Educ., 9(3):1–26, 2009. doi: http://doi.acm.org/10.1145/

1594399.1594402.

101

Bibliography

[40] Donald Ervin Knuth. The errors of TeX. Software — Practice and Experience,

19(7):607–685, 1989.

[41] Andrew J. Ko and Brad A. Myers. Designing the Whyline: a debug-

ging interface for asking questions about program behavior. In CHI

’04: Proceedings of the 2004 conference on Human factors in computing

systems, pages 151–158. ACM Press, 2004. ISBN 1-58113-702-8. doi:

http://doi.acm.org/10.1145/985692.985712.

[42] Andrew J. Ko and Brad A. Myers. A framework and methodology for studying

the causes of software errors in programming systems. Journal of Visual

Languages & Computing, 16(1-2):41–84, 2005.

[43] Andrew J. Ko and Brad A. Myers. Debugging reinvented: Asking and an-

swering why and why not questions about program behavior. In Proceedings

of the 30th International Conference on Software Engineering (ICSE ’08),

pages 301–310, Leipzig, Germany, May 2008. ACM.

[44] Eileen Kraemer. Visualizing concurrent programs. In Software Visualization:

Programming as a Multimedia Experience, chapter 17, pages 237–256. MIT

Press, Cambridge, MA, 1998. ISBN 0-262-19395-7.

[45] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. Dynamic query-

based debugging. Technical Report TRCS 98-34, University of California,

December 1998.

[46] Bil Lewis. Debugging backwards in time. In Michiel Ronsse, editor, Proceed-

ings of the Fifth International Workshop on Automated Debugging, Ghent,

Belgium, September 2003.

[47] Yvonna S. Lincoln and Egon G. Guba. Naturalistic Inquiry. Sage Publica-

tions, 1985.

[48] Klaus-Peter Löhr and André Vratislavsky. JAN - Java animation for program

understanding. In 2003 IEEE Symposium on Human Centric Computing

Languages and Environments (HCC 2003), pages 67–75, October 2003.

[49] Jan Lönnberg. Visual testing of software. Master’s thesis, Helsinki Univer-

sity of Technology, October 2003.

[50] Jan Lönnberg. Student errors in concurrent programming assignments.

In Anders Berglund and Mattias Wiggberg, editors, Proceedings of the 6th

Baltic Sea Conference on Computing Education Research, Koli Calling 2006,

pages 145–146, Uppsala, Sweden, 2007. Uppsala University.

[51] Jan Lönnberg. Understanding students’ errors in concurrent programming.

Licentiate’s thesis, Helsinki University of Technology, 2009.

[52] Jan Lönnberg, Ari Korhonen, and Lauri Malmi. MVT — a system for visual

testing of software. In Proceedings of the Working Conference on Advanced

Visual Interfaces (AVI’04), pages 385–388, May 2004.

[53] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs.

Wiley, 2006.

[54] Ference Marton. Phenomenography — describing conceptions of the world

around us. Instructional science, 10(2):177–200, 1981.

102

Bibliography

[55] Ference Marton and Shirley Booth. Learning and Awareness. Lawrence

Erlbaum Associates, 1997.

[56] Friedemann Mattern. Virtual time and global states of distributed systems.

In Proceedings of the International Workshop on Parallel and Distributed Al-

gorithms, pages 215–226, Chateau de Bonas, France, October 1988. Elsevier.

[57] Renée McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth

Simon, Lynda Thomas, and Carol Zander. Debugging: A review of the

literature from an educational perspective. Computer Science Education, 18

(2):67–92, 2008.

[58] Katarina Mehner. JaVis: A UML-based visualization and debugging envi-

ronment for concurrent Java programs. In Stephan Diehl, editor, Software

Visualization, pages 163–175, Dagstuhl Castle, Germany, 2002. Springer-

Verlag.

[59] Robert Charles Metzger. Debugging by Thinking. Elsevier, 2004.

[60] Paul Mulholland. A principled approach to the evaluation of SV: A case study

in Prolog. In M. Brown, J. Domingue, B. Price, and J. Stasko, editors, Soft-

ware Visualization: Programming as a Multimedia Experience, chapter 29,

pages 439–451. The MIT Press, Cambridge, MA, 1998.

[61] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda

Thomas, and Carol Zander. Debugging: the good, the bad, and the quirky

– a qualitative analysis of novices’ strategies. In Proceedings of the 39th

SIGCSE technical symposium on Computer science education, SIGCSE ’08,

pages 163–167, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-799-5.

doi: http://doi.acm.org/10.1145/1352135.1352191.

[62] Rainer Oechsle and Thomas Schmitt. JAVAVIS: Automatic program visual-

ization with object and sequence diagrams using the Java Debug Interface

(JDI). In Stephan Diehl, editor, Software Visualization, pages 176–190,

Dagstuhl Castle, Germany, 2002. Springer-Verlag.

[63] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled taxonomy

of software visualization. Journal of Visual Languages and Computing, 4(3):

211–266, 1993.

[64] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: A flexible framework

for creating software model checkers. In Proceedings of Testing: Academic &

Industrial Conference — Practice And Research Techniques, June 2006.

[65] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A comparison of bug

finding tools for Java. In ISSRE ’04: Proceedings of the 15th International

Symposium on Software Reliability Engineering, pages 245–256, Washington,

DC, USA, 2004. IEEE Computer Society. doi: http://dx.doi.org/10.1109/

ISSRE.2004.1.

[66] Douglas C. Schmidt. Reactor: An object behavioral pattern for concurrent

event demultiplexing and dispatching. In James O. Coplien and Douglas C.

Schmidt, editors, Pattern Languages of Program Design. Addison-Wesley,

1995.

103

Bibliography

[67] Viktor Schuppan, Marcel Baur, and Armin Biere. JVM independent replay

in Java. In Proceedings of the Fourth Workshop on Runtime Verification (RV

2004), volume 113 of Electronic Notes in Theoretical Computer Science, pages

85–104. Elsevier, January 2005.

[68] Koushik Sen. Concolic testing. In Proceedings of the twenty-second

IEEE/ACM international conference on Automated Software Engineering,

ASE ’07, pages 571–572, New York, NY, USA, 2007. ACM. ISBN 978-1-

59593-882-4. doi: http://doi.acm.org/10.1145/1321631.1321746.

[69] Judy Sheard, Simon, Margaret Hamilton, and Jan Lönnberg. Analysis of

research into the teaching and learning of programming. In ICER ’09: Pro-

ceedings of the fifth International Computing Education Research Workshop,

pages 93–104, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-615-1.

doi: http://doi.acm.org/10.1145/1584322.1584334.

[70] Juha Sorva. The Same But Different — Students’ Understandings of Primi-

tive and Object Variables. In Arnold Pears and Lauri Malmi, editors, The

8th Koli Calling International Conference on Computing Education Research,

Koli Calling ’08, pages 5–15. Uppsala University, 2008.

[71] James C. Spohrer and Elliot Soloway. Novice mistakes: are the folk wisdoms

correct? Communications of the ACM, 29(7):624–632, 1986. ISSN 0001-0782.

doi: http://doi.acm.org/10.1145/6138.6145.

[72] James C. Spohrer, Elliot Soloway, and Edgar Pope. A goal/plan analysis of

buggy Pascal programs. Human-Computer Interaction, 1:163–207, 1985.

[73] Thomas G. Stockham and Jack B. Dennis. FLIT — Flexowriter Interrogation

Tape: A symbolic utility program for the TX-0. Memo 5001-23, MIT, July

1960.

[74] Scott D. Stoller. Testing concurrent Java programs using randomized schedul-

ing. In Proceedings of Second Workshop on Runtime Verification (RV), volume

70(4) of Electronic Notes in Theoretical Computer Science. Elsevier, July 2002.

[75] Sun Microsystems Inc. Java Platform Debugger Architecture. http://java.

sun.com/javase/technologies/core/toolsapis/jpda/, 2010.

[76] Keith Trigwell. A phenomenographic interview on phenomenography. In

J. Bowden and E. Walsh, editors, Phenomenography, pages 62–82. RMIT

University Press, 2000.

[77] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio

Lerda. Model checking programs. Automated Software Engineering Journal,

10(2):203–232, April 2003.

[78] Anneliese von Mayrhauser and A. Marie Vans. Program understanding

behavior during debugging of large scale software. In ESP ’97: Papers

presented at the seventh workshop on Empirical studies of programmers,

pages 157–179, New York, NY, USA, 1997. ACM Press. doi: http://doi.acm.

org/10.1145/266399.266414.

[79] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th interna-

tional conference on Software engineering, pages 439–449, Piscataway, NJ,

USA, 1981. IEEE Press.

104

Bibliography

[80] Mark Weiser. Programmers use slices when debugging. Communications of

the ACM, 25(7):446–452, July 1982.

[81] Cecile Yehezkel, Mordechai Ben-Ari, and Tommy Dreyfus. The contribu-

tion of visualization to learning computer architecture. Computer Science

Education, 17(2):117 – 127, June 2007.

[82] Andreas Zeller. Animating data structures in DDD. In The proceedings of

the First Program Visualization Workshop – PVW 2000, pages 69–78, Porvoo,

Finland, 2001. University of Joensuu.

105

Bibliography

106

A. Assignment Used in Visualisation

Evaluation

The task descriptions from weekly exercise 5 of the 2010 instance of T-

106.5600 Concurrent Programming are reproduced in Section A.1. File

and directory names are references to files accessible on Aalto University

Unix systems. References to “Ben-Ari” are exercise numbers from [5].

Section A.2 contains the program used in task 2.

A.1 Tasks

Task 1 (Ben-Ari, 9.1) Implement a general semaphore using just one

tuple (P and V operations are sufficient).

Task 2 The concurrent sorting program in /u/35/jlonnber/shared/Con-

currentSelectionSort.java does not work. Explain a scenario in

which it fails (in terms of where the defect is and how this causes the

program to fail to achieve its goal) and fix the problem.

Task 3 (Ben-Ari, 9.4) Implement a bounded buffer using a tuple space.

Task 4 The matrix multiplication program in /u/35/jlonnber/shared/-

MM.java does not work. Explain a scenario in which it fails (in terms

of where the defect is and how this causes the program to fail to

achieve its goal) and fix the problem.

A.2 ConcurrentSelectionSort.java

1 public class ConcurrentSelectionSort {

2 final Space s = new Space();

3 final int length;

4

5 public ConcurrentSelectionSort(String[] l) {

107

Assignment Used in Visualisation Evaluation

6 for(int i = 0; i < l.length; i++)

7 s.postnote(new Note("Input", new Object[] {new Integer(i), l[i]}));

8 length = l.length;

9 }

10

11 public class Worker extends Thread {

12 final int id;

13

14 public Worker(int i) {

15 id = i;

16 }

17

18 public void run() {

19 Note myTuple = s.removenote(new Note("Input",

20 new Object[] {new Integer(id),

21 null}));

22 String myValue = (String)myTuple.p[1];

23

24 /∗ Count amount of preceding values. ∗/

25 int before = 0;

26 for(int i = 0; i < length; i++) {

27 if (i == id)

28 continue;

29

30 Note tuple = s.removenote(new Note("Input",

31 new Object[] {new Integer(i),

32 null}));

33 String value = (String)tuple.p[1];

34

35 if (value.compareTo(myValue) < 0 ||

36 (value.compareTo(myValue) == 0 && i < id))

37 before++;

38 s.postnote(tuple);

39 }

40 s.postnote(myTuple);

41 s.postnote(new Note("Output", new Object[] {new Integer(before),

42 myValue}));

43 }

44 }

45

46 public void run() {

47 for(int i = 0; i < length; i++)

48 new Worker(i).start();

49

50 for(int i = 0; i < length; i++) {

51 Note out = s.removenote(new Note("Output",

52 new Object[] {new Integer(i), null}));

53 System.out.println(out.p[1]);

54 }

55 }

56

57 public static final String[] TEST_INPUT = {

58 "foo", "bar", "zoq", "fot", "pik"

59 };

60

61 public static void main(String[] str) {

62 new ConcurrentSelectionSort(TEST_INPUT).run();

63 }

64 }

108

B. Second.java

This program, an incorrect implementation of mutual exclusion, is adapted

from the second attempt described by Dijkstra [17] leading up to Dekker’s

algorithm for mutual exclusion. Classes P and Q are identical except that

references to p and q have been reversed. The shared variable inCS is used

to keep track of how many threads are in the critical section. If the critical

section works correctly, this number should always be 0 (when neither

thread is in the critical section) or 1 (when either thread is in the critical

section).

1 /∗ http://www.pearsoned.co.uk/HigherEducation/

2 Booksby/Ben−Ari/ ∗/

3 /∗ Second attempt; Modified to exit if critical section

4 counter shows something other than 0 or 1. ∗/

5 class Second {

6 /∗ Number of processes currently in critical section ∗/

7 static volatile int inCS = 0;

8 /∗ Process p wants to enter critical section ∗/

9 static volatile boolean wantp = false;

10 /∗ Process q wants to enter critical section ∗/

11 static volatile boolean wantq = false;

12

13 class P extends Thread {

14 public void run() {

15 while (true) {

16 /∗ Non−critical section ∗/

17 while (wantq)

18 Thread.yield();

19 wantp = true;

20 inCS++;

21 Thread.yield();

22 /∗ Critical section ∗/

23 System.out.println("Processes in critical section: "

109

Second.java

24 + inCS);

25 if ((inCS > 1) || (inCS < 0)) System.exit(1);

26 inCS−−;

27 wantp = false;

28 }

29 }

30 }

31

32 class Q extends Thread {

33 public void run() {

34 while (true) {

35 /∗ Non−critical section ∗/

36 while (wantp)

37 Thread.yield();

38 wantq = true;

39 inCS++;

40 Thread.yield();

41 /∗ Critical section ∗/

42 System.out.println("Processes in critical section: "

43 + inCS);

44 if ((inCS > 1) || (inCS < 0)) System.exit(1);

45 inCS−−;

46 wantq = false;

47 }

48 }

49 }

50

51 Second() {

52 Thread p = new P();

53 Thread q = new Q();

54 p.start();

55 q.start();

56 }

57

58 public static void main(String[] args) {

59 new Second();

60 }

61 }

110

Errata

Publication I

In Subsection 5.2, four of the twelve groups selected for interview were

pairs, not three.

Publication IV

In Subsection 3.3, ‘failure’ should be ‘symptom’.

Publication VI

In Subsection 5.4, ‘failure’ should be ‘symptom’.

111

Errata

112

9HSTFMG*aefcja+

