
Understanding and Diagnosing Visual Tracking Systems

Naiyan Wang† Jianping Shi‡ Dit-Yan Yeung† Jiaya Jia‡
† Hong Kong University of Science and Technology ‡ Chinese University of Hong Kong

winsty@gmail.com jpshi@cse.cuhk.edu.hk dyyeung@cse.ust.hk leojia@cse.cuhk.edu.hk

Abstract

Several benchmark datasets for visual tracking research
have been created in recent years. Despite their usefulness,
whether they are sufficient for understanding and diagnos-
ing the strengths and weaknesses of different trackers re-
mains questionable. To address this issue, we propose a
framework by breaking a tracker down into five constituent
parts, namely, motion model, feature extractor, observation
model, model updater, and ensemble post-processor. We
then conduct ablative experiments on each component to
study how it affects the overall result. Surprisingly, our
findings are discrepant with some common beliefs in the
visual tracking research community. We find that the fea-
ture extractor plays the most important role in a tracker.
On the other hand, although the observation model is the
focus of many studies, we find that it often brings no signif-
icant improvement. Moreover, the motion model and model
updater contain many details that could affect the result.
Also, the ensemble post-processor can improve the result
substantially when the constituent trackers have high di-
versity. Based on our findings, we put together some very
elementary building blocks to give a basic tracker which
is competitive in performance to the state-of-the-art track-
ers. We believe our framework can provide a solid baseline
when conducting controlled experiments for visual tracking
research.

1. Introduction
Visual tracking is an essential building block of many ad-

vanced applications in the areas such as video surveillance
and human-computer interaction. In this paper, we focus on
the most general type of visual tracking problems, namely,
short-term single-object model-free tracking [18]. We con-
sider the most common setting for this problem: the tracker
is given a bounding box to indicate the object to be tracked.
The bounding box is either from human annotation or an au-
tomatic object detector. The tracker has no prior knowledge
of the object to be tracked such as category and shape. Then
in the following frames, the tracker needs to identify the ob-

ject as it moves around in the video. Numerous such track-
ers have been proposed over the past few decades, ranging
from the simple KLT tracker [20, 31] in the 1980s to the
recent deep learning trackers [34, 16] which are a lot more
complex.

Evaluating and comparing trackers has always been a
nontrivial task. For a long time, researchers usually reported
tracking results on a small number of videos based on
specific model parameters manually tuned for each video.
Since subjective bias [24] in the results can be caused by
selection of videos, this practice makes it infeasible to give
a fair comparison of different trackers. To address this fair-
ness concern, several relatively large benchmarks [39, 18]
and evaluation metrics [6] have been proposed recently.
With the aid of these benchmarks, we have witnessed sub-
stantial advances in recent years. However, we would like
to raise this question: Is simply evaluating these trackers on
the de facto benchmarks sufficient for understanding and
diagnosing their strengths and weaknesses?

We are afraid that the answer to the above question is
not affirmative, for the following reason. Modern trackers
are usually complicated systems made up of several sepa-
rate components. When a tracker is evaluated as a whole,
we cannot gain a detailed understanding of the effective-
ness of each component. For illustration, suppose tracker A
uses histograms of oriented gradients (HOG) [8] as features
and the support vector machine (SVM) as the observation
model, while tracker B uses raw pixels as features and logis-
tic regression as the observation model. If tracker A outper-
forms tracker B in a benchmark, can we conclude that SVM
is better than logistic regression for tracking? Obviously
drawing such a conclusion would be arbitrary since HOG
features have stronger representational power than raw pix-
els. This calls for a more carefully designed framework for
the evaluation and comparison of trackers.

We propose in this paper a new way to understand and
diagnose visual trackers. Note that our goal is not to cre-
ate a new benchmark. Instead, our analysis will still be
based on existing benchmarks. We first break a tracker
down into its constituent parts, namely, motion model, fea-
ture extractor, observation model, model updater, and en-

1



semble post-processor. We note that most existing trackers
can be viewed this way. Based on this framework, we con-
duct an ablative analysis on a tracker to identify the con-
stituent part that is most crucial to the overall performance
of the tracker. Contrary to popular belief, it turns out that
the observation model (which is the focus of many papers
on visual tracking) does not play the most important role in
a tracker. Instead, we find that actually the feature extractor
affects the performance most. Moreover, the ensemble post-
processor is a simple yet effective way to achieve significant
performance boost, but it is comparatively less studied. Fur-
thermore, properly dealing with the details in motion model
and model updater is also the key to good performance. By
assembling the basic components properly, we can achieve
results comparable with the state of the art without resort-
ing to complicated techniques. We conclude this paper by
highlighting some limitations of our proposed approach as
well as some possible ways to address them in our future
work.

2. Related Work
Significant advances in short-term single-object model-

free tracking research have been made over the past few
decades. It is impossible to review them all here due to
space limitations. For a comprehensive survey, readers are
referred to [28, 40].

Briefly speaking, there are two major categories of track-
ers: generative trackers and discriminative trackers. Gen-
erative trackers typically assume a generative process of
the appearance of the target and search for the most sim-
ilar candidate in the video. Some representative methods
are (robust) PCA [26, 33], sparse coding [23], and dictio-
nary learning [35]. On the other hand, discriminative track-
ers take a different approach. They usually train a classi-
fier to separate the target from the background. Thanks
to advances made by machine learning researchers, many
sophisticated techniques have been applied to visual track-
ing, including boosting [12, 13], multiple-instance learn-
ing [3], structured output SVM [14], Gaussian process re-
gression [11], and deep learning [36, 34, 16]. Recent bench-
marking studies show that the top-performing trackers are
usually discriminative trackers [9, 15] or hybrid ones [43]
mainly because purely generative trackers cannot handle
complicated background well, making it easy to drift away
from the target.

As for tracker evaluation, we have witnessed an explod-
ing trend in building datasets and the corresponding bench-
marks for visual tracking. A milestone is the recent con-
tribution made by a benchmark [39] which consists of 50
videos with full annotations. The authors also proposed a
novel performance metric which uses the area under curve
(AUC) of the overlap rate curve or the central pixel distance
curve for evaluation. Recently this benchmark has been ex-

tended to an even larger one [40]. Another representative
work is the Visual Object Tracking (VOT) challenge [18]
which has been held annually since 2013. The key differ-
ence with the benchmark above lies in the evaluation metric.
To characterize better the properties of short-term tracking,
evaluation is based on two independent metrics: accuracy
and robustness. While accuracy is measured in terms of the
overlap rate between the prediction and ground truth when
the tracker does not drift away, robustness is measured ac-
cording to the frequency of tracking failure which happens
when the overlap rate is zero. Whenever such failure occurs,
the tracker is reset to the correct bounding box to continue
tracking. Readers are referred to [6] for more details. Other
benchmark datasets include the Princeton tracking bench-
mark [29], NUS-PRO [19] and ALOV++ [28]. We tabulate
them in Table 1 for easy comparison.

Another related work is [24]. For fair evaluation of the
trackers, the authors first collected evaluation results from
the published papers and then removed the results of the
proposed method in each paper to reduce subjective bias,
because the authors tend to select videos or tune parameters
specifically to demonstrate the advantages of the proposed
tracker. On the other hand, the authors are usually fair to
the other trackers compared. They then used several rank
aggregation methods to rank the trackers. The results are
basically consistent with those run directly on the bench-
mark.

Dataset Year #Videos
VTB1.0 [39] 2013 50
PTB [29] 2013 100
ALOV++ [28] 2013 314
VOT2014 [18] 2014 25
VTB2.0 [40] 2015 100
NUS-PRO [19] 2015 365

Table 1. Summary of some visual tracking benchmark datasets.

3. Our Proposed Framework
We present our proposed framework in this section. As

mentioned above, we break a tracking system into multiple
constituent parts. Their functions are summarized below:

1. Motion Model: Based on the estimation from the pre-
vious frame, the motion model generates a set of can-
didate regions or bounding boxes which may contain
the target in the current frame.

2. Feature Extractor: The feature extractor represents
each candidate in the candidate set using some fea-
tures.

3. Observation Model: The observation model judges
whether a candidate is the target based on the features
extracted from the candidate.



Motion Model Feature Extractor Observation Model

...

Model Updater

Prediction B

Prediction A

Prediction C
Final PredictionEnsembleInput Frame

Figure 1. Pipeline of the proposed framework of a visual tracking system.

4. Model Updater: The model updater controls the strat-
egy and frequency of updating the observation model.
It has to strike a balance between model adaptation and
drift.

5. Ensemble Post-processor: When a tracking sys-
tem consists of multiple trackers, the ensemble post-
processor takes the outputs of the constituent trackers
and uses the ensemble learning approach to combine
them into the final result.

A tracking system usually works by initializing the ob-
servation model with the given bounding box of the target in
the first frame. In each of the following frames, the motion
model first generates candidate regions or proposals for test-
ing based on the estimation from the previous frame. The
candidate regions or proposals are fed into the observation
model to compute their probability of being the target. The
one with the highest probability is then selected as the esti-
mation result of the current frame. Based on the output of
the observation model, the model updater decides whether
the observation model needs any update and, if needed, the
update frequency. Finally, if there are multiple trackers, the
bounding boxes returned by the trackers will be combined
by the ensemble post-processor to obtain a more accurate
estimate. This pipeline is illustrated in Fig. 1.

4. Validation Setup
In this section, we will first introduce our experimen-

tal settings which include the dataset and the evaluation
metric. A basic model will then be used as the starting
point for illustration. This is followed by findings in each
component, leading to gradual improvement of our model.
The source codes for the validation are provided in http:
//winsty.net/tracker_diagnose.html.

4.1. Settings

Due to space limitations, we cannot provide in the pa-
per the detailed parameter settings for each component. In-
stead, we leave them to the supplemental material. We
determine the parameters of each component using five
videos outside the benchmark and then fix the parameters
afterwards throughout the evaluation unless specified oth-
erwise. For this paper, we use the most common dataset,
VTB1.0 [39], as our benchmark. However, the evaluation

approach demonstrated in this paper can be readily applied
to other benchmarks as well.

Following the convention of [39], we use two metrics
for evaluation. The first one is the AUC of the overlap rate
curve. In each frame, the performance of a tracker can be
measured by the overlap rate between the ground-truth and
predicted bounding boxes, where the overlap rate is defined
as the area of intersection of the two bounding boxes over
the area of their union. With a given threshold for the over-
lap rate, we can calculate the success rate of the tracker
over all the video frames. By varying the threshold from
0 gradually to 1, it will yield a curve which varies from
its maximum success rate to success rate 0 accordingly. A
larger AUC of this curve indicates a higher accuracy of the
tracker. The second metric is the precision at threshold 20
for the central pixel error curve. The curve is generated
in a way similar to that for the overlap rate. The central
pixel error is defined as the distance between the centers
of the two bounding boxes in pixels. This metric is use-
ful for the cases that the scale of the object changes but the
tracker does not support scale variation, since using only the
scale of the first frame will definitely give a low overlap rate
which will make the results indistinguishable.

4.2. Basic Model

We need a basic model to start our analysis. As a start-
ing point, we use a very simple one which adopts the par-
ticle filter framework as the motion model, raw pixels of
grayscale images as features, and logistic regression as the
observation model. For the model updater, we use a simple
rule that if the highest score among the candidates tested is
below a threshold, the model will be updated. Moreover,
we only consider a single tracker in this basic model and
hence no ensemble post-processor will be used. Details of
all these components will be provided in the next section.
For illustration, we show in Fig. 2 the performance of this
basic model along with some popular trackers. We can see
that even this very simple model can obtain moderate re-
sults when compared to some competitive methods in [39].

5. Validation and Analysis
We now conduct an ablative analysis to see how each

component of a tracker affects its final tracking perfor-

http://winsty.net/tracker_diagnose.html
http://winsty.net/tracker_diagnose.html


0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

 

 

IVT [0.358]

MIL [0.359]

L1T [0.380]

Basic Model [0.392]

Struck [0.474]

SCM [0.499]

ASLA [0.434]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

 

 

IVT [0.499]

MIL [0.475]

L1T [0.485]

Basic Model [0.527]

Struck [0.656]

SCM [0.649]

ASLA [0.532]

Figure 2. One Pass Evaluation (OPE) plots on VTB1.0 [39]. The
performance score for each tracker is shown in the legend. For the
success plots of overlap rate, the score is the AUC value. While
for precision plots of central pixel error, the score is the precision
at threshold 20.

mance. We present our analysis of different components
in the order of their importance and necessity.

5.1. Feature Extractor

The feature extractor converts the raw image data into
some (usually) more informative representation. Five fea-
ture representations are commonly used for object detection
and tracking:

1. Raw Grayscale: It simply resizes the image into a
fixed size, converts it to grayscale, and then uses the
pixel values as features.

2. Raw Color: It is the same as raw grayscale features
except that the image is represented in the CIE Lab
color space instead of grayscale.

3. Haar-like Features: We consider the simplest form,
rectangular Haar-like features, which was first intro-
duced in 2001 [32].

4. HOG: It is a good shape detector widely used for ob-
ject detection. It was first proposed in 2005 [8].

5. HOG + Raw Color: This feature representation sim-
ply concatenates the HOG and raw color features.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

 

 

Raw Grayscale [0.392]

Raw Color [0.396]

Haar−like Features [0.398]

HOG [0.484]

HOG + Raw Color [0.534]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

 

 

Raw Grayscale [0.527]

Raw Color [0.558]

Haar−like Features [0.539]

HOG [0.661]

HOG + Raw Color [0.740]

Figure 3. Results of different feature representations.

We compare the performance of these feature represen-
tations in Fig. 3. Note that the performance gaps between
features can be quite large. For example, the best scheme
(HOG + raw color) outperforms the basic model (raw

grayscale) by more than 20%. In fact, the best result is even
beyond the best performance reported in [39]. Although
there exist even more powerful features such as those ex-
tracted by the convolutional neural network (CNN) and they
indeed can yield state-of-the-art performance [34, 16], naı̈ve
application of this approach will incur high computational
cost which is highly undesirable for tracking applications.
For efficiency consideration, some special designs as in [34]
are needed. Another interesting direction is to exploit the
color information. Some recent methods [10, 25] demon-
strated notable performance with carefully designed color
features. Not only are these features lightweight, but they
are also suitable for deformable objects. We believe that
finding good features for object tracking is still a research
direction that is worth pursuing.

Our Findings: The feature extractor is the most impor-
tant component of a tracker. Using proper features can dra-
matically improve the tracking performance. Developing a
good and effective feature representation for tracking is still
an open problem.

5.2. Observation Model

The observation model returns the confidence of a given
candidate being the target, so it is usually believed to be the
key component of a tracker. Since the top-performing track-
ers in recent benchmarking studies are exclusively discrim-
inative trackers, we do not include generative observation
models in our analysis. We consider the following observa-
tion models:

1. Logistic Regression: Logistic regression with l2 regu-
larization is used. Online update is achieved by simply
using gradient descent.

2. Ridge Regression: Least squares regression with l2
regularization is used. The targets for positive exam-
ples are set to one while those for negative examples
are set to zero. Online update is achieved by aggregat-
ing sufficient statistics, a scheme originated from [21]
for online dictionary learning.

3. SVM: Standard SVM with hinge loss and l2 regular-
ization is used. The online update method is from [38].

4. Structured Output SVM (SO-SVM): The optimiza-
tion target of the structured output SVM is the over-
lap rate instead of the class label. This method is
from [14].

We test these four classifiers using two feature representa-
tions, a weak one (raw grayscale) and a strong one (HOG
+ raw color). The results are shown in Fig. 4 and Fig. 5,
respectively.



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

 

 

Logistic Regression [0.392]

Ridge Regression [0.331]

SVM [0.389]

SO−SVM [0.448]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

 

 

Logistic Regression [0.527]

Ridge Regression [0.458]

SVM [0.548]

SO−SVM [0.611]

Figure 4. Results of different observation models with weak fea-
tures.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

 

 

Logistic Regression [0.534]

Ridge Regression [0.500]

SVM [0.476]

SO−SVM [0.521]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

 

 

Logistic Regression [0.740]

Ridge Regression [0.710]

SVM [0.673]

SO−SVM [0.723]

Figure 5. Results of different motion models with strong features.

When weak features are used, a powerful classifier such
as SO-SVM can indeed improve the performance of the ba-
sic model by about 10%. However, when strong features are
used, surprisingly the results are reversed. Logistic regres-
sion becomes the best-performing observation model. Sim-
ilar observation was also reported in [15]: when raw pixels
are used as features, a kernelized classifier beats a simple
linear one by a large margin; however, when HOG features
are used, the performance gap reduces to almost zero. We
believe that our finding is by no means just coincidence.

Our Findings: Different observation models indeed af-
fect the performance when the features are weak. However,
the performance gaps diminish when the features are strong
enough. Consequently, satisfactory results can be obtained
even using simple classifiers from textbooks.

5.3. Motion Model

In each frame, based on the estimation from the previ-
ous frame, the motion model generates a set of candidates
for the target. We consider three commonly used motion
models:

1. Particle Filter: Particle filter is a sequential Bayesian
estimation approach which recursively infers the hid-
den state of the target. For a complete tutorial, we refer
the readers to [2] for details.

2. Sliding Window: The sliding window approach is an
exhaustive search scheme which simply considers all
possible candidates within a square neighborhood.

3. Radius Sliding Window: It is a simple modification
of the previous approach which considers a circular re-
gion instead. It was first considered in [14].

The key differences between the particle filter and sliding
window approaches lie in the following two aspects. First,
the particle filter approach can maintain a probabilistic esti-
mation for each frame. Thus when several candidates have
high probability of being the target, they will all be kept for
the next frames. As a result, it can help to recover from
tracker failure. In contrast, the sliding window approach
only chooses the candidate with the highest probability and
prune all others. Second, the particle filter framework can
easily incorporate changes in scale, aspect ratio, and even
rotation and skewness. Due to the high computational cost
induced by exhaustive search, however, the sliding window
approach can hardly pursue it. Results of the comparison
are shown in Fig. 6.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

 

 

Particle Filter [0.534]

Sliding Window [0.517]

Radius Sliding Window [0.518]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

 

 

Particle Filter [0.740]

Sliding Window [0.720]

Radius Sliding Window [0.726]

Figure 6. Results of different motion models.

We note that the three motion models show no signifi-
cant difference on the benchmark. Although particle filter
has the two advantages mentioned above, they do not trans-
late into performance gain in the evaluation. Nevertheless,
we should note that this observation is valid only when per-
forming object tracking under normal scenarios. In case
there is severe camera shake such as in egocentric videos,
more sophisticated motion models specially designed for a
purpose are definitely worth trying.

A closer look at the subcategory results of the benchmark
in Fig. 7 reveals some interesting observations. Not surpris-
ingly, particle filter is much better than the sliding window
approach when scale variation exists, but it is much worse
for the fast motion sub-category. So, can we perform well
in both subcategories simultaneously?

To answer this question, we first examine the role of the
translation parameters in a particle filter: They control the
search region of the tracker. When the search region is too
small, the tracker is likely to lose the target when it is in
fast motion. On the other hand, having a large search re-
gion will make the tracker prone to drift due to distractors
in the background. We have noticed an improper practice
in setting the parameters, which is often to use the number
of pixels as unit. However, different videos may have very
different resolution. Using an absolute number of pixels to
set the parameters will actually result in different search re-
gions. A simple solution is to scale the parameters by the
video resolution which, equivalently, resizes the video to
some fixed scale. We adopt the latter approach and report



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE − fast motion (17)

 

 

Particle Filter [0.458]

Sliding Window [0.536]

Radius Sliding Window [0.528]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE − fast motion (17)

 

 

Particle Filter [0.623]

Sliding Window [0.715]

Radius Sliding Window [0.707]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE − scale variation (28)

 

 

Particle Filter [0.555]

Sliding Window [0.433]

Radius Sliding Window [0.442]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE − scale variation (28)

 

 

Particle Filter [0.786]

Sliding Window [0.646]

Radius Sliding Window [0.674]

Figure 7. Results of different motion models with fast motion and
scale variation.

the results in Fig. 8.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

 

 

Without Resize [0.534]

With Resize [0.557]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

 

 

Without Resize [0.740]

With Resize [0.769]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

 

 

Without Resize [0.534]

With Resize [0.557]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE − fast motion (17)

 

 

Without Resize [0.623]

With Resize [0.733]

Figure 8. Results comparing the settings with and without resizing
the input video to a fixed size.

We find that even such a simple normalization step
can improve the performance significantly especially when
there exists fast motion. By applying this simple normal-
ization step, particle filter could handle both scale variation
and fast motion well. This experiment thus validates our
hypothesis that the parameters of the motion model should
be adaptive to video resolution.

Our Findings: When compared to the feature extractor
and observation model components, in general the motion
model only has minor effects on the performance. However,
under scale variation and fast motion, setting the parame-
ters properly is still crucial to obtaining good performance.
Furthermore, for some specific scenarios such as egocentric
video, it is beneficial to design the motion model carefully.
Due to its ability to adapt to scale changes which are not

uncommon in practice, we will still take the particle filter
approach with resized input as the default motion model in
the sequel.

5.4. Model Updater

The model updater determines both the strategy and fre-
quency of model update. Since the update of each obser-
vation model is different, the model updater often specifies
when model update should be done and its frequency. As
under our tracking setting there is only one reliable exam-
ple, the tracker must maintain a tradeoff between adapting
to new but possibly noisy examples collected during track-
ing and preventing the tracker from drifting to the back-
ground.

When the model needs update, we first collect some pos-
itive examples whose centers are within 5 pixels from the
target and some negative examples within 100 pixels but
with overlap rate less than 0.3. We consider two model up-
date methods:

1. The first method is to update the model whenever the
confidence of the target falls below a threshold. Doing
so ensures that the target always has high confidence.
This is the default updater used in our basic model.

2. The second method is to update the model whenever
the difference between the confidence of the target and
that of the background examples is below a thresh-
old. This strategy simply maintains a sufficiently large
margin between the positive and negative examples in-
stead of forcing the target to have high confidence. It is
potentially helpful when the target is occluded or dis-
appears. This method was proposed and evaluated in
[30].

We show the results of these two methods in Fig. 9 and
Fig. 10.

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

threshold

S
u
cc

e
ss

 r
a
te

(a) AUC of overlap rate

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

threshold

P
re
ci
si
o
n

(b) Precision@20 for central pixel
error curve

Figure 9. Results of varying the threshold for the first model up-
date method.

Varying the threshold can indeed affect the results by
more than 10%. The best results for both methods are very
similar, although the second method seems to give satisfac-
tory results over a broader range of parameters.



0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

threshold

S
u
cc

e
ss

 r
a
te

(a) AUC of overlap rate

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

threshold

P
re
ci
si
o
n

(b) Precision@20 for central pixel
error curve

Figure 10. Results of varying the threshold for the second model
update method.

Most research effort in this area focuses on generative
trackers. In [22], Matthews et al. first empirically compared
the effect of different template update strategies. Following
this work, Ross et al. proposed to use incremental PCA [26]
for template update, Wang et al. showed the importance of
sparsity and robustness [35] for this problem, and Xing et
al. proposed to maintain three dictionaries of different lifes-
pans [41]. However, the model updater is less studied in
discriminative trackers. Santner et al. first noticed this is-
sue, and then proposed a simple yet effective method [27] to
balance the stability and plasticity by combining the results
of template matching, random forest and optical flow. Re-
cently, Zhang et al. proposed a more principled method for
model update in [42]. It uses entropy minimization to iden-
tify reliable model update and discard the incorrect ones.

Our Findings: Although implementation of the model up-
dater is often treated as engineering tricks in papers espe-
cially for discriminative trackers, their impact on perfor-
mance is usually very significant and hence is worth study-
ing. Unfortunately, very few work focuses on this compo-
nent.

5.5. Ensemble Post-processor

From the analysis above, we can see that the result of
a single tracker can sometimes be very unstable in that the
performance can vary a lot even under small perturbation
of the parameters. The purpose of taking the ensemble ap-
proach is to overcome this limitation. We regard the ensem-
ble as a post-processing component which treats the con-
stituent trackers as blackboxes and takes only the bounding
boxes returned by them as input. This rationale is quite dif-
ferent from ensemble tracking [12, 13] which uses boosting
to build a better observation model. Our ensemble includes
six trackers, with four of them corresponding to four differ-
ent observation models in our framework and the other two
are DSST [9] and TGPR [11]. We choose these two track-
ers because they are among the best-performing trackers,
and their techniques are complementary to ours. We show
the performance of individual trackers in Fig. 11. Their re-

sults are very competitive. For the ensemble, we consider
two recent methods:

1. The first one is from [4]. This paper first proposed
a loss function for bounding box majority voting and
then extended it to incorporate tracker weights, trajec-
tory continuity and removal of bad trackers. We adopt
two methods from the paper: the basic model and on-
line trajectory optimization.

2. The second one is from [37]. The authors formulated
the ensemble learning problem as a structured crowd-
sourcing problem which treats the reliability of each
tracker as a hidden variable to be inferred. Then they
proposed a factorial hidden Markov model that con-
siders the temporal smoothness between frames. We
adopt the basic model called ensemble based tracking
(EBT) without self-correction.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

 

 

Logistic Regression [0.557]

Ridge Regression [0.518]

SVM [0.495]

SO−SVM [0.553]

DSST [0.557]

TGPR [0.529]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

 

 

Logistic Regression [0.769]

Ridge Regression [0.717]

SVM [0.676]

SO−SVM [0.762]

DSST [0.747]

TGPR [0.766]

Figure 11. Results of individual trackers used in ensemble.

Since the four trackers from our framework are all using the
same features and motion model, their diversity is some-
what limited. A main reason of including the last two track-
ers into the ensemble is to increase the diversity of the track-
ers, because diversity often plays an important role in in-
creasing the effectiveness of an ensemble. To investigate
how diversity can affect the ensemble performance, we re-
port two sets of results: with and without DSST and TGPR.
Their results are shown in Fig. 12 and Fig. 13, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
ce

s
s 

ra
te

Success plots of OPE

 

 

Basic [0.583]

Online Tratrectory Optimization [0.580]

EBT [0.567]

DSST [0.557]

TGPR [0.529]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
s
io

n

Precision plots of OPE

 

 

Basic [0.797]

Online Tratrectory Optimization [0.798]

EBT [0.774]

DSST [0.747]

TGPR [0.766]

Figure 12. Results of ensemble when the individual trackers are
of low diversity (the four different observation models from our
framework). Basic and Online Trajectory Optimization methods
are from [4] and EBT is from [37].

We can see that diversity in the ensemble helps to achieve
good results. Both ensemble methods can significantly im-
prove the results when the trackers have high diversity.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e

s
s 

ra
te

Success plots of OPE

 

 

Basic [0.618]

Online Tratrectory Optimization [0.608]

EBT [0.603]

DSST [0.557]

TGPR [0.529]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
s
io

n

Precision plots of OPE

 

 

Basic [0.836]

Online Tratrectory Optimization [0.826]

EBT [0.812]

DSST [0.747]

TGPR [0.766]

Figure 13. Results of ensemble when the individual trackers are of
high diversity (all the six trackers). Basic and Online Trajectory
Optimization methods are from [4] and EBT is from [37].

Even when the diversity is low, the ensemble does not im-
pair the performance but still slightly outperforms the best
single tracker.

Our Findings: The ensemble post-processor can improve
the performance substantially especially when the trackers
have high diversity. This component is universal and effec-
tive yet it is least explored.

6. Limitations of Current Framework

The primary goal of this work is to gain a deeper under-
standing into the different components of a visual tracking
system, rather than trying to include all existing trackers
into our framework. Thus, inevitably, some excellent track-
ers are not represented in the current framework. We list
and discuss some of them here.

First, in some methods, several components are tightly
coupled. For example, in the classical mean-shift
tracker [7], the observation model must be paired with a
probabilistic map as output; in some part-based methods,
such as [1, 17], the observation model must be designed in
such a way to take the part information into consideration;
and in the latest deep learning trackers [36, 34], the feature
extractor and observation model are combined into a unified
deep learning framework for end-to-end learning.

Second, while accuracy is an important factor in visual
tracking systems, it is certainly not the only one. Speed is
another important factor to consider in practice. Since our
framework is designed to be as universal and generic as pos-
sible to accommodate more, though not all, algorithms, we
have not put much effort on optimizing the speed on pur-
pose. Our best combination runs about 10fps in MATLAB.
There exist some recent attempts that focus on developing
fast tracking models. For example, fast Fourier transform
(FFT) [5] and circular matrices [15, 9] are used to accelerate
dense (kernelized) ridge regression. In their work, the mo-
tion model and observation model are coupled. Although
we could approximate their methods in our framework us-
ing sliding windows and ridge regression, such implemen-
tation would be much slower than that in the original paper.

7. Conclusion and Future Work

“God is in the details.”
— Ludwig Mies van der Rohe

In this paper, we have analyzed and identified some im-
portant factors for a good visual tracking system. We show
that if we design each component carefully, even some very
elementary building blocks from textbooks can result in a
tracker that is as competitive as state-of-the-art trackers. By
breaking a visual tracking system down into its constituent
parts and analyzing each of them carefully, we have arrived
at some interesting conclusions. First, the feature extrac-
tor is the most important part of a tracker. Second, the
observation model is not that important if the features are
good enough. Third, the model updater can affect the re-
sult significantly, but currently there are not many princi-
pled ways for realizing this component. Lastly, the ensem-
ble post-processor is quite universal and effective. Besides,
we demonstrate that paying attention to some details of the
motion model and model updater can significantly improve
the performance.

Our work enlightens several interesting directions to pur-
sue, including the development of lightweight and effective
feature representations, principled ways of model update,
and advanced ensemble methods. It is our hope that, be-
sides the observation model which has been the focus of
many studies, other equally important components in track-
ing systems will attract more research attention as a conse-
quence of our findings.

Acknowledgement
This research has been partially supported by Faculty

Research Award Z0400-D granted to Dit-Yan Yeung.

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-

based tracking using the integral histogram. In CVPR, pages
798–805, 2006. 8

[2] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A
tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking. IEEE Transactions on Signal Processing,
50(2):174–188, 2002. 5

[3] B. Babenko, M. Yang, and S. Belongie. Robust object
tracking with online multiple instance learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33(8):1619–1632, 2011. 2

[4] C. Bailer, A. Pagani, and D. Stricker. A superior tracking ap-
proach: Building a strong tracker through fusion. In ECCV,
pages 170–185. 2014. 7, 8

[5] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.
Visual object tracking using adaptive correlation filters. In
CVPR, pages 2544–2550, 2010. 8



[6] L. Čehovin, A. Leonardis, and M. Kristan. Visual object
tracking performance measures revisited. arXiv preprint
arXiv:1502.05803, 2015. 1, 2

[7] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift. In CVPR, pages 142–
149, 2000. 8

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, pages 886–893, 2005. 1, 4

[9] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Ac-
curate scale estimation for robust visual tracking. In BMVC,
2014. 2, 7, 8

[10] M. Danelljan, F. S. Khan, M. Felsberg, and J. v. d. Weijer.
Adaptive color attributes for real-time visual tracking. In
CVPR, pages 1090–1097, 2014. 4

[11] J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning
based visual tracking with Gaussian processes regression. In
ECCV, pages 188–203. 2014. 2, 7

[12] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking
via on-line boosting. In BMVC, pages 47–56, 2006. 2, 7

[13] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised
on-line boosting for robust tracking. In ECCV, pages 234–
247, 2008. 2, 7

[14] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output
tracking with kernels. In ICCV, pages 263–270, 2011. 2, 4,
5

[15] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-
speed tracking with kernelized correlation filters. arXiv
preprint arXiv:1404.7584, 2014. 2, 5, 8

[16] S. Hong, T. You, S. Kwak, and B. Han. Online tracking
by learning discriminative saliency map with convolutional
neural network. arXiv preprint arXiv:1502.06796, 2015. 1,
2, 4

[17] X. Jia, H. Lu, and M. Yang. Visual tracking via adaptive
structural local sparse appearance model. In CVPR, pages
1822–1829, 2012. 8

[18] M. Kristan and et al. . The visual object tracking VOT2014
challenge results. In ECCV Workshop, 2014. 1, 2

[19] A. Li, M. Lin, Y. Wu, M.-H. Yang, and S. Yan. NUS-PRO:
A new visual tracking challenge. To Appear in IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2015.
2

[20] B. D. Lucas and T. Kanade. An iterative image registra-
tion technique with an application to stereo vision. In IJCAI,
pages 674–679, 1981. 1

[21] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learn-
ing for matrix factorization and sparse coding. Journal of
Machine Learning Research, 11(1):19–60, 2010. 4

[22] I. Matthews, T. Ishikawa, and S. Baker. The template up-
date problem. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(6):810–815, 2004. 7

[23] X. Mei and H. Ling. Robust visual tracking using l1 mini-
mization. In ICCV, pages 1436–1443, 2009. 2

[24] Y. Pang and H. Ling. Finding the best from the second bests-
inhibiting subjective bias in evaluation of visual tracking al-
gorithms. In ICCV, pages 2784–2791, 2013. 1, 2

[25] H. Possegger, T. Mauthner, and H. Bischof. In defense of
color-based model-free tracking. In CVPR, 2015. 4

[26] D. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning
for robust visual tracking. International Journal of Computer
Vision, 77(1):125–141, 2008. 2, 7

[27] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof.
PROST: Parallel robust online simple tracking. In CVPR,
pages 723–730, 2010. 7

[28] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. De-
hghan, and M. Shah. Visual tracking: An experimental sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(7), 2014. 2

[29] S. Song and J. Xiao. Tracking revisited using RGBD camera:
Baseline and benchmark. In ICCV, pages 233–240, 2013. 2

[30] J. Supancic and D. Ramanan. Self-paced learning for long-
term tracking. In CVPR, pages 2379–2386, 2013. 6

[31] C. Tomasi and T. Kanade. Detection and tracking of point
features. Technical Report CMU-CS-91-132, School of
Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.
1

[32] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, pages 511–518, 2001.
4

[33] D. Wang, H. Lu, and M.-H. Yang. Least soft-threshold
squares tracking. In CVPR, pages 2371–2378, 2013. 2

[34] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung. Transferring rich
feature hierarchies for robust visual tracking. arXiv preprint
arXiv:1501.04587, 2015. 1, 2, 4, 8

[35] N. Wang, J. Wang, and D.-Y. Yeung. Online robust non-
negative dictionary learning for visual tracking. In ICCV,
pages 657–664, 2013. 2, 7

[36] N. Wang and D.-Y. Yeung. Learning a deep compact image
representation for visual tracking. In NIPS, pages 809–817,
2013. 2, 8

[37] N. Wang and D.-Y. Yeung. Ensemble-based tracking: Aggre-
gating crowdsourced structured time series data. In ICML,
pages 1107–1115, 2014. 7, 8

[38] Z. Wang and S. Vucetic. Online training on a budget of
support vector machines using twin prototypes. Statistical
Analysis and Data Mining: The ASA Data Science Journal,
3(3):149–169, 2010. 4

[39] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In CVPR, 2013. 1, 2, 3, 4

[40] Y. Wu, J. Lim, and M.-H. Yang. Object tracking bench-
mark. To Appear in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2015. 2

[41] J. Xing, J. Gao, B. Li, W. Hu, and S. Yan. Robust object
tracking with online multi-lifespan dictionary learning. In
ICCV, pages 665–672, 2013. 7

[42] J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking
via multiple experts using entropy minimization. In ECCV,
pages 188–203. 2014. 7

[43] W. Zhong, H. Lu, and M.-H. Yang. Robust object track-
ing via sparsity-based collaborative model. In CVPR, pages
1838–1845, 2012. 2


