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Abstract: Our objective is to provide an optimistic strategy for reversing soil degradation 

by increasing public and private research efforts to understand the role of soil biology, 

particularly microbiology, on the health of our world’s soils. We begin by defining soil 

quality/soil health (which we consider to be interchangeable terms), characterizing healthy 

soil resources, and relating the significance of soil health to agroecosystems and their 

functions. We examine how soil biology influences soil health and how biological properties 

and processes contribute to sustainability of agriculture and ecosystem services. We continue 

by examining what can be done to manipulate soil biology to: (i) increase nutrient availability 

for production of high yielding, high quality crops; (ii) protect crops from pests, pathogens, 

weeds; and (iii) manage other factors limiting production, provision of ecosystem services, 

and resilience to stresses like droughts. Next we look to the future by asking what needs to 

be known about soil biology that is not currently recognized or fully understood and how 

these needs could be addressed using emerging research tools. We conclude, based on our 

perceptions of how new knowledge regarding soil biology will help make agriculture more 

sustainable and productive, by recommending research emphases that should receive first 

priority through enhanced public and private research in order to reverse the trajectory 

toward global soil degradation. 

Keywords: soil biology; sustainable agriculture; soil health; soil management; soil organic 

matter (SOM) 

 

1. Introduction 

One of the most unexplored frontiers associated with understanding the dynamics of soil resources 

and their subsequent health or quality is that of soil biology. We suggest this reflects the challenges 

associated with understanding biological properties and processes when compared to soil physical and 

chemical manipulations that can be used to influence soil quality/health. As a result, multiple post-World 

War II developments leading to agriculture as we know it today [1] placed a greater emphasis on physical 

and chemical manipulation than on soil biology [2]. These developments included: (i) increased availability 

and use of synthetic fertilizers, herbicides, and pesticides; (ii) an improved understanding of plant 

nutrition and an infrastructure for delivering fertilizers to farmers; (iii) improved tillage, planting, harvesting 

equipment; (iv) cost-effective subsurface drainage; (v) increased efficiencies for both animal and crop 
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production systems; and (vi) development of global markets. Unfortunately, soil biological responses to 

these developments were often overlooked or not recognized, so the rapid changes also resulted in 

unintended consequences, especially with regard to soil health and long-term agricultural sustainability. 

Optimistically recognizing the challenges associated with stopping and even reversing soil degradation, 

our objectives are to identify critical soil biological questions and to suggest various strategies for 

answering them through enhanced public and private research efforts focused on the concept of soil 

health. In order to identify knowledge gaps, we review previous literature on soil health and the role of 

soil biology, and frame future prospects in terms of emerging analytical capabilities. 

2. What Constitutes a Healthy Soil? 

2.1. Definition of Soil Health 

Soil is a dynamic, living, natural body that is vital to the function of terrestrial ecosystems [3]. Farmers 

intuitively recognize the importance of healthy soils and have used qualitative terms (i.e., color, taste, 

touch and smell) to describe soil condition and performance for crop production since the dawn of 

agriculture about 10,000 years ago [4]. At the beginning of the 20th Century, qualitative descriptions 

were gradually replaced by analytical procedures to assess and evaluate soil almost exclusively from the 

perspective of inorganic nutrients and crop yield [5]. 

Warkentin and Fletcher [6] were among the first to introduce the soil quality concept as an approach 

to improve the process of land use planning. The soil quality concept evolved rapidly during the 1990’s, 

an outcome of increased emphasis on sustainable land use and a growing consensus that soil quality in 

agriculture should no longer be limited to productivity goals [3,7–12]. As the soil quality concept 

evolved, methods and tools for soil quality assessment were developed to facilitate comparisons between 

soil management systems and to document changes in soil properties and processes that occurred in 

response to land-use or soil management decisions [7,9,13–16]. There was agreement that the design of 

any generalized soil quality assessment tool must be flexible enough to capture multiple soil functions 

in various combinations [14] while respecting the broader goals of sustaining plant and animal productivity, 

erosion control, maintaining or enhancing water and air quality, and supporting human health and 

habitation [9,15,17]. 

Soil quality is most simply defined as “the capacity of the soil to function” [9]. Important soil functions 

include: water flow and retention, solute transport and retention, physical stability and support; retention 

and cycling of nutrients; buffering and filtering of potentially toxic materials; and maintenance of 

biodiversity and habitat [18]. A broader, ecologically-based approach was presented by Doran et al. [3], 

where they defined soil health as “the continued capacity of soil to function as a vital living system, 

within ecosystem and land-use boundaries, to sustain biological productivity, maintain the quality of air 

and water environments, and promote plant, animal, and human health.” The terms soil quality and soil 

health are often used interchangeably, although farmers and some members of the research community 

favor the term soil health [19] because it more clearly conveys the idea that soil is a living dynamic 

system [3]. Most soil scientists, however, reluctantly prefer the term soil quality because of its focus on 

quantitative soil properties and the quantitative linkages between those properties and various soil 

functions [19]. 
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Soil taxonomy (the set of innate soil characteristics conveyed by the classification) is the foundation 

for the soil quality/health framework. Each specific soil has inherent soil quality characteristics that are 

determined by the interaction of climate, topography, living organisms (vegetation, microorganism, 

humans) and parent material over long periods of time [20]. The term “dynamic soil quality” refers to 

the effects of human use and management on soil function [21,22], reflecting changes associated with 

current or past land use and crop and soil management decisions. Dynamic soil quality can be measured 

and used to compare different practices on similar soils or temporal trends on the same soil. The inherent 

properties of different soils may limit the extent of changes due to dynamic processes and need to be 

accounted for within management strategies to producer healthier soils. 

2.2. Existing Soil Quality/Health Assessment 

Assessment of soil quality is usually accomplished through direct measurement of a suite of soil 

biological, chemical, and physical properties and processes that have the greatest sensitivity to changes 

in soil function [14]. Soil quality indicators should correlate well with ecosystem processes, integrate 

soil properties and processes, be accessible to many users, sensitive to management and climate, and, 

whenever possible, be components of existing databases [23]. Selected groups of soil indicators, also 

referred to as minimum datasets (MDSs), that are used to indirectly measure soil function must also be 

sufficiently diverse to represent chemical, biological, and physical properties and processes of complex 

systems [23,24]. Researchers have given particular attention to soil indicators that can serve as early and 

sensitive indicators of longer-term changes in soil ecosystem function [25]. Frequently recommended 

soil quality indicators include: soil organic matter (SOM), particulate organic matter (POM), microbial 

biomass carbon (MBC), potentially mineralizable nitrogen (PMN), macroaggregate stability, electrical 

conductivity (EC), sodium absorption ratio (SAR), pH, inorganic N, P, potassium (K), and magnesium 

(Mg), available water-holding capacity (AWC), bulk density (BD), topsoil depth, and infiltration  

rate [9,23,26]. Soil enzyme activity, specifically β-glucosidase activity which is involved in plant residue 

degradation, and water-filled pore-space were recently added to the recommended list of important soil 

quality indicators because of their association with soil biological properties and processes [27]. 

The issue of spatial and temporal scale affects both the sensitivity of assessment and the choice of 

indicators that are evaluated. Both scales vary depending upon the type of soil management questions 

that are being asked or the purpose for which soil quality is being evaluated [28]. In general, soil quality 

evaluations at the farm, watershed, county, state, regional, or national scales are more general and less 

precise than those made at the point or plot scale [29]. Large-scale assessments often rely on databases, 

simulation models, and remote sensing in conjunction with statistically representative point sampling to 

verify the projections [21]. For instance, Potter et al. [30] used a combination of model simulations and 

data point measurements across the U.S. to assess soil organic carbon and identify areas most at risk for 

soil quality/health degradation and loss of soil function. 

2.3. The Significance of Soil Health to Agroecosystems and Soil Restoration 

The single most important soil quality indicator for nearly all soils throughout the world is SOM.  

It is also one of the most common deficiencies identified in degraded soils because of the numerous 

chemical, physical, and biological properties and processes it influences. Soil organic matter is generally 
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measured based on the concentration of soil organic carbon (SOC), because about 50% of the SOM is 

accounted for by SOC. Increases in SOM, particularly in biologically-available forms, are intimately 

linked to changes in the size, activity and composition of the soil microbial community, enhanced cycling 

and retention of nutrients, improved aggregate stability, and increased water-holding capacity. 

Effective SOM management involves balancing two ecological processes: mineralization of  

carbon (C) and nitrogen (N) in SOM for short-term crop uptake, and sequestering C and N in SOM pools 

for long-term maintenance of soil quality, including structure and fertility. Agricultural land management 

options recommended to increase SOM and improve soil quality nearly always include some reduction 

in tillage intensity and implementation of integrated, multifunctional cropping rotations that include 

forage legumes, and/or small grains. 

Integrated, extended crop rotations that include small grains and forage legumes have been shown to 

increase SOC compared to mono- or bi-crop rotations [31–34] with positive impacts being especially 

evident in the biologically active fractions of SOM [35–37]. Cover crops increase the complexity of 

rotations and extend the duration of photosynthetic capture in annual crop rotations, thus increasing 

organic C inputs to the soil and the potential for soil C sequestration—a critical process for restoring 

degraded soils and addressing increasing concerns regarding global climate changes. 

Cover crops can also provide important ecosystem services when planted within corn (Zea mays L.) 

soybean [Glycine max (L.) Merr.] systems and extended cropping rotations. Environmental benefits such 

as decreased soil erosion [10,38] and decreased nitrate leaching [39–41] have been consistently 

demonstrated in cover crop studies. In general, leguminous cover crops provide the greatest potential for 

improving yields, but cereal crops generally result in higher levels of SOM, greater weed suppression, 

and more soil N immobilization, which can reduce nitrate leaching during winter months [42]. Planting 

small grains and N-fixing cover crops together may be an effective management strategy to 

simultaneously increase soil C and optimize soil N cycling processes, and thereby reduce both leaching 

and gaseous emission losses of N. 

Conservation tillage increases surface SOC content compared to plow tillage [43–45], but some 

studies indicate subsoil C content is higher under plowing [46–48]. There is evidence that changes in 

tillage management alter C cycling processes, resulting in greater retention of corn-derived C in no-till 

(NT) compared to plowed systems. Type and intensity of tillage directly controls substrate availability 

to soil organisms and rate of decomposition of substrates by affecting the quantity and distribution  

of plant residues and roots [49,50]. Tillage factors can also exert indirect control on residue 

decomposition processes by influencing soil aeration, water content, soil temperature, and especially soil 

aggregate properties. 

Soil management practices that increase SOM and enhance soil health create expanded habitat and 

greater niche diversity for soil biological communities. It is the inputs of organic matter from plant 

residues and exudates that provide carbon and energy sources for soil organisms. Net increases in SOM 

improve soil aeration, temperature, moisture, and aggregate stability, and provide a resilient resource 

base for a wide variety of soil organisms through the maintenance of a rich and varied source of OM and 

the efficient supply of nutrients. Improving the quality and health of the soil is important not only for 

those that manage the land, but for anyone who enjoys a cup of clear water or access to a plentiful and 

consistent food supply. 
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3. How Does Soil Biology Influence Soil Health, or What’s Missing in a Degraded Soil? 

3.1. Soil Biology Overview 

Soil biology encompasses the collective biomass and activities of soil-dwelling organisms from an 

array of trophic levels that are present in staggering quantities, even though individuals may not be 

visible to the unaided eye. For example, it is estimated that there are at least one billion bacterial cells 

per gram of soil distributed among thousands to millions of individual species [51]. It has been calculated 

that the microbial biomass existing underground may approach the sum of all living biomass on the 

earth’s surface [52]. Viewing the tree-of-life (based on genetic relatedness), one begins to understand 

the diversity of the unseen microbial world, especially since only the three branches at the top right 

(Animalia, Fungi, and Plantae) contain individual organisms that can be seen with the unaided eye 

(Figure 1). 

 

Figure 1. Tree of life based on genetic relatedness using the ribosomal RNA gene sequence. 

One of the three domains (domain is the highest taxonomic level of life), the Archaea, was first 

described in 1977. Archaea appear morphologically similar to bacteria; however, they possess fundamental 

biochemical similarities with Eucarya and fundamental biochemical distinctions from Bacteria. In short, 

Archaea are genetically and phylogenetically as different from Bacteria as they are from any of the 

members of the Eukaryotic domain. The discovery of major taxonomic groups containing microscopic 

life continues at a rapid pace with a significant modification of the Archaeal domain now becoming 

apparent—all within in the last 25 years. In 1987 the domain Bacteria contained just 12 phyla (phyla  

is highest taxonomic group within a domain); today over 70 bacterial phyla are recognized or under 

consideration for recognition [53]. 

Each of the primary “Tree-of-Life” branches represents numerous species such that a detailed view 

would show each branch giving way to successively smaller branches, which are further studded with 

bushes. Within the two prokaryotic domains (Archaea and Bacteria), even the lowest taxonomic level of 

species often contains considerable diversity (i.e., microdiversity) that manifests itself in strains, 

ecotypes, biotypes, serotypes, etc. For example, all Escherichia coli are considered the same species,  

but there are numerous strains that are distinctive not only genetically but functionally as well. This 
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means that one strain can be a deadly pathogen while other strains are either benign or even beneficial 

partners co-existing with plants and animals. This is just one example of the subtle differences associated 

with soil biology and why it can be difficult to identify exactly what’s wrong in degraded soils that 

simply are not performing as expected. 

The variety of physiological capabilities, tolerances, and energy sources of soil microorganisms are 

extraordinary, and new discoveries are common. A useful tool to comprehend the physiological diversity 

is the electron tower which displays standard electrode potentials of redox couples (Figure 2). Plants can 

photosynthesize by fixing CO2 using water. Animals and plants respire organic compounds at the 

expense of oxygen as an electron acceptor. Microbes, on the other hand, can use all of these compounds 

(and more) as either an energy source or an electron acceptor so that energy can be gained from hydrogen 

gas (H2) and inorganic molecules in their reduced form (e.g., nitrogen, sulfur, iron, manganese, etc.), 

while CO2 and those same molecules (e.g., nitrogen, sulfur, iron, manganese, etc.) in their oxidized forms 

can be used as electron acceptors. Bacteria that can oxidize ammonium using nitrite as an electron 

acceptor have been described in the 21st century and have been found to play key roles in wastewater 

treatment. In addition to heterotrophic metabolism using exogeneous electron acceptors, microbes can 

ferment organic compounds, reducing one part while oxidizing the other. Microbes can fix CO2 by not 

only standard photosynthetic processes, but also by anoxigenic photosynthesis using other compounds 

(e.g., sulfur) as electron donors in lieu of water, plus three other pathways not found in eukaryotic 

organisms [54]. As recently as 2000, it was discovered that some bacteria contained a protein, 

bacteriorhodopsin, which creates energy from light allowing photo-heterotrophic growth [55]. Similar 

bacteriorhodopsin molecules had previously only been detected in extremely halophilic archaea. This 

previously overlooked bacterial metabolism has since been found to be performed by a significant 

fraction of the world’s marine bacterioplankton. 

Microbes can even partner with others to perform metabolic processes thought to be energetically 

unfavorable such as anaerobic methanotrophy which couples methane oxidation with sulfate reduction. 

Anaerobic oxidation of methane has been described largely in the last decade, and new details such as 

the use of nitrate (in lieu of sulfate) in this reaction are still emerging. 

The physiological tolerances of bacteria far exceed that of eukaryotes. Biological activity of 

microorganisms can proceed at environmental extremes including temperatures below freezing and 

above boiling, at pH approaching acid and alkaline endpoints, under very low water tensions, at very 

high ionic strength, in high radiation fields, and in the presence of high concentrations of toxic 

compounds. Viable bacteria have been retrieved from 2 miles below the earth’s surface [56]; in fact, the 

existence of a sterile location on earth is difficult to prove. 

Several recent findings highlight the on-going transformation in understanding of soil organisms and 

their processes. In 2006, it was determined that members of the Archaea were actually responsible for 

most of the nitrification occurring in many soils [57]. This completely changed what was “known” for 

decades—that nitrification was performed strictly by a very limited number of Bacterial genera. Bacteria 

belonging to the phylum Acidobacteria are now thought to be the numerically-dominant organism in 

many soils, but were first described in 1991 and virtually unheard of 15 years ago. Unfortunately, due 

to their resistance to laboratory culturing, there is yet insufficient information to establish their functional 

roles. Clearly, the basic understanding of the microbial world remains incomplete, and therefore 

represents an impediment to assessing and promoting soil health. The continuing exponential increase 
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in soil biological knowledge is also why we are optimistic that the pathway for mitigation and even 

reclamation of degraded soils is through an increased emphasis on research and education. 

 

Figure 2. Standard electrode potentials of selected redox couples. 

Frequent gene exchange, even between members of different domains [58], by multiple mechanisms, 

further emphasizes the genetic and functional fluidity of the unseen world that exists in soil. From a 

scientific standpoint, gene exchange among unrelated organisms greatly complicates attempts to classify 

them, to study their ecological relationships, and to develop useful models that will lead to predictive 

power necessary for applications. Yet, these difficulties do not diminish the potential value of understanding 

and influencing the power of the soil biota. 

In addition to the prokaryotic organisms, there are enormous numbers of microscopic eukaryotes 

living in the soil. The net result is that in one gram of soil, there may be a million fungi comprised of 

hundreds of different species that can produce over 100 m of mycelial filaments. Add to the mix some 

thousands to millions of algae (classified as Plants), and millions of Protozoa belonging to several 

different phyla, and several dozen microscopic nematodes. Beyond the microbiota, soil supports a great 

diversity of invertebrates, ranging across many Phyla and Classes of organisms that are frequently  

larger and termed meso- and macro-biota. Phyla include Annelida, Nematoda, Nematomorpha, and 

Arthropoda, of which the last is by far the best studied group. At least five Classes of Arthropods reside 

within soil food webs: Arachnida (spiders, mites, etc.), Chilopoda (centipedes), Diplopoda (millipedes), 

Crustacea (isopods), and Hexapoda (insects, collembolans, diplurans, etc.). Constraints of modern taxonomic 

tools notwithstanding, scientists regard insects, spiders, and mites as the most diverse macro-taxa within 

soil food webs, and their numbers are overwhelming. Within conventional agroecosystems, density 

estimates reveal 100,000–160,000 insects and spiders per ha near the soil surface in soybean, and 
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340,000–680,000 per ha within the soil column in corn. Healthy soil arthropod communities within 

agroecosystems are composed of hundreds of species, each with a distinct function and biology. 

Altogether, soil inhabitants form a food web (Figure 3) that extends above-ground to plants and all other 

living organisms. Some of the more notable roles for soil fauna in contributing to healthy functioning 

soils are recognized in the next section; however, the remainder of this review is largely confined to the 

consideration of microbiota living in the soil. For literature reviews on the contribution of soil fauna to 

soil health, please refer to Lavelle et al. [59] and Blouin et al. [60]. 

 

Figure 3. Soil food web (Reprinted with permission from: Soil Biology Primer. 2000. Soil 

and Water Conservation Society, Ankeny, IA, USA). Please note that the graphic does not 

represent all the important groups of soil organisms such as enchytraeids and earthworms. 

3.2. Relationships between Soil Biology, Soil Quality and Restoration Strategies 

Soil was characterized by Doran and Parkin [7] as having good “quality” if it could: 

(1) Accept, hold and release nutrients and other chemical constituents. 

(2) Accept, hold and release water to plants, streams and groundwater. 

(3) Promote and sustain root growth. 

(4) Maintain suitable soil biotic habitat. 

(5) Respond to management. 

(6) Resist degradation. 

All of these attributes of soil quality are largely a function of soil biology and why we continue to 

emphasize that the most optimistic solution for reversing soil degradation is to enhance soil biology.  

It is widely recognized that soil microorganisms enable other forms of life to exist on Earth [61,62].  

By catalyzing redox reactions, soil microorganisms directly mediate the biogeochemical cycling of 

carbon, nutrients and trace elements. These activities moderate atmospheric composition, water 
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chemistry, and the bioavailability of elements in soil. Soil fertility and other properties of soil (e.g., 

texture, aeration, available moisture, etc.) that support agricultural production are directly dependent on 

the biomass, metabolites, and activities of microorganisms. Specific populations of microbes are known 

to exert largely beneficial effects on plants (i.e., symbiotic nitrogen fixing bacteria, mycorrhizal fungi) 

while others may exert deleterious effects (i.e., pathogens). These microbes can be endophytic (living 

inside the plant) or free-living soil organisms living adhered to the root surface (i.e., the rhizoplane),  

in close proximity to roots (i.e., the rhizosphere) or further away in the bulk soil. At their most basic 

level, microbes and soil invertebrates are an important source of carbon and other nutrients. Soil 

invertebrates alter the structural components of the soil, increasing soil porosity, changing aggregate 

structure, and redistributing nutrients throughout the soil column and across the landscape. Invertebrates 

return nutrients and organic matter to the soil, either directly by breaking down plant material,  

or indirectly by consuming animal waste (e.g., dung beetles) or saprophytes like fungi. It follows that a 

well-poised and active soil biological community will be responsive to management and resist degradation. 

3.3. How does Soil Biology Influence Ecosystem Services that Are Crucial for Well-Functioning Soils? 

Soil biota are integral providers of fundamental ecosystem services such as those listed in  

Table 1. These are also among the most critical functions that need to be restored in degraded soil 

resources. Using a meta-analysis of published studies, Benayas et al. [63] documented the positive 

linkage between total biodiversity and provision of ecosystem services in terrestrial ecosystems. The 

multifaceted contributions of soil macroorganisms to ecosystem services has been well-described by 

Lavelle et al. [59]. The overall economic benefit of soil biodiversity to ecosystem services, and thus 

well-functioning soil resources, was estimated to be 1.5 quadrillion U.S. dollars [64]. In recent 

publications, biodiversity was also shown to influence global C [65] and greenhouse gas budgets [66], 

enhance water quality [67], moderate soil organic matter decomposition [68,69], regulate nutrient 

retention and availability [69], and determine the susceptibility of soil to invasion by a pathogen [70]. 

Synthesis papers by Kremen [71] and Hooper et al. [72] have summarized the established linkage 

between biological communities and ecosystems services, while emphasizing the need to understand 

biological complexity to properly manage the systems, particularly in agroecosystems. 

Table 1. Ecosystem services provided by soil biota †. 

Ecosystem Services Provided by Soil Biota 

Regulation of biogeochemical cycles 

Retention and delivery of nutrients to primary producers 

Maintenance of soil structure and fertility 

Bioremediation of pollutants 

Provision of clean drinking water 

Mitigation of floods and droughts 

Erosion control 

Regulation of atmospheric trace gases 

Pest and pathogen control 

Regulation of plant production via non-nutrient biochemicals 

† Modified from [73]. 
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3.4. The Significance of Soil Biology to Sustaining Agriculture and Restoring Soil Health 

Numerous examples of failed societies can be linked to degradation of soils by agricultural practices [74]; 

which by definition, must be considered examples of unsustainable practices. The characteristics of 

sustainable farming practices which maintain and/or restore soil resources are those that can be used 

over the long-term to produce adequate yields without severe degradation of soil, water and air resources 

that would limit agricultural production, cause human morbidity and mortality, and otherwise incur  

off-site economic costs. In practice, this means the soil and crop management practices must: (1) maintain 

soil carbon; (2) control erosion; (3) maintain soil structure; (4) maintain soil fertility; (5) increase nutrient 

cycling efficiency; (6) reduce export of nutrients and thus the need for increased inputs; and (7) reduce 

pesticide input requirements and potential export of either the materials or their residuals [73]. Once 

again, these are all attributes of a well-functioning soil and thus our premise that to restore degraded 

soils, the first step must be to enhance and maintain soil biological properties and processes. 

The mechanism to achieve all of these goals is take advantage of inherent biological services to the 

greatest extent possible. Obviously, in entirely undisturbed grasslands, there is no human management 

to achieve the seven sustainability goals listed above, but on cultivated and range lands, soil and crop 

management practices can have positive or negative effects and thus influence the potential for soil 

degradation or enhancement. Sustainable agricultural management systems strive to integrate complexity 

into the management approach to include cover crops, filter strips, and non-crop landscapes such as 

grasslands and forest areas that provide vital habitats for beneficial organisms and serve as nutrient sinks 

to capture soluble nutrients and trap contaminants before these impact aquatic ecosystems [75]. 

The biomass of soil organisms nominally accounts for 2% of the SOC, but contribute to a much larger 

proportion of the actively cycled carbon fraction. At the decomposer level and higher, soil organisms 

represent the transformers of all fixed soil carbon and determine its fate. Soil microorganisms are  

well-documented to promote soil aggregation by their biomass and by their secretions. Microcolonies of 

bacteria and thin coatings of bacteria known as biofilms are held together and attached to their substrata 

by extracellular secretions largely composed of polysaccharides. Arbuscular mycorrhizal (AM) fungi 

have been shown to produce a glycoprotein, glomalin, which is responsible for aggregating soil  

particles [76]. Filamentous microbes, largely fungi, are particularly effective in mechanical binding of 

soil particles with their thread-like morphology. Plant roots, proliferating throughout the upper soil 

profile, support microbial communities actively involved in soil aggregation by providing organic 

carbon through rhizodeposition and thus helping stabilize soil structure and abate potential erosion [15]. 

Macro-invertebrates promote soil aggregation and create structures at a larger scale by tunneling, 

ingesting and depositing organic matter, producing secretions, and transforming organic residues [77]. 

The activities of ants [78] and earthworms [60] are widely recognized for promoting soil structure. 

Naturally, the degree of soil aggregation is directly related the soil’s resistance to degradation and 

erosion by wind and water. Soil structure promoted by soil organisms is also central to soil water 

dynamics, increasing water infiltration and holding capacity. 

Soil microorganisms are responsible for mineralizing organic compounds, including potential 

contaminant molecules such as pesticides. Half-lives of agrichemicals are based on the biodegradative 

abilities of the soil microbial community, as well as the local environmental conditions. In mineralizing 

organic compounds (native or added), microbial communities release combined elements (e.g., N, P)  
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in their chemically-reduced forms, generally increasing their availability to plants. Soil microbes also 

perform direct redox transformations of many inorganic elements using them as electron donors or 

acceptors in energy-yielding metabolic processes. In short, microorganisms moderate the abundance, 

speciation, and plant bioavailability of nutrients in the soil. Nitrogen-fixing bacteria exist in symbiotic 

and associative relationships with plants and as free-living communities in the soil to provide N to plants. 

Symbioses of N-fixing bacteria with soil invertebrates have been shown to be particularly important to 

the N cycling in some soils [79]. Nitrogen-transforming microorganisms (e.g., nitrifiers, denitrifiers) 

also moderate the speciation and therefore mobility of soil N affecting its propensity to stay or leave the 

system. Phosphate-solubilizing bacteria and fungi produce organic acids that either complex P or change 

microsite local pH to increase plant-available P. General activities of soil microbes result in the release 

of extracellular phosphatase enzymes which mineralize organic P, some of which becomes available to 

plants. Obligate plant symbiotic fungi, AM fungi, use a variety of mechanisms to uptake and translocate 

immobile nutrients (i.e., P, Zn, Cu) and water to their host plants in exchange for fixed carbon [80].  

A healthy soil food web with a diversity of macroinvertebrates has been shown to increase the release 

of P via the activities of grazers and predators [81]. The activity of tunneling organisms such as 

earthworms redistributes carbon and nutrients in the soil profile [60]. 

Phosphorus is a major nutrient with dwindling global supplies and rising prices. At the same time, 

only a small amount of P applied (20%) to crops is taken up by plants in the year of application [82,83]. 

The remaining P becomes sequestered in the soil, with limited availability to plants, or is lost by erosion 

and leaching (including tile drainage) to the watershed where it impacts other downstream populations 

and water quality by eutrophication which may culminate in the formation of marine dead zones. 

Similarly, only about one-quarter of annually applied N is taken up by crops in the year of application; 

some of the remaining N enters the watershed by leaching through the soil profile, tile drainage, or by 

overland flow processes to cause eutrophication and water treatment costs at downstream sites. 

Nutrient-use efficiency is often defined based on the amount of N or P accumulated by a crop in 

comparison to the amount applied through manures or inorganic fertilizers. However, a portion of the P 

and N in the crop has originated from within the soil, where it was already present and probably in a 

stable organic form resistant to export. Therefore, traditional nutrient use efficiency calculations often 

overestimate the efficiency of fertilizer application and fail to reflect added nutrients that were lost from 

the soil by leaching and/or erosion. A more reasonable goal would be to export fewer nutrients and 

consider how much of the added nutrient remains in the soil [84]. This should mean that inputs are 

reduced, while increasing the amount being provided by the soil through biologically-fixed N,  

or mineralization of P and N from organic matter at just the right time. In the case of P, there are large 

amounts of P already in the soil, unavailable to plants without the appropriate microorganisms and proper 

levels of activity. By considering the nutrient balance of the entire system, agricultural soils could be 

managed to stabilize at lower soil nutrient levels that make more efficient use of resources [85,86]. Some 

P exported with the crop will have to be replenished from external sources, but there is great room for 

improvement in promoting organic P cycling in soils and biological mobilization of “occluded” P already 

present in the soil. 

There is a long history of using bacteria and fungi as control agents for a variety of insect pests [87]. 

One example is the use of the entomophagous fungi to control insect pests such as aphids [88]. 

Contemporary use of proteins native to Bacillus thuringiensis, as whole cells, protein extracts,  
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or expressed by genetically-engineered plants to control insect pests is widespread. Among the  

many potential benefits that AM fungi have been shown to confer to their plant hosts is pest- and 

pathogen-resistance [89,90]. Predatory insects and spiders within the soil readily attack soil-dwelling 

pests, often maintaining these pests at low levels [91]. Invertebrates are also important herbivores of 

weeds, and reduce weed seed density and emergence by consuming many of the weed seeds that fall to 

the soil surface [92–94]. Microbes also affect weed seed banks, either directly by degradation [95]  

or indirectly as symbionts within insects, influencing their consumption of weed seeds [96]. Soils which 

inherently reduce weed seed germination are known as “weed-suppressive soils”. Although the exact 

biological qualities that contribute to control of weeds are not well known, one of the mechanisms is the 

production of allelochemicals that reduce weed germination [97]. Similarly, some soils are considered 

to be “disease suppressive” wherein often poorly-defined components of a diverse soil microbial 

community confer disease resistance to plants [70,98,99]. Use of inherent (or perhaps added) organisms 

to manage pest, disease, and weeds in agroecosystems would provide opportunities for lowered use of 

biocidal agrichemical use, export, and residuals. 

Soil bacteria that produce a positive effect on plant growth and vigor have been termed “plant growth 

promoting bacteria” (PGPB), or if they are located in the rhizosphere, rhizoplane, or inside the root 

(endophytic), they are termed “plant-growth promoting rhizobacteria” (PGPR) [100–102]. Sometimes 

the endophytes are considered separate from other PGPR [103]. There are, of course, also fungi that are 

endophytic like AM fungi and some Trichoderma sp. [104] which are often considered beneficial to the 

plant host. Soil organisms belonging to these groups have been identified to specific strains (i.e., 

Enterobacter sp. 638 [105]) or have been more generally categorized (i.e., fluorescent pseudomonads [106]). 

The functional contributions of the PGPR/B include repression of pests and diseases, and so there is 

overlap with the phenomena of disease-suppressive soils and pest protection discussed above. The 

putative mechanisms for pest and pathogen resistance include the production of antibiotics and siderophores, 

the physical (preventive) colonization of root tissue, interspecific-competition for resources, biodegradation 

of biogenic toxic substances, and the production of chemical signals (e.g., salicylic acid) that induce 

systemic resistance by the plants [102,107–109]. There are also PGPR/B that contribute to plant nutrient 

acquisition like the well-know symbiotic nitrogen fixers, Rhizobium, but also free-living N2 fixers such 

as Azospirillum and Azotobacter [110]. Some PGPR assist in mobilizing P for plant uptake using 

mechanisms such as production of acidity, organic ligands including siderophores, and extracellular 

phosphatases [110]. Other PGBR assist plants by degrading toxic organic compounds in the soil or 

immobilizing toxic metals [102]. 

Another distinct soil microbial function is the production of growth factors and metabolic products 

that positively influence plant metabolism in ways not directly associated with pest or pathogen resistance. 

For instance, the enzyme 1-aminocyclopropane-1-carboxylase (ACC) produced by soil bacteria degrades 

an ethylene precursor that, in turn, depresses the plant’s stress response to a variety of biotic and abiotic 

stress factors [111]. Soil microbes also can stimulate plant growth via the production of plant hormones 

such as auxins and cytokines. The auxin, indole acetic acid (IAA), is a phytohormone produced by  

soil bacteria which influences plant physiology, often resulting in enhanced root growth [112].  

Naturally, microbial metabolites that positively influence plant vigor also impact plant resistance to pests 

and pathogens. 
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Biological production and reception of chemical signals are a common feature of the integrated biome 

present in agricultural soils and the net outcome of these interactions on crop production may be positive 

as described above, or negative [113]. In opposition to PGPR/B is a loosely-defined group of microorganisms 

termed “deleterious rhizosphere bacteria” (DRB) [114,115]. These soil bacteria have been determined 

to have negative consequences for plant growth and vigor via mechanisms that include phytotoxin and 

phytohormone production, nutrient competition, and inhibition of AM fungi [115]. The DRB are usually 

not considered to be plant pathogens, but this is not always the case. Interestingly, groups such as the 

fluorescent pseudomonads have been identified as DRB [116], even though other studies have identified 

them as PGPR/B [106]. One view is that a single organism can be a DRB under one set of environmental 

conditions and a PGPR/B under a different set of conditions [115]. 

4. How Can Soil Biology Be Used More Effectively to Mitigate Soil Degradation? 

4.1. Strategies to Manipulate Soil Biology Focusing on Soil Microorganisms 

The benefits of a healthy soil and the role of the biological community in soil health have been 

covered in the previous two sections. Therefore, we now shift our focus to examine the potential for 

influencing soil biological communities to (i) increase nutrient availability for production of high 

yielding, high quality crops; (ii) protect crops from pests, pathogens, and weeds; and (iii) manage other 

factors that limit or threaten the stability of production and ecosystem services. As with any management 

decision, the process or tools selected to manipulate soil biological communities will be defined by the 

desired goals and objectives. With this in mind, we envision two strategies for management of soil 

microbial communities to obtain beneficial functions: (i) specific approaches; or (ii) general approaches. 

Specific approaches will require knowing the service that specific microbes are providing (i.e., nutrient 

acquisition, disease suppression) so they can be targeted to provide immediate relief for problems or 

degraded soil conditions identified within a specific field, farm or other location. Typical options for this 

approach include selection of disease resistant plants and/or cultivars with desired exudates. The specific 

approach is hindered by the lack of reliable information on the specific role(s) of more than a handful of 

the diverse taxa in soil. In contrast, the general approach seeks to provide a suitable environment  

to enrich the abundance and/or diversity of the entire microbiome through management practices. 

However, as with the specific approach, this will require knowledge of the current plant-soil-microbiome 

status in order to focus on any missing or limiting conditions for establishment of a robust and diverse 

soil microbial community. 

4.2. Specific Approach: Plant Selection and Microbial Amendments 

Plant root exudates include a variety of sugars, amino acids, flavonoids, proteins, and fatty acids [117], 

that can serve as growth substrates, signal molecules for suitable microbial partners, or growth deterrents 

for microbes [118]. The composition of plant root exudates can vary by plant species, and even cultivars 

within a species [119–121], resulting in concomitant changes in the composition of the soil microbial 

community [122–124]. 

Despite a general knowledge of the growth requirements for microbes in culture (which may or may 

not translate to the field), knowledge of the relative importance of various root exudates with regard to 
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shaping soil microbial communities or restoring degraded soils is lacking. Can selective effects be 

explained by a small number of high-impact compounds? How important are the diversity, quantity, or 

consistency of exudation to host plant-selective effects? The impact of particular aspects of root 

exudation on soil microbes has begun to be addressed for model plant species [117,125] through the  

use of ABC transporter mutants to alter root exudates; however, this should be made a priority for 

agriculturally relevant species as well. 

With emerging extreme climatic changes, another critical question is whether cropping system 

sustainability can be increased by using plants that can interact with a variety of PGPR/B that are capable 

of increasing photosynthetic capacity [126,127], conferring drought and salt tolerance [126,128–130], 

and improving the effectiveness of the plant’s own iron acquisition mechanisms [129]. A variety of 

companies have begun to offer new products that consist of PGPR/B inoculants (soil and/or seed 

treatments), or chemicals aimed at increasing root exudation to help foster PGPR/B establishment. 

However, field studies with PGPR/B inoculants often result in limited PGPR/B establishment  

and colonization, highlighting the need to better understand the factors involved in successful  

PGPR/B establishment. 

The use of amendments, either as live organisms or solutions applied in small amounts that are 

promoted to stimulate microorganisms, is increasing. The use of seed-applied, symbiotic N2-fixing 

bacteria to enhance the performance of legumes has a long, successful history. However, there are few 

other well-documented success stories to report. The use of AM fungi inoculants has been rising, but 

few refereed publications exist to support the benefits of this practice in production agriculture. In a 

three-year field study, the application of PGPR and AM fungal amendments was reported to positively 

affect plant nutrient uptake and conservation in corn plots [131]. However, for many commercial live 

biological amendments, there is little data beyond yield comparisons from company-sponsored field 

trials to evaluate these products. It is impossible to determine the potential benefits or risks of 

amendments without an increased basic understanding of soil microbial functional groups, their 

distributions, and their ecology (e.g., dispersal, survival). 

Agricultural chemicals applied to the foliage of crops or in-furrow can also impact soil organisms. 

Biostimulants (e.g., products containing plant hormones and other organic and inorganic compounds) 

and liquid fertilizers affect soil microorganisms by providing additional nutrients or growth factors that 

alter soil and plant metabolic activities for improving crop growth and productivity [132–134]. 

Biostimulants applied at extremely low dosages affect rates of organic matter decomposition, nutrient 

mineralization, and soil microbial activity [132,134]. Depending on the product, amendments could  

be classified as either a specific or general strategy. Developing a more complete understanding of  

how biostimulants and other formulations could be used to help restore degraded soils also provides a 

strong argument for increased public-private partnerships designed to address these complex and 

“wicked” [135] problems. Such partnerships could be very effective for overcoming current barriers to 

understanding appropriate uses and modes of action for the various amendments created by the 

proprietary nature of product formulations. 
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4.3. A General Approach: Modify the Whole Soil Community 

The future of any soil microbial community is determined by the capacity of its individual members 

to adapt or modify to “negative” soil characteristics [136], and to challenges such as climate change. 

Any potential manipulation of soil microbial communities must consider that ambient soil characteristics 

(e.g., water potential, aggregation, salinity, legacy of past management, pH, texture, SOM content/quality) 

influence the existing community and will consequently influence attempts at manipulation. Some of 

these soil factors can be positively manipulated through management (within local limitations), with 

considerable feedback from the soil biota (e.g., SOM, aggregation), while other soil factors are more 

resistant to modification (e.g., pH, texture). For example, one of the most influential factors on the 

microbial community is soil pH as different strains exhibit optimum pH in which they can function. Soil 

pH not only affects the cell functioning (i.e., enzymes), but also reactions altering the availability of 

nutrients and metals. Studies on several soils have observed a positive correlation between bacterial 

diversity and soil pH within a range of 4 to 7 [137,138]. In terms of the response between different 

groups, the fungal community composition appears to be less strongly affected by pH than the bacterial 

community composition, and thus, wider pH ranges are observed for optimal growth of the fungal 

community [139]. 

Different microbial communities can be expected under different soil types due to variation in soil 

physical properties (i.e., texture, bulk density, water infiltration), chemical properties (i.e., mineralogy, 

SOM, nutrient availability, pH) and other factors (i.e., soil genesis and morphology, climatic conditions). 

The challenge of selecting approaches to manipulate the microbial communities is, therefore, site-specific. 

For example, soils with higher SOM and clay content will show higher microbial community size and 

activities than a sandy soil, but it is still not clear whether a soil that is higher in organic matter and clay 

content is more resistant to manipulation. Even within a given soil profile, distributions of organisms 

and activities will vary according to heterogeneity in key soil properties. Further, the plant-microbe 

interaction is difficult to separate from the influence of soil characteristics on the microbial diversity as 

there are many examples of shifts in microbial community composition without changes in the SOM as 

affected by vegetation. Vegetation also introduces heterogeneity to the soil habitat. As studies are 

designed to determine how to most effectively remediate degraded soils, they will have to recognize that 

each set of soil characteristics and environmental boundaries will be an important determinant 

influencing the response of microbial communities for that soil. 

There is no doubt that agricultural management practices can influence soil biological populations 

and processes and thus have a positive or negative effect on soil health. Agricultural management effects 

on soil health, in turn, influence the type and magnitude of ecosystem services provided by the soil biota. 

One measurement of soil health is biodiversity, which has been shown to influence global C [65] and 

greenhouse gas budgets [66], water quality [67], SOM decomposition [68,69], nutrient retention and 

availability [69], and the susceptibility of soil to invasion by a pathogen [70]. Many assessments of soil 

health based on measurements of soil microorganisms have relied on estimates of total biomass and 

activity. The following agricultural practices have been observed to modify the whole soil biological 

community (biomass, numbers, diversity, activity) in a generally positive manner: no till or conservation 

tillage, cover cropping, elimination of fallow, incorporation of perennial crops, retention of crop 

residues, diverse crop rotation, use of organic fertilizer sources, and implementation of integrated pest 
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management practices (Figure 4) [75,140–142]. Many of these same practices have been shown to 

increase PGPR/B and reduce DRB [100,101]. 

 

Figure 4. Generalized Effects of Agricultural Management Practices on Soil Health 

(information compiled from: [75,140–142]). 

Tillage represents a disturbance of the soil habitat and can mechanically disrupt filamentous 

organisms, decrease soil structure, temporarily increase organic matter decomposition, and alter water 

and nutrient content and distribution [143,144]. Tillage-induced disturbance often has a negative impact 

on soil biota and the services that they supply [144–146]. Tillage most noticeably impacts large soil biota 

like earthworms [144] and filamentous organisms like fungi, particularly AM fungi [147]. Reductions 

in tillage are frequently linked to increased fungal biomass, and therefore have been suggested as 

strategies to increase microbial C use efficiency and soil C sequestration potential [148]. Reduced tillage 

is generally thought to increase microbial biomass in the long term [149] and has been associated with 

reductions in DRB in wheat cropped fields [150]. The combination of reduced or no-tillage with crop 

rotation or incorporation of perennial crops for integrated livestock and cropping systems promote AM 

fungi which enhance plant uptake of phosphorus and water, and disease resistance potential [151]. 

Although conservation tillage has been reported to impact beneficial microbial communities in certain 

scenarios (e.g., soils in humid regions), Acosta-Martinez et al. [152] reported that semiarid soils under 

different cropping systems showed no differences in microbial community size or structure when  

no-tillage and conventional tillage systems were compared after five years. 

Cover crops were originally defined as crops grown to protect the soil from erosion and nutrient  

losses [153]. However, it has become clear that cover crops have a wide array of benefits that depend on 

local soil-climatic conditions [154]. By reducing seasonal fallow, cover crops have enormous influence 



Sustainability 2015, 7 1005 

 

 

on soil biology by increasing the quantity and variety of C entering the soil through plant biomass, 

exudates, and residues. Additionally, cover crops increase N in the soil by stimulating the free-living  

N fixing bacteria and symbiotic N fixers when leguminous cover crops are planted. The inclusion of 

cover crops in a variety of corn production systems has been shown to significantly increase native AM 

fungal numbers and diversity [155–157] and P availability [158]. Recent research suggests that the 

benefits of cover crops include many additional factors, such as weed suppression and pest management 

that are likely connected to the larger soil biological community [159]. A study comparing four different 

cover crops in potato systems of the San Luis Valley show that they can support a disease-suppressive 

microbiome (Manter, unpublished data). In particular, the soil community under Sudan grass 79 is 

enriched for siderophore microbes that can not only provide disease suppression against fungal 

pathogens but also increase nutrients available to the subsequent crop species.  

Conversion of lands for biofuel feedstocks using either perennial vegetation such as switchgrass 

(Panicum virgatum L.) or rotations using corn or sorghum (Sorghum bicolor L.) may help meet 

increasing national energy demands, but require careful evaluation of impacts on overall ecosystem 

functioning. Despite the potential negative impact of excessive corn stover removal on SOM dynamics 

in the Midwest [160], other studies have shown that conversion of marginal lands to rotations involving 

high-residue crops (e.g., cotton (Gossypium spp.)) to high-yielding sorghum on low SOM soils can 

increase microbial biomass and metabolic capacity related to biochemical cycling [161]. In experimental 

cellulosic ethanol production systems where corn stover was harvested, no-till and addition of cover 

crops limited extensive changes in soil microbial communities [162]. Additional studies quantifying 

biofuel-cropping system effects on soil microbial communities are also needed to be sure such practices 

are not detrimental to biological soil quality. 

Crop rotation has long been noted for disrupting pest cycles and adding N fertility with legume  

crops [85,86,163]. In a study of five long-term diversified cropping systems, crop diversity (rotation) 

increased soil microbial biomass and activity and was associated with positive changes in soil C and 

nutrient dynamics [164]. Crop rotations have been specifically noted for increasing soil fungal biomass, 

which in turn aids in soil aggregation and C sequestration [148]. Rotating corn with other crops increased 

soil microbial biomass, C availability [165] and numbers of AM fungi [166]. In comparison to 

continuous corn, rotating corn with canola resulted in greater microbial biomass, activity, and functional 

diversity [167]. On the other hand, continuously cultivated crops are most commonly associated with 

increased incidence of DRB which impair plant growth through numerous modes of action [115,168]. 

The absence of a crop (fallow) is an obvious factor in decreased soil health as there is no plant host for 

obligate symbionts, no exudates for the rhizosphere community, and no residues for the bulk soil community. 

Fallow is associated with poor nutrient conservation [169], lowered AM fungi populations [140,170] 

and other impacts to soil health that affect crop production [171]. While crop rotation is known to benefit 

crop production via modification of the soil microbial communities, many details are still unknown [142]. 

Specific crop sequences have been shown to be particularly effective for controlling weeds, but often the 

mechanism remains unexplained, and probably involves modification to the soil biota [172]. 

Organic amendments enhance the physical environment for nutrient retention and bioavailability 

causing alterations to the existing microbial community. Depending upon their composition and nutrient 

content, they can also cause significant shifts in the existing microbial community of soil by introducing 

another diverse microbial pool plus their metabolites into the soil. However, some researchers argue that 
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organic amendments seem to have less prolonged effects on soil microbial communities than seasonal 

variations or other anthropogenic factors such as the mechanical management of the soil [173]. Recent 

studies using molecular techniques have identified detectable changes within Proteobacteria, Acidobacteria 

and Bacteroidetes with the use of organic amendments [174,175]. Another recent study suggested  

that compost effects were mainly caused by physicochemical characteristics of the compost matrix  

rather than by compost-borne microorganisms and that there was no resilience of microbial 

characteristics during the study (6–12 months) after applying a high amount of compost [176]. However, 

a comprehensive meta-analysis showed that organic amendments routinely increased soil microbial 

biomass in agricultural soils [177]. And, while excessive inorganic P fertilization is known to suppress 

AM fungi [80,140,178], meta-analysis results show equivocal effects of mineral N fertilizers on aspects 

of the entire soil microbial community [179]. Thus, more information is needed on actual comparisons 

of the microbial communities within different organic amendments and the extent of alteration and 

resilience of the inherent soil microbial community over time. 

While the effects of fumigants are relatively easy to predict—they are used as a soil biocide—the 

non-target effects of other agrichemicals such as insecticides, herbicides, fungicides on soil biota are 

less clear. Determining agrichemical effects on soil biota is complicated by different modes of delivery 

(seed applied, foliar, soil drench, etc.), the concentration, mixtures, the specificity of the target(s),  

and the mechanism(s) of action. Most agrichemicals represent a C and nutrient source for some soil 

microorganisms. The most widely-applied herbicide, glyphosate, is relatively non-toxic to most soil 

biota in laboratory bioassays [180]. Largely negligible impacts on soil biota have been observed in field 

or greenhouse studies of potential glyphosate treatment effects [181–185]. On the other hand, extensive 

research has indicated negative impacts of glyphosate application on symbiotic N-fixing bacteria when 

applied to glyphosate-resistant soybean [186]. In the absence of any additional stressor, the inhibition of 

these symbiotic N-fixers is transient, and not expected to affect yields [186]. Some recent reports indicate 

the potential for indirect effects of glyphosate via its complexation with trace nutrients resulting in 

increases in pathogenic soil microorganisms, perhaps due to stressed plants [187,188]. However, there 

is a lack of consensus in the literature on the potential for glyphosate to select for soil pathogens [189]. 

One possible outcome that is not well-documented is that large areas that are devoid of vegetation due 

to glyphosate application will have lower soil microbial biomass and activities simply due to the lack 

plant hosts, exudates, and residues. The lack of weeds has been shown to negatively influence the 

diversity of some insects and birds in agroecosystems [190]. Some agricultural pesticides have been 

indirectly linked to increased DRB numbers [114,116,191,192], and it was recently concluded that the 

fungicide carbendazim inhibits AM fungal colonization of pepper plants [193]. It is difficult to generalize 

non-target effects of agrichemicals (herbicides, fungicides, and insecticides) on beneficial soil biota 

because the experimental conditions and results of individual studies are variable. 

5. What Are the Primary Knowledge Gaps Limiting Manipulation of Soil Biological 

Communities and Mitigation of Degraded Soils? 

Despite the amount of research already conducted, we do not know how soil microbial communities 

are controlled. One model proposes that the control is balanced between the soil (texture), the plant 

(maize or Arabidopsis), and the particular microorganism (an actinomycete or Pseudomonas sp.) [99] 
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(Figure 5); however, the actual situation is most assuredly more complicated. If we are to manipulate 

soil biology in order to optimize ecosystem services and restore degraded soil resources, we need to 

understand what controls soil microbial community structure, function, and biomass under a given set 

of conditions, how much it varies according to conditions, and distinguish these effects from seasonal 

influences. Further, the duration of effects due to changes in management or crop is an unresolved 

question with conflicting research findings. 

 

Figure 5. Conceptual model of the relative strengths of forces shaping microbial communities 

in the soil (from Garbeva et al. [99], with permission of the publisher). 

While microbial community function should theoretically vary with community structure, it is not 

known how common this linkage actually is within soils. If functional redundancy is very high across 

different phylogenetic groups, large changes in microbial community structure could occur without 

corresponding changes in soil function or possibly resiliency. If functional redundancy occurs across 

ecotypes, changes in soil conditions could occur yet function might remain unchanged. The distribution 

of soil microbial populations and functions at local and larger scales (i.e., biogeography) and their 

colonization abilities are largely unknown for most taxa. The extent of microbial species endemism and 

functional redundancy are central to measurement of soil health and resilience, particularly in relation 

to biodiversity [194]. 

We do not know how soil microbial community function is related to microbial biomass. As biomass 

increases, the potential for function should increase due to a higher number of organisms carrying out 

that function, but other factors may limit gene expression or enzyme activity and therefore function. 

While soil microbial community function should be related to the number of copies of that functional 

gene in the community and the degree of expression of that gene, in many cases we do not know how 

gene expression is controlled or the factors controlling enzyme activity in soil microbial communities. 

A predictive model that combined all of these factors to explain how soil microbial community 

structure, relative abundances, and function were controlled would permit us to maximize soil health 
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and optimize ecosystem services on a site and management-specific basis. In part our understanding  

has been limited by available methodology. Only recently has a method (next- generation sequencing) 

been developed which has the potential to identify changes in soil microbial communities at the species 

or genus level. Before next-generation sequencing, scientists could detect alterations in microbial 

community structure but could not determine which genera changed, or were restricted to the very  

small proportion of soil microbes that could be cultured in the laboratory. Similarly, functional genes 

and gene expression of the entire soil metagenome can now be measured using microarrays and  

next-generation sequencing. 

6. What Are the Highest Priority Research Needs to Improve Soil Health and Reverse  

Soil Degradation? 

6.1. Framing High Priority Research Questions 

Soil microbial communities can be manipulated to enhance ecosystem services and improve crop 

productivity, but this requires an understanding of the genetic potential of the soil microbiome [195]. 

Given this enormous amount of functional diversity, substantial research is needed to link microbial 

species, or assemblages, with key function(s) in the soil, and in particular how they are influenced by 

management [152,196–198]. Furthermore, addressing emerging challenges such as climate change and 

land use will be reliant upon the identification of microbial species and/or assemblages that enhance soil 

structure, nutrient and water uptake by plants, and protection from pathogens, pests, and weeds. Our goals 

are to understand these interactions and apply that understanding to increase agroecosystem productivity, 

to document suitable indicators of soil health, and to provide guidelines for restoring and then 

maintaining the health of degraded soil resources. 

6.2. Fundamental Information Lacking Regarding the Identities, Distributions, Ecology,  

and Functionality of Soil Biota 

Fundamental information is required to answer simple questions like “What organisms are there?” 

and “What are they doing?” Projects such as TerraGenome (www.terragenome.org) are an important 

step in our efforts to better understand the true diversity of genes and functions residing in the soil. When 

a sufficient amount of the census information exists, the next questions that require more complete 

answers are: “How are they distributed?” and “What do we know about their ecology?” Determining the 

extent of a biogeography for individual taxa or functional capabilities is key to understanding how factors 

influence communities and their function, and what management practices will inhibit degradation of 

soil health. For instance, if certain AM fungi with specific functional abilities or host preferences  

are endemic to a given soil-climatic region, and they are eliminated by soil-degrading practices, then 

appropriate management will be required for re-establishment. The required management will depend 

on the ecological characteristics of the AM fungi such as life-cycle and dispersal abilities. Management 

options could be creating better conditions (i.e., cover cropping, crop rotation, avoiding fallow) or 

inoculation with non-native, commercial AM fungal inocula, or on-site amplification of native AM 

fungal inocula [199], depending on what information is available for local conditions. 
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Basic descriptive information is required for taxa associated with soil biological functions that are 

fairly cosmopolitan (e.g., denitrification), but also for more specialized functional guilds (e.g., symbiotic 

N-fixers). The current information void concerning soil organisms and consortia that are known, or 

suspected to be particularly influential to plant development (e.g., AM fungi, PGPR/B and DRB), limits 

opportunities to exploit these organisms to improve soil health and function. 

The nature of interactions of plants and rhizosphere microbial communities deserve special attention. 

Future research should investigate plant characteristics that are related to aspects of microbiome 

diversity, i.e., the richness and evenness of species composing the community. For instance, how important 

are adaptation or long-term association in maintaining evenness among rhizosphere microbes? Over long 

time scales, does rhizosphere microbial evenness increase as many microbial community members 

undergo adaptation or niche differentiation in the context of a stable assemblage of interacting organisms? 

Does increasing exudate diversity sustain greater microbial richness in the rhizosphere? Or, can simple 

exudates be transformed by microbial activity into sufficiently diverse metabolites to allow for niche 

differentiation of many microbes? If so, simply increasing exudate quantity may be as effective in 

maintaining a rich microbiome as increasing exudate diversity. The relative importance of carbon source 

identity vs. diversity has begun to be explored through simple studies of resource amendment using 

defined compounds [200] but much more work of this sort is needed. 

Research should consider the role of soil microbial richness and evenness on plant performance  

and address whether a greater functional gene diversity and/or functional redundancy associated with 

increased taxonomic diversity leads to a more resilient and consistent functioning of the soil microbiome 

across changing environments [201]. Furthermore, while only a portion of the soil microbial pool  

is metabolically active (at different rates) at any given time [202], a more diverse community should 

increase the metabolically active pool of microbes, but also provide the genetic diversity to  

function under changing environmental conditions. A more abundant and diverse community would also 

maximize microbial competition and/or niche saturation rendering the soil more resistant to new 

invasion. For example, soils with higher microbial biomass and/or diversity have been found to be  

more disease-suppressive [203–205] and resilient to invasive organisms [98]. The role of community 

evenness has received less attention than richness or diversity; however, evidence supports an important 

role for evenness in community functioning and plant productivity, particularly under stresses or 

perturbations [206]. The mechanistic basis behind these benefits still need to be explored; however, like 

community richness and diversity, may be associated with a more complete resource utilization that 

reduces niche space available for invaders. In particular, community evenness has been shown to be 

important to limit invasive plants [207] or insect pests [208]. 

6.3. Defining Relationships among Climate, Edaphic Factors, and management with Respect to  

Soil Biota 

Overall, there remains insufficient information to quantify effects of agricultural management 

practices on key soil biological functions under a range of soil-climatic conditions. It is also essential to 

incorporate the temporal element as the timing of disturbances (managed or natural) could determine 

their significance, and length of time needed to recover critical soil functions. 
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While numerous studies have found the effect of one or more specific factors (edaphic, management) 

on soil microbial communities to be significant, very few researchers have integrated a wide range of 

factors into one study, and interactions were generally not identified. In one of the very few attempts to 

look at this problem on a broad scale, a study on bulk soil from field plots in California found that 

microbial communities were affected by the following variables, in order of decreasing importance:  

soil type > time > specific farming operation > management system > spatial variation [209]. Studies 

like this need to be repeated with modern methods across a wide range of soil types and climate. New 

metagenomic tools including high-throughput sequencing and functional gene arrays now make it possible 

to directly address this question. This is a critical question which must be answered in order to build a 

model that uses agricultural management and environmental factors to predict soil biological health and 

ecosystem services. A step in this direction has been made with the inclusion of AM fungi in modeling 

the services provided by cover crops [154]. 

Both short term and long term disturbances affect the soil biological community and its function.  

An example of a short term or acute change would be the transient change in overall biomass or activity 

due to a single event such as tillage or fertilizer application. These changes may or may not be significant 

depending on the stage of crop growth and its current requirements. Long term changes in the soil 

biological community are those occurring in response to persistently applied management approaches 

such as tillage regime, crop rotation, or cover cropping. These changes result in alterations within the 

soil communities as some members are lost while others become dominant. If an organism that is lost 

has limited dispersal mechanisms, such as AM fungi, then recovery of these populations may take a lot 

of time or require intervention by inoculation. 

6.4. Development of Improved Indicators of Soil Health 

Another challenge is to identify those soil biological functions or variables that are sensitive and have 

short-term biological relevance but also integrate management history. Measuring such functions could 

then be used to inform management decisions. The natural temporal or spatial scales of some soil 

functions will likely not correspond to the scale of management. Highly variable, but biologically 

important, soil parameters such as soil moisture, temperature, mineralization rates, and pools of labile C 

and N may be most useful for understanding short term, localized patterns of soil functions but their 

relatively high spatial and temporal heterogeneity hamper meaningful measurement and limit their use 

for determining prescriptive management activities at the field scale [210]. Moreover, parameters with 

variable tendencies may not adequately detect baseline shifts in key soil biological activities without a 

robust temporal and spatial historical dataset. Conversely, relatively large scale soil parameters that 

impact soil biological functions may not be manageable (soil texture) or change slowly (soil organic 

matter), making them less useful for modifying management plans in the short term. A truly defensible 

measure of in situ biological function remains a challenge, as the act of measuring or sampling will 

influence the target measurement. Improved relevance of functional measurements is imperative for 

understanding the dynamic processes occurring in soils. 

Identification of optimal soil functions and a suitable set of representative soil variables must be 

specific enough to be useful at the local scale but also capture information that will allow meaningful 

comparisons across geographic gradients or over time. Coordinated research, using standardized 
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methodology and development of appropriate methods for normalizing soil biological functions may be 

one means for such comparisons. A related but more difficult task is the development of forward-looking 

information to accommodate anticipated, but uncertain changes to soil-climate linkages in the future. 

Future changes are expected to manifest as shifts in the overall trends of major environmental factors 

such as temperature and precipitation but accompanying these may be increasing variability and thus risk. 

One challenge to understanding the relationships between management and soil function, whether 

under different management options, combinations of soil climate, or scenarios of change, is to move 

beyond descriptive soil biology towards mechanistic characterizations of community composition and 

activities that are directly related to productivity or sustainability and are amenable to management [210]. 

Productivity is relatively easy to measure but sustainability is more complicated given our imprecise 

understanding of how the communities of soil biota link to ecosystem functions and how they can 

respond to change, whether planned or stochastic. It has proven difficult to comprehensively define 

“ambient” or “optimum” levels of soil health in part because these are context dependent terms that 

depend on intended land use. Thus further work is needed to provide suitable baseline criteria about 

manageable, functionally-related soil traits in order to compare among various management approaches 

such as conventional versus low input versus integrated approaches that combine livestock and  

crop production. Such comparisons may be at the local scale (e.g., nutrient cycling, pathology, or 

aggregate stability) or have broader consequences (e.g., water quality, C sequestration, greenhouse gas 

formation erosion). 

One area that demands a comprehensive level of effort is the role of soil biology in improving nutrient 

use efficiency by plants. Current nutrient recommendations are primarily based on a single, point-in-time 

measurement of soluble and easily-exchangeable soil nutrients. However, the chemical speciation of 

nutrients changes frequently, often catalyzed by biological processes. However, nutrient recommendations 

are commonly developed under standard test conditions, usually similar to conventional farming practices, 

where soil biological contributions to soil fertility are likely to be minimized. Consequently, while 

nutrient recommendations do predict the average crop response, they do not reliably predict plant 

response and soil fertility under many site-specific conditions, particularly where soil biology has been 

enhanced by management practices [211–213]. Typical calculations of nutrient use efficiency contribute 

to excessive nutrient application because they fail to account for loss of nutrients from the system [84]. 

Improved nutrient use indexes that account for nutrient loss from the system implicitly include the 

extensive effects of soil biota on nutrient dynamics. Plant nutrition models fail to capture many 

biological rhizosphere processes, particularly the kinetic aspects, and enhancement of root-rhizosphere 

processes is the most probable path for ecologically-sustainable intensification of agriculture [214]. 

Managing the nutrient balance of the entire soil system allows the system to stabilize at lower nutrient 

levels that take advantage of biological means of nutrient retention and makes the most efficient use of 

resources [85,86]. 

Simple and effective indicators of soil quality/health which have meaning to land managers remain 

inadequate for assessing the sustainability of management. Indices and models are needed to link 

changes in microbial community composition and activities to a change in metabolic functions (i.e.,  

C cycling, and nitrous oxide (N2O) and methane (CH4) fluxes) for different soils and crop scenarios.  

A recent report by a group of scientists for the American Academy of Microbiology (AAM) stressed the 

importance of incorporating microbial processes into climate models [215]. Currently, no index includes 
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the microbial portion of soil, which poses another challenge to assess the success of benefits to soil 

health provided by conversion of cropland to conservation programs (i.e., The Conservation Reserve 

Program). Quality and quantity of SOM is coupled with composition and functioning of the microbial 

community and therefore, SOM quality assessments must also be a component of future research/indices. 

Perhaps, soil microbial community characteristics (e.g., size, composition and specific activities)  

and changes occurring with management can be assigned a ranking number to guide management 

decisions and policy. 

The proposed introduction of several new organic amendments or 21st Century by-products (e.g., 

biochars or nanomaterials) that can last longer in the environment than traditional amendments, create 

another level of complexity. Critical assessments are needed to quantify the impacts of these products 

on resident microbial communities and their associated—but largely unknown—activities. Similarly, the 

use of microbial amendments and stimulants are difficult to justify without better understanding of the 

baseline contributions of soil biota and suitable indicators to evaluate if modification of the soil biota 

results in significant improvements to soil health and function. 

7. Soil Biology Research Investments Needed to Ensure Our Future by Promoting Soil Health 

and Mitigate Soil Degradation 

The challenge for agriculture in the 21st century is to implement more sustainable farming systems 

that are economically viable and accommodate changing technologies and climate. The production of 

food and fiber continues to increase agriculture’s C footprint through the increased use of fuel and 

fertilizer, and contributes to widespread soil and water quality degradation, and loss of habitat diversity 

and biodiversity. To decrease this footprint, nutrient management in sustainable systems must be a top 

priority [216]. Soil biology is the foundation for soil health and the biological processes which moderate 

nutrient availability to plants, in addition to buffering plants from changes in water availability and pest, 

pathogen, and weed pressures. The health of the soil biota is strongly linked to the resistance of soils to 

erosion. Soil biological diversity is positively linked to ecosystem level processes such as C and nutrient 

dynamics [69] and has a central role in agroecosystems that are operated in an environmental- and 

economically-sustainable manner [217,218]. Soil biology is the key to ensuring the ability to “Feed the 

World” [219] and reversing the degradation of soils that support crop production. 

As farming systems constantly change due to economic and technical drivers, soil biological functions 

need to be continually re-evaluated [220]. Synthesis papers by Kremen [71] and Hooper et al. [72] detail 

the linkages between biological communities and ecosystems services; understanding soil biological 

complexity is essential to properly manage agroecosystems. Recent advances in DNA and biochemical 

methods in characterizing biological activity and biodiversity will help better understand the complex 

nature of life in soil, provide new insights into functional mechanisms of soil microbial communities, 

and thus be useful for restoring degraded soil resources. This new knowledge will also greatly aid and 

drive development of innovative agricultural production systems that are economically and environmentally 

sustainable [220]. 

Climate change models suggest that modified cropping systems will be needed for optimal production 

under extreme weather events, such as the recent drought facing much of the U.S. The resiliency and 

resistance of agroecosystems depends, in part, on the functioning of the microbial community. Changes 
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in cropping systems resulting from an earlier growing season, emerging plant pathogens and lower 

yields, and cropping sequence disruption due to drought cycles in certain regions will challenge land and 

water resources to maintain food, fiber, and feed production for the growing population. For example, 

frequent drought cycles in the U.S. Southern Plains have resulted in transition from irrigated to dryland 

production with possible total crop abandonment and/or interruptions in production cycles [152,221]. 

Identification of key soil microbial assemblages and the soil management practices that support these 

key microbial assemblages may assist the recovery of soils from major disturbances. Climate change 

may result in even more soil degradation through greater wind erosion and increased use of fallow 

periods to compensate for periodic droughts in some rotations. Greater knowledge of microbes and their 

roles in essential soil processes will aid in quickly adapting to these climate changes and other factors 

contributing to soil degradation. As cropping systems evolve with changing technologies, producer 

views and environmental constraints, specific bacterial-fungal assemblages that foster efficient nutrient 

and water uptake under modified or new cropping systems will need to be identified. 

Research investment is required to significantly advance basic knowledge of soil biology and to 

properly assess soil biological responses in agricultural systems. Research should be designed with particular 

agricultural applications in mind and sites need to accommodate regionally- different soil-climatic 

regimes and agricultural practices. Long-term, multi-location, multidisciplinary team research with 

shared goals and protocols is required to thoroughly and productively advance this area of research. 

Significant progress toward enabling predictable application of soil biology manipulation in agricultural 

systems could be made using currently-available analytical tools provided a critical mass of effort is 

assembled. A hierarchical set of analyses should be applied, such as that proposed by Kowalchuk et al. [222] 

to assess the effects of GM plants on soil microorganisms (Figure 6). These analyses would include basic 

measures of the size of the microbial community (e.g., biomass and numbers), bulk activities (respiration, 

enzyme activities), community composition (PLFA, molecular profiles) as well as quantification of 

subsets of microbes and their activity potentials using molecular probes and soil metagenomic approaches. 

 

Figure 6. Hierarchy of soil microbial analyses to characterize soil microbial communities. 

Modified with permission from Kowalchuck et al. [222]).  
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8. Summary and Conclusions 

After reviewing what’s known and unknown regarding soil microbial communities and their 

relationships to soil health, we remain optimistic that one of the most promising strategies for mitigating 

and even reversing soil degradation around the world is to significantly increase public-private research 

efforts focused on soil biology. Of the three indicator regimes (physical, chemical, and biological) 

influencing soil health/quality at all scales, biological relationships are by far the most complex with 

large deficiencies in basic understanding. Many new tools and techniques have been or are being 

developed, thus making it more feasible to unravel these complex systems. Ultimately, this new knowledge 

will be used for informing management to restore the degraded soils that humankind desperately needs 

to meet the rapidly increasing food, feed, fiber, and fuel needs of an expanding global population. 
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