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Abstract

Blind deconvolution is the recovery of a sharp version of

a blurred image when the blur kernel is unknown. Recent

algorithms have afforded dramatic progress, yet many as-

pects of the problem remain challenging and hard to under-

stand. The goal of this paper is to analyze and evaluate re-

cent blind deconvolution algorithms both theoretically and

experimentally. We explain the previously reported failure

of the naive MAP approach by demonstrating that it mostly

favors no-blur explanations. On the other hand we show

that since the kernel size is often smaller than the image

size a MAP estimation of the kernel alone can be well con-

strained and accurately recover the true blur.

The plethora of recent deconvolution techniques makes

an experimental evaluation on ground-truth data important.

We have collected blur data with ground truth and com-

pared recent algorithms under equal settings. Additionally,

our data demonstrates that the shift-invariant blur assump-

tion made by most algorithms is often violated.

1. Introduction

Blind deconvolution is the problem of recovering a sharp

version of an input blurry image when the blur kernel is

unknown [13]. Mathematically, we wish to decompose a
blurred image y as

y = k ⊗ x (1)

where x is a visually plausible sharp image, and k is a non
negative blur kernel, whose support is small compared to

the image size. This problem is severely ill-posed and there

is an infinite set of pairs (x, k) explaining any observed y.
For example, One undesirable solution that perfectly satis-

fies eq. 1 is the no-blur explanation: k is the delta (identity)

kernel and x = y. The ill-posed nature of the problem im-
plies that additional assumptions on x or k must be intro-

duced.

Blind deconvolution is the subject of numerous papers

in the signal and image processing literature, to name a few
consider [1, 11, 24, 17, 19] and the survey in [13]. Despite

the exhaustive research, results on real world images are

rarely produced. Recent algorithms have proposed to ad-
dress the ill-posedness of blind deconvolution by character-

izing x using natural image statistics [18, 4, 16, 9, 10, 3, 22].

While this principle has lead to tremendous progress, the
results are still far from perfect. Blind deconvolution algo-

rithms exhibit some common building principles, and vary

in others. The goal of this paper is to analyze the prob-

lem and shed new light on recent algorithms. What are the

key challenges and what are the important components that
make blind deconvolution possible? Additionally, which as-

pects of the problem should attract further research efforts?

One of the puzzling aspects of blind deconvolution is
the failure of the MAP approach. Recent papers empha-

size the usage of a sparse derivative prior to favor sharp im-
ages. However, a direct application of this principle has

not yielded the expected results and all algorithms have

required additional components, such as marginalization
across all possible images [18, 4, 16], spatially-varying

terms [10, 21], or solvers that vary their optimization en-

ergy over time [21]. In this paper we analyze the source of
the MAP failure. We show that counter-intuitively, the most

favorable solution under a sparse prior is usually a blurry

image and not a sharp one. Thus, the global optimum of the
MAP approach is the no-blur explanation. We discuss so-

lutions to the problem and analyze the answers provided by

existing algorithms. We show that one key property mak-
ing blind deconvolution possible is the strong asymmetry

between the dimensionalities of x and k. While the number
of unknowns in x increases with image size, the dimension-

ality of k remains small. Therefore, while a simultaneous

MAP estimation of both x and k fails, a MAP estimation of
k alone (marginalizing over x), is well constrained and re-

covers an accurate kernel. We suggest that while the sparse

prior is helpful, the key component making blind deconvo-
lution possible is not the choice of prior, but the thought-

ful choice of estimator. Furthermore, we show that with

a proper estimation rule, blind deconvolution can be per-
formed even with a weak Gaussian prior.

Finally, we collect motion-blurred data with ground

truth. This data allows us to quantitatively compare re-
cent blind deconvolution algorithms. Our evaluation sug-

gest that the variational Bayes approach of [4] outperforms
all existing alternatives. This data also shows that the shift

invariance convolution model involved in most existing al-

gorithms is often violated and that realistic camera shake
includes in-plane rotations.

2. MAPx,k estimation and its limitations

In this paper y denotes an observed blurry image, which

is a convolution of an unknown sharp image x with an un-

known blur kernel k, plus noise n (this paper assumes i.i.d.
Gaussian noise):

y = k ⊗ x + n. (2)
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Using capital letters for the Fourier transform of a signal:

Yω = KωXω + Nω. (3)

The goal of blind deconvolution is to infer both k and x
given a single input y. Additionally, k is non negative, and

its support is often small compared to the image size.
The simplest approach is a maximum-a-posteriori

(MAPx,k
1) estimation, seeking a pair (x̂, k̂) maximizing:

p(x, k|y) ∝ p(y|x, k)p(x)p(k). (4)

For simplicity of the exposition, we assume a uniform prior
on k. The likelihood term p(y|x, k) is the data fitting term

log p(y|x, k) = −λ‖k ⊗ x − y‖2. The prior p(x) favors
natural images, usually based on the observation that their

gradient distribution is sparse. A common measure is

log p(x) = −
X

i

|gx,i(x)|α + |gy,i(x)|α + C (5)

where gx,i(x) and gy,i(x) denote the horizontal and vertical

derivatives at pixel i (we use the simple [−1 1] filter) and
C is a constant normalization term. Exponent values α < 1
lead to sparse priors and natural images usually correspond

to α in the range of [0.5, 0.8] [23]. Other choices include a
Laplacian prior α = 1, and a Gaussian prior α = 2. While

natural image gradients are very non-Gaussian, we examine

this model because it enables an analytical treatment.

The MAPx,k approach seeks (x̂, k̂) minimizing

(x̂, k̂) = arg min
x,k

λ‖k ⊗ x − y‖2 +
X

i

|gx,i(x)|α + |gy,i(x)|α.

(6)
Eq. (6) reveals an immediate limitation:

Claim 1 Let x be an arbitrarily large image sampled from

the prior p(x), and y = k ⊗ x. The pair (x, k) optimizing

the MAPx,k score satisfies |x| → 0 and |k| → ∞.

Proof: For every pair (x, k) we use a scalar s to define a

new pair x′ = s · x, k′ = 1/s · k with equal data fitting

‖k⊗ x− y‖2 = ‖k′ ⊗ x′ − y‖2. While the data fitting term
is constant, the prior term improves as s → 0.

This observation is not surprising. The most likely image

under the prior in Eq. (5) is a flat image with no gradients.
One attempt to fix the problem is to assume the mean inten-

sity of the blurred and sharp images should be equal, and

constrain the sum of k:
∑

i ki = 1. This eliminates the zero
solution, but usually the no-blur solution is still favored.

To understand this, consider the 1D signals x in Fig. 1
that were convolved with a (truncated) Gaussian kernel k∗

of standard deviation 4 pixels. We compare two interpreta-

tions: 1) the true kernel: y = k∗ ⊗ x. 2) the delta kernel
(no blur) y = k0 ⊗ y. We evaluate the − log p(x, k|y) score

(Eq. (6)), while varying the α parameter in the prior.

For step edges (Fig. 1(a)) MAPx,k usually succeeds. The
edge is sharper than its blurred version and while the Gaus-

sian prior favors the blurry explanation, appropriate sparse

priors (α < 1) favor the correct sharp explanation.

1We keep estimation variables in subscript to distinguish between a
MAP estimation of both x and k, to a MAP estimation of k alone.
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Figure 1. The MAPx,k score evaluated on toy 1D signals. Left:

sharp and blurred signals. Right: sum of gradients − log p(x) =
P

i
|gi(x)|α as a function of α.

15 × 15 windows 25 × 25 windows 45 × 45 windows
3% 1% 0%

Figure 2. MAPx,k failure on real image windows. Windows in

which the sharp explanation is favored are marked in red. The

percent of windows in which the sharp version is favored decreases

with window size.

In contrast, Fig. 1(b) presents a narrow peak. Blurring
reduces the peak height, and as a result, the Laplacian prior

α = 1 favors the blurry x (k is delta) because the absolute
sum of gradients is lower. Examining Fig. 1(b-right) sug-

gests that the blurred explanation is winning for smaller α
values as well. The sharp explanation is favored only for
low alpha values, approaching a binary penalty. However,

the sparse models describing natural images are not binary,

they are usually in the range α ∈ [0.5, 0.8] [23].

The last signal considered in Fig. 1(c) is a row cropped

from a natural image, illustrating that natural images con-
tain a lot of medium contrast texture and noise, correspond-

ing to the narrow peak structure. This dominates the statis-

tics more than step edges. As a result, blurring a natural
image reduces the overall contrast and, as in Fig. 1(b), even

sparse priors favor the blurry x explanation.
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Figure 3. (a) Comparison of gradient histograms for blurred and

unblurred images sampled from p0(x). Blur reduces the aver-

age gradient magnitude. (b) Expected negative likelihood reduces

(probability increases) with blur.

To confirm the above observation, we blurred the image

in Fig. 2 with a Gaussian kernel of standard deviation 3 pix-
els. We compared the sum of the gradients in the blurred

and sharp images using α = 0.5. For 15 × 15 windows

the blurred image is favored over 97% of the windows, and
this phenomenon increases with window size. For 45 × 45
windows, the blurred version is favored at all windows. An-

other observation is that if the sharp explanation does win,
it happens next to significant edges.

To understand this, note that blur has two opposite ef-

fects on the image likelihood: 1) it makes the signal deriva-
tives less sparse, and that reduces the likelihood. 2) It re-

duces the derivatives variance and that increases its likeli-
hood. For very specific images, like ideal step edges, the

first effect dominants and blur reduces the likelihood. How-

ever, for most natural images the second effect is stronger
and blur increases the likelihood. To illustrate this, let x0

be a sequence sampled i.i.d. from p0(x0
i ) ∝ e−γ|x0

i |
α

, xℓ a

sequence obtained by convolving x0 with a width ℓ box fil-
ter (normalizing the kernel sum to 1), and pℓ its probability

distribution. The expected negative log likelihood (effect-

ing the MAPx,k) of xℓ under the sharp distribution p0 is:
Epℓ [− log p0(xℓ)] = −

∫
pℓ(x) log p0(x)dx. Fig. 3(a) plots

pℓ for α = 0.5, and Fig. 3(b) the expected likelihood as a

function of ℓ. The variance is reduced by convolution, and
hence the negative log-likelihood reduces as well.

Revisiting the literature on the subject, Fergus et al. [4]

report that their initial attempts to approach blind deconvo-
lution with MAPx,k failed, resulting in either the original

blurred explanation or a binary two-tone image, depending

on parameter tunings.

Algorithms like [10, 9] explicitly detect edges in the im-

age (either manually or automatically), and seek a kernel
which transfers these edges into binary ones. This is mo-

tivated by the example in Fig. 2, suggesting that MAPx,k

could do the right thing around step edges. Another algo-
rithm which makes usage of this property is [21]. It opti-

mizes a semi-MAPx,k score, but explicitly detects smooth

image regions and reweights their contribution. Thus, the
MAPx,k score is dominated by edges. We discuss this algo-

rithm in detail in the appendix. Earlier blind deconvolution

papers which exploit a MAPx,k approach avoid the delta so-

lution using other assumptions which are less applicable for
real world images. For example, [1] assumes x contains an

object on a flat background with a known compact support.

All these examples highlight the fact that the prior alone
does not favor the desired result. The source of the problem

is that for all α values, the most likely event of the prior

in Eq. (5) is the fully flat image. This phenomenon is ro-
bust to the exact choice of prior, and replacing the model

in Eq. (5) with higher order derivatives or with more so-

phisticated natural image priors [20, 25] does not change
the result. We also note that the problem is present even if

the derivatives signal is sampled exactly from p(x) and the

prior is perfectly correct in the generative sense.
In the next section we suggest that, to overcome the

MAPx,k limitation, one should reconsider the choice of es-

timator. We revisit a second group of blind deconvolution
algorithms derived from this idea.

3. MAPk estimation

The limitations of MAP estimation in the case of few

measurements have been pointed out many times in esti-
mation theory and statistical signal processing [12, 2]. In-

deed, in the MAPx,k problem we can never collect enough
measurements because the number of unknowns grows with

the image size. In contrast, estimation theory tells us [12]

that, given enough measurements, MAP estimators do ap-
proach the true solution. Therefore, the key to success is

to exploit a special property of blind deconvolution: the

strong asymmetry between the dimensionalities of the two
unknowns. While the dimensionality of x increases with

the image size, the support of the kernel is fixed and small

relative to the image size. The image y does provide a large
number of measurements for estimating k. As we prove

below, for an increasing image size, a MAPk estimation of

k alone (marginalizing over x) can recover the true kernel
with an increasing accuracy. This result stands in contrast

to Claim 1 which stated that a MAPx,k estimator continues
to fail even as the number of measurements goes to infin-

ity. This leads to an alternative blind deconvolution strat-

egy: use a MAPk estimator to recover the kernel and, given
the kernel, solve for x using a non blind deconvolution al-

gorithm.

Before providing a formal proof, we attempt to gain an

intuition about the difference between MAPk and MAPx,k

scores. A MAPk estimator selects k̂ = arg maxk p(k|y),
where p(k|y) = p(y|k)p(k)/p(y), and p(y|k) is obtained
by marginalizing over x, and evaluating the full volume of

possible x interpretations:

p(y|k) =

Z

p(x, y|k)dx. (7)

To see the role of marginalization, consider the scalar blind

deconvolution problem illustrated in [2]. Suppose a scalar
y is observed, and should be decomposed as y = k · x + n.

Assume a zero mean Gaussian prior on the noise and signal,
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Figure 4. A toy blind deconvolution problem with one scalar y =
kx+n (replotted from [2]). (a) The joint distribution p(x, k|y). A

maximum is obtained for x → 0, k → ∞. (b) The marginalized

score p(k|y) produce an optimum closer to the true k∗. (c) The

uncertainty of p(k|y) reduces given multiple observations yj =
kxj + nj .

x ∼ N(0, σ2), n ∼ N(0, η2). Then

P (x, k|y) ∝ e
− 1

2η2
|kx−y|2− x2

2σ2 . (8)

Fig. 4(a) illustrate the 2D distribution P (x, k|y). Unsur-

prisingly, it is maximized by x → 0, k → ∞. On the other
hand, p(y|k) is the integral over all x explanations:

P (y|k) ∝

Z

e
− 1

2η2
|kx−y|2− x2

2σ2 dx. (9)

This integral is not maximized by k → ∞. In fact, if we

consider the first term only
∫

e
− 1

2η2
|kx−y|2

dx, it clearly fa-
vors k → 0 values because they allow a larger volume

of possible x values. To see that, note that for every k
and every ǫ > 0 the size of the set of x values satisfying
|kx − y| < ǫ is 2ǫ/k, maximized as k → 0. Combining

the two terms in (9) leads to an example in the middle of

the range, and we show in Sec. 3.2.1 that x ≈ σ, which
make sense because x now behaves like a typical sample

from the prior. This is the principle of genericity described
in Bayesian terms by [2]. Fig. 4(b) plots P (y|k), which is

essentially summing the columns of Fig. 4(a).

Now consider blur in real images: for the delta kernel
there is only a single solution x = y satisfying k ⊗ x = y.

However, while the delta spectrum is high everywhere, the

true kernel is usually a low pass, and has low spectrum val-
ues. Referring to the notation of Eq. (3), if Kω = 0, an

infinite subspace of possible explanations is available as

Xω can be arbitrary (and with noise, any low |Kω| val-
ues increase the uncertainty, even if they are not exactly 0).

Hence, the true kernel gets an advantage in the p(y|k) score.

We prove that for sufficiently large images, p(k|y) is

guaranteed to favor the true kernel.

Claim 2 Let x be an arbitrarily large image, sampled from

the prior p(x), and y = k ⊗ x + n. Then p(k|y) is maxi-

mized by the true kernel k∗. Moreover, if argmaxk p(y|k)
is unique, p(k|y) approaches a delta function2.

2Note that Claim 2 does not guarantee that the MAPk is unique. For
example, if the kernel support is not constrained enough, multiple spatial
shifts of the kernel provide equally good solutions. The problem can be
easily avoided by a weak prior on k (e.g. favoring centered kernels).

Proof: We divide the image into small disjoint windows

{y1, ..., yn} and treat them as i.i.d. samples yj ∼ p(y|k∗).
We then select kML = argmaxk

∏
j p(yj |k). Applying

the standard consistency theorem for maximum likelihood

estimators [12] we know that given enough samples, the ML
approaches the true parameters. That is, when n → ∞

p(kML({y1
, ..., y

n}) = k
∗) → 1. (10)

Due to the local form of the prior p(x) (Eq. (5)), tak-

ing sufficiently far away disjoint windows will ensure that

p(y|k) ≈
∏

j p(yj |k). Thus, p(y|k) is maximized by kML.

Also, if we select a m times larger image y′, p(y′|k) =
p(y|k)m. Thus, if p(y|k) < maxk p(y|k) then p(y|k) → 0.

Finally, if p(k∗) > 0, then kMAP , kML are equal on large
images since arg maxk p(y|k) = arg maxk p(y|k)p(k),
and thus, kMAP → k∗. Similarly, if maxk p(y|k) is unique,

p(k|y) approaches a delta function.

Fig. 4(c) plots p(y|k) for a scalar blind deconvolution

task with N observations yj = kxj +nj , illustrating that as

N increases, the uncertainty around the solution decreases
(compare with Fig. 4(b)).

3.1. The loss function perspective

As another way to understand the difference between the

MAPx,k and MAPk estimators, we return to the definition
of a Bayesian estimator. A Bayesian estimator involves a

loss function L(x̂ − x, k̂ − k) on both parameters, specify-

ing the price for an estimation error. The expected loss is

minimized by:

(x̂, k̂) = arg min

ZZ

p(x, k|y)L(x̂ − x, k̂ − k)dxdk. (11)

One simple choice of loss function yielding the MAPx,k so-

lution is the Dirac delta loss function: L(x̂ − x, k̂ − k) =

1 − δ

(
(x̂, k̂) − (x, k)

)
. The limitations of this loss have

been pointed out many times [12, 2]. This “all or nothing”

loss is too harsh for many signal processing applications, as
it completely ignores all information around the mode. In-

stead, it is common to use loss functions that increase more

smoothly with estimation error, such as the mean squared

error (MSE) loss: L(x, k) = |x − x̂|2 + |k − k̂|2, or a ro-

bustified loss like the MLM [2].

Claim 3 If p(k|y) has a unique maxima, then for large im-

ages a MAPk estimator followed by a MMSEx image es-

timation, is equivalent to a simultaneous MMSEx,k estima-

tion of both x and k3.

3If multiple solutions with equal probability exist, MMSEx,k and
MAPk are not fully equivalent, and MMSEx,k leads to undesired averag-
ing. On the other hand, MAPk avoids the problem by picking one solution.



Proof: The mean squared error is minimized by the mean,

and in our case MMSEx,k provides

x̂ =

∫∫
p(x, k|y)x dxdk

=

∫∫
p(k|y)p(x|y, k)x dxdk

=

∫
p(k|y)µ(k)dk (12)

where µ(k) =
∫

p(x|y, k)xdx, is a “non blind” MMSEx

estimation of x given k. From Claim 2, p(k|y) is a delta

function and thus: x̂ = µ(kMAP ).

3.2. Examples of MAPk estimation

Claim 2 reduces to a robust blind deconvolution strategy:

use MAPk estimator to recover kMAP = argmaxk p(k|y),
and then use kMAP to solve for x using some non blind
deconvolution algorithm. To illustrate the MAPk approach,

we start with the simple case of a Gaussian prior on p(x),
as it permits a derivation in closed form.

3.2.1 The Gaussian prior

The prior on X in Eq. (5) is a convolution and thus diago-
nal in the frequency domain. If Gx, Gy denote the Fourier

transform of the derivatives gx, gy , then:

X ∼ N(0, diag(σ2

ω)) σ
2

ω = β(‖Gx,ω‖
2 +‖Gy,ω‖

2)−1
. (13)

Note that since a derivative filter is zero at low frequencies
and high at higher frequencies, this is similar to the classical

1/f2 power spectrum law for images. Denoting noise vari-

ance by η, we can express p(X, Y ; K) = p(Y |X ; K)p(X)
as:

p(X, Y ; K) ∝ e
− 1

2η2
‖KωXω−Yω‖2− 1

2σ2
ω

‖Xω‖2

. (14)

(see the appendix for details). Conditioned on k, the mean

and mode of a Gaussian are equal:

X
MAP
ω =

„

|Kω|
2 +

η2

σ2
ω

«−1

K
T
ω Yω. (15)

Eq. (15) is the classic Wiener filter [7]. One can also in-
tegrate X and express p(Y |K) analytically. This is also a

diagonal zero mean Gaussian with

Y ∼ N(0, diag(φ2

ω)), φ
2

ω = σ
2

ω|Kω|
2 + η

2
. (16)

Eq. (16) is maximized when φ2
ω = |Yω |

2, and for blind
deconvolution, this implies:

|K̂ω|
2 = max

„

0,
|Yω|

2 − η2

σ2
ω

«

. (17)

The image estimated using K̂ satisfies |Xω|
2 ≈ σ2

ω. There-
fore MAPk does not result in a trivial X = 0 solution as

MAPx,k would, but in a solution whose variance matches

the prior variance σ2, that is, a solution which looks like a

typical sample from the prior p(X).
Another way to interpret the MAPk, is to note that

log p(Y |K) = log p(XMAP
, Y ; K)−

1

2

X

ω

log

„

|Kω|
2

η2
+

1

σ2
ω

«

+C

(18)
Referring to Eq. (14), the second term is just the log deter-

minant of the covariance of p(X |Y ; K). This second term
is optimized when Kω = 0, i.e. by kernels with more blur.

That is, log p(Y |K) is equal to the MAPx,k score of the
mode plus a term favoring kernels with blur.

The discussion above suggests that the Gaussian MAPk

provides a reasonable solution to blind deconvolution. In
the experiment section we evaluate this algorithm and show

that, while weaker than the sparse prior, it can provide ac-

ceptable solutions. This stands in contrast to the complete
failure of a MAPx,k approach, even with the seemingly bet-

ter sparse prior. This demonstrates that a careful choice of

estimator is actually more critical than the choice of prior.
Note that Eq. (17) is accurate if every frequency is esti-

mated independently. In practice, the solution can be fur-

ther constrained, because the limited spatial support of k
implies that the frequency coefficients {Kω} are linearly

dependent. Another important issue is that Eq. (17) pro-

vides information on the kernel power spectrum alone but
leaves uncertainty about the phase. Many variants of Gaus-

sian blind deconvolution algorithms are available in the im-
age processing literature (e.g. [11, 17]) but in most cases

only symmetric kernels are considered since their phase is

known to be zero. However, realistic camera shake kernels
are usually not symmetric. In the appendix we describe a

Gaussian blind deconvoltion algorithm which attempts to

recover non symmetric kernels as well.

3.2.2 Approximation strategies with a sparse prior

The challenge with the MAPk approach is that for a general

sparse prior, p(k|y) (Eq. (7)) cannot be computed in closed

form. Several previous blind deconvolution algorithms can
be viewed as approximation strategies for MAPk, although

the authors might not have motivated them in this way.

A simple approximation is proposed by Levin [16], for
the 1D blur case. It assumes that the observed deriva-

tives of y are independent (this is usually weaker than
assuming independent derivatives of x): log p(y|k) =∑

i log p(gx,i(y)|k). Since p(gx,i(y)|k) is a 1D distribu-

tions, it can be expressed as a 1D table, or a histogram hk.
The independence assumption implies that instead of sum-

ming over image pixels, one can express p(y|k) by sum-

ming over histogram bins:

log p(y|k) =
X

i

log p(gx,i(y)|k) =
X

j

hj log(hk
j ) (19)

where h denotes the gradients histogram in the observed im-
age and j is a bin index. In a second step, note that maximiz-

ing Eq. (19) is equivalent to minimizing the histogram dis-



tance between the observed and expected histograms h,hk.

This is because the Kullback Leibler divergence is equal to
the negative log likelihood, plus a constant that does not de-

pend on k (the negative entropy):

DKL(h, h
k) =

X

j

hj log(hj) −
X

j

hj log(hk
j ). (20)

Since the KL divergence is non-negative, the likelihood is

maximized when the histograms h, hk are equal. This very
simple approach is already able to avoid the delta solution

but as we demonstrate in Sec. 4.1 it is not accurately identi-

fying the exact filter width.
A stronger approximation is the variational Bayes mean-

field approach taken by Fergus et al. [4]. The idea is to

build an approximating distribution with a simpler paramet-
ric form:

p(x, k|y) ≈ q(x, k) =
Y

i

q(gi,x(x))q(gi,y(x))
Y

j

q(kj). (21)

Since q is expressed in the gradient domain this does not
recover x directly. Thus, they also pick the MAPk kernel

from q and then solve for x using non blind deconvolution.

A third way to approximate the MAPk is the Laplace
approximation [2], which is a generalization of Eq. (18):

log p(y|k) ≈ log p(xMAP
, y; k) −

1

2
log |A| + C (22)

A =
∂2

∂xi∂xj

log p(x, y; k)|x=xMAP . (23)

The Laplace approximation states that p(y|k) can be ex-

pressed by the probability of the mode xMAP plus the log
determinant of the variance around the mode. As discussed

above, higher variance is usually achieved when k con-

tains more zero frequencies, i.e. more blur. Therefore, the
Laplace approximation suggests that p(y|k) is the MAPx,k

score plus a term pulling toward kernels with more blur. Un-

fortunately, in the non Gaussian case the covariance matrix
isn’t diagonal and exact inversion is less trivial. Some ear-

lier blind deconvolution approaches [24, 19] can be viewed

as simplified forms of a blur favoring term. For example,
they bias towered blurry kernels by adding a term penaliz-

ing the high frequencies of k or with an explicit prior on
the kernel. Another approach was exploit by Bronstein et

al. [3]. They note that in the absence of noise and with in-

vertible kernels p(k|y) can be exactly evaluated for sparse
priors as well. This reduces to optimizing the sparsity of the

image plus the log determinant of the kernel spectrum.

4. Evaluating blind deconvolution algorithms

In this section we qualitatively compare blind deconvo-

lution strategies on the same data. We start with a synthetic
1D example and in the second part turn to real 2D motion.

4.1. 1D evaluation

As a first test, we use a set of 1000 signals of size 10× 1
cropped from a natural image. These small 1D signals al-

low us to evaluate the marginalization integral in Eq. (7)
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Figure 5. log p(y|k) scores using various approximation strategies

on 1D image signals. Successful algorithms locate the minimum

score at the true kernel width, denoted by the dashed line.

exactly even for a sparse prior. The signals were convolved

with a 5-tap box filter (cyclic convolution was used) and
an i.i.d. Gaussian noise with standard deviation 0.01 was

added. We explicitly search over the explanations of all box

filters of size ℓ = 1, .., 7 taps (all filters normalized to 1).
The explicit search allows comparison of the score of dif-

ferent blind deconvolution strategies without folding in op-
timization errors. (In practice optimization errors do have

a large effect on the successes of blind deconvolution algo-

rithms.)

The exact − log p(y|k) score is minimized by the true
box width ℓ = 5.

We tested the zero sheet separation (e.g. [14]), an earlier

image processing approach with no probabilistic formula-
tion. This algorithm measures the Fourier magnitude of y at

the zero frequencies of each box filter k. If the image was

indeed convolved with that filter, low Fourier content is ex-
pected. However, this approach considers the zero frequen-

cies alone ignoring all other information, and is known to

be noise sensitive. It is also limited to kernel families from
a simple parametric form and with a clear zeros structure.

Supporting the example in Sec. 2, a pure MAPx,k ap-

proach (p(y|k) ≈ p(xMAP , y|k)) favors no-blur (ℓ = 1).

Reweighting the derivative penalty around edges can im-
prove the situation, but the delta solution still provides a

noticeable local optimum.

The correct minimum is favored with a variational Bayes
approximation [4] and with the semi Laplace approxima-

tion of [3]. The independence approximation [16] is able to

overcome the delta solution, but does not localize the solu-
tion very accurately (minimum at ℓ = 4 instead of ℓ = 5.)

Finally, the correct solution is identified even with the poor

image prior provided by a Gaussian model, demonstrating
that the choice of estimator (MAPx,k v.s. MAPk), is more

critical than the actual prior (Gaussian v.s. sparse).

Since claim 2 guaranties success only for large images,
we attempt to evaluate how large an image should be in

practice. Fig. 6 plots the uncertainty in p(k|y) for multi-

ple random samples of N 10 × 1 columns. The probability
is tightly peaked at the right answer for as little as N = 20
columns. The search space in Fig. 6 is limited to the single
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Figure 6. The uncertainty in kernel estimation decreses with more

samples. For as little at N = 20 columns it is already tightly

peaked at the true answer.

(a) (b)

Figure 7. Ground truth data acquisition. (a) Calibration image.

(b) Smear of points at 4 corners, demonstrating that the spatially

uniform blur model is violated.

parameter family of box filters. In real motion deblurring

one searches over a larger family of kernels and a larger

uncertainty is expected.

4.2. 2D evaluation

To compare blind deconvolution algorithms we have col-

lected blurred data with ground truth. We capture a sharp
version a planar scene (Fig. 7(a)) by mounting the camera

on a tripod, as well as a few blurred shots. Using the sharp

reference we solve for a non-negative kernel k minimizing
‖k⊗x−y‖2. The scene in Fig. 7(a) includes high frequency

noise patterns which helps stabilizing the constraints on k.

The central area of the frame includes four real images used
as input to the various blind deconvolution algorithms.

We first observed that assuming a uniform blur over the

image is not realistic even for planar scenes. For exam-

ple Fig. 7(b) shows traces of points at 4 corners of an im-
age captured by a hand-held camera, with a clear variation

between the corners. This suggests that an in-plane rota-

tion (rotation around the z-axis) is a significant component
of human hand shake. Yet, since a uniform assumption is

made by most algorithms, we need to evaluate them on data
which obeys their assumption. To capture images with spa-

tially invariant blur we placed the camera on a tripod, lock-

ing the Z-axis rotation handle of the tripod but loosening
the X and Y handles. We calibrated the blur of 8 such im-

ages and cropped 4 255×255 windows from each, leading

to 32 test images displayed in Fig. 8 and available online4.

4www.wisdom.weizmann.ac.il/˜levina/papers/LevinEtalCVPR09Data.zip

Figure 8. Ground truth data: 4 images and 8 blur kernels, resulting

in 32 test images
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Figure 9. Evaluation results: Cumulative histogram of the decon-

volution error ratio across test examples.

We used an 85mm lens and a 0.3 seconds exposure. The
kernels’ support varied from 10 to 25 pixels.

We can measure the SSD error between a deconvolved

output and the ground truth. However, wider kernels result

in larger deconvolution error even with the true kernel. To
normalize this effect, we measure the ratio between decon-

volution error with the estimated kernel and deconvolution



with the truth kernel. In Fig. 9 we plot the cumulative his-

togram of error ratios (e.g. bin r = 3 counts the percentage
of test examples achieving error ratio below 3). Empirically,

we noticed that error ratios above 2 are already visually im-

plausible. The dataset and all deconvolution results are
included at the end of this manuscript.

We have evaluated the algorithms of Fergus et al. [4] and
Shan et al. [21] (each using the authors’ implementation),

as well as MAPk estimation using a Gaussian prior (de-

scribed in the appendix), and a simplified MAPx,k approach
constraining

∑
ki = 1 (we used coordinate descent, iterat-

ing between holding x constant and solving for k, and then

holding k constant and solving for x using the sparse decon-
volution algorithm of [15]). The algorithms of [16, 10, 3]

were not tested because the first was designed for 1D mo-
tion only, and the others focus on smaller blur kernels.

We made our best attempt to adjust the parameters of
Shan et al. [21], but run all test images with equal parame-

ters. Fergus et al. [4] used Richardson-Lucy non blind de-

convolution in their code. Since this algorithm is a source
for ringing artifacts, we improved the results using the ker-

nel estimated by the authors’ code with the (non blind)

sparse deconvolution of [15]. Similarly, we used sparse de-
convolution with the kernel estimated by Shan et al.

The bars in Fig. 9 and the visual results in the appendix
suggest that Fergus et al.’s algorithm [4] significantly out-

performs all other alternatives. Many of the artifacts in the

results of [4] can be attributed to the Richardson-Lucy non
blind deconvolution artifacts, or to non uniform blur in their

test images. Our comparison also suggests that applying

sparse deconvolution using the kernels outputted by Shan
et al. [21] improves their results. As expected, the naive

MAPx,k approach outputs small kernels approaching the

delta solution.

5. Discussion

This paper analyzes the major building blocks of recent

blind deconvolution algorithms. We illustrate the limita-

tion of the simple MAPx,k approach, favoring the no-blur
(delta kernel) explanation. One class of solutions involves

explicit edge detection. A more principled strategy exploits
the dimensionality asymmetry, and estimates MAPk while

marginalizing over x. While the computational aspects in-

volved with this marginalization are more challenging, ex-
isting approximations are powerful.

We have collected motion blur data with ground truth
and quantitatively compared existing algorithms. Our com-

parison suggests that the variational Bayes approxima-

tion [4] significantly outperforms all existing alternatives.

The conclusions from our analysis are useful for direct-

ing future blind deconvolution research. In particular, we
note that modern natural image priors [20, 25] do not over-

come the MAPx,k limitation (and in our tests did not change

the observation in Sec. 2). While it is possible that blind
deconvolution can benefit from future research on natural

image statistics, this paper suggests that better estimators

for existing priors may have more impact on future blind

deconvolution algorithms. Additionally, we observed that
the popular spatially uniform blur assumption is usually un-

realistic. Thus, it seems that blur models which can relax

this assumption [22] have a high potential to improve blind
deconvolution results.
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6. Appendix A: Blind deconvolution with a
Gaussian prior

To complete section 3.2.1 of the main paper, we provide

a detailed derivation of a MAPk estimation algorithm us-

ing a Gaussian prior. The simple analytic treatment of a
Gaussian prior is attractive both from a computational view-

point and from a research viewpoint, as it affords intuition.

While the algorithm is not as powerful as sparse deconvo-
lution algorithms, it approaches the solution using second

order statistics alone.

To derive the Gaussian algorithm, we rewrite the gener-

ative model explicitly for a Gaussian prior and, to simplify
notation, use the frequency domain.

p(Y|X;K): The spatial i.i.d. Gaussian observation noise
is invariant to the frequency basis change. Therefore

(Yω|Xω ; Kω) ∼ N(KωXω , η
2) (24)

where η denotes the noise variance.

p(X): The prior on X uses a convolution and is diago-
nal in the frequency domain. If Gx, Gy denote the Fourier

transform of the derivative filters gx, gy, the convolution and

Parseval’s theorems result in
∑

i |gx,i(x)|2 + |gy,i(x)|2 =∑
ω |Gx,ωXω|

2 + |Gy,ωXω|
2. Therefore X follows a zero

mean Gaussian distribution with diagonal covariance:

X ∼ N(0, diag(σ2

ω)) σ
2

ω = β(‖Gx,ω‖
2 +‖Gy,ω‖

2)−1
. (25)

(the scale β can be fitted based on the derivative histogram

in a natural image). Note that since a derivative filter is zero

at the low frequencies and high at the higher frequencies,
this is very similar to the classical 1/f2 power spectrum

law (and our algorithm produced very similar results with

an explicit 1/f2 prior).

MAPx estimation:

X
MAP = arg max p(X, Y ; K) = arg max p(Y |X; K)p(X).

(26)
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Figure 10. Power spectrum estimation and the compact support constraint. Top: power spectrum, Bottom: kernel in primal domain

Therefore, solving for the MAPx (using Eqs. (24,25)) is a
least square minimization:

XMAP
ω = argmin

1

η2
‖KωXω − Yω‖

2 +
1

σ2
ω

‖Xω‖
2(27)

XMAP
ω =

(
|Kω|

2 +
η2

σ2
ω

)−1

KT
ω Yω . (28)

Eq. (28) is essentially the famous Wiener filter [7]. The

prior term in Eq. (28) pulls the estimation toward zero,

pulling stronger at high frequencies where the expected sig-
nal magnitude is small (σω → 0) and noise contribution

is higher. When the filter value Kω = 0, the signal value

cannot be recovered and the prior leads the estimation to
Xω = 0.

p(Y): One can also integrate X and express p(Y |K) an-
alytically. This is also a diagonal zero mean Gaussian with

Y ∼ N(0, diag(φ2

ω)), φ
2

ω = σ
2

ω|Kω|
2 + η

2
. (29)

Given Eqs. (24-29), we can return to blind deconvolu-

tion. If we were to estimate every frequency Kω indepen-
dently, we could differentiate Eq. (29) and conclude it is

maximized when φ2
ω = |Yω|

2, which results in:

|Kω|
2 = max(0,

|Yω|
2 − η2

σ2
ω

). (30)

Eq. (30) essentially states that the optimal K leads to an

X whose power spectrum equals the expected power spec-
trum σ2. However, for frequencies ω in which the observed

signal value is below the noise variance (i.e. |Yω|
2 < η2),

the estimator acknowledges that Kω cannot be recovered
and outputs 0. Below we make usage of this point to de-

rive a coarse-to-fine algorithm. In Fig. 10(b) we show the

filter estimated using Eq. (30). The estimation nicely resem-
bles the overall shape and power spectrum of the true filter

(Fig. 10(a)) but is far too noisy to be acceptable. This noise
is not surprising as every component of K was estimated

from a single measurement.

The signal processing literature [12] addresses the prob-

lem of power spectrum estimation (also known as the

periodigram), suggesting that the power spectrum of the
observed signal Y should be smoothed before applying

Eq. (30). While such smoothing operation increases the

bias of the estimation, it significantly reduces its variance.
Fig. 10(c) demonstrates the estimation from a smoothed

power spectrum. One can note that as smoothing reduces

the fluctuation in the frequency domain, the support of the
filter in the primal domain becomes more compact. This

leads to another important property of the problem that was
ignored so far: while Eq. (30) estimate every Fourier coef-

ficient independently, the number of free parameters to esti-

mate in K is much smaller than the image size, since a typ-
ical filter is assumed to have only a small compact support.

Fig. 10(d) presents the estimated kernel, once a compact

support was enforced (according to the algorithm described
below). This constraint significantly increases the stability

of the estimation.

6.1. Phase estimation

While Eq. (30) defines the power spectrum of K , it
leaves us with a complete ambiguity regarding its phase.

In fact, for every solution K, X such that Yω = KωXω and

for any phase vector θω, the pair K̃ω = Kωeiθω , X̃ω =
Xωe−iθω is an equally valid solution, satisfying Yω =

K̃ωX̃ω. The prior on X does not help resolving this am-

biguity – as the Gaussian prior in Eq. (25) depends only

on the power spectrum, p(X̃) = p(X). However, while ev-
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Figure 11. Coarse to fine kernel estimation. (a) Ground truth. (b-f) estimated kernels with decreasing η values

(a) Deconvolution with correct filter (b) Deconvolution with mirrored filter

Figure 12. Mirroring ambiguity with second order statistics

ery phase can maintain the convolution model, most random

phase choices destroy the finite support of K . The question

of estimating the signal phase given the power spectrum has
a long history in signal processing. [8] states that for most

of kernels, a finite support constraint uniquely defines the

signal phase, up to (1) shift and (2) flipping (mirroring).
While a shift ambiguity in deconvolution is reasonable and

does not effect the visual quality of the deconvolved image,

deconvolving the image with the mirrored filter leads to no-
ticeable artifacts, as illustrated in Fig. 12. For the imple-

mentation in this paper we escape this ambiguity by notic-
ing that while the original image x (in the spatial domain) be

non negative, deconvolving y with the mirrored filter often

leads to negative x values. Yet, this ambiguity highlights
one of the weaknesses of second order statistics. While

the second order statistics of the images in Fig. 12(a,b) are

equal, it is clear that every simple sparse measure will fa-
vor Fig. 12(a). Nevertheless, we show that the second order

statistics plus finite support constraint can get us surpris-

ingly close to the true solution.

While a bounded support constraint removes most phase

ambiguity, recovering the phase algorithmically is not a
trivial question. A popular gradient based optimization

scheme is the Gerchberg-Saxton [6, 5] algorithm. This algo-

rithm initializes the kernel phase randomly, and then alter-
nates between primal-frequency transformations, enforcing

the finite support constraint in the primal domain and the

required power spectrum in the frequency domain.

6.2. EM optimization

Applying the Gerchberg-Saxton algorithm [6, 5] to the
independent power spectrum estimated from Eq. (29) pro-

vides a reasonable initialization for our algorithm. We then

proceed with an EM algorithm. The E-step computed the

expected mean and variance for the deblurred image X . The
M-step uses the second order statistics of X to solve for

k, enforcing two constraints: the finite support constraint

discussed above, plus the simple requirement that the blur
kernel k (in the spatial domain) is non negative.

E-step: Applying Eq. (28):

< Xω > =

(
|Kω|

2 +
η2

σ2
ω

)−1

KT
ω Yω (31)

< XT
ω Xω > =

(
|Kω|

2 +
η2

σ2
ω

)
+ < Xω >T < Xω >(32)

M-step Transform < X > and < XX > to the spatial
domain and solve for k minimizing < k ⊗ x − y > subject

to finite support and non negativity.

To express this minimization, suppose that k is an l × l
filter. We denote by xwi

the l × l window around the i’th
pixel, such that yi =

∑
j∈wi

kjxj . Let A be an m × l2 ma-

trix whose rows are the windows xwi
, and m is the number

of windows included in the image. If x, y are known, the
best filter k is the one minimizing

‖Ak(:) − y(:)‖2 = k(:)T
A

T
Ak(:) − 2y(:)T

Ak(:) + y(:)T
y(:)

s.t. k ≥ 0.

(33)

Note that the number of unknowns in this system is equal to
the kernel size l2, which is much lower than the number of

pixels in the image. In practice we do not precisely know

x, but from the E-stp we have access to < AT A > and
< A >.

This is a quadratic minimization subject to linear con-

straints, and thus a convex problem that can be solved using

quadratic programming.

6.3. Coarse-to-fine

Fergus et al. [4] estimated the kernel in a coarse-to-fine

scheme. In our case, Eq. (29) provides an easy way to im-
plement this. We initialize the optimization with a high

noise variance η. As a result all frequencies with observa-

tion below the noise variance (usually the high frequencies)
are set to zero, and we mostly optimize the low frequencies

of the kernel. Once the low frequency optimization starts to



converge we gradually reduce the noise variance η, allow-

ing more and more bands of frequencies to be nailed down.
The kernels estimated with varying η values are illustrated

in Fig. 11.

7. Appendix B: Shan et al.’s algorithm

We discuss the blind deconvolution algorithm of [21] and

try to understand how it is working. This algorithm attempts
to optimize a semi-MAPx,k score, seeking a solution k, x
that minimizes:

λ‖x − y‖2 +
X

i

wi|gx,i(x)|α + wi|gy,i(x)|α. (34)

There are two main components that distinguish this algo-
rithm from a naive MAPx,k optimization: edge reweighting

and iterative update of the likelihood weight.

Edge rewighting: One main component that prevents

Eq. (34) from outputting the delta solution is the usage of
non uniform weights wi on the gradient penalty. The au-

thors explicitly detect low contrast image regions and in-

crease their smoothness penalty.

To test this idea, we have implemented a simplified coor-

dinate descent variant of the algorithm. We attempt to mini-

mize the cost in Eq. (34), alternating between minimization
with respect to x and minimization with respect to k (hold-

ing the other constant). We use α = 0.8 for the sparse prior,

and solve for x using iterative reweighted least squares, as
in [15]. Gradients are reweighted using an edge detector.

We emphasize that the goal of our implementation is to test

the basic idea of a MAPx,k approach with edge reweight-
ing, and not to reproduce the algorithm of [21] exactly. This

algorithm involves a sophisticated number of additional de-

tails which affect the final output. Our observation is that
while edge reweighting helps in avoiding the delta solution,

edge rewighting alone is not always sufficient.

Iterative likelihood update: Another important compo-

nent in [21] is to start the optimization with a low likelihood
weight λ, and gradually increase it during subsequent iter-

ations. To understand this, Fig. 13 shows an image decon-

volved with two kernels - the true kernel and a delta kernel.
We have performed the deconvolution with a set of λ values

and compared the sum of gradients in the deconvolved im-
age. Examining Fig. 13 we note that for low λ values, there

is no need to explain all low contrast texture in y. These

low contrast details are interpreted as noise, and the result-
ing latent image x is piecewise constant with step edges.

Given the piecewise constant structure, the derivatives re-

sponse is low. Therefore, for low λ values the true blur is
indeed favored over the delta kernel. However, the situation

is usually inverted when the likelihood weight is increased

to a realistic level, and a delta kernel wins.

The fact that the true kernel is favored when the like-

lihood weight is low can help steer the algorithm toward

λ = 0.12 λ = 0.13 λ = 0.15

P

|gi(x)|0.8 = 543
P

|gi(x)|0.8 = 418
P

|gi(x)|0.8 = 397

P

|gi(x)|0.8 = 539
P

|gi(x)|0.8 = 415
P

|gi(x)|0.8 = 398

Figure 13. Non blind deconvolution using a delta kernel (top) and

the true kernel (bottom), with increasing likelihood (data fitting

term) weight. The estimated image is piecewise constant with low

likelihood weight, while fine details are added as the weight in-

creases. The true kernel achieves a lower score with low weight,

but realistic likelihood weight is favoring the delta solution.

the desired solution. As suggested by [21], we have initial-
ized our coordinate descent algorithm with a low λ value

and gradually increased it during iterations. Since λ is ini-

tially low the algorithm is steered toward the true kernel and
when λ is increased, the algorithm is already trapped in a lo-

cal minimum and does not move significantly away from it.
Some iterations from our coordinate descent implementa-

tion are available in Fig. 14. To evaluate this, Fig. 14(f) il-

lustrates the likelihood changes during optimization. While
λ is updated during optimization, at the end we traced back

the kernels estimated in previous iterations, and evaluated

their score using the final realistic (high) λ value. Fig. 14(f)
plots the scores with this final λ. The interesting observa-

tion is that the score of the solution is increasing during

optimization and the score of the first iteration (a delta ker-
nel) is actually better than the final one. That is, by chang-

ing likelihood weight during optimization, the algorithm is

steered toward a local minimum of the cost in Eq. (34), but
this local minimum often happens to be the desired one.

As another way to evaluate this, we blurred the image in

Figs.13,14 with a box kernel of width 13 pixels. We have
computed the MAPx,k score for this image, varying two pa-

rameters: the kernel (running over box filters of size 1 to

15 pixels) and the likelihood weight λ. The 2D surfaces of
scores is visualized in Fig. 15. Two ridges are observed,

and one can also notice that while the minima with the delta

solution is much lower, the ridge from the low λ values is
leading toward the true kernel local minima, and not toward

the delta solution.



(a) input (b) ground truth (c) iter 1 (d) iter 5 (e) iter 25
0 5 10 15 20 25

396.6

396.7

396.8

396.9

397

397.1

397.2

397.3
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Figure 14. coordinate descent Kernel optimization with an edge reweighted MAPx,k score. Likelihood weight is increased during opti-

mization.

Figure 15. -MAPx,k scores as a function of likelihood weight λ
and kernel width (dark values favored).
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input Ground truth
SSD err=32.2, err ratio=1

Deconvolution with ground truth kernel

SSD err=38.4, err ratio=1.19
Fergus et al.

SSD err=83.5, err ratio=2.59
Shan et al.

SSD err=69.2, err ratio=2.14
Shan et al. kernel, sparse deconv

SSD err=188.5, err ratio=5.84
MAPx,k, edges reweighting

SSD err=211.9, err ratio=6.57
MAPx,k , no edges reweighting

SSD err=162.5, err ratio=5.04
Gaussian

Figure 16. Comparing deconvolution algorithms, im 1, kernel 1



input Ground truth
SSD err=37.0, err ratio=1

Deconvolution with ground truth kernel

SSD err=39.3, err ratio=1.06
Fergus et al.

SSD err=72.0, err ratio=1.94
Shan et al.

SSD err=53.6, err ratio=1.44
Shan et al. kernel, sparse deconv

SSD err=166.4, err ratio=4.49
MAPx,k, edges reweighting

SSD err=264.7, err ratio=7.14
MAPx,k , no edges reweighting

SSD err=168.5, err ratio=4.54
Gaussian

Figure 17. Comparing deconvolution algorithms, im 1, kernel 2



input Ground truth
SSD err=25.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=28.7, err ratio=1.13
Fergus et al.

SSD err=41.6, err ratio=1.64
Shan et al.

SSD err=38.7, err ratio=1.52
Shan et al. kernel, sparse deconv

SSD err=82.7, err ratio=3.26
MAPx,k, edges reweighting

SSD err=122.1, err ratio=4.81
MAPx,k , no edges reweighting

SSD err=39.6, err ratio=1.56
Gaussian

Figure 18. Comparing deconvolution algorithms, im 1, kernel 3



input Ground truth
SSD err=59.9, err ratio=1

Deconvolution with ground truth kernel

SSD err=135.5, err ratio=2.26
Fergus et al.

SSD err=604.5, err ratio=10.08
Shan et al.

SSD err=583.2, err ratio=9.72
Shan et al. kernel, sparse deconv

SSD err=497.6, err ratio=8.29
MAPx,k, edges reweighting

SSD err=645.4, err ratio=10.76
MAPx,k , no edges reweighting

SSD err=315.7, err ratio=5.26
Gaussian

Figure 19. Comparing deconvolution algorithms, im 1, kernel 4



input Ground truth
SSD err=20.7, err ratio=1

Deconvolution with ground truth kernel

SSD err=27.1, err ratio=1.30
Fergus et al.

SSD err=45.8, err ratio=2.21
Shan et al.

SSD err=40.6, err ratio=1.96
Shan et al. kernel, sparse deconv

SSD err=64.3, err ratio=3.10
MAPx,k, edges reweighting

SSD err=110.5, err ratio=5.33
MAPx,k , no edges reweighting

SSD err=53.78, err ratio=2.59
Gaussian

Figure 20. Comparing deconvolution algorithms, im 1, kernel 5



input Ground truth
SSD err=15.9, err ratio=1

Deconvolution with ground truth kernel

SSD err=44.45, err ratio=2.79
Fergus et al.

SSD err=104.8, err ratio=6.58
Shan et al.

SSD err=94.0, err ratio=5.90
Shan et al. kernel, sparse deconv

SSD err=59.4, err ratio=3.73
MAPx,k, edges reweighting

SSD err=202.4, err ratio=12.71
MAPx,k , no edges reweighting

SSD err=172.9, err ratio=10.8
Gaussian

Figure 21. Comparing deconvolution algorithms, im 1, kernel 6



input Ground truth
SSD err=24.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=212.3, err ratio=8.73
Fergus et al.

SSD err=414.1, err ratio=17.04
Shan et al.

SSD err=401.0, err ratio=16.5
Shan et al. kernel, sparse deconv

SSD err=103, err ratio=4.2
MAPx,k, edges reweighting

SSD err=412, err ratio=16.9
MAPx,k , no edges reweighting

SSD err=376, err ratio=15.5
Gaussian

Figure 22. Comparing deconvolution algorithms, im 1, kernel 7



input Ground truth
SSD err=30, err ratio=1

Deconvolution with ground truth kernel

SSD err=53, err ratio=1.7
Fergus et al.

SSD err=458, err ratio=15.2
Shan et al.

SSD err=450, err ratio=15.0
Shan et al. kernel, sparse deconv

SSD err=327, err ratio=10.8
MAPx,k, edges reweighting

SSD err=458, err ratio=15.2
MAPx,k , no edges reweighting

SSD err=559, err ratio=18.6
Gaussian

Figure 23. Comparing deconvolution algorithms, im 1, kernel 8



input Ground truth
SSD err=43, err ratio=1

Deconvolution with ground truth kernel

SSD err=55, err ratio=1.2
Fergus et al.

SSD err=162, err ratio=3.6
Shan et al.

SSD err=150, err ratio=3.4
Shan et al. kernel, sparse deconv

SSD err=248, err ratio=5.6
MAPx,k, edges reweighting

SSD err=272, err ratio=6.1
MAPx,k , no edges reweighting

SSD err=79, err ratio=1.8
Gaussian

Figure 24. Comparing deconvolution algorithms, im 2, kernel 1



input Ground truth
SSD err=50.6, err ratio=1

Deconvolution with ground truth kernel

SSD err=64.3, err ratio=1.2
Fergus et al.

SSD err=191, err ratio=3.7
Shan et al.

SSD err=175, err ratio=3.4
Shan et al. kernel, sparse deconv

SSD err=343, err ratio=6.7
MAPx,k, edges reweighting

SSD err=348, err ratio=6.8
MAPx,k , no edges reweighting

SSD err=164, err ratio=3.2
Gaussian

Figure 25. Comparing deconvolution algorithms, im 2, kernel 2



input Ground truth
SSD err=40, err ratio=1

Deconvolution with ground truth kernel

SSD err=52.7, err ratio=1.3
Fergus et al.

SSD err=88, err ratio=2.1
Shan et al.

SSD err=84, err ratio=2.0
Shan et al. kernel, sparse deconv

SSD err=169, err ratio=4.1
MAPx,k, edges reweighting

SSD err=185, err ratio=4.5
MAPx,k , no edges reweighting

SSD err=129, err ratio=3.1
Gaussian

Figure 26. Comparing deconvolution algorithms, im 2, kernel 3



input Ground truth
SSD err=79, err ratio=1

Deconvolution with ground truth kernel

SSD err=123, err ratio=1.5
Fergus et al.

SSD err=195, err ratio=2.4
Shan et al.

SSD err=182, err ratio=2.3
Shan et al. kernel, sparse deconv

SSD err=481, err ratio=6.1
MAPx,k, edges reweighting

SSD err=574, err ratio=7.26
MAPx,k , no edges reweighting

SSD err=189, err ratio=2.4
Gaussian

Figure 27. Comparing deconvolution algorithms, im 2, kernel 4



input Ground truth
SSD err=26, err ratio=1

Deconvolution with ground truth kernel

SSD err=38, err ratio=1.4
Fergus et al.

SSD err=106, err ratio=3.9
Shan et al.

SSD err=100, err ratio=3.7
Shan et al. kernel, sparse deconv

SSD err=141, err ratio=5.2
MAPx,k, edges reweighting

SSD err=161, err ratio=6
MAPx,k , no edges reweighting

SSD err=89, err ratio=3.3
Gaussian

Figure 28. Comparing deconvolution algorithms, im 2, kernel 5



input Ground truth
SSD err=20, err ratio=1

Deconvolution with ground truth kernel

SSD err=84, err ratio=4.2
Fergus et al.

SSD err=198, err ratio=9.9
Shan et al.

SSD err=186, err ratio=9.3
Shan et al. kernel, sparse deconv

SSD err=227, err ratio=11.3
MAPx,k, edges reweighting

SSD err=260, err ratio=13
MAPx,k , no edges reweighting

SSD err=84, err ratio=4.2
Gaussian

Figure 29. Comparing deconvolution algorithms, im 2, kernel 6



input Ground truth
SSD err=39, err ratio=1

Deconvolution with ground truth kernel

SSD err=153, err ratio=3.8
Fergus et al.

SSD err=322, err ratio=8.2
Shan et al.

SSD err=315, err ratio=8.0
Shan et al. kernel, sparse deconv

SSD err=266, err ratio=6.7
MAPx,k, edges reweighting

SSD err=551, err ratio=14
MAPx,k , no edges reweighting

SSD err=296, err ratio=7.5
Gaussian

Figure 30. Comparing deconvolution algorithms, im 2, kernel 7



input Ground truth
SSD err=43, err ratio=1

Deconvolution with ground truth kernel

SSD err=92, err ratio=2.1
Fergus et al.

SSD err=362, err ratio=8.2
Shan et al.

SSD err=513, err ratio=11.7
Shan et al. kernel, sparse deconv

SSD err=421, err ratio=9.6
MAPx,k, edges reweighting

SSD err=522, err ratio=11.9
MAPx,k , no edges reweighting

SSD err=161, err ratio=3.6
Gaussian

Figure 31. Comparing deconvolution algorithms, im 2, kernel 8



input Ground truth

SSD err=31.2, err ratio=1

Deconvolution with ground truth kernel

SSD err=37.4, err ratio=1.2

Fergus et al.

SSD err=99.9, err ratio=3.2

Shan et al.

SSD err=83.5, err ratio=2.6

Shan et al. kernel, sparse deconv

SSD err=101.4, err ratio=3.2

MAPx,k, edges reweighting

SSD err=211.2, err ratio=6.7

MAPx,k , no edges reweighting

SSD err=110.5, err ratio=3.5

Gaussian

Figure 1. Comparing deconvolution algorithms, im 3, kernel 1



input Ground truth

SSD err=35.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=39.1, err ratio=1.1

Fergus et al.

SSD err=91.9, err ratio=2.6

Shan et al.

SSD err=64.6, err ratio=1.8

Shan et al. kernel, sparse deconv

SSD err=254.2, err ratio=7.1

MAPx,k, edges reweighting

SSD err=287.9, err ratio=8.1

MAPx,k , no edges reweighting

SSD err=223.9, err ratio=6.3

Gaussian

Figure 2. Comparing deconvolution algorithms, im 3, kernel 2



input Ground truth

SSD err=18.8, err ratio=1

Deconvolution with ground truth kernel

SSD err=21.5, err ratio=1.1

Fergus et al.

SSD err=34.7, err ratio=1.8

Shan et al.

SSD err=31.3, err ratio=1.6

Shan et al. kernel, sparse deconv

SSD err=95.4, err ratio=5.1

MAPx,k, edges reweighting

SSD err=115.0, err ratio=6.1

MAPx,k , no edges reweighting

SSD err=39.8, err ratio=2.1

Gaussian

Figure 3. Comparing deconvolution algorithms, im 3, kernel 3



input Ground truth

SSD err=45.2, err ratio=1

Deconvolution with ground truth kernel

SSD err=87.5, err ratio=1.9

Fergus et al.

SSD err=601.4, err ratio=13.3

Shan et al.

SSD err=580.6, err ratio=12.8

Shan et al. kernel, sparse deconv

SSD err=596.0, err ratio=13.2

MAPx,k, edges reweighting

SSD err=589.9, err ratio=13.0

MAPx,k , no edges reweighting

SSD err=204.6, err ratio=4.5

Gaussian

Figure 4. Comparing deconvolution algorithms, im 3, kernel 4



input Ground truth

SSD err=15.2, err ratio=1

Deconvolution with ground truth kernel

SSD err=22.0, err ratio=1.4

Fergus et al.

SSD err=39.9, err ratio=2.6

Shan et al.

SSD err=33.7, err ratio=2.2

Shan et al. kernel, sparse deconv

SSD err=84.09, err ratio=5.5

MAPx,k, edges reweighting

SSD err=113.3, err ratio=7.4

MAPx,k , no edges reweighting

SSD err=50.6, err ratio=3.3

Gaussian

Figure 5. Comparing deconvolution algorithms, im 3, kernel 5



input Ground truth

SSD err=10.6, err ratio=1

Deconvolution with ground truth kernel

SSD err=33.6, err ratio=3.1

Fergus et al.

SSD err=84.9, err ratio=7.9

Shan et al.

SSD err=71.2, err ratio=6.6

Shan et al. kernel, sparse deconv

SSD err=156.1, err ratio=14.6

MAPx,k, edges reweighting

SSD err=209.6, err ratio=19.6

MAPx,k , no edges reweighting

SSD err=80, err ratio=7.5

Gaussian

Figure 6. Comparing deconvolution algorithms, im 3, kernel 6



input Ground truth

SSD err=16.9, err ratio=1

Deconvolution with ground truth kernel

SSD err=139.8, err ratio=8.2

Fergus et al.

SSD err=326.5, err ratio=19.2

Shan et al.

SSD err=315.3, err ratio=18.6

Shan et al. kernel, sparse deconv

SSD err=237.5, err ratio=14.0

MAPx,k, edges reweighting

SSD err=394.8, err ratio=23.3

MAPx,k , no edges reweighting

SSD err=175.0, err ratio=10.3

Gaussian

Figure 7. Comparing deconvolution algorithms, im 3, kernel 7



input Ground truth

SSD err=29.9, err ratio=1

Deconvolution with ground truth kernel

SSD err=57.6, err ratio=1.9

Fergus et al.

SSD err=462.8, err ratio=15.4

Shan et al.

SSD err=515.4, err ratio=17.2

Shan et al. kernel, sparse deconv

SSD err=430.3, err ratio=14.4

MAPx,k, edges reweighting

SSD err=490.5, err ratio=16.4

MAPx,k , no edges reweighting

SSD err=197.1, err ratio=6.5

Gaussian

Figure 8. Comparing deconvolution algorithms, im 3, kernel 8



input Ground truth

SSD err=27.1, err ratio=1

Deconvolution with ground truth kernel

SSD err=41.1, err ratio=1.5

Fergus et al.

SSD err=120.1, err ratio=4.4

Shan et al.

SSD err=99.1, err ratio=3.6

Shan et al. kernel, sparse deconv

SSD err=116.7, err ratio=4.3

MAPx,k, edges reweighting

SSD err=173.3, err ratio=6.3

MAPx,k , no edges reweighting

SSD err=113.7, err ratio=4.1

Gaussian

Figure 9. Comparing deconvolution algorithms, im 4, kernel 1



input Ground truth

SSD err=41.5, err ratio=1

Deconvolution with ground truth kernel

SSD err=92.8, err ratio=2.2

Fergus et al.

SSD err=204.3, err ratio=4.9

Shan et al.

SSD err=180.8, err ratio=4.3

Shan et al. kernel, sparse deconv

SSD err=240.2, err ratio=5.7

MAPx,k, edges reweighting

SSD err=244.1, err ratio=5.8

MAPx,k , no edges reweighting

SSD err=120.7, err ratio=2.9

Gaussian

Figure 10. Comparing deconvolution algorithms, im 4, kernel 2



input Ground truth

SSD err=14.5, err ratio=1

Deconvolution with ground truth kernel

SSD err=18.1, err ratio=1.2

Fergus et al.

SSD err=40.8, err ratio=2.8

Shan et al.

SSD err=33.6, err ratio=2.3

Shan et al. kernel, sparse deconv

SSD err=65.9, err ratio=4.5

MAPx,k, edges reweighting

SSD err=89.3, err ratio=6.1

MAPx,k , no edges reweighting

SSD err=68.2, err ratio=4.6

Gaussian

Figure 11. Comparing deconvolution algorithms, im 4, kernel 3



input Ground truth

SSD err=42.0, err ratio=1

Deconvolution with ground truth kernel

SSD err=13,251, err ratio=316.8

Fergus et al.

SSD err=457, err ratio=10.9

Shan et al.

SSD err=430, err ratio=10.3

Shan et al. kernel, sparse deconv

SSD err=425, err ratio=10.1

MAPx,k, edges reweighting

SSD err=806, err ratio=19.3

MAPx,k , no edges reweighting

SSD err=124, err ratio=2.9

Gaussian

Figure 12. Comparing deconvolution algorithms, im 4, kernel 4



input Ground truth

SSD err=15.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=20.0, err ratio=1.3

Fergus et al.

SSD err=44.5, err ratio=2.9

Shan et al.

SSD err=35.8, err ratio=2.3

Shan et al. kernel, sparse deconv

SSD err=55.1, err ratio=3.6

MAPx,k, edges reweighting

SSD err=81.5, err ratio=5.3

MAPx,k , no edges reweighting

SSD err=40.9, err ratio=2.7

Gaussian

Figure 13. Comparing deconvolution algorithms, im 8, kernel 5



input Ground truth

SSD err=18.6, err ratio=1

Deconvolution with ground truth kernel

SSD err=46.7, err ratio=2.5

Fergus et al.

SSD err=138.9, err ratio=7.4

Shan et al.

SSD err=121.4, err ratio=6.5

Shan et al. kernel, sparse deconv

SSD err=132.8, err ratio=7.1

MAPx,k, edges reweighting

SSD err=176.1, err ratio=9.4

MAPx,k , no edges reweighting

SSD err=89.5, err ratio=4.8

Gaussian

Figure 14. Comparing deconvolution algorithms, im 4, kernel 6



input Ground truth

SSD err=16.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=504.3, err ratio=30.9

Fergus et al.

SSD err=333.6, err ratio=20.4

Shan et al.

SSD err=318.8, err ratio=19.5

Shan et al. kernel, sparse deconv

SSD err=288.2, err ratio=17.6

MAPx,k, edges reweighting

SSD err=342.9, err ratio=21.0

MAPx,k , no edges reweighting

SSD err=301.6, err ratio=18.5

Gaussian

Figure 15. Comparing deconvolution algorithms, im 4, kernel 7



input Ground truth

SSD err=27.6, err ratio=1

Deconvolution with ground truth kernel

SSD err=786.5, err ratio=28.4

Fergus et al.

SSD err=392.3, err ratio=14.1

Shan et al.

SSD err=377.9, err ratio=13.6

Shan et al. kernel, sparse deconv

SSD err=345.7, err ratio=12.5

MAPx,k, edges reweighting

SSD err=393.1, err ratio=14.2

MAPx,k , no edges reweighting

SSD err=524.5, err ratio=18.9

Gaussian

Figure 16. Comparing deconvolution algorithms, im 4, kernel 8


