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Bacterial inhabitants of the body have the potential to play a role in various

stages of cancer initiation, progression, and treatment. These bacteria may be

distal to the primary tumour, such as gut microbiota, or local to the tissue,

before or after tumour growth. Breast cancer is well studied in this context.

Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more

aggressive, has fewer treatment options than receptor-positive breast cancers,

has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-

depth understanding of the bacterial influence on TNBC progression and

treatment is of high value. In this regard, the Gut Microbiota (GM) can be

involved in various stages of tumour progression. It may suppress or promote

carcinogenesis through the release of carcinogenic metabolites, sustenance of

proinflammatory environments and/or the promotion of epigenetic changes in

our genome. It can also mediate metastasis and reoccurrence through

interactions with the immune system and has been recently shown to

influence chemo-, radio-, and immune-therapies. Furthermore, bacteria

have also been found to reside in normal and malignant breast tissue. Several

studies have now described the breast and breast tumourmicrobiome, with the

tumour microbiota of TNBC having the least taxonomic diversity among all

breast cancer types. Here, specific conditions of the tumour microenvironment

(TME) - low O2, leaky vasculature and immune suppression - are supportive of

tumour selective bacterial growth. This innate bacterial ability could enable

their use as delivery agents for various therapeutics or as diagnostics. This

review aims to examine the current knowledge on bacterial relevance to TNBC

and potential uses while examining some of the remaining unanswered

questions regarding mechanisms underpinning observed effects.
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1 Introduction

Triple-Negative Breast Cancers (TNBC) characteristically

lack, or express at very low levels, human growth factor

receptor 2 (HER2), progesterone (PR) and/or estrogen

receptors (ER) (1). In 2020, 12% -17% of the 2.3 million new

breast cancer (BC) cases and over 685,000 deaths worldwide can

be attributed to TNBC (2). TNBC disproportionally affects

young premenopausal women with west African ancestry,

particularly African American and Ghanaian women (3).

Other relevant risk factors include Breast Cancer gene-1/2

(BRCA) mutations, smoking history, and obesity (4, 5).

Generally, TNBC originates in the milk duct as ductal

carcinoma and less frequently in mammary lobules as lobule

carcinoma (6). Based on its genotype profiling and cellular

origin, TNBC can be classified into four subtypes: basal

subtypes 1/2, mesenchymal subtype and an androgen receptor-

expressing luminal subtype (7).

Surgery (lumpectomy or mastectomy) followed by radiation

is available for early-stage patients, and immune checkpoint

inhibitor therapies are offered on a case-by-case basis (8). For

those that have missed the surgical window, the standard

treatment for non-metastatic TNBC at the early stage is still

nonspecific chemotherapy including platinum, taxane,

anthracycline and cyclophosphamide with checkpoint inhibitor

immunotherapy, such as atezolizumab or pembrolizumab given

as a neoadjuvant where tumors are greater than 2cm in diameter

and lymph node-positive (9). Adjuvant capecitabine treatment is

standard in the case of residual disease in conjunction with

PARP inhibitors olaparib or talazoparib, where BRCA-1/2

mutations are present (10). TNBC is highly invasive and has

no standard treatment care options for the metastatic disease

stage. Therapeutic schemes for this disease are constrained to

conventional cytotoxic chemotherapy with additional

immunotherapy targeting programmed death receptor 1 or

ligand (PD-1 or PDL-1), as endocrine or receptor based

therapies (e.g. HER2, ER and PR) are completely ineffective

for TNBC (11). Recently antibody drug conjugates such as

sacituzumab govitecan have been approved for metastatic

TNBC (12).
2 The human microbiome
and cancer

Humans are a symbiont of human and microbial cells, with a

ratio of 1.3-2.5 bacterial: human cells (13). Although the

majority of these microbes reside within our gut, distinctive

collections of microbes are also found in most body parts,

possibly even including the brain, although present evidence is

inconclusive (14). These distinctive microbial signatures are

known as the microbiome (15, 16). The term microbiome, as
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Whipps and co-workers originally postulated, includes not only

the community of the microorganisms but also their “theatre of

activity”. These ecosystems, created by a multitude of microbes

that may include bacteria, archaea, fungi, yeast, and viruses, are

site-specific (15). The microbiome of each body part has

distinctive characteristics regarding population dynamics and

the diversity of microbial species (17). This site-specific diversity

and dynamics can be regarded as a health indicator with, high

diversity in the gut microbiome generally linked to good health

(18). Our microbiomes represent a virtual organ that performs

essential body functions that maintain our homeostasis, such as

metabolizing nutrients, maintaining the integrity of the mucosal

barriers, developing a healthy immune system, modulating a

healthy neuronal development (including regulating our moods)

and defending us against pathogens (19–21).
2.1 Distal (gut) microbiome and cancer

2.1.1 GM composition and dysbiosis
Microbes start colonizing our body as early as in the 2nd

trimester of fetal development, where low levels of microbial signals

can be detected in the fetal gut, skin, placenta, and lung tissue (22).

However, the first major colonization event in early life happens at

birth, where the mode of delivery determines the neonate

microbiome composition to resemble either a vaginal or skin

microbiome (23). After this event, our microbiomes are shaped

by external factors such as diet, lifestyle, and environmental

biodiversity (24). Our microbiome composition varies with age.

In early neonatal life, breastfeeding enables the vertical

transmission (mother to infant) of bacteria. Thus, neonates

exhibit a microbiome composition resembling their mother’s

milk. The adult type of GM composition starts appearing at ages

3-5 years (25). At this age, 90% of all species of the adult GMwould

have already colonized the gut.

Overall, a diverse GM is a healthy and robust GM, well able

to perform the multiple tasks that define our health status (see

Figure 1) (26). On average, the adult GM is estimated to be

composed of 300-500 species (27), comprised of 12 bacterial

phyla and one Archaean taxon, with the majority of species

belonging to the Bacteroidetes and Firmicutes phyla and a

smaller proportion to the Proteo- and Actinobacteria phyla

(28, 29). However, GM composition differs between

individuals and starting in mid-to-late adulthood (40-50 years

of age), it increasingly diverges towards a microbiome that is

unique to each individual (28, 30). Compositional uniqueness is

more accentuated among the elderly (>65 years old) since, at this

life stage, microbiome diversity can decrease significantly. In this

age group, uniqueness has been positively associated with a

healthy status (24, 30).

A healthy microbiome safeguards host-microbiome

homeostasis. Here, different microbe populations regulate the

abundance of neighboring commensal or pathogenic bacteria by
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occupying a niche and adjusting the niche environment. Bacteria

compete for nutrients, release bacteriocins (peptides which are

toxic to and inhibit/regulate the growth of similar or closely

related bacterial strains) or bacterial signals (MAMPs, see 1.2) to

communicate with the host in order to modulate the release of

antimicrobial peptides, mucin and ultimately, immune

responses (31). Together, these actions contribute to the

formation and maintenance of a healthy GIT mucosal

“firewall”, which by segregating the GM from host cells,

prevents microbial translocation and adverse immune priming

events (32, 33).

Overall, a healthy GM safeguards host-microbiome

homeostasis by modulating immune tolerance against gut

commensals and eliciting pertinent immune responses (34).

These GM-immune cell interactions are essential for the

proper development of the gut-associated lymphoid tissues

(GALT), which is the largest mass of lymphoid tissue in the

body (more in 1.2) (35). The loss of beneficial microbes,

expansion of pathobionts (commensals that at higher densities

can cause harm), and/or the overall loss of microbial diversity

can alter the GM composition in a way in which the

abovementioned self-regulation and host-microbiome

homeostasis functions are impaired. This altered and impaired

GM composition is known as dysbiosis (36). GM Dysbiosis has
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been found to influence tumorigenesis through multiple

mechanisms and interactions, including modulating our

immune system, the metabolism of estrogens, and the

production of protective or oncogenic metabolites, as

described in Figure 1 and sections 2.1.3-2.1.4 (32).

2.1.2 The GM and immunity
The microbiome promotes the development and

maintenance of the GIT mucosa and associated lymphoid

tissues by producing microbial motifs (antigens) known as

microbe-associated molecular patterns (MAMPs) (e.g.,

lipopolysaccharide (LPS), short-chain fatty acids (SFCA), and

peptidoglycans) (37–39). The more commonly known PAMPs -

pathogen-associated molecular patterns - are a subset of MAMPs,

which include non-pathogenic microbes. MAMPs are recognized

by pattern recognition receptors (PRRs) in Antigen Presenting

Cells (APCs)). The GM uses MAMPs to communicate, trains and

supports the maturation of the innate immune system, in order

to: (i) modulate tolerance by discerning self from non-self (40);

(ii) ensure homeostatic levels of innate immune cells (e.g.

macrophages and dendritic cells) (41); (iii) bridge the innate

and adaptative immune systems, through the production of co-

stimulatory signals that induce an adaptive immune system

response (42, 43). See Figure 2.
FIGURE 1

The microbiome influence in Cancer. In eubiosis the microbiome promotes our health status and prevents oncogenesis and tumor progression
by influencing the immune system, promoting gut barrier integrity, and influencing cell signaling. Conversely, during dysbiosis there is a loss of
barrier integrity that can lead to potentially harmful bacterial translocation, chronic inflammation in distal sites and the production of cancer
promoting bacterial by-products.
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This is particularly relevant for TNBC, wherein the tumor

microenvironment is characteristically immunosuppressive,

featuring immunosuppressive and pro-metastatic cell types and

factors, such as: Type 2 macrophages (M2) and neutrophils (N2),

Cancer-Associated Fibroblasts (CAFs), Cancer-Associated

Adipocytes (CAAs), and altered extracellular matrix (ECM)

(44). In fact, a current TNBC clinical trial (NCT02981303) is

attempting to harness these TNBC immunosuppressive features

and the immunostimulatory effects of PAMPs, by using a soluble

yeast b-1,3/1,6-glucan PAMP (referred to as Imprime), to

enhance the effect of immunotherapies after positive pre-

clinical trials (45).

2.1.3 GM influence in TNBC via
chronic inflammation

Chronic inflammation is a long-term reaction over the

course of weeks or even an entire lifetime to inflammatory

stimuli with continuous recruitment of monocytes and

lymphocytes in addition to local tissue damage caused by the

prolonged inflammatory response itself (46). Chronic

inflammation contributes to tumorigenesis at all stages of

oncogenesis, progression and dissemination, by promoting

genomic instability and epigenetic modifications, inducing

proliferation, strengthening anti-apoptotic pathways,

stimulating angiogenesis and metastasis (47, 48). Roughly 10%

of cancers are a result of a non-modifiable factors such as genetic

predisposition to tumor development, with the remaining 90% a

result of modifiable factors which induce DNA damage through

environmental or life-style factors, for example U.V. damage,

smoking, diet, alcohol use, obesity and infection status, that
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directly damage DNA or lead to some form of chronic

inflammation (49). Among these, up to 20% of all cancers

develop in t is sues commonly affec ted by chronic

inflammation (50).

Inflammation is a mechanism mainly orchestrated by the

innate immune system to defend the body against pathogens and

injuries, which can be perpetuated by exogenous stimuli (e.g.

MAMPs) (51, 52). The prolonged/recurrent exposure to stimuli

can lead to an uncontrolled infiltration and accumulation of

immune cells, which can become polarized towards pro-

inflammatory, tumor-promoting cell types (Type 1/17, 2 in

Figure 2). It can also lead to the release/production of damage-

associated molecular patterns (DAMPs), which signal a status of

altered-self and amplify and perpetuate immune reactions

through a vicious cycle of inflammation and DAMP

production (53, 54).

The most relevant mechanism for bacterial-driven chronic

inflammation is gut-barrier failure (33, 55, 56). A healthy barrier

prevents the translocation of microbes into compartments where

they would elicit a systemic immune response and establish

immune memory (57). This anatomical separation is achieved

through a multi-level gut-barrier, which ensures (i) segregation:

preventing direct contact between the GM and host tissue; and

(ii) compartmentalization – ensuring that responses to

commensal bacteria are kept locally (56). The disruption of

segregation/compartmentalization can lead to leaky-gut

syndrome: A change in the permeability of the gut epithelial

lining enabling the translocation of microbes or their by-

products from the gut-lumen into the bloodstream, where they

can be distributed systemically to other body sites and incite
FIGURE 2

The microbiome influence on the host immune system. The microbiome modulates the immune system through MAMP production. These are
sensed by antigen presenting cells (APCs), which process them to be presented to CD4+ naïve T-cells to induce either immune tolerance or an
immune response.
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inflammatory responses (58). The recurrent injury to the tissue

caused by these responses can consequentially prime the

immune system (via DAMPs) towards chronic inflammation

(59). In fact, a commonality across GM-associated diseases is

that they are all a product of barrier disfunction (50, 60). This

has been correlated to localized digestive tract diseases, such as

in colon (61), liver (62) and pancreatic cancer (63), among

others; and systemic inflammatory diseases, such as metabolic

(64) autoimmune diseases (65), and cancer in other body sites

(32), including the breast (66). A study looking at the

inflammatory pathway score using a defined set of

inflammatory genes from 3,632 tumors from four BC cohorts

came to the conclusion that inflammation was associated with

worse outcome overall in the BC cohort, but in TNBC, was

associated more positively with tumor clearing immune

response and immune cell infiltrations (67).
2.1.4 GM influence in TNBC via
GM by-products

The GM produces a large array of small molecules during

the metabolism of food and xenobiotics (compounds of nonhost

origin that enter the gut with the diet, lifestyle or are produced by

microbes). These can be in the form of low molecular weight

metabolites, peptides, and proteins. In fact, the GM is associated

with many biochemical pathways and in the synthesis of specific

metabolites that are absorbed into the circulation. In this way,

the GM contributes to the host biology a circulating pool of

bacterially derived metabolites that can potentially exceed

concentrations typically achieved by drugs (10 mM–1 mM)

(68). Many of these by-products play critical roles in

interbacterial (between different microbial species) and host-

GM signaling by engaging with specific host receptors (69). As

such, GM-derived metabolites can signal distant organs in the

body and facilitate a connection between the host immune and

hormone system, brain (the gut-brain axis), and metabolism.

The beneficial or detrimental effects of these GM-derived

metabolites will depend on the context and the state of the

host, considering that the primordial nature of the symbiotic

microbiota is to ensure its host health (70). Accordingly, below

are outlined some of the pathways, metabolites and/or by-

products by which the GM can exert an effect in TNBC.
2.1.4.1 GM influence on estrogen regulation

The risk for developing receptor-positive breast cancers in

post-menopausal women is highly associated with the levels of

circulating estrogens and the time of exposure (71, 72). Whilst

estrogen metabolism is not traditionally considered an essential

factor in TNBC, it may be to a degree, as some TNBCs express

alternative estrogen receptors. In addition, different jurisdictions

have different cut-offs for the expression of either estrogen

receptor (ER) and/or progesterone receptor (PR). For example,

in the US, TNBC is diagnosed when receptor expression is lower
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than 1%. On the other hand, in the European Union, TNBC is

diagnosed when the expression levels are lower than 10%.

Furthermore, estrogen signaling in TNBC can also be

maintained by constitutively active estrogen-related receptors

(ERRs) other than the canonical ER-a (73). Among these,

estrogen receptors ERb and the G protein-coupled estrogen

receptor 1 (GPER-1) enable some degree of estrogen reactivity

in TNBC (74). While the role of GPER in cancer is still

inconclusive, new evidence shows that ER-b can have

anticancer effects, including for TNBC. For example, a recent

study looking into a cohort of 567 TNBC tumors, found that

ERb was expressed in 18% of them. Possible mechanisms for

ERb mediated tumor suppression include the formation of co-

repressor complexes that suppress the activity of oncogenic

NFkB/RELA (p65) and thus inhibit p65 signaling (75).

Additionally, Erb has been found to downregulate the

unfolded protein response (UPR), which enables the survival

of cancer cell to endoplasmic reticulum stress induced by poor

tumor vascularization (76). Furthermore, ERb BC cell

mitochondrial translocation inhibits TNBC proliferation of

vitro and in vivo models via mitoERb activation (77, 78).

Finally, ERb has been shown to inhibit epithelial to

mesenchymal transition (EMT) and the invasiveness of TNBC

in vitro (79) and inhibit metastatic TNBC phenotypes by

suppressing TGFb signaling through the regulation of cystatins

(80). It is important to highlight that these alternate estrogen

receptors can respond to systemic estrogen but, not to current

endocrine treatments (81).

Hence, even in TNBC, estrogen can play a role in cancer

progression, depending on levels of circulating estrogen, in

which bacteria play a role and the cancer’s ability to respond

via canonical or non-canonical receptors. In order to excrete

estrogen from the body, the liver conjugates estrogen to

glucuronic acid which can be then excreted in the bile. The

GM has enhanced capacity to increase systemic estrogen levels

by increasing enterohepatic circulation (82). GM bacteria can

increase levels of systemic estrogen in two ways – first, by

blocking the binding of estrogen to glucuronic acid, reducing

its inactivation (83). Secondly, estrogens that are marked for

excretion through the bile can be deconjugated by bacterial

species expressing b-glucuronidases enabling their reuptake

(84, 85).

GM bacteria can also metabolize phytoestrogens from

dietary polyphenols, which are thought to modulate estrogen

metabolism by reducing the systemic levels of circulation

estrogen, as product of the inhibition of estrogen synthetase

activity and reducing the bioavailability of ERs, for which they

compete (86). In this regard. GM species such as Eubacterium

limosum activate polyphenols (isoflavones and lignans) by

demethylating their hydroxyl groups (87). Enterogenic lignan

can then be transformed into bioactive enterolactone by other

GM strains, such as members of genus Eggerthella (88).

Interestingly, equol, the isoflavone derivative with the greatest
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estrogenic and antioxidant activity, is only found in one third to

one half of humans (thus, only in those harboring equol-

producing microbes) (89). The isoflavone daidzein found

exclusively in soya beans and other legumes and can be

converted to equol by several bacterial species including

Slackia, Lactobacillus, Paraeggerthella, Bifidobacterium and

Eggerthella sp. among others (89). While the effects of

bacterially activated phytoestrogens on receptor positive BC

are not yet agreed upon; a recent TNBC clinical trial,

comprising 39 patients with invasive TNBC, established that a

course of oral S‐equol inhibited proliferation of breast tumor

cells, as measured by the cell proliferation marker Ki-67, with a

20% decrease in Ki‐67 expression in almost one third of

patients (90).

2.1.4.2 Short chain fatty acids

SCFAs are one of the main metabolites generated by the GM

in the large intestine through anaerobic fermentation of

indigestible dietary fiber and resistant starch (91). Among

these, butyrate is the most important in relation to cancer,

which is produced by Firmicutes (92). Cancer-driven histone

deacetylase (HDAC) activity can lead to dysregulated epigenetic

changes that silence tumor suppressor genes (TSG) facilitating

malignant proliferation (93). Butyrate shows the most potent

anti-cancer properties, including anti-inflammatory effects,

suppression of angiogenesis, histone deacetylase (HDAC)

inhibition which can reverse silencing of tumor suppressor

genes (TSGs) and apoptosis induction in tumor cells by means

of mitochondrial ROS production (94–97). A high fiber diet

promotes the maintenance of butyrate-producing bacteria,

making it cancer-protective. Conversely, the opposite effect is

true; depletion of butyrate-producing bacteria may promote

inflammation and tumorigenesis systemically (98). The

receptors responsible for detecting SCFAs in TNBC are free

the free fatty acid receptors (FFAR) 1 and 2 (99). In vitro TNBC

studies have demonstrated that the activation of FFAR2

receptors increases the expression of adhesion proteins (E-

cadherin) and inhibits MAPK signaling (via Hippo-Yap

pathway inhibition), thus leading to a reduction of actin

polymerization and cell invasiveness (100). This is supported

by a study showing that the expression of both receptors was

reduced in invasive breast carcinoma and metastatic TNBC

tumors, relative to normal breast tissue (101).

2.1.4.3 Bile acids metabolites

Lithocholic acid (LCA) is a bile acid metabolite that has been

found to exert cancer protective effects. It is produced exclusively

in the gut by a few species of anaerobic bacteria in the genus

Clostridium from primary bile acids (102). Any bile acids found

in breast tissue originate from the gut (103). LCA anticancer

properties in relation to BC in general, include reductions in

cancer cell proliferation and epithelial to mesenchymal cell
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transition inhibition acting via the G-protein-coupled bile acid

receptor 1 (TGR5) that exerts downstream anti-inflammatory

effects (104). It also inhibits angiogenesis by inhibiting vascular

endothelial growth factor (VEGF) (105). LCA alters cellular

metabol ism by inducing glycolysis and increasing

mitochondrial oxidative phosphorylation in BC cells that

depend on the Warburg effect (104). The Warburg effect is a

cancer specific effect, with increased glucose uptake and

fermentation to lactate even in the presence of oxygen,

proposed to be an evolutionary mechanism to sustain

proliferative growth through the generation of essential

biomolecules, by-products of glycolysis (94). BC patients have

been found to have low levels of the LCA-producing gene 7a/b-
hydroxysteroid dehydroxylase (baiH) detected in DNA extracted

from stool samples in early cancer cases when compared with

healthy controls (104, 106). In addition, microbiota-derived bile

acids of GM origin accumulate in breast tumors and correlate

with reduced proliferation (107). Other studies found that BC

cells treated with LCA in vitro decreased the expression of

nuclear factor-2 (NRF2) and increased the expression of

Kelch-like ECH associating protein 1 (KEAP1), constitutive

androstane receptor (CAR) and inducible nitric oxide synthase

(iNOS) (108). All of which has been found to correlate with an

improved survival rate of BC patients, except for TNBC (108). In

this regard, studies investigating this in the different subtypes of

TNBC, in particular, are thus needed.
2.1.4.4 Polyamines

Polyamines are small polycationic molecules with a wide

array of biological functions including gene regulation, stress

resistance, cell proliferation and differentiation. These are

mainly sourced from the GM, where they derive from bacterial

amino-acid metabolism (109). Among these, Cadaverine is a

biogenic amine derived from the decarboxylation of lysine and is

used by bacteria to buffer the pH of their environment. It is

synthesized by lysine decarboxylase (LdcC) and cadaverine A

(CadA), enzymes found in species of the bacterial genera

Enterococcus, Enterobacter, Escherichia, Proteus, Streptococci,

and Shigella among other (110). Cadaverine has been shown

to have tumor suppressor roles in breast cancer. Its antitumor

effects have been proven in a TNBC murine model (grafted 4T1

tumor cells), with cadaverine found to reduce Epithelial to

mesenchymal transition (EMT), an essential process driving

tumor progression and metastasis, in which epithelial cells lose

their features (cell polarity and cell–cell adhesion) and gain the

invasive properties characteristic of mesenchymal stem cells.

Consequently, cadaverine inhibited tumor growth, reduced

cellular migration and invasion, ultimately reducing metastasis.

In addition, cadaverine was also found capable of reducing BC

invasion by inhibiting mesenchymal-to-epithelial (MET)

transition (reverting mesenchymal tumor cells to a more

epithelial like state) via the activation of trace amino acid
frontiersin.org
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(TAAR) cell receptors (111). This is supported by results from

clinical trials (112)

2.1.4.5 Indole derivatives

Indoles are bioactive products of the GM bacterial catabolism

of tryptophan. Among these, 3-Indolepropionic acid (IPA), has

been the subject of numerous studies due to its anticarcinogenic

effects. IPA and other propionic acid species (PAs) derived from

phenylalanine and tyrosine are synthesized through aromatic

amino-acid transferases and phenyllactate dehydratase found in

some species of the bacterial genera Lactobacillus, Akkermansia,

Clostridium and Peptostreptococci (68, 113). In general, Indoles are

also key interbacterial and GM-Host signaling molecules, act

through steroid and xenobiotic receptors (AHRs and PXRs)

(114). Indole derivatives prevent carcinogenesis by promoting

gut homeostasis (upregulating tight junction, cell turnover, mucin

and AMP secretion) (115) and modulate immune tolerance by

shifting immune-cell polarization towards anti-inflammatory

types. IPA is a free radical scavenger and a potent antioxidant,

which prevents DNA damage in non-transformed cells exposed to

multiple types of oxidative damage (113, 116). Furthermore, IPA

and indoxyl-sulphate (IS) exert cytostatic effects in breast cancer

cells (including TNBC) in vitro and in vivo, where they reduce

cancer cell stemness, their EMT and proliferation (117). In a

recent study, it was found that four new benzo[f]indole-4,9-dione

derivatives reduce TNBC cell viability by ROS accumulation in

vitro and exert cytotoxic effects on TNBC cells (MDA-MB 231)

through the intrinsic apoptosis pathway – activation of the caspase

9 and Bax/Bcl-2 pathway (118).
2.2 The proximal microbiome and
contribution to tumor development

Once thought to be sterile, it is now well established that the

breast has its own uniquemicrobial signature (119–123). Breast and

milk microbiomes are related, which makes the milk microbiome a

good predictor for Breast Microbiome (BM) composition in

lactating women (124). Milk has been found to accommodate

more than 360 species of bacteria, mainly from the Actinobacteria,

Bacteroidetes and Firmicutes phyla (125). Due to various exogenous

factors (dietary habits, geographic locations, lactating phase, and

research methodologies) different studies report different microbial

richness and composition at genus/species level. Despite this,

Staphylococcus and Streptococcus have been present in 98.7 and

97.7% of the samples analyzed, respectively, and are considered as

core genera, followed by lactic-acid specific bacteria

(Bifidobacterium sp. and Lactobacillus sp.) (126).

Microbes residing in breast tissue have variable origins, as

these can be sourced from different body-parts, through different

interactions. In this regard, aerobes and facultative anaerobes from

the skin and other epithelial surfaces may gain access to the breast

through the nipple-areolar opening. For example, bacteria from
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the oral mucosa may gain access during breastfeeding and/or

sexual contact (127). The growth and persistence of the infiltrated

bacteria is sustained by the favourable conditions of breast tissue,

featuring (1) nutrient-rich fatty tissue content, (2) diffuse ducts

originating from the nipple; and (3) a widespread vasculature and

lymphatic systems facilitating their movement (119).

Conversely, the microbial translocation of strictly anaerobic

bacteria, which cannot survive in the presence of oxygen (e.g.,

Bacteroides, and some Lactobacillus and Bifidobacterium

species) into breast tissue is far more complex and has been a

topic of research and debate for decades. It has been suggested

that some bacterial taxa may be translocated from the gut to the

mammary tissue via an enteromammary pathway (128). This is

supported by evidence from different studies showing that

dendritic cells (DCs) can sample and engulf bacteria directly

from the lumen (maintaining epithelial barrier integrity) (129)

and transport them alive (for up to 60 h) to other lymphoid

tissues (57). This was also supported by a seminal study of the

origin of human breast milk bacteria. This study revealed that

during the perinatal period there is a heightened bacterial

translocation to the GALT, which is followed by bacterial

colonization of the breast during the immediate postpartum.

Here, it was also suggested that bacterial transport was mediated

by DCs, which was supported by evidence showing that: (i) the

majority of mononuclear cells in the milk originated from the

GALT, (ii) staining showing bacteria-DCs co-localization and

(iii) culturing of viable bacteria extracted from DCs purified

form maternal milk and blood. Other preclinical studies have

suggested GIT translocation of certain bacteria, such as

bifidobacteria, to distal tumors (130).

Tumor colonization by bacteria is facilitated by the increased

permeability of the tumor microenvironment (TME), with leaky

vasculature due to rapid angiogenesis. Tumor selective growth of

specific facultative and/or anaerobic bacterial strains is supported

by the highly hypoxic and nutrient-rich necrotic tumor regions

and its characteristic suppressed immune surveillance (131–134).

Several recent studies have raised convincing evidence that

associates the breast microbiome with cancer; however, its role

in tumorigenesis is still a subject of active investigation, as it still

unknown whether different microbial signatures are a cause or a

product of tumorigenesis driven tissue remodeling (134, 135).

Nevertheless, the role of intratumoral bacteria (including in

TNBC) in tumor progression is now well-acknowledged and

considered an enabling factor of “the hallmarks of cancer” due

to their capacity to contribute to genome instability and

mutation, and tumor-promoting inflammation (136).

2.2.1 Unique TME signatures
In recent years various investigations have found

characteristic microbial signatures associated with the breast

cancer tumor microbiota (TM). In general, these studies point

out that the microbial composition of breast tissue is dominated

by bacteria from Proteobacteria, followed by Firmicutes,
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Actinobacteria and Bacteroidetes phyla, but BC tumor tissue

features an altered composition in terms of abundance. In this

regard, BC tumor tissue has an overrepresentation of

Proteobacteria (a phylum usually associated with inflammation

and disease), with higher abundances of Gammaproteobacteria,

especially from the Enterobacteriaceae family and reduced

abundance of Actinobacteria and Bacteroidetes. BC TM also

has a higher abundance of pathobionts (pro-inflammatory) in

the Firmicutes [e.g. Staphylococcus (137), Streptococcus pyogenes

(138)) and Actinobacteria (Micrococcus (139), Atopobium (140)]

phyla. Furthermore, the BC tumor microbiota showed an

increase in abundance of taxa with known carcinogenic effects,

such as those belonging to the Fusobacterium genus (121, 122, 141,

142). In fact, taxa from the Enterobacteriaceae, Streptococcaceae,

Staphylococcaceae andMicrococcaceae families have been found in

pancreatic cancer tumors (143) with Staphylococcaceae species in

particular, also present in higher abundance within the tumor

microbiota of prostate cancer (144). Likewise, in an ovarian cancer

microbiota study, the Gammaproteobacteria Shewanella sp. was

detected in 91% of cancer tissue samples (145). On the contrary,

bacterial taxa with known anti-carcinogenic effects, such as species

from the Bacteroidetes phyla and Lactococcus, and Streptococcus

genera, were less abundant in BC TM (146).

For TNBC in particular, the studies described in Table 1, list the

microbial signatures found to be enriched in the TNBC TME for

each study. The lack of congruity between studies, reflects the lack

of defined protocols for the study of breast/tumor microbiomes,

wherein, a myriad of variables that can influence the outcomes/

results. For example, differences in sample source (fresh-frozen/

FFPE, ethnicity/geography), experimental protocols (collection:

surgery/biopsy, DNA extraction, hybridization/sequencing), and

bioinformatic workflows (146). Nevertheless, these studies offer

insights to relevant features that are particular to the TNBC

tumor microbiota. First, the TM of TNBC has the least

taxonomic diversity among all BC types (148). Second, TNBC
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has higher abundance of Aggregatibacter and Caulobacter (147,

149) which are biofilm forming bacterial strains that have been

previously associated with localised periodontitis and endocarditis

(150, 151). Furthermore, these studies found that the microbial

profiles found in tumor-adjacent non-cancerous (matched) tissue

had a higher abundance of pathobionts and were more similar to

the TM than those found in non-matched healthy tissue controls.

This indicates that the TME resident tumor microbiota can extend

to surrounding tissues and/or that microbial profiles found in the

tumor pre-existed tumor formation, which would suggest that these

microbes have an active role in tumorigenesis (148). This can be

supported by recent evidence from a study involving seven different

cancer types and over 1500 FFPE tumor samples, where

intratumoral bacteria were found to localize within the tumor

and immune cells (152).

All these studies are merely taking a snapshot of the bacteria

present at the time of sampling. The bacterial load is of extremely low

biomass relative to the TME or the GM for that matter and issues of

contamination and sampling techniques are important confounding

factors. While our lab and others to improve the relevant

methodology (153–156), bacteria at the scene cannot be pinned

down to having a causative effect in oncogenesis or are merely

bystanders having found a niche where they can survive (135).
2.2.2 Protective effects
In a eubiotic state, the breast microbiota produces metabolites

that may confer protection from pathogens, boost immune

responses and inhibit tumorigenesis. Across different TNBC-

specific studies, a higher abundance of BM commensals (e.g.

Streptococcus sp.) that synthesize cadaverine, a known BC tumor

suppressor, has been found to correlate with healthy breast tissue

(111). A different study highlighted that butyrate-producing

strains (e.g. Odoribacter sp.), recognised for their anti-

inflammatory effects, were absent in tumor tissues (92, 146).
TABLE 1 Description of studies of the TNBC microbiota.

Authors Banerjee et al., 2015 Banerjee et al., 2021 Tzeng et al., 2021
Year 2015 2021 2021

Patient
stratification

Breast cancer receptor type Breast cancer receptor type, Tumor grade and stage,
primary site of the tumor, response to treatment,
survival, and disease-free time post treatment.

Breast cancer stage, grade,
subtype, receptor type, and lymph
node status.

No of TNBC
samples

100 100 30

Non-cancer
breast tissue

17 matched + 20 non-matched 20 matched + 68 non-matched 87 non-matched + 175 matched

Sample type FFPE breast tumors + matched/non-matched controls FFPE breast tumors + matched/non-matched controls Freshly frozen breast tissue

Taxa enriched
in TM vs.
matched
controls

Actinomycetaceae, Caulobacteriaceae, Sphingobacteriaceae,
Enterobacteriaceae, Prevotellaceae, Brucellaceae,
Bacillaceae, Peptostreptococcaceae, Flavobacteriaceae

Actinomyces, Bartonella, Brevundimonas, Coxiella,
Mobiluncus, Mycobacterium, Rickettsia,
Sphingomonas

Azomonas, Alkanindiges,
Caulobacter, Proteus,
Brevibacillus, Kocuria,
Parasediminibacterium

Reference (147) (148, 149) (146)
The TM of TNBC has the least taxonomic diversity among all BC types.
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Additionally, several breast tissue resident commensals, such as

Staphylococci sp., Lactococcus sp., and Streptococcus sp. produce

lantibiotics and other bacteriocins, preventing the potential

growth of pathogenic strains that could trigger chronic

inflammation. Beyond this, some bacteriocins have also been

found to have selective cytotoxicity toward cancer cells (157).

For example, Lactobacillus salivarius and L. gasseri, have been

shown to clear mastitis infections during lactation when

administered as a probiotic (158) and their excreted products

(as cell-free supernatant) has been found to inhibit BC cells in

vitro (159). Similarly, Bovicin HC5 from Streptococcus bovis

HC5 has been shown to induce cell death in BC cell lines in

vitro (160).

Furthermore, breast tissue resident bacteria also have the

capability to activate the immune system via MAMPs. For

example, the MAMP Flagellin (and the principal component

of bacterial flagella) activates Toll-receptor 5 (TLR5). This is a

PRR recently found to be specifically expressed in the ductal

epithelium of normal breast tissues and circulating immature

dendritic cells induces the secretion of pro-inflammatory

cytokines and chemokines, increases tumor necrosis and

neutrophil infiltration, inhibiting cell proliferation and

anchorage-independent growth in mouse xenografts of human

BC cells (161). In this context, Lactococcus lactis has been shown

to recruit and activate natural killer cells (the main innate

immunity cytotoxic effector cells toward cancer cells) (122).

This has been confirmed in a clinical trial where Lactococcus

abundance positively correlated with the number of NK cells

recruited (162). Finally, healthy breast tissue is known to harbor

bacterial strains, such as species of Lactococcus and Streptococcus,

genera known to produce antioxidants and ROS scavengers (e.g.

indoles, IPA) that neutralize free radicals and reduce oxidative
Frontiers in Oncology 09
damage, preventing oncogenesis (119, 163). Supporting all the

protective benefits to breast health are extensive clinical studies

and meta-analyses correlating the use of antibiotics with a

moderately increased risk of BC (164–166).

2.2.3 Microbial contributions to oncogenesis
and tumor growth

Some bacterial signatures can induce cellular and

immunomodulatory changes that promote oncogenesis, tumor

growth and metastasis. Here these are referred to as Pathobionts.

Now, while some of these microbes may not be a pathogen in

other body parts they behave as such in this specific context, as

the capacity of any microbe to act as a pathogen is context

dependent, on location and state of immune activation. Some of

these effects are listed in Table 2.
2.3 Microbiome effects on cancer
treatments

2.3.1 Cancer immunotherapies
Conventionally, breast cancers were deemed to be ‘cold’ in

terms of the immune response, in that they generally do not

evoke a robust immune response thereby making them less likely

to respond to immune checkpoint inhibitor (ICI) therapies.

However, TNBC is the most immunogenic out of all the BC

types (177). The response to ICI can vary significantly from

person to person, with only a modest subset of patients

displaying increased survival rates (178). In a phase 1b clinical

trial assessing the antitumor activity of an anti-PD-L1 antibody

in patients with locally advanced or metastatic breast cancer, the

confirmed objective response rate (ORR) for BC was 3.0% and
TABLE 2 Microbial contributions to oncogenesis and tumor growth.

Effects Mechanisms

Genome damage Some pathobionts, such as E. coli and S. epidermidis cultured from breast tissue has been shown to induce DNA double-strand breaks in HeLa
cells in vitro (122).

Pro-inflammatory
response

Dysbiosis of the BM disrupts the local homeostatic levels of MAMPs and increases the levels of ROS. This triggers the expression of pro-
inflammatory cytokines and the release of DAMPs, which drives a positive feedback loop towards a chronic pathogenic inflammatory response,
promoting tumorigenesis or enhancing pre-existing tumor growth (167).

Modulate immune
response and survival

1) TLR signaling: In all types of BC, TLR (microbial sensing) receptors are significantly altered. BC features upregulated TLR4 receptors, which
stimulate pro-inflammatory, pro-survival pathways (e.g., NF-kB) (146, 168, 169). In this regard, bacterial MAMPs bind to and modulate TLR4.
For example, LPS binds to TLR4+ monocytes and promote their differentiation to pro-tumorigenic M2 macrophages (170, 171).
2) Immune cell recruitment: In healthy breast tissue, the abundance of certain bacterial strains, such as Streptococcus, Propionibacterium,
Staphylococcus, and Acinetobacter positively correlate with that of tumor-targeting cytotoxic T-cell (e.g. CD8+), while their depletion contributes
to an immunosuppressive TME typically found in BC (146). Conversely, the abundance of pathobionts, such as F. nucleatum inhibits the
infiltration and effects of tumor-infiltrating lymphocytes (172)
3) Oncogene expression: Certain bacterial signatures can potentially regulate oncogene expression. For example, the presence of Staphylococcus
has been negatively correlated with tumor necrosis factor receptor-associated factor 4 (TRAF4) (146, 173).

Promote Metastasis 1) Intracellular Pathobiont influence gene expression: Certain pathobionts, such as Fusobacterium nucleatum invade cancer cells and induce
their proliferation while effectively evading the immune system (174). In BC, F. nucleatum colonization accelerates tumor growth and metastasis
(172). Similarly, the presence of Haemophilus influenzae, has been correlated with the expression of pro-tumorigenic pathways (142).
2) MAMPs: Increased levels of circulating MAMPs, such as LPS has been associated with BC metastasis by inducing a monocyte-mediated
endothelial adhesion of circulating cancer cells (175) or by inducing the production of pro-metastatic neutrophil extracellular traps (NETs) (176).
Lymphovascular invasion is associated with a reduced abundance of Oblitimonas in the TM (146).
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5.2% for TNBC. Results from this study suggest that the

expression of PD-L1 by tumor-infiltrating lymphocytes (TIL)

may predict the response to ICI therapy in breast cancer, as

patients with TILs expressing PD-L1 showed an increased ORR

in the overall population (16.7% vs. 1.6%), an effect that was

remarkable in the TNBC subgroup, with an ORR of 22.2% vs.

2.6% (179). This confirmed previous findings in TNBC where a

10% increase in TILs was significantly correlated with a reduced

reoccurrence of distant tumors in patients undergoing

trastuzumab treatment in a large clinical trial, which is the

reason why TILs are used as a biomarker of prognostic

outcome (180). TILS can be subdivided into: CD4+ antigen-

presenting T-helpers (Th) CD4+ immunosuppressive T-regs,

and cytotoxic CD8+ T-cells – involved in direct tumor cell

killing (see Figure 2). While high prevalence CD8+ T-cells and

Th1 cell correlate with better treatment outcomes, the presence

of Tregs and Th2 cells are associated with a poorer prognosis

(more in figure 2) (181). In this regard, certain bacterial species

known to colonize TNBC tumors (e.g., Fusobacterium

nucleatum, and Staphylococcus aureus) have been found to

shift TIL populations and induce a tumor suppressing, pro-

inflammatory (Type 1) immune response in melanoma.

Bacterial peptides (MAMPs) produced by these species are

recognised by MHC I and II in APCs and stimulates the

production of pro-inflammatory cytokines, which in turn

recruit cytotoxic cells and induce pro-inflammatory Th1 cells

differentiation (see Figure 2) (182).

Ever-increasing evidence supports the GM’s role in

modulating treatment and a toxic response to cancer therapy,

with several recent studies precisely demonstrating the response

to ICI treatments across numerous cancer types (183–193).

Here, different studies list varied species and genera associated

with positive treatment outcomes, pointing to the complexity of

confounding factors and interactions between the patient, the

environment and their microbiome. However, in general, these

studies report higher response to therapy and overall survival in

patients with diverse microbiome profiles (eubiosis), containing

Bifidobacterium, Akkermansia and Enterococcus, among others.

On the other hand, patients with a reduced microbiome diversity

(dysbiosis) responded poorly to this therapy (186, 189). This was

confirmed in GF murine models. Mice receiving FMT from

responders improved their response to anti-PD-LI, while those

who received an FMT from non-responders developed

resistance (185, 194)..

Interestingly, some studies have shown that the therapy can

induce detrimental changes to the microbiome that may

influence the development of resistance (183). This highlights

the relevance of managing the microbiome richness during the

course of treatment (193). Immunotherapies can also lead to a

wide range of inflammatory side effects, including colitis, thyroid

dysfunction, pituitary inflammation, and inflammatory arthritis,

among others (195, 196). The combination of low efficacy, high

cost and the risk of side effects calls for the development of
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However, to date, there are not sufficient data to support this

for TNBC; and thus, more studies are required.

2.3.2 Radiation therapy
Initial studies showed that cancer radiotherapy (RT) has

fewer side effects on germ-free mice (197); further studies

confirm that bacteria are responsible for the toxic effects of

radiotherapy (198, 199). It was also shown that during

macrophage polarization, cell metabolism is altered by shifting

the balance between glucose utilization and fatty acid oxidation,

influencing the immune response in the TME. Radiotherapy

response or resistance is highly dependent on the TME, and this

alteration may change the radio sensitivity of cancer cells. M1

macrophages are thought to enhance the radio-sensitivity of BC

cells; however, M2 macrophages can activate radio-resistance

through IL-4/IL-13-mediated STAT6 phosphorylation and M2

polarization (200). One study found that the vancomycin

treatment enhanced the RT efficacy and that butyrate, a

metabolite generated by vancomycin-depleted gut bacteria,

abolished the vancomycin effect (201). This is another example

of context-dependent effects of the microbiome, wherein

butyrate, which is regarded as a beneficial metabolite in the

context of oncogenesis and cancer progression, can negatively

impact the outcome of a cancer therapy. In addition, IPA (see

1.4.4) was found to exert an RT-protective effect on mice (202).

Patients who had a toxic reaction to RT were associated with an

over-abundance of Clostr idium, Rosesporium, and

Phascolarctobacterium (203).

2.3.3 Chemotherapy
For patients with TNBC that has spread to the lymph nodes

and is more than 1 cm in size, the American Society of Clinical

Oncology (ASCO) recommends neoadjuvant chemotherapy. A

lack of alternative treatments beyond initial surgeries and

radiotherapy to reduce the tumor load means that

chemotherapy remains the mainstay of treatment options.

Common drugs include platinums, capecitabine doxorubicin,

cyclophosphamide, paclitaxel, methotrexate, and fluorouracil

(5-FU).

The microbiome affects many of these drugs not only in their

efficacy but also in their level of toxic side effects. For platinums

to work correctly, they must induce double-stranded DNA

breaks, and the microbial production of ROS promote these

mechanisms (204). A study in germ-free mice found that their

cisplatin antitumor activity could be restored with the

introduction of L. acidophilus (205).

A study from our lab examined the effects of bacterial species

identified in breast cancer patient tumor samples on thirty

standard chemotherapies in vitro. Results demonstrated an

increase in the toxicity of six chemotherapeutic drugs, a

decrease in nine, including doxorubicin and gemcitabine, and

no effect in the remaining 15, with different bacterial species
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producing different effects (206). This was also verified in an in

vivo mouse tumor model, with inhibitory effects on gemcitabine

evident in tumors colonized by E. coli. Such findings suggest that

response to therapy in BC tumors may be improved by

microbiome modulation, and/or that the microbiome profile

of a patient should be considered to inform treatment choice. To

this end, our lab also demonstrated a proof of concept to utilize

the microbiome signature of breast biopsies to infer the

malignancy status of the tissue (123). Alternatively, in the

context of bacteriotherapy (see later), another study from our

lab demonstrated the ability of the natural enzymolome of

introduced bacteria to mediate local tumor therapy in a

murine model via activation of multiple systemically

administered chemotherapeutics (207).

In relation to TNBC, there is only one recent study which

looked at the GM of 30 patients with TNBC, identifying

Bacteroides and Ruminococcaceae as taxa more abundant in

TNBC patients who achieved a complete pathological response

(pCR) after treatment with neoadjuvant chemotherapy

compared with those who did not achieve a pCR. Patients

with a partial response had higher quantities of Bacteroides

caccae than those without any response (208). Resistance to
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the nucleoside analogue gemcitabine was found to be induced by

intracellular gammaproteobacteria in a murine model, with

treatment efficacy restored through antibiotic ablation of the

bacteria (209).
3 Bacteria as TNBC theranostics

The potentials of our microbiome can be harnessed to treat/

prevent TNBC through therapeutic/life-style interventions that

modulate our microbiome composition. Additionally, these

commensals or their by-products can be used to develop early

TNBC detection systems or to build bacterial based therapies.

See Figure 3.
3.1 Dietary changes to reduce the risk
of cancer

Prevention is better than cure; therefore, maintaining eubiosis

through diet is extremely important. A western diet rich in fat,

sugar and low in fiber combined with a sedentary lifestyle has
FIGURE 3

Bacteria as Cancer Theranostics. Harnessing the potentials of the microbiome to treat/prevent triple negative breast cancer.
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been associated with a higher risk of BC (210). Obesity and gut

dysbiosis go hand in hand, with both being associated with

chronic inflammation, increased risk of developing BC and

failure of cancer immunotherapy (211). In a mouse model of

TNBC where obesity was induced via a western diet and

compared with lean mice, tumor volumes throughout the

experiment were significantly higher in obese animals, as

expected, with an association between obesity and enhanced

TNBC growth, with significant loss of diversity in the GM,

showing a decrease in Bacteroides species, particularly Alistipes

(211). Conflicting findings suggest that Alistipes exerts beneficial

effects in colitis, has been associated with the increased efficacy of

ICI and general activation of innate immunity whereas it has been

found to be pathogenic in colorectal cancer (212).

Diet is crucially important in the interplay between the gut

microbiome and estrogen metabolism, thereby affecting breast

cancer metastasis depending to various degrees on breast cancer

type, as a western diet is associated with increased levels of b-
glucuronidase feeding estrogens back into the bloodstream. Low

fiber has a compounding effect with a reduction in SCFAs such

as butyrate which can help protect gut barrier maintenance and

reduce inflammation, thereby adding to the pro-tumorigenic

effect (213). Increased levels of inflammatory proteins

systemically increase insulin resistance and leptin levels, both

of which promote carcinogenesis (214). A reduction in

adiponectin from adipose tissue contributed to insulin

resistance and increased insulin-like growth factor 1 (IGF-1)

levels, which can elicit increased cell proliferation (215).

Conversely, a diet high in fiber reduces b-glucuronidase
expression, lowers systemic estrogen and increases sex

hormone-binding globulin (SGBH) levels with fecal excretion

of estrogen (213). A high fiber diet can also drive increased

intestinal alkaline phosphatase production, essential for gut

barrier integrity (216). Butyrate is also known to inhibit

histone deacetylase and tumor progression (217). Retinoic acid

derived from vitamin A combined with trichostatin (a synthetic

HDACi) has been found to increase the HDAC inhibitory effect

in murine xenograft models of BC (218). A diet rich in fiber and

polyphenols has been found to enhance the BC survival rate

(219, 220).
3.2 Probiotics

Probiotics can inhibit pathogenic bacteria colonization, help

maintain eubiosis, promote gut barrier maintenance, reduce gut

and systemic inflammation, and enhance immune and treatment

response to BC (221–223). An in vitro study using the BC MCF-

7 cell line found significant inhibition of cell proliferation,

increased levels of apoptosis, and cell cycle arrest when using

live, heat-killed cells (HKC) or cytoplasmic fractions (CF) of E.

fecalis and S. hominis isolated from the breast milk of healthy

women (224). Oral supplementation with a probiotic containing
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Lactobacillus reuteri alone was sufficient to inhibit BC

tumorigenesis in murine models genetically predisposed to

neoplasia and fed a cancer-promoting western diet through

microbially-initiated CD4+/CD25+ lymphocytes (225).

Moreover, researchers have found that oral administration of

L. acidophilus can modulate immune responses via stimulation

of IL-12 and promotion of Th1 production, a potent activator of

NK cells, in a murine xenograft model of a breast

adenocarcinoma (226). A further in vivo study showed that

drinking probiotics containing Lactobacillus helveticus increased

IL-10 and decreased IL-6 production in mice, which is vital in

BC inhibition (227). A Japanese population-based case-control

study involving 306 cases of BC and 662 controls found that

regular consumption of probiotics containing Lactobacillus casei

was inversely associated with BC incidence (228). Probiotics

have also been found as an alternative to antibiotic treatment in

cases of mastitis during breast feeding (158, 229, 230).
3.3 Fecal microbial transplantation

The most radical yet efficient means to modify the gut

microbiome involves fecal microbial transplantation (FMT), a

black-box approach, whereby the underlying mechanisms do not

need to be fully understood for efficacy to be evaluated. The entire

GM from a healthy donor, usually an exceptional responder to

the treatment being applied, is transplanted into a recipient

undergoing the same treatment. This technique has successfully

reversed resistance to ICI treatment in two recent metastatic

melanoma trials, associated with an increased abundance of

Ruminococcaceae and Bifidobacteriaceae (231, 232). Besides

FMT, where the entire donor GM is transplanted, other

approaches focus on transplanting coalitions of bacteria (233)

or even components of strain-specific bacteria in the case of

Enterococcus gallinarum flagellin have been used (234).

Microbial signatures associated with reduced treatment-

related toxicity can be taken advantage of using FMT or

combinations of specific bacteria in all types of cancer

treatments. FMT has been found to alleviate undesirable

harmful effects of 5-fluorouracil-based chemotherapy in murine

models of colorectal cancer (235). In pre-clinical models, FMT and

indole 3-propionic acid have been observed to reduce radiation-

associated toxicity (236, 237). Regarding BC in general and, more

specifically, TNBC, these studies still need to be conducted.
3.4 Biomarkers of treatment efficacy/
prognostic biomarkers of response
to treatment

One recent study found the GM composition at BC

diagnosis can serve as a prognostic marker. That a diversity

was not predictive of favorable BC prognosis or side effects, and
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b diversity of the GM was associated with tumor grading but not

BC subtype. Furthermore, the relative dominance of C. bolteae,

C. asparagiforme, and B. uniformis in stool samples was

associated with axillary lymph node invasion (238). It is now

evident that the GM can affect all types of cancer treatments.

This implies that bacteria associated with positive treatment

outcomes can be used as biomarkers of treatment efficacy and

toxicity, allowing for the much-touted advent of precise, tailored,

personalised treatments (239–241).
3.5 Enhance treatment efficacy

Timing is everything or could play a role in chemotherapeutic

treatment; one study using metronomic chemotherapy of

capecitabine which is lower doses at more frequent intervals,

showed promising results with reduced toxic side effects and less

drastic changes to GM diversity. They found Blautia obeum to be

associated with significantly prolonged PFS and significantly

progression-free survival (PFS) with the occurrence of the

Slackia genus (242). While chemotherapy can change the

bacterial diversity, specific microbiome composition can, in

turn, modify the efficacy of chemotherapy. Therefore, it is

reasonable that particular probiotic concoctions could be

administered adjunctively during chemotherapeutic treatment to

augment effectiveness (221).

Oral administration of Bifidobacterium longum RAPO and

ICI enhanced anti-PD-1 efficacy in preclinical murine models of

TNBC (243). CRISPR-based phage therapy has recently been

deployed to selectively wipe out nosocomial Clostridioides

difficile infections, which are very difficult to treat without

causing massive collateral damage to the patient’s beneficial

GM (244). This approach used in TNBC treatment, combined

with restoring lost valuable members of the GM, could

synergistically rejuvenate patient GM functions and pave the

way for establishing the best possible microbial amalgam for

positive treatment outcomes. This approach has successfully

been applied in murine models of atherosclerosis, with

informed modification of the GM using small peptides to

remodel the GM from that of one associated with a western

diet to that of a low-fat-diet, resulting in reduced atherosclerotic

plaques and a lowered pro-inflammatory cytokine profile (245).
3.6 Bacteriotherapy

In 1813, Vautier observed that cancer patients infected with

Clostridium perfringens who developed gas gangrene appeared to

be cured of cancer (246). Subsequently, bacterial infections and

their effects on cancer were observed over 150 years ago by two

German physicians W. Busch in 1868, and F. Fehleisen in 1882

(247, 248), who both independently found improvements in the

condition of their patient’s symptoms, after a Streptococcus
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pyogenes infection. The first attempt to utilize bacteria as a

cancer treatment followed shortly after, in 1893, when Dr

William Coley combined the lytic compounds of S. pyogenes and

Serratia marcescens and injected the mixture named Coley’s toxin

into the tumor tissue with partial success in some patients (249).

There is a tricky balance when using bacteria in any therapy

to get an effective therapeutic dose without toxic side effects on

normal tissues. The advantage of using bacteria to deliver a

genetic therapeutic cargo is their natural tumor tropism when

systemically administered with high levels of local replication

and the ability to persist within the TME. Furthermore,

invasive species can invade tumor cells and, upon bacterial

lysis, deliver a therapeutic DNA payload in the form of a

bacterial plasmid which can be expressed directly in the tumor

cell (250). Various payloads can allow for the direct killing of

tumor cells or immunomodulation of the host immune system,

increasing tumor antigenicity and promoting clearance by the

immune system (251). Non-pathogenic Salmonella engineered

with a quorum-sensing (QS) switch naturally hone to tumors

and only express their therapeutic payload specifically within

the TME once they have reached a particular critical density,

thereby destroying cancerous tissue only (252). In preclinical

models, activation of TLR5 by S. typhimurium flagellin in BC

cells activates innate pro-inflammatory response for effective

anti-tumor clearing (253). Bacteria can also be engineered to

produce intrinsic bacterial biomolecules with known

tumoricidal effects, some of which have been proven effective

in human breast cancer cell lines (see Supplementary Table 1).

These biomolecules include bacterial peptides, bacteriocin

compounds, enzymes, or toxins.

Despite the large potential of bacteria-based mediated cancer

treatments, the risks of adverse unmanageable side effects have

tempered their use. Currently, the BCG vaccine is the standard for

treating patients suffering from the Non-muscle invasive bladder

cancer (254). 50 to 70% of patients have a positive outcome, with

approximately 5% suffering adverse effects, including sepsis (255).

Clinical trials with positive results include intra-tumoral

administration with spores of the attenuated strain of Clostridium

novyi (C. novyi-NT) to treat one patient suffering from advanced

leiomyosarcoma, with promising results (256). Attenuated L.

monocytogenes have also been found to be safe and effective in

treating patients with advanced mesothelioma, lung, pancreatic, and

ovarian cancers (257, 258). Pre-clinical studies using Bifidobacterium

expressing cytosine deaminase (CD), which converted prodrug 5-

fluorocytosine (5-FC) into chemotherapeutic agent (5-FU), was

found to be effective in treating breast cancer when administered

systemically in animal models (259–261).
4 Conclusion

The associations between TNBC and the microbiota are

intricate, not yet fully understood, but undeniable. It is still not
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apparent whether changes in the GM and BM microbial

composition are drivers of carcinogenesis or a response to

tumor development. The effects are bidirectional, making it

much more challenging to tease out these complex

relationships. Furthermore, another issue is that these studies

are just a snapshot in time. Bacteria have a short lifespan and

quick generation time, changing over the course of the day with

the body’s own circadian rhythms. Guilty microbes may have

been and gone, whilst their effects rage on, especially in the case

of DNA damage or epigenetic changes to the hosts’ genome,

enabling cancer progression. Context is also critical concerning

space and time; a bacterium in the gut may be beneficial but,

when found in the TME, may exert the opposite effect. This also

applies to distinct types of cancer. Bacterial metabolites can

function as hormones, are highly pleiotropic and context-

dependent, and can be produced distal to the tumor site while

having systemic immune-modulatory effects.

Despite associations having been found in various

microbiome-wide association studies, very little is known

regarding the actual biochemical mechanisms. In the context

of TNBC, even less is known, but lessons learned from studies

involving other BC types are undoubtedly valuable. FMT also

shows that even without the underlying mechanisms being fully

understood, bacteria can still be used safely to improve treatment

efficacy and reduce the toxic side effects of all types of cancer

treatments currently used in TNBC.

More extensive clinical studies explicitly concerning TNBC

are required to further elucidate the microbiome’s role and see

past all of the confounding factors. Indeed, dietary changes

should be taken on board to prevent cancer first, with

probiotics (symbiont microbes) playing a role in returning the

body to a state of normobiosis. Known associations can now be

used as therapeutic and prognostic biomarkers, with enormous

potential. The promise of completely personalized theranostics,

however, is still a way off. Bacteriotherapy beyond FMT is

further away, with plenty of evidence in in vitro and murine

studies but lacking any clinical trials because of safety concerns.

Genetic manipulation to reduce potential risks continues to

make progress which, when matched to bacteria’s ability to

selectively replicate within the TME, may in time overcome

treatment hesitancy.

Indeed, monitoring of TNBC patients’ microbiomes may

become standard practice where feasible, with modulation to a

more beneficial state where possible. Altering the microbiome

has potential to be the most unintrusive and safe means to
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change the body’s metabolism, improve treatment efficacy and

reduce toxic side effects. Large-scale profiling of the GM and the

associated metabolome of TNBC patients relative to that of

healthy individuals will allow the development of theranostic

biomarkers and treatments to improve the clinical prognosis and

quality of life for TNBC patients.
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et al. Prevention of infectious mastitis by oral administration of lactobacillus
salivarius PS2 during late pregnancy. Clin Infect Dis (2016) 62(5):568–73. doi:
10.1093/cid/civ974

231. Davar D, Dzutsev Amiran K, McCulloch John A, Rodrigues Richard R,
Chauvin J-M, Morrison Robert M, et al. Fecal microbiota transplant overcomes
frontiersin.org

https://doi.org/10.1126/science.aac4255
https://doi.org/10.1126/science.aac4255
https://doi.org/10.1016/j.canlet.2019.01.015
https://doi.org/10.3390/ijms20174155
https://doi.org/10.1186/s40425-019-0574-4
https://doi.org/10.3389/fimmu.2019.02989
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1634/theoncologist.2016-0390
https://doi.org/10.1634/theoncologist.2016-0390
https://doi.org/10.1038/s41571-019-0218-0
https://doi.org/10.1038/s41571-019-0218-0
https://doi.org/10.2307/3571614
https://doi.org/10.1111/apt.12878
https://doi.org/10.1371/journal.pone.0126312
https://doi.org/10.1371/journal.pone.0126312
https://doi.org/10.1016/j.ijrobp.2017.11.043
https://doi.org/10.1172/JCI124332
https://doi.org/10.1186/s40168-020-00845-6
https://doi.org/10.1186/s40168-020-00845-6
https://doi.org/10.1158/1078-0432.CCR-19-0960
https://doi.org/10.1126/science.1240527
https://doi.org/10.1126/science.1240527
https://doi.org/10.3390/cancers10030083
https://doi.org/10.1038/srep14554
https://doi.org/10.1016/j.jconrel.2015.11.030
https://doi.org/10.1016/j.jconrel.2015.11.030
https://doi.org/10.1200/JCO.2019.37.15_suppl.e14186
https://doi.org/10.1126/science.aah5043
https://doi.org/10.7812/TPP/19.129
https://doi.org/10.3390/nu13103656
https://doi.org/10.3389/fimmu.2020.00906
https://doi.org/10.1016/j.biopha.2021.111619
https://doi.org/10.3389/fonc.2019.00596
https://doi.org/10.3389/fonc.2019.00596
https://doi.org/10.1038/nm.3145
https://doi.org/10.3390/biom11121784
https://doi.org/10.1146/annurev.nutr.28.061807.155354
https://doi.org/10.1002/ijc.10981
https://doi.org/10.1002/ijc.10981
https://doi.org/10.1007/s10549-007-9706-5
https://doi.org/10.3322/caac.21398
https://doi.org/10.3322/caac.21398
https://doi.org/10.22037/ijpr.2020.112232.13620
https://doi.org/10.4081/oncol.2019.422
https://doi.org/10.1007/s11626-015-9978-8
https://doi.org/10.1002/ijc.28702
https://doi.org/10.1017/S0007114510000516
https://doi.org/10.1016/j.imbio.2005.05.024
https://doi.org/10.2174/15734013113099990001
https://doi.org/10.2174/15734013113099990001
https://doi.org/10.1086/652763
https://doi.org/10.1093/cid/civ974
https://doi.org/10.3389/fonc.2022.1020121
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Devoy et al. 10.3389/fonc.2022.1020121
resistance to anti–PD-1 therapy in melanoma patients. Science. (2021) 371
(6529):595–602. doi: 10.1126/science.abf3363

232. Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L,
et al. Fecal microbiota transplant promotes response in immunotherapy-refractory
melanoma patients. Science. (2021) 371(6529):602–9. doi: 10.1126/science.abb5920

233. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, et al. A
defined commensal consortium elicits CD8 T cells and anti-cancer immunity.
Nature. (2019) 565(7741):600–5. doi: 10.1038/s41586-019-0878-z
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