
ORIGINAL ARTICLE

Understanding and measuring the urban pervasive infrastructure

Vassilis Kostakos Æ Tom Nicolai Æ Eiko Yoneki Æ
Eamonn O’Neill Æ Holger Kenn Æ Jon Crowcroft

Received: 11 May 2007 / Accepted: 5 February 2008

� Springer-Verlag London Limited 2008

Abstract The increasing popularity of mobile computing

devices has allowed for new research and application areas.

Specifically, urban areas exhibit an elevated concentration

of such devices enabling potential ad-hoc co-operation and

sharing of resources among citizens. Here, we argue that

people, architecture and technology together provide the

infrastructure for these applications and an understanding

of this infrastructure is important for effective design and

development. We focus on describing the metrics for

describing this infrastructure and elaborate on a set of

observation, analysis and simulation methods for capturing,

deriving and utilising those metrics.
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1 Introduction

No two cities are identical. Cities within a country can be

as diverse as cities in different countries. Additionally,

cities gradually change over time. Intuitively, we are aware

of these differences, yet how can we express them in ways

that are meaningful and useful to the designers of urban

pervasive applications?

The range of complex factors making a city unique, with

respect to urban pervasive applications, includes city’s

urban spatial form, the people who inhabit it and the

technologies that operate in it. Taking a systemic view,

these factors may be considered as the infrastructure of an

urban pervasive computing system. These aspects are

concrete enough and possible to measure with today’s

technology. Just as traditional desktop-bound applications

utilize technological infrastructure for their operation (e.g.

networks, software services, etc.), we propose that urban

pervasive applications can draw on the available urban

pervasive infrastructure. In designing urban pervasive

computing systems, therefore, it is essential to take account

of this infrastructure.

Previous work has shown the particular components—

human [1], technical [2] and spatial [3]—of the urban

pervasive infrastructure to be important. We can benefit

from drawing on the lessons of this disparate work. Fur-

thermore, a richer understanding and more successful

system design practice can be achieved by taking a holistic

approach that integrates these lessons. In viewing the city

as a system, the elements of people, space and technology

combine in an urban pervasive infrastructure (UPI) over

which urban pervasive applications can be deployed.

The research approach put forward in this paper to

1. empirically collect data about the UPI of a specific city

using observation methods,

2. use the analysis methods to derive specific character-

istics of the UPI,

3. feed the raw data or analysis results into an urban

simulator and

4. test and evaluate an urban application in the simulator.
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In independent studies, we have explored each aspect of

this approach. Here, we present our results in the following

manner: after reviewing the related work, we describe a set

of concrete metrics that we use to measure and understand

the UPI. We then present a set of observation, analysis and

simulation methods that we have developed and use to

study the urban pervasive infrastructure. As part of our

ongoing research we continue to integrate our findings to

develop a detailed design methodology for urban

applications.

2 Related work

In coining the term UPI we have created an umbrella term

that includes work that has been done in the past, albeit in

isolation. A key requirement for studying the UPI is cap-

turing trace data of the real world (e.g. human mobility and

intermittency of connections between people). These data

can then be used to construct realistic synthetic models. For

example, the Reality Mining project1 collected proximity,

location and activity information, with proximity nodes

being discovered through periodic Bluetooth scans and

location information by cell tower IDs. Several other

groups have performed similar studies [1, 4–7]. Most of

these, such as [4, 7], use Bluetooth to measure mobility,

while others, such as [5, 6], rely on WiFi. The duration of

experiments varies from 2 days to over 100 days and the

number of participants vary from 8 to over 5,000 (see the

HaggleHaggle Project2: project). The Crawdad database3

provides extensive traces which are useful for the valida-

tion of forwarding algorithms and routing protocols that

operate through learning characteristics of node mobility.

In our work, our datasets consist of more than 150,000

participants over 2 years of data at the time of writing.

A number of projects measure various aspects of the

UPI on a large scale. For example, the MetroSense project4

explores the use of people-centric sensing with personal as

well as consumer oriented sensing applications such as

Nike+5, and sensor-enabled mobile phone applications.

Sensing can potentially cover a campus, metropolitan area

or a whole city with many potential applications such as

noise mapping and pollution mapping6. The pervasive

mobile environmental sensor grids (message) project7 aims

to collect data at a metropolitan scale through smart phones

carried by cyclists, cars, and pedestrians monitoring carbon

dioxide values to control traffic in the city of Cambridge.

Similarly, the urban sensing project CENS8 seeks to

develop cultural and technological approaches for using

embedded and mobile sensing to invigorate public space

and enhance civic life.

We can consider a number of instances where under-

standing and modelling the UPI can produce better or new

applications. For example, previous research on GSM

positioning for mobile phones highlights the need for

detailed maps of cell tower identifiers and reception in

urban areas [2], which are the essential elements of UPI. In

addition to location, the UPI can provide information about

a user’s social context. Social network analysts typically

use questionnaires and interviews to investigate social

networks. Shortcomings of this method are that, it is

resource and time consuming, longitudinal data collection

is difficult and the data is biased by self-report errors. A

study involving about 100 users of mobile phones running

a Bluetooth scanning application has shown that it is pos-

sible to derive affiliation networks and to model friendship

relationships from the scan data automatically [1].

Although, this data is not subject to the shortcomings noted

for the traditional questionnaire and interview methods,

there are numerous problems and inaccuracies associated

with the technical approach. Although that study does not

seem to be affected by measurement errors, more knowl-

edge is needed about these errors and how they can be

compensated. So far, such studies have been carried out in

a controlled environment considering only contacts

between study participants. When merged with an under-

standing of UPI, the results of these studies can be

extended beyond this controlled setting and related to the

wider social context. Understanding the UPI can also

improve the evaluation of urban pervasive applications

which is intrinsically difficult. This is especially true if they

are designed for opportunistic events or require a certain

critical mass of users or devices.

Several qualitative methods have been applied to

research the habits, problems and needs of people in

urban environments. For instance, the authors in [8]

focus on the items being carried by 28 subjects in three

different cities to identify commonalities regarding their

mobile kits, while in another study [9], the use of social

networking software was studied in three residential

1 Reality Mining: http://reality.media.mit.edu, accessed 14 July 2007.
2 http://www.haggleproject.org, accessed 14 July 2007.
3 Crawdad project: http://crawdad.cs.dartmouth.edu, accessed 14

July 2007.
4 MetroSense Project: http://metrosense.cs.dartmouth.edu, accessed

14 July 2007.
5 Nike+: http://www.nikeplus.com, accessed 14 July 2007.
6 Noise Mapping England: http://noisemapping.org, accessed 14 July

2007.

7 MESSAGE Project: http://155.198.92.106/pmesg.html, accessed 14

July 2007.
8 Urban Sensing: http://research.cens.ucla.edu/projects/2006/systems/

Urban_Sensing, accessed 14 July 2007.
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apartment complexes. Qualitative methods are well

understood in this context, however, the breadth of such

studies is limited in terms of the number of participants,

the duration of study and the size of observable space.

The methods we introduce in this paper are basically

quantitative. They complement the qualitative methods

with longitudinal data that can be used for the identifi-

cation of patterns and the development of automated

tools.

For instance, from a usability perspective, it is common

to conduct expensive tests in a manageable setting or to

capture users’ opinions in focus groups, interviews and

questionnaires. Models based on real-world measurements

of UPI can be a valuable evaluation tool saving consider-

able resources and providing helpful directions at the start

of a project. By analysing the UPI, it becomes possible to

identify a priori settings and communities where potential

applications might be successful. Many systems can benefit

from this type of analysis such as those explored in the

wearable communities project [10], which leverages an

epidemic approach to forward messages to people based on

physical proximity.

Finally, modifications and extensions to the UPIs can

benefit from an understanding of its structure and internal

workings. For example, architects and city planners use

tools like space syntax [3] to model existing cities and

design new ones. In addition to physical architecture, the

habits of the inhabitants, such as the routes they take, are

also important. With this knowledge, pervasive applica-

tions can be optimised for the characteristics of a specific

urban context. For example, the installation of wireless

access points can be informed by the spatial structure, the

patterns of pedestrian movements which result in expected

bandwidth requirements and even knowledge of the types

of mobile devices in the city.

Our premise is that a systemic understanding of the UPI

can help us to develop urban applications that play to the

strengths of this infrastructure. Previous research lacks an

integrated approach that considers the various aspects of

UPI—people, spaces and technologies: as a system.

Examining aspects of the UPI in isolation, even when large

datasets are available, can provide results that are not easily

transferrable to new settings. On the other hand, consid-

ering the UPI as a system gives us a more integrated picture

of a city and provides the foundation for an integrated

approach to build urban pervasive applications and ser-

vices. This allows for the correlation of findings from

various cities, and transferring of those findings. In the

following sections, we describe a set of concepts: metrics

and methods for describing the urban spaces, people and

technologies together provide the UPI for urban pervasive

applications. We demonstrate these concepts by drawing

on previous work and our own research.

3 Characteristics and metrics of the urban

pervasive infrastructure

Before describing our methods for dealing with the UPI,

we first identify a set of characteristics that our research has

been successful in describing. We have found these char-

acteristics are helpful in furthering our understanding in

pervasive infrastructure of cities. In this section we

describe these characteristics along with metrics, and

explain their use. Of course, there are potentially infinite

aspects of a city to be studied; however, here we focus on

those aspects that available technology permits and for

which adequate datasets can be captured and analysed. In

this paper we deal with the following characteristics of the

UPI:

• mobility

• social structure

• spatial structure

• temporal rhythms

• facts and figures

3.1 Mobility

Mobility is a key feature of both humans and technology

[4]. Each city has a unique pattern of mobility. Considered

from an ego-centric perspective, useful metrics are distance

travelled (km) and speed (km/h). When considering

mobility from an exo-centric perspective, flow becomes a

useful metric (people/h), as well as visit duration (in the

form of a time-based distribution).

The observed mobility of a city can be considered as the

amount of randomness or entropy in a city. Conceptually, a

city with zero mobility is similar to a static network such as

a LAN and can be described and understood as a traditional

network. The introduction of human mobility, however,

turns the city into a living organism. The mobility metrics

described here measures the observable aspects of this

mobility. We can use these measures to quantify and

compare mobility across cities. People and devices that

travel more and at higher speeds are conceptually, the

information highways of a city. Similarly, places with

higher flows act as large hubs where many people can

potentially interact and large volumes of information can

be routed.

3.2 Social structure

A feature of the UPI that directly relates to the human

element, and thus to the element that sets apart cities from

static networks, is the social structure. By social structure

we mean the social groups, social behaviour and patterns of

encounter within a city. Social structures can be examined
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from an ego-centric or exo-centric perspective and involve

measures like group size, number of singles versus couples,

etc. Numerous concrete metrics can be adopted from tra-

ditional social network analysis such as average degree

(number of people someone interacts with), betweenness

(0–1 indicating the importance of a person as a link in the

chain of information spreading) and closeness (0–1 indi-

cating the reachability of a person within the social

network) [12].

To a large extent each person plays a unique role in the

city’s social structure. Understanding these differences, and

designing for them can be quite beneficial: who are the

connectors, mavens and bridges? Which communities exist

in a city, who are the members, and how do they interact?

How centralised or decentralised are these social networks?

These questions can be answered in the context of social

network analysis. In other domains similar analyses have

been used, for example, to improve project teams’ func-

tioning, analyse book selling patterns to position new

books, build grass roots political campaigns, and analyse

criminal behaviour9. In the context of urban pervasive

systems, we expect network analysis to become crucial in

both development and evaluation.

3.3 Spatial structure

Spatial structure gives us insight into aggregate behaviours

and patterns observed in a city. Space syntax provides us

with tools to examine the city from a purely structural

perspective and to compare cities and sites in terms of

structure. Concrete metrics for spatial structure include

integration (0–1 indicating the reachability of a street from

any other street) and choice (0–1 indicating the importance

of a street in terms of how many alternative streets can be

used to replace it in a route).

Spatial structure has been shown to affect various high-

level human behaviours such as shopping patterns and

crime [13]. Effectively, space syntax indicates that pure

spatial structure is the reason why some streets are busy

and why others are quiet. This allows us to link spatial

structure with both the observed mobility and the social

structure of a city.

3.4 Temporal rhythms

Cities are not static but have their own rhythms: daily,

weekly and seasonal. Typically, cities’ temporal patterns

are affected by laws and restrictions (e.g. pubs must close

at 11 p.m.), work schedules (at the daily and weekly scale)

as well as seasonal variations such as the weather and

holiday seasons. Concrete metrics of such rhythms can be

expressed as time-based distributions (see [4, 14]). For

instance, a city like New York may be full of activity

throughout a day and seasonally peak in winter, while a

tourist destination like the island of Mykonos may have

low daily activity and peak in the summer. A further

example is the afternoon break known as ‘siesta’, typically

observed in the Mediterranean and South America, which

adds a unique element to a city’s rhythm.

3.5 Facts and figures

Finally, facts and figures refer to any statistical character-

istic that is applicable to people, technologies and spaces.

For example, facts and figures about humans include the

number of people that go to nightclubs, or the number of

teenagers living in a city. A technological characteristic

can refer to the spread of WiFi or Bluetooth. An archi-

tectural characteristic is, for example, the number of parks

or restaurants. Facts and figures are obtained by applying

classic empirical methods such as surveys, by consulting

maps and census data, or can be recorded through the

deployment of sensing technologies.

Facts and figures can be used to gain insight into further

properties of the UPI. For instance, low mobility might be

related to a high average age in a city, while increased

centralization of the social networks might be attributed to

the small number of pubs and bars.

4 Methods

We now describe the methods we have applied and

developed to study the concepts described above. There is

no one-to-one mapping between the methods we describe

here and the concepts of the UPI, and in many cases we

have used combinations of methods through observation,

analysis or simulation, to generate our results. For example,

to understand mobility we have used various observation

methods to gather data and one or more of our analysis

methods are described in this section.

4.1 Observation methods

A challenge we face is recording, representing and

understanding the patterns of mobility and presence in our

cities through the use of pervasive technologies. Many

wireless technologies have characteristics that render them

appropriate for study by our methods. For instance, the vast

majority of Bluetooth devices, such as mobile phones, have

a relatively short range and map very closely to the

movements of people around the city. In contrast, typically

static WiFi or GSM access points can be used to identify

locations in a city, while the signals emitted by WiFi9 http://www.orgnet.com/sna.html, accessed 11 February 2008.
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devices can be related to both static and mobile devices

such as desktop and laptop computers.

A common observation method used to capture the

aspects of UPI is ‘wardriving’. It involves systematically

moving about a city to record various detectable or visible

features of technology. This includes WiFi and Bluetooth

activity, the presence of mobile phone masts, the use of

mobile phones and cameras, all of which produce maps10

with colour-coded information about the presence or levels

of activity of certain technologies. Additionally, physical

aspects of the city itself can be recorded in maps high-

lighting features such as parks, schools, graffiti and housing

versus commercial areas.

A further observation method we have used is the

‘augmented gatecount’ [14]. Gatecounts are used to

establish the flows of people at sampled locations within

the city. A gate is a conceptual line across a street, and

gatecounts record the number of people crossing that line.

The observer counts the number of people crossing the gate

in either direction. We have augmented this process by

providing the human observer with equipment to monitor

the presence of technologies, in our case by Bluetooth

inquiries [14]. Additionally, the observer manually records

technology related behaviour such as the number of people

using mobile devices like phones or cameras. This method

provides data correlating the presence of a technology (e.g.

Bluetooth) or behaviour (e.g. use of mobile phones) with

the local population.

To observe the open spaces of a city (outside, such as a

plaza or inside, such as a café) we have used a method

called ‘augmented static snapshot’ [14]. A human observer

manually records human activity, including apparent

technology use, while simultaneously recording technology

use with appropriate scanning devices. The method is used

to record both stationary and moving activities and is

particularly useful when directly comparing the two types

of space use. This method highlights the different types of

space use in an urban area. It gives us an understanding of

how people visit and use a particular space and how these

habits bring people into contact with each other. For

example, we may observe that a seating area in a park is

actually not used for seating but for playing by children. A

common observation is the use of certain spaces by people

making calls on their mobile phones or using their laptop

computers and the way these people locate themselves with

respect to their surroundings and other people.

People’s mobile devices, when used as mobile scanners,

can capture a personal view of the UPI. Focussing on the

personal perspective gives us an understanding of the

contexts and habits of individuals. To achieve this, we

instruct participants to interact naturally with their envi-

ronment during the measurement. Depending on the aspect

of interest, different scanning technologies are utilized. For

example, GPS gives insight into spatial behaviour while

Bluetooth scanners emphasise social behaviour.

The above methods offer us longitudinal data, too, by

installing the scanning equipment for long periods of time

[14]. In this case, there may be no human observations to

correlate with the data; however, such long-term scans can

provide richness in terms of patterns of the city over time

and relationships between people. This is especially true

when combining data from multiple locations as well as

combining data from mobile scanners and stationary

scanners.

As part of the Cityware and Wireless Rope projects we

designed and implemented a Bluetooth based infrastructure

consisting of various components to combine these obser-

vation methods in a single system. There is a long-term

installation in the city of Bath, UK. Demonstrations of

Wireless Rope were given at the PerCom 2006 and Ubi-

comp 2006 conferences. A program for J2ME phone

samples proximity data from the personal perspective (see

Fig. 1). It displays the current state of the environment

graphically to the user and provides basic statistical sum-

maries such as number of encounters and average meeting

durations. Computers or embedded devices are installed at

fixed locations of interest to perform augmented gate

counts and augmented static snapshots. Additionally, these

devices receive sample data from the mobile scanners via

Bluetooth when in range. The stationary devices are con-

nected to a central server aggregating the data in a single

database. We provide parts of this infrastructure to other

researchers under the GPL license11 . At the time of writ-

ing, we have collected 60 million records for over 150,000

unique devices in the course of 2 years.

4.2 Analysis methods

In the previous section, we described a number of obser-

vation methods we have developed and used. Here, we

discuss how to analyze the data from observations. Anal-

ysis of wardriving data is quite commonplace,12 and is used

to indicate areas of interest as well as patterns of behaviour

and use over time. Similarly, facts and figures can be cal-

culated using statistics tools depending on the exact facet

of the UPI in question. For instance, we can calculate a

city’s WiFi coverage by analysing wardriving data.

10 For sample WiFi maps, visit http://www.wifimaps.com, last

accessed 11 February 2008.

11 Wireless Rope: http://wrp.auriga.wearlab.de and http://sourceforge.

net/projects/wirelessrope, accessed 11 February 2008.
12 For sample WiFi maps, visit http://www.wifimaps.com, accessed

11 February 2008.
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The majority of our analyses described here are focused

on gatecount and static snapshot datasets gathered in the

city of Bath, UK. Analysis of the gatecount datasets

allowed us to identify interesting mobility and temporal

patterns as well as facts and figures about the UPI. First, we

used gatecount datasets to infer patterns and trends during

the movement of people across the city. Patterns are

observable on many scales, from hourly to seasonal.

Additionally, we have been able to identify facts and fig-

ures such as the overall penetration of Bluetooth in a city.

Specifically, in Bath (UK) we found that about 7.5% of

pedestrians carry mobile phones with Bluetooth set to

discoverable mode [14], while in Bremen (Germany) there

were 3.5% and in San Francisco (USA) 13.5%13. Further-

more, we can use our data to identify device classes or

indeed device brands. For example, on our campus 35% of

logged phones where Sony-Ericsson, while 22% were

Samsung and 21% were Nokia. Knowledge of the mobile

devices in a city (e.g. brand and operating system) may be

an influential factor for the development of applications. As

part of our ongoing work we are exploring different sta-

tistical methods to improve the accuracy of our sampling

method, such as analysing data captured by multiple

simultaneous scanners, or data captured at extremely busy

locations.

A further focus of our work has been the analysis of

long-term data captured in static snapshot locations. Based

on the co-presence of discoverable Bluetooth devices in a

location we can infer people’s encounters in space [12].

The data can be represented as social network graphs (see

Fig. 2), linking persons who encountered each other. These

graphs are then suitable for traditional complex network

analysis. We identified the presence of power law distri-

butions in these graphs [12], indicative of self-similar, real-

world networks. Such distributions which can be found in

earthquake magnitudes, word frequencies, city sizes and

the structure of the web, open up several possibilities to

apply established analysis techniques to the datasets. We

have found that, on an average, people in Bath are 3.3 hops

apart, and there is a 45% chance that if A is linked to B and

B is linked to C then A and C are linked. Furthermore, by

adjusting the rules used to derive the graphs, we can focus

on different aspects of a city. For example, we can

emphasise devices that appear and disappear together

indicating possible groups of people and thus social ties.

This allows us to infer communities within the city. Pre-

liminary analysis of our data indicates the presence of 22

distinct communities in the city of Bath.

The combination of multiple static snapshots or gate-

count datasets provides useful insights into trails and

patterns of movement. For instance, [15] we have analysed

a WiFi dataset for trails, or hops, between various locations

in the city. These show people’s movement through the

city in terms of their connections to WiFi hotspots. We are

currently running similar analyses on our Bluetooth data-

sets. This type of analysis provides insights into questions

like ‘Which trail in the city is mostly followed on Friday

evenings?’, which in turn can influence the design of urban

applications.

Within the Wireless Rope project (see Fig. 1) we mea-

sure social context by considering contacts with Bluetooth

devices in the environment from the user’s perspective,

drawing on the concept of familiar strangers [16]. In a pilot

study, we classified activities during a conference visit

without prior knowledge about how many people in the

surroundings had discoverable Bluetooth devices with

them or about the identities of these people [7]. A partic-

ipant in our study carried the scanner for 6 days at the

conference venue, including workshop attendance, and a

day for recreation. Additionally, our participant kept a

diary of his activities. In the analysis, we first distinguished

devices that were discovered often from those discovered

rarely. This resulted in two sets: with the devices at the

conference location is one set, and devices discovered in

the city is the other set. Subsequently, we considered the

appearance and disappearance of devices in each set, in

relation to the overall amount of surrounding Bluetooth

devices. The different patterns that emerged were corre-

lated with the documented activities, such as moving

through the city, arriving at and departing from the

Fig. 1 A screenshot of the Wireless Rope J2ME software. The black
circle represents the owner, while devices in the environment are

classified as familiar (green) or strangers (grey). Devices move closer

to the black circle as they spend more time within range

13 Observations were conducted in August/September 2006.
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conference venue and coffee and lunch breaks among

others. These results indicate ego-centric proximity data

can be used to infer patterns in users’ activities and thus we

can design applications that make use of this knowledge.

Another technique we have used in our work is space

syntax [3]. It models the structure of cities and its effect on

pedestrian movement. This analysis is done in two steps.

First, we use maps to analyse the spatial structure of a city,

purely in terms of lines of sight in the open spaces such as

streets. This results in theoretical predictions about which

streets are likely to be busy and which are likely to be

quiet. In the second step, observation data of the actual

pedestrian flows are compared to the theoretical predic-

tions. In this step, we fine-tune our theoretical predictions

by changing the weighting on different variables used in

the predictions. Thus, using observation data as a guide,

space syntax identifies the important variables that can be

used to accurately model pedestrian flow. Knowledge of

these variables allows for more accurate explanations of

the spatial dynamics as well as more accurate predictions

of the effect of space on behaviour.

Finally, we have used device contact patterns such as

contact duration and inter-contact duration14 to study the

network opportunities that arise in a city. Our analysis of

data from static snapshots recording Bluetooth traffic has

uncovered inter-connection patterns and has been used to

develop data forwarding algorithms [4]. Specifically, the

distribution of inter-contact time follows an approximate

power law over a long period of time. Inter-contact dura-

tions are of particular importance because their

distributions determine the viability of forwarding algo-

rithms, as shown in [4]. Furthermore, we are working on

detecting ‘familiar strangers’ by observing the distribution

of contact times versus contact duration. Additionally,

temporal graphs can be used to determine admissible and

optimal paths through the multitude of devices in a city’s

UPI. Furthermore, our forwarding algorithms can consider

the levels of clustering in pedestrians’ movement and the

affiliation networks in a city.

5 Emulation and simulation

A benefit of augmented gatecounts and static snapshots is

that they produce time-stamped records of events that can

be used for replay in sequence. In this manner, we have

build what we term emulation environments which enable

us to examine ‘what-if’ situations and study the effects of

different technologies or different circumstances. In emu-

lation, we can study the diffusion patterns of information

through the social networks derived from the analysis of

static snapshots by testing different types of rules. For

example, we can consider how a small (1 KB) and a large

(1 MB) application spreads through the city, based on our

recorded device encounters in Bath. We can further replay

inter-connection times in order to evaluate forwarding

algorithms. Emulation can act as an initial testbed for many

applications where facets of the pervasive infrastructure

can be faithfully recreated inside the lab.

Having a lab testbed is important, as working and

observing in the city is expensive, both in terms of money

and time. For instance, installing and maintaining long-

term scanners requires equipment, bandwidth and person-

nel time. Furthermore, it is not always possible to install

scanners in desired locations. For these reasons, we can

extend our observational datasets and emulations through

the use of traditional simulations. Simulations can generate

Fig. 2 At the top is a social network describing encounters of devices

within a pub in the city of Bath. Each node represents a device. The

size of nodes represents the amount of time those devices have spent

in the pub, while colour represent each node’s betweenness (red: 1,

blue: 0). At the bottom is a social graph derived by analysing the

encounters recorded by multiple mobile phones running Wireless

Rope

14 The duration between two successive direct contacts between a

pair of nodes.
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large amounts of data inexpensively, thus enabling the use

of techniques that rely on large datasets.

The most common mobility models used in simulation

for mobile ad-hoc networks are the random walk mobility

model [17] and the random waypoint mobility model [17].

Both simulate node movement in a rectangular area. In the

city section mobility model [17], nodes move on streets

choosing destinations at random and follow the shortest

paths to them. However, these mobility models rarely

reflect accurate real world situations, and the use of real

world traces: both to validate models and to run emula-

tions—is important, albeit often difficult to obtain.

One of our ongoing projects involves the optimisation of

existing simulation models provided by space syntax.

These models simulate pedestrian movement in the city

and effectively allow us to flood a (simulated) city with

mobile agents and information packets (see Fig. 3 for a

sample visual representation).

Currently, we are working on changing properties of the

agents’ cognition [11] to match our observations of flow,

encounter and interconnection times of the (real) city. Once

we have achieved a good fit between our observational data

and the simulation data, we can use simulations as an

additional source of data. For example, we can carry out

virtual gatecounts and static snapshots within the simula-

tion, thus giving us a large dataset to augment our field

observations.

6 Conclusion and ongoing work

In this paper we argued for a systemic approach to

understand the system of people, spaces and technologies,

which we term the urban pervasive infrastructure. Such an

integrated approach allows for the transferability of results

across cities and allows for comparisons between cities or

over time. Our main focus has been to describe certain

aspects of UPI and methods of measuring and analysing

them, as shown in Table 1.

Our work so far, as summarized in Table 1, has focused

on developing the enabling tools and methods to carry our

research forward. Our ongoing work involves the refine-

ment of our methods and techniques as well as their

integration. Specifically, we are interested in exploring

how to improve our observation techniques for use in

different environments and how to fine-tune the associated

statistical tests. We are also exploring new ways of

deriving and analysing social networks to capture a richer

picture of the social context. Finally, we are developing

and refining our forwarding algorithms for opportunistic

ad-hoc networking in the city.

The concepts, metrics and methods presented here may

be used to gain an understanding of the UPI of a city. Such

an understanding can have a profound effect on how we

develop pervasive applications and can greatly improve our

ability to do so. Ultimately, we aim to develop a ‘city

simulator’. Such a system, when used in emulation mode,

would be loaded with observational data and would help to

test or to evaluate a pervasive application. Alternatively, a

city simulator could be used without any observational

data, but simply by entering the values of various UPI

features, such as the ones described here. In this case, it

would allow for an approximation of a city in the absence

of raw observation data.

Finally, in our ongoing work we are considering the

extent to which UPI measurements affect people’s

Fig. 3 Snapshots of a city simulation. The left map depicts the center

of the city of Bath, and on the right is a ‘Bluetooth map’ of the same

area. The white areas on the right map indicate high Bluetooth

activity. The yellow dots indicate information packets that move

about the city via Bluetooth
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behaviour. Specifically, we aim to study the effect of

reflecting back at people’s various characteristics of the

UPI. Our intention is to determine whether or not a positive

feedback loop develops, whereby people’s behaviour

affects and is affected by the UPI measurements.
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