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Abstract

Some pioneer WiFi signal based human activity recognition sys-
tems have been proposed. Their key limitation lies in the lack of
a model that can quantitatively correlate CSI dynamics and human
activities. In this paper, we propose CARM, a CSI based human
Activity Recognition and Monitoring system. CARM has two the-
oretical underpinnings: a CSI-speed model, which quantifies the
correlation between CSI value dynamics and human movement
speeds, and a CSI-activity model, which quantifies the correlation
between the movement speeds of different human body parts and
a specific human activity. By these two models, we quantitatively
build the correlation between CSI value dynamics and a specific
human activity. CARM uses this correlation as the profiling mech-
anism and recognizes a given activity by matching it to the best-fit
profile. We implemented CARM using commercial WiFi devices
and evaluated it in several different environments. Our results show
that CARM achieves an average accuracy of greater than 96%.
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C2.1 [Network Architecture and Design]: Wireless communica-
tion
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1. INTRODUCTION

1.1 Motivation
Human activity recognition is the core technology that enables a

wide variety of applications such as health care, smart homes, fit-
ness tracking, and building surveillance. Traditional approaches
use cameras [6], radars [2], or wearable sensors [7, 33]. How-
ever, camera based approaches have the fundamental limitations
of requiring line of sight with enough lighting and breaching hu-
man privacy potentially. Low cost 60 GHz radar solutions have
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limited operation range of just tens of centimeters [2]. Wearable
sensors based approaches are inconvenient sometimes because of
the sensors that users have to wear. Recently, WiFi signal based hu-
man activity recognition systems, such as WiSee [17], E-eyes [27],
and WiHear [26], have been proposed based on the observation that
different human activities introduce different multi-path distortions
in WiFi signals. WiSee uses USRP to capture the OFDM signals
and measures the Doppler shift in signals reflected by human bod-
ies to recognize nine gestures. E-eyes uses Channel State Inform-
ation (CSI) histograms as fingerprints for recognizing daily human
activities such as brushing teeth. WiHear uses specialized direc-
tional antennas to obtains CSI variations caused by lip movement
for recognizing spoken words. Their key advantages over camera
and sensor based approaches are that they do not require lighting,
provide better coverage as they can operate through walls, preserve
user privacy, and do not require users to carry any devices as they
rely on the WiFi signals reflected by humans.

1.2 Limitations of Prior Art
The key limitation of these pioneer WiFi based human activity

recognition systems is the lack of a model that can quantitatively
correlate CSI dynamics and human activities. As such, these sys-
tems mostly rely on the statistical characteristics of WiFi signals,
such as Doppler movement directions and distributions of signal
strength, to distinguish different human activities. The lack of such
a model limits the further development of WiFi based human activ-
ity recognition technologies. Without such a model, it is difficult
to understand the correlation between WiFi signal dynamics and
human activities. Furthermore, without such a model, it is diffi-
cult to optimize the performance of such systems due to the lack of
adjustable parameters, and we have to resort to trial-and-error for
performance optimization.

1.3 Proposed Approach
In this paper, we propose CARM, a CSI based human Activity

Recognition and Monitoring system. CARM consists of two Com-
mercial Off-The-Shelf (COTS) WiFi devices as shown in Figure
1, one for continuously sending signals, which can be a router,
and one for continuously receiving signals, which can be a laptop.
When a human activity is performed in the range of these two
devices, on the WiFi signal receiver end, CARM recognizes the
human activity based on how the CSI value changes. CARM has
two theoretical underpinnings that we propose in this paper: a
CSI-speed model and a CSI-activity model. Our CSI-speed model
quantifies the correlation between CSI value dynamics and human
movement speeds. Our CSI-activity model quantifies the correla-
tion between the movement speeds of different human body parts
and a specific human activity. By these two models, we quantitat-
ively build the correlation between CSI value dynamics and a spe-
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cific human activity. CARM uses this quantitative correlation as the
profiling mechanism and recognizes a given activity by matching it
to the best-fit profile.

Wireless router

Laptop

Wireless signal reflection

Figure 1: CARM System

Our CSI-speed model and CSI-activity model advance the state-
of-the-art on WiFi signal based human activity recognition from
two fronts. First, they provide us the theoretical basis to under-
stand, even quantitatively, the relationship between CSI value dy-
namics and human movement speeds, and the relationship between
the movement speeds of different human body parts and human
activities. Regarding the relationship between CSI value dynamics
and human movement speeds, for example, our model shows that
high-speed body part movement generates high-frequency changes
in CSI values. Regarding the relationship between the movement
speeds of different human body parts and human activities, tak-
ing the activity of falling down as an example, our model shows
that it can be characterized as a sudden increase in body movement
speed in less than one second. Second, these two models provide us
the tunable parameters to optimize the performance of WiFi signal
based human activity recognition. For example, according to our
models, the CSI sampling rate should be chosen as 800 samples per
second because the typical human movement speed corresponds to
CSI components of lower than 300 Hz.

1.4 Technical Challenges and Our Solutions
The first technical challenge is to estimate human movement

speeds from CSI values based on our CSI-speed model. This
is challenging because the CSI measurements at the receiver are
mixed WiFi signals arrived from multiple paths, which changes as
human moves. Furthermore, different human body parts move at
different speeds for a given activity and the WiFi signals reflected
by different body parts are also mixed at the receiver. Our key ob-
servation is that these signals are linearly combined so that their
frequencies are preserved when they are mixed together. There-
fore, we use Discrete Wavelet Transform (DWT) to separate the
frequency components that represent different movement speeds.
The advantage of DWT is that it provides a proper tradeoff between
time and frequency resolution and enables the measurement of both
fast and slow activities.

The second challenge is to build the CSI-activity model that is ro-
bust for different humans. For the same activity, to a certain degree,
different people perform it differently and even the same person
performs it differently at different times. To address this challenge,
we propose a Hidden Markov Model (HMM) based human activity
recognition approach. We use the patterns of movement speeds for
different activities to build their corresponding HMM based mod-
els. The features that we extract to infer the speed patterns are
only affected by movement speeds of the body and are relatively
agonistic to environmental changes. This enables us to recognize
activities even when the environment changes. We choose HMM
because of its inherent capability to recognize the same activities
that are done at different speeds. To recognize a sample of an un-
known activity, we evaluate the unknown samples against HMMs
of all activities and find the model that gives the highest likelihood.

The third challenge is that CSI values are too noisy to be dir-
ectly used for human activity recognition. Even in a static en-
vironment without any human activity, CSI values fluctuate be-
cause WiFi devices are susceptible to surrounding electromagnetic
noises. Moreover, the internal state changes in WiFi devices, e.g.,
transmission rate adaptation and transmission power adaptation of-
ten introduce impulse and burst noises in CSI values. General pur-
pose denoising methods, such as low-pass filters or median filters,
do not perform well in removing these impulse and bursty noises
for two reasons: First, the sampling rates that these methods require
are much higher than the frequency of the WiFi signal. Second, the
noise density in CSI values is too high for traditional filters, which
only work well for low density noise. In this paper, we propose a
principal component analysis (PCA) based CSI denoising scheme.
This scheme is based on our observation that the signal fluctuations
caused by body movements in all subcarriers of the CSI values are
correlated.

The fourth challenge is to capture body movements in the pres-
ence of carrier frequency offset (CFO). CFO is the dynamically
changing difference in carrier frequencies between a pair of WiFi
devices, which occurs due to the minor physical differences in
hardware and other factors such as temperature changes [8]. CFO
causes the phase values of the received signal to change, making it
hard to distinguish whether the phase value changed is due to CFO
or due to human movement. To address this challenge, we use the
CSI signal power to infer the body movement. We show that CSI
signal power is not affected by CFO, but retains information about
the movement speeds of the body.

The fifth challenge is to automatically detect the start and end
of a human activity. To address this challenge, we use the eigen-
vectors obtained from PCA. The key idea is that in the absence of
any activity, the time-series of CSI values contain random noise and
consequently, the signal eigenvector varies randomly. During a hu-
man activity, the signals in subcarriers become correlated and the
signal eigenvector becomes smooth. We capture the smoothness of
the eigenvector by calculating its high-frequency energy and com-
pare it to a dynamically adapting threshold to detect start and end.

1.5 Key Technical Novelty and Results
The key technical novelty of this paper is two fold. First, we pro-

pose the CSI-speed model and the CSI-activity model to quantify
the correlation between CSI value dynamics and a specific human
activity. Second, we propose a set of signal processing techniques,
such as PCA based denoising and DWT based feature extraction,
for human activity recognition based on the CSI-speed model and
the CSI-activity model. The key technical depth of this paper lies
in the signal processing aspect such as the theoretical analysis of
the correlation between CSI values of subcarriers and the relation-
ship between multi-path speeds and CFR power. We implemented
CARM on commercial WiFi devices and evaluated it in multiple
environments. Our results show that CARM achieves an average
activity recognition accuracy of 96%. For a new environment and
a new person that the system has never been trained on, CARM can
still achieve a recognition accuracy for more than 80%.

2. RELATED WORK
Existing work on device-free human activity recognition and

localization can be divided into four categories: Received Signal
Strength Indicator (RSSI) based, specialized hardware based, radar
based, and CSI based.

RSSI Based: RSSI based human activity recognition systems
leverage the signal strength changes caused by human activities
[3,22,23]. This approach can only do coarse grained human activity
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recognition with low accuracy because the RSSI values provided
by the commercial devices have very low resolution [23]. For RSSI
based gesture recognition, the accuracy is 56% over 7 different ges-
tures [21]. Sigg et al. use software radio to improve the granularity
of RSSI values and consequently improve the accuracy of activity
recognition to 72% for 4 activities [22]. In comparison, CARM
uses CSI values and achieves an accuracy of 96%.

Specialized Hardware Based: Fine-grained radio signal meas-
urements can be collected by software defined radio or specially
designed hardware [11, 12, 14, 17]. WiSee uses USRP to capture
the WiFi OFDM signals and measures the Doppler shift in signals
reflected by human bodies to recognize a set of nine different ges-
tures with an accuracy of 95% [17]. AllSee uses a specially de-
signed analog circuit to extract the amplitude of the received sig-
nals and uses their envelopes to recognize gestures within a short
distance of 2.5 feet [14]. Wision uses multi-path reflections to build
an image for nearby objects [11]. In comparison, CARM requires
no specialized hardware and at the same time achieves high activity
recognition accuracy at longer distances.

Radar Based: Device-free human activity recognition has also
been studied using radar technology [4, 5, 16, 25]. Using the mi-
cro Doppler information, radars can measure the movement speeds
of different parts of human body [25]. WiTrack uses specially
designed Frequency Modulated Carrier Wave (FMCW) signals to
track human movements behind the wall with a resolution of ap-
proximately 20cm [4,5]. Compared to the specially designed radar
signals such as FMCW or Ultra-wideband (UWB) signals, WiFi
signals have much narrower bandwidth. For example, 802.11a/b/g
usually use a bandwidth of 20 MHz, while FMCW uses bandwidth
of up to 1.79 GHz [4]. Compared to prior work in radar techno-
logy, CARM designed a new set of signal processing methods that
are suitable for the OFDM signal used in WiFi.

CSI Based: CSI values are available in many commercial
devices such as Intel 5300 [9] and Atheros 9390 network interface
cards (NICs) [19]. Recently CSI has been used for human activity
recognition [10,26,27,30,35] as well as indoor localization [19,32].
Han et al. proposed to use CSI to detect a single human activity of
falling [10]. Zhou et al. proposed to use CSI to detect the presence
of a person in an environment [35]. Xi et al. proposed to use CSI
to count the number of people in a crowd [30]. WiHear uses spe-
cialized directional antennas to obtain CSI variations caused by lip
movement for recognizing spoken words [26]. E-eyes recognizes a
set of nine daily human activities using CSI. Note that WiHear and
E-eyes use CSI in quite different ways than CARM. WiHear does
not effectively denoise CSI values; thus, it has to use directional
antennas to reduce the noise in CSI values to achieve acceptable ac-
curacy. In comparison, we denoise CSI values and use commercial
WiFi devices with built-in omnidirectional antennas. E-eyes uses
CSI histograms as fingerprints for recognizing human daily activ-
ities, such as brushing teeth, taking showers, and washing dishes,
which are relatively location dependent. In comparison, CARM
uses CSI values based on our CSI-speed and CSI-activity models.

3. UNDERSTANDING WIFI MULTI-PATH

3.1 Overview of CSI
WiFi NICs continuously monitor variations in the wireless chan-

nel using CSI, which characterizes the frequency response of the
wireless channel [1]. Let X(f, t) and Y (f, t) be the frequency do-
main representations of transmitted and received signals, respect-
ively, with carrier frequency f . The two signals are related by
the expression Y (f, t) = H(f, t)×X(f, t), where H(f, t) is the
complex valued channel frequency response (CFR) for carrier fre-

quency f measured at time t. CSI measurements basically con-
tains these CFR values. Let NTx and NRx represent the num-
ber of transmitting and receiving antennas, respectively. As CSI is
measured on 30 selected OFDM subcarriers for a received 802.11
frame, each CSI measurement contains 30 matrices with dimen-
sions NTx×NRx. Each entry in any matrix is a CFR value between
an antenna pair at a certain OFDM subcarrier frequency at a par-
ticular time. Onwards, we call the time-series of CFR values for
a given antenna pair and OFDM subcarrier as CSI stream. Thus,
there are 30 × NTx × NRx CSI streams in a time-series of CSI
values.

Sender

Receiver

dk(t)

Wall

Reflected by 

body

Reflected by 

wall

LoS path

dk(0)

(a) Visual representation
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Combined CFR
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(b) Phasor representation

Figure 2: Multi-paths caused by human movements

3.2 Phase Changes for Paths
Surrounding objects reflect wireless signals due to which a trans-

mitted signal arrives at the receiver through multiple paths. If a
radio signal arrives at the receiver through N different paths, then
H(f, t) is given by the following equation [24]:

H(f, t) = e−j2π∆ft
N
∑

k=1

ak(f, t)e
−j2πfτk(t) (1)

where ak(f, t) is the complex valued representation of attenuation

and initial phase offset of the kth path , e−j2πfτk(t) is the phase
shift on the kth path that has a propagation delay of τk(t), and
e−j2π∆ft is phase shift caused by the carrier frequency difference
∆f between the sender and the receiver.

The changes in the length of a path lead to the changes in the
phase of the WiFi signal on the corresponding path. Consider the
scenario in Figure 2(a), where the WiFi signal is reflected by the
human body through the kth path. When the human body moves
by a small distance between time 0 and time t, the length of the kth

path changes from dk(0) to dk(t). Since wireless signals travel at
the speed of light, denoted as c, the delay of the kth path, denoted
as τk(t) can be written as τk(t) = dk(t)/c. Let f and λ repres-
ents the carrier frequency and the wavelength, where λ = c/f .

Thus, the phase shift e−j2πfτk(t) on this path can be written as
e−j2πdk(t)/λ, which means that when the path length changes by
one wavelength, the receiver experiences a phase shift of 2π in the
received subcarrier.

3.3 Practical Limitations
Theoretically, it is possible to precisely measure the phase of the

path in systems where sender and receiver are perfectly synchron-
ized, e.g., as in RFID systems [31]. But, unfortunately, commercial
WiFi devices have non-negligible carrier frequency offsets (CFO)
due to hardware imperfections and environmental variations [8].
IEEE 802.11n standard allows the carrier frequency of a device to

67



drift by up to 100 kHz from the central frequency of the channel for
5 GHz band [1]. Such frequency drift leads to rapid phase changes
in CSI values. Commercial WiFi NICs take one set of CSI meas-
urements per frame. With a transmission rate of 4,000 frames per
second, which is around the maximum number of frames that the
commercial device can continuously transmit due to the frame ag-
gregation mechanism in 802.11n [1], the phase shift caused by the
term e−j2π∆ft in Equation (1) cloud be as large as 50π between
consecutive CSI values.

Our measurements on commercial devices show that phases of
CFR are too noisy to be used for activity recognition due to CFO.
Figure 3 shows the CSI phase differences for consecutive frames
sent through a WiFi link between two commercial devices. Due
to the randomness of the packet sending process, the interval ∆t
between two consecutive frames is randomly distributed in the
range of 300∼550 microseconds (µs). This gives us a chance to
measure the fine grained phase differences for different ∆t. Each
dot in Figure 3 gives the phase difference for a pair of frame separ-
ated by the given ∆t, thus we can obtain the relationship between
∆t and the phase shift. As shown by Figure 3, the phase differ-
ence 2π∆f∆t changes by 8π (four vertical strips) when ∆t in-
crease from 350 µs to 400 µs. Thus, the CFO can be calculated as
∆f = 8π

2π(400−350)µs
= 80 kHz. There are two causes that lead to

the imprecision of CFR phase. First, from the width of the vertical
strips in Figure 3, we observe that CFR phase has measurement er-
ror as large as 0.5π. In most cases, the phase changes caused by
human reflection are much smaller than 0.5π. Thus, phase changes
caused by movements are often buried in phase nosies. Second,
our measurements on commercial devices show that the central fre-
quency often drifts by tens of Hz per second, making it hard to
predict CFR phase and separate the phase change caused by clock
drifts from the small phase shifts caused by body movements. Fur-
thermore, the phase sanitization method introduced in [20] could
not work for our case because the phase sanitization process also
removes the phase shifts caused by body movements.
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Figure 3: Phase differences for consecutive frames

3.4 CSI-Speed Model
While it is hard to directly measure the phase of a path, it is

possible to infer the phase of a path using the CFR power i.e.,
|H(f, t)|2. The principle behind our method is that when the
lengths of multi-paths change, the CFR power varies according to
the path length change.

To understand the relationship between CFR power and the
length change of a path, we first express CFR as a sum of dy-
namic CFR and static CFR and then calculate the power. Dy-
namic CFR, represented by Hd(f, t), is the sum of CFRs for paths
whose lengths change with the human movement, and is given by
Hd(f, t) =

∑

k∈Pd
ak(f, t)e

−j2πdk(t)/λ, where Pd is the set of
dynamic paths whose lengths change. Static CFR, represented by

Hs(f), is the sum of CFRs for static paths. Thus, the total CFR is
given by the following equation.

H(f, t) = e−j2π∆ft
(

Hs(f) +
∑

k∈Pd

ak(f, t)e
−j

2πdk(t)

λ

)

(2)

The total CFR has time-varying power because in complex
plane, the static component Hs(f) is a constant vector while the
dynamic component Hd(f, t) is superposition of vectors with time
varying phases and amplitudes, as shown in Figure 2(b). When
the phase of the dynamic component changes, the magnitude of the
combined CFR changes accordingly.

Now, consider how CFR power changes with an object mov-
ing around. Let an object move at a constant speed such that the
length of the kth path changes at a constant speed vk for a short
time period, e.g., 100 milliseconds. Let dk(t) be the length of the
kth path at time t. Thus, dk(t) = dk(0) + vkt. The instantaneous
CFR power at time t can be derived as follows (detailed derivations
are omitted due to space constraints).

|H(f, t)|
2
=

∑

k∈Pd

2|Hs(f)ak(f, t)| cos

(

2πvkt

λ
+

2πdk(0)

λ
+ φsk

)

+
∑

k,l∈Pd
k 6=l

2|ak(f, t)al(f, t)| cos

(

2π(vk − vl)t

λ
+

2π (dk(0) − dl(0))

λ
+ φkl

)

+
∑

k∈Pd

|ak(f, t)|
2
+ |Hs(f)|

2
(3)

where
2πdk(0)

λ
+ φsk and

2π(dk(0)−dl(0))
λ

+ φkl are constant
values representing initial phase offsets.

Equation (3) provides a key insight: the total CFR power is

the sum of a constant offset and a set of sinusoids, where the fre-

quencies of the sinusoids are functions of the speeds of path length

changes. By measuring the frequencies of these sinusoids and mul-
tiplying them with the carrier wavelength, we can obtain the speeds
of path length change. In this way, we can build a CSI-speed model
which relates the variations in CSI power to the movement speeds.

3.5 Model Verification
We use a simple moving object to verify our CSI-speed model

in Equation (3). We move a steel plate with diameter of 30 cm
along the perpendicular bisector of the sender/receiver, similar to
the scenario shown in Figure 2(a). Flat steel objects can serve as
mirrors for radio waves [34]. Thus, there is only one path dominat-
ing the signal reflected by the steel plate and Equation (3) reduces
to one sinusoid wave plus a constant offset. The frequency of the si-
nusoid changes according to the instantaneous moving speed. This
can be verified by Figure 4(a), which shows the CSI waveform
caused by steel plate movements. When there is only one domin-
ating sinusoid wave, the movement distance can be calculated by
measuring the phase change of the signal, which is the integral of
the signal frequency over time.

We use Hilbert Transform to calculate the phase change of the
waveform as follows. We first remove the DC component that ac-
counts for the static paths. We then use Hilbert Transform to derive
the analytic signal from the waveform. The unwrapped instantan-
eous phase of the analytic signal keeps track of the phase change
of the waveform. We can then multiply the phase change with the
wavelength to get the path length change. Since the reflected sig-
nal goes through a round-trip from the reflector, the path length
change is approximately two times of the movement distance of
the reflector in this case [29].

The Hilbert Transform based distance measurement has average
accuracy of 2.86 cm, as showing in Figure 4(b) and 4(c) . In the
experiments, we move the steel plate for a random distance in the
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Figure 4: Experiments with steel plates moving along a straight line.

range of 0∼1.6 m which incurs 0∼3.2 m path length change. The
ground truth path length change is measured by a laser rangefinder,
which provides distance measurement accuracy of 0.1 cm. Under
carrier frequency of 5.825 GHz, which has wavelength of 5.15cm,
our path length measurement has maximal error of 5.87 cm and
mean error of 2.86 cm. The major error sources are errors in de-
ciding the phase of the starting and ending cycle. Therefore, the
measurement error does not increase with the movement distance
and is uniformly distributed in the range of 0∼6 cm, see Figure
4(c).

4. MODELING OF HUMAN ACTIVITIES

4.1 Human Activity Characteristics
Modeling CFR power change caused by human activity is chal-

lenging. Unlike the simple object used in section 3.5, human bod-
ies have complex shapes and different body parts can move at dif-
ferent speeds. Moreover, the reflections from body parts may go
through different paths in complex indoor environments. From
Equation (3), we see that the CFR power is a linear combination
of all the reflected paths and the speeds of path length change
are preserved in the combination process. Therefore, we can use
Time-Frequency analysis tools, such as Short-Time Fourier Trans-
form (STFT) or Discrete Wavelet Transform (DWT) to separate
these components in the frequency domain. Human activity can
be modeled by profiling the energy of each frequency component
derived from Time-Frequency analysis tools. As an example, Fig-
ure 5 illustrates the waveform and the corresponding spectrogram
for three human activities: walking, falling and sitting down. The
spectrogram shows how the energy of each frequency component
evolves with time, where high-energy components are colored in
red. In the spectrogram for the walking activity, there is a high-
energy band around 35∼40Hz frequency, as shown in Figure 5(d).
With a wavelength of 5.15 cm, these frequency components repres-
ent 0.9∼1.0 m/s movement speed after considering the round-trip
path length change. This coincides the normal movement speed
of human torso while walking [25]. Figure 5(e) shows the spec-
trogram of falling, which has an energy increase in the frequency
range of 40∼80 Hz between 1∼1.5 seconds. This indicates a fast
speed-up from below 0.5 m/s speed to 2 m/s, during a short time
period of 0.5 seconds, which is a clear sign of falling. The activ-
ity of sitting down shown in Figure 5(f) is different from falling,
as the speed for sitting down is much slower. Using the energy
profile of different frequencies, we can build CSI-activity model,
which quantifies the correlation between the movement speeds of
different human body parts and a specific human activity.

4.2 Robustness of Activity Speeds
We next study whether the speed based CSI-activity model

are robust across different scenarios. It is well known that the
path length change is determined by both the position of the
sender/receiver and the movement directions [29]. Movements

with the same speed may introduce different path length change
speeds when movement directions are different. Furthermore, dif-
ferent people may perform the same activity with different speeds
and the multi-path conditions may change under different environ-
ments.

Our experiments show that different human activities actually in-
cur path length change speed with significant difference, so that the
minor measurement differences caused by movement direction and
the different ways to perform the same activity can be safely ig-
nored. To study the robustness of the movement speeds, we collect
more than 780 activity samples for three activities, walking, run-
ning and sitting down, performed by 25 volunteers with different
ages and genders. The activities are performed at different loca-
tions with different directions, e.g., we ask the volunteer to walk
around a large table so that four different walking directions are
captured. Figure 6 shows the estimated torso speed distribution for
the three different activities. Note that we estimate the torso speed
by dividing the speed of path length change by two. This usually
gives a smaller estimation than the actual speed because depend-
ing on the movement direction, moving by 1 cm usually cause less
than 2 cm path length change [29]. Even with different movement
directions, we observe that the three activities have different speeds
in Figure 6. Such speed difference can be used for activity classi-
fication. As an example, we can achieve a classification accuracy
of 88% for all three activities, when we divide the samples to three
types with estimated speed of 0∼0.61 m/s, 0.61∼1.0 m/s and above
1.0 m/s. By looking at various different activities, we found that
most human activities contains speed components ranging from
0∼2.5 m/s and the frequency components for a given activity are
stable across different scenarios, including apartments, offices, and
large open area, see our evaluations in Section 8. Therefore, the
strength of the frequency components can serve as a robust feature
for human activities.
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Figure 6: Histogram of speeds for different activities

4.3 CSI-Activity Model

We propose to use Hidden Markov Model (HMM) to build CSI-
activity models that consist of mutiple movement states. As an ex-
ample, we observe that the action of falling comprises several states
from Figure 5(e). The person first moves slowly, with most CSI en-
ergy on the low frequency (slow movement) components. Then,
there is a fast transition to very high speed movement where sub-
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(a) CSI waveform for walking
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(c) CSI waveform for sitting down

(d) Sepctrogram for walking (e) Sepctrogram for falling (f) Sepctrogram for sitting down

Figure 5: Waveforms and spectrograms for different activities.

stantial energy are on high frequency components. After that, there
is a quick transition to the silent state, where the movement energy
reduces to nearly zero. By looking at these transitions between
different states, we can infer that the person is possibly falling.
Similarly, other human activities also contain states with can be
characterized by their movement speeds.

Hidden Markov Model (HMM) is a suitable tool to build state
transition models using time-dependent features. It has been ex-
tensively used in several recognition applications such as speech
recognition [18], handwriting recognition, and gesture recognition
in videos [6]. Use of HMMs for activity recognition is based on
the assumption that the sequence of observed feature vectors cor-
responding to an activity is generated by a Markov model, which is
a finite state machine that changes state once every time unit. Each
time a state is entered, a feature vector is generated from a prob-
ability density called output probability density. Furthermore, the
transition from one state to another or back to itself is also prob-
abilistic and is governed by a discrete probability called transition

probability. Hidden Markov Models are called hidden because in
practice, the sequence of feature vectors is known but the underly-
ing sequence of states that generated those feature vectors is hid-
den.

HMM can capture information from all training samples and
thus works very well even when there is high within-class vari-
ance. Provided that a sufficient number of representative training
samples of an activity are available, an HMM can be constructed
that implicitly models all of the many sources of variability inherent
in the activity. Compared to existing works which uses statistical
features along a long period [10, 27], HMM based models utilizes
the transitions within the activity that provide more details about
the activity. For details related to HMM model training and classi-
fication, please refer to Section 7.

4.4 Discussion

Detection of high-speed and low-speed movements: CARM
can reliably detect both high-speed movement and low-speed
movements. Commercial WiFi devices provide CSI values with
sampling rates high enough to accurately obtain the values of these
frequencies. From our extensive activity dataset, we have observed
that indoor human movements introduce frequency components of
no more than 300Hz in the CFR power, which corresponds to a top
human movement speed of about 300× 0.0515/2 = 7.7m/s, when

the wavelength is 5.15 cm. Note that 7.7 m/s is already too fast
a speed for a human to move with. Commercial WiFi NICs can
easily sample CSI values at a rate of up to 2500 samples/second,
which is far greater than the sampling rate required by the Nyquist
criteria for a 300Hz signal. Thus, we can apply signal processing
techniques on the denoised CSI values and get the frequency com-
ponents in CFR power and infer the speed. For slow movements
that only move a few centimeters per second, CARM utilizes wave-
let transforms to extract low frequency components below 1 Hz to
capture slow movements such as brushing teeth, see Section 6.

Movement of different body parts: Time-frequency analysis
tools can separate the movement of different body parts when they
move at different speeds. For example, the weak energy bands in
frequency components between 50∼70 Hz in Figure 5(d) are actu-
ally caused by swing of legs when walking [25]. In general, CFR
power changes caused by the movements of arms/legs have smaller
in energy compared to torso movements as the reflection areas for
arms/legs are smaller. Our feature extraction process captures both
the body movement and arms/legs movements. Therefore, CARM
can distinguish whether the activity involves the whole body or just
arms/legs. For example, CARM can recognize falling, running and
boxing, which are all high speed movements but involve different
body parts.

Scenarios with multiple persons: When there are multiple per-
sons within the same room, CARM can recognize the activity when
only one person is moving, see details in Section 8. When both
persons are actively moving, we need multiple sender/receivers
to capture the actions. Activities that are closer to the given
sender/receiver introduce higher distortions in CFR power. There-
fore, we can use blind signal separation methods [15] to extract
CFR power distortions caused by different person. However, this
is out of the scope of this paper and will be studied in our future
works.

5. PCA BASED CSI DENOISING SCHEME
CARM builds the HMM model in following three steps as de-

scribed in Sections 5, 6, and 7, respectively. First, CARM collects
CSI values and removes the noises in the measurements. Second,
CARM extracts human movement features from the denoised CSI
values using DWT. Third, CARM trains an HMM model for each
activity and uses the CSI-activity models to recognize activities in
real time.
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5.1 Sources of Noise in CSI
The CSI streams provided by commercial WiFi devices are ex-

tremely noisy. Figure 7 plots a noisy CSI stream that we collected
from an Intel 5300 NIC at a sampling rate of 2.5 kHz for a period
of 1.75 seconds. One major sources of noise in CSI streams are the
internal state transitions in sender and receiver WiFi NICs such as
transmission power changes, transmission rate adaptation, and in-
ternal CSI reference level changes. These internal state transitions
result in high amplitude impulse and burst noises in CSI streams.
An interesting feature of these impulse and burst noises is that their
effect is highly correlated across all CSI streams, i.e., they affect
samples in all streams at the same time. For example, if sender
WiFi NIC increases the transmission power by 0.5dB, all streams
see a power increase of 0.5dB.

5.2 Traditional Filter based Denoising
Traditional filters such as low-pass filters or median filters do

not perform well in removing the impulse and burst noises. The-
oretically, a low-pass filter, such as a Butterworth filter, should be
able to remove such noise. However, due to the high energy and
high bandwidth of impulse noises in CSI, the pass band for the
low-pass filters usually need to be less than one-twentieth of the
sampling rate so that the energy of residual noise in the pass band
becomes negligible compared to the signal energy [26]. When the
sampling rate is not high enough, the residual noises can still distort
the filtered stream. Figure 7(b) shows the output of a low-pass filter
with a cutoff frequency of 100 Hz when applied to the CSI stream in
Figure 7(a), which has sampling rate of 2,500 samples per second.
We observe that the filtered stream is still severely distorted and
the low-pass filter could not effectively denoise it. Another type of
filters, called median filters, is specifically designed to remove im-
pulse noise, but they do not work well on CSI streams because the
density of the noises is very high. Figure 7(c) shows the output of a
5-point median filter when applied to the CSI stream in Figure 7(a).
We again observe that the filtered stream is still severely distorted.

5.3 Correlation in CSI Streams
Our denoising method leverages the fact that the changes intro-

duced in all CSI streams by body movement are correlated. CSI
streams of different subcarriers are linear combinations of the same
set of time-varying signals and thus they are highly correlated.
To show this, consider an object that moves by a small distance
between time 0 and time t. Let the length of the path changes by
∆k(t) between time 0 and time t when the object moves. Thus,
dk(t) = ∆k(t) + dk(0), where dk(0) is the initial length of the
path. When the initial phase offset of the subcarrier is φk, the phase
of the subcarrier s in Equation (3) seen by the receiver at time t is
given by the following equation.

cos

(

2πdk(t)

λs

+ φk

)

= cos

(

2π∆k(t)

λs

+
2πdk(0)

λs

+ φk

)

= cos

(

2πdk(0)

λs

+ φk

)

cos

(

2π∆k(t)

λs

)

− sin

(

2πdk(0)

λs

+ φk

)

sin

(

2π∆k(t)

λs

)

(4)

Consider two subcarriers with wavelengths λ1 and λ2 that tra-
verse the kth multipath. The difference between wavelengths of
subcarriers in a WiFi channel is small. For example, in a 20MHz
WiFi channel, the lowest and highest frequency subcarriers are
separated by about 17MHz. Thus, in 5GHz band, wavelengths
λ of subcarriers differ by at most 0.34%. This slight differ-
ence in wavelengths usually does not change the number of mul-

tipaths across subcarriers. We make two observations from Equa-
tion (4). First, the time-varying terms in the equation above are

approximately equal, i.e., cos
(

2π∆k(t)
λ1

)

≈ cos
(

2π∆k(t)
λ2

)

and

sin
(

2π∆k(t)
λ1

)

≈ sin
(

2π∆k(t)
λ2

)

because ∆k(t) is small and λ1

and λ2 differ only slightly. Second, the constant terms in Equa-
tion (4) are unequal for the two subcarriers because initial path
length dk(0) is much greater than ∆k(t) and thus, results in a non-
negligible initial phase difference between the two subcarriers even
though the wavelengths differ only slightly. For example, for a path
length of 10 meters, a radio signal with wavelength of 5.150 cm tra-
verses distance equal to 194.1 full wavelengths on this path, where
as a radio signal with wavelength of 5.168 cm (= 5.15 × 1.0034)
traverses distance equal to 193.5 wavelengths. Thus, there is an
initial phase difference of (194.1 − 193.5) × 2π = 1.2π between
these two signals at the receiver.

These two observations show that CFR for different subcar-
riers is a linear combination of the same set of time-varying

waveforms with different initial phases, i.e., cos
(

2π∆k(t)
λs

)

and

sin
(

2π∆k(t)
λs

)

. Therefore, the CSI streams are correlated. Similar

results can be obtained for CSI streams between different antenna
pairs because the difference in positions of antennas only causes
initial phases and attenuations for each multipath to be different.

Our measurements confirm the observation that CSI streams are
correlated. Figure 8 plots the 180 CSI streams for a link with
NTx = 2 and NRx = 3 when a human is walking around. We
group the CSI streams in their transmission/receiving antenna pairs,
e.g., streams 1∼30 are the 30 subcarriers for transmitting antenna
1 and receiving antenna 1. Each CSI stream is a curve that is sim-
ilar to the one in Figure 5(a), where the amplitudes for CSI values
are represented by the color, i.e., red colors are “peaks” and blue
colors are “valleys” in the curve. We have following observation in
the CSI streams. First, CSI streams are correlated. The “peaks” and
“valleys” have similar shapes in all CSI streams across different an-
tenna pairs and different subcarriers. Moreover, the phases of CSI
streams changes smoothly across different subcarriers in the same
antenna pair, e.g., streams 1∼30 and 151∼180, because the sub-
carriers on the same antenna pair only differs slightly in their fre-
quencies. Second, there is no single “good” CSI stream. Although
we can see clear “peaks” and “valleys” in stream 151∼180 at time
between 2.5∼2.6 and 2.8∼2.9 seconds, the changes in measure-
ments are vague during the time 2.9∼3 seconds for the same set of
streams. However, we observe streams 1∼30 give clear CSI fluc-
tuations during time 2.9∼3 seconds. This implies that we need to
combine different streams to get optimal observations in the move-
ments. Third, simply using weighted average over CSI streams [13]
cannot provide good results. We see that the phase of different CSI
streams are different so that if we simply add them up, they can
cancel each other as the time point for the “peak” of a stream may
be the “valleys” of other streams. Therefore, it is important to find
a good way to combine CSI streams.

Figure 8: Correlation in CSI streams
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(d) PCA based denoising

Figure 7: Denoising the time-series of CSI values

5.4 Principal Component Analysis

To address the challenges in combining CSI streams, we apply
PCA to discover the correlations between CSI streams. With PCA,
we can track the time-varying correlations between CSI streams,
and optimally combine them to extract principal components of
CSI streams. CARM applies PCA to CSI streams using the fol-
lowing four steps.
(1) Preprocessing: In this step, CARM first removes the static path
components from each CSI stream by subtracting the correspond-
ing constant offsets from the streams. It calculates the constant off-
set for each stream through long-term averaging over that stream,
i.e., average CSI amplitude for 4 seconds. After that, it cut CSI
streams into chunks that contain samples obtained in 1-second in-
terval and arrange chunks of different CSI streams in columns to
form a matrix of H. We choose interval size to be 1 second so that
the distance moved by the object is short and at the same time the
number of samples is large enough to ensure accurate correlation
estimation, which is the next step.
(2) Correlation estimation: CARM calculates the correlation mat-
rix as HT × H. The correlation matrix has dimension of N × N ,
where N is the number of CSI streams. For the example in Figure
8, we have N = 180.
(3) Eigendecomposition: CARM performs Eigendecomposition of
the correlation matrix to calculate the eigenvectors.
(4) Movement Signal Reconstruction: In this step, CARM con-
structs the principal components using the equation hi = H × qi,
where qi and hi are the ith eigenvector and the ith principal com-
ponents, respectively.

CARM discards the first principal component h1 and retains the
next five principal components to be used for feature extraction.
As discussed in 5.1, noises caused by internal state changes present
in all CSI streams, which are the vertical lines appear in Figure
8. Due to the high correlation, these noises are captured in h1

along with the human movement signal. However, an interest-
ing result is that all the information about the human movement
signal captured in h1 is also captured in other principal compon-
ents, because by Equation (4), the phase of a subcarrier is a lin-

ear combination of two orthogonal components: cos
(

2π∆k(t)
λ

)

and sin
(

2π∆k(t)
λ

)

. Since the PCA components are uncorrelated,

the first principal component only contains one of these ortho-
gonal components and the other component is retained in the rest
PCA components. Therefore, we can safely discard the first prin-
cipal component without losing any information. The number of
PCA components used for feature extraction is empirically selec-
ted to achieve a good tradeoff between classification performance
and computational complexity. Figure 7(d) shows the second PCA
component of our denoising scheme. We observe that our proposed
method outperforms traditional filtering methods and does not con-
tain the high frequency noise.

6. FEATURE EXTRACTION

6.1 Extracting Features from CSI
To obtain activity features from CSI, CARM needs to extract

frequency components from different activities at different time
scales. This is because human activities have two aspects asso-
ciated with them, duration and frequency. Duration represents the
time a person takes to perform an activity and frequency represents
the speed of multi-paths due to body movements during the activ-
ity. Different activities may have similar durations but different
frequencies. For example, sitting down and falling both have short
durations but the speeds of paths are significantly higher in falling
than in sitting down. Consequently, the frequencies in CFR power
for falling are greater than the frequencies for sitting down. Simil-
arly, different activities may have similar frequencies but different
durations. For example, running and falling both have similar fre-
quencies but the duration of falling is shorter than running. Thus,
to analyze CFR power for human activities, we need to extract fre-
quencies from it at multiple resolutions on multiple time scales.

The most relevant signal processing tool that can enable us to ex-
tract frequencies at multiple resolutions on multiple time scales is
discrete wavelet transform (DWT). DWT provides high time res-
olution for activities with high frequencies in CFR signals and
high frequency resolution for activities with slow speeds. DWT
calculates the energies in different levels at any given time in the
CFR signals, where each level corresponds to a frequency range.
The frequency ranges of adjacent DWT levels decrease exponen-
tially. For example, if level 1 DWT represents a frequency range of
150∼300Hz, which corresponds to 3.85∼7.7 m/s movement speed
in 5GHz band, then level 2 DWT represents a frequency range that
is half of the frequency range for level 1, i.e., 75∼150Hz, which
corresponds to 1.925∼3.85 m/s. The higher the energy in a DWT
level is, the more likely it is that the speed of the path is in a range
associated with the frequency range of that level. Figure 9(a) shows
the wavelet transform for a falling action, where higher brightness
represents higher energy level. Although DWT has lower resolu-
tion compared to spectrogram in Figure 5(e), we can see the high
energy region moves from level 6 to level 2 from 1 to 1.5 seconds.
The advantage of DWT compared to STFT is as follows: First,
DWT has nice tradeoffs in time and frequency resolutions. DWT
naturally groups frequencies that differ by several orders of mag-
nitude into a few levels so that both high speed movements and low
speed movements can be captured. Second, DWT reduces the size
of data so that the classification algorithm can run in real time.

To extract features for classification from a sample of an activity,
CARM applies DWT to decompose the PCA components into 12
levels that span the frequency range from 0.15Hz to 300Hz. The
DWT results of the five PCA components are averaged to capture
the movement information present in different PCA components.
From the output of DWT on each 200ms interval, CARM extracts
a 27 dimensional feature vector that includes three types of fea-
tures. 1). The energy in each level, which represents the intensity
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of movement in each speed range. 2). Difference in the energy of
each level between consecutive 200ms intervals, which represents
the rate of change of speed of a multi-path for the activity. 3). Es-
timated torso and leg speeds using the percentile method introduced
in Doppler radar [25].

6.2 Resilience to Environmental Changes
Environmental changes such as adding an extra chair in a room

change the number of multi-paths arriving at the receiver. How-
ever, even when the number of multi-paths changes due to environ-
mental changes, the speed of change in lengths of multi-paths does
not change because it depends on the movement of human body and
not on the number of multi-paths in an environment. Consequently,
the frequency components in the CFR power stay the same as long
as the person performs the same activity, and DWT gives higher
energy in the same levels regardless of how many multi-paths have
appeared or disappeared. Figures 10(a) and 10(b) plot the time-
series of denoised CSI values for the activity of falling. To emu-
late the change in environment, our volunteer performed the action
at two different locations. Figures 9(a) and 9(b) plot the DWTs
of these two waveforms. We observe from these figures that even
though the time-series of denoised CSI values look very different
for the same activity in different environments, the features that
CARM extracts look very similar. Compared to directly using the
CSI waveform, the features that CARM uses are resilient to envir-
onmental changes, see detailed evaluations in Section 8.

(a) Environment 1 (b) Environment 2

Figure 9: DWT of time-series for falling
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(b) Environment 2

Figure 10: Denoised CSI time-series for falling

7. CLASSIFICATION & RECOGNITION

7.1 Building Activity Models
CARM constructs an HMM for each activity using the training

samples of that activity. It also constructs an activity model for
the situation when there is no activity in the room. To estimate
mean vector and covariance matrix corresponding to each state and
the transition probabilities for the HMM, CARM uses the well-
known Baum-Welch algorithm [28]. Baum-Welch algorithm needs
a rough guess of these probabilities to start with. To guess the initial
values, CARM first divides the sequence of feature vectors from
each training sample equally amongst the states and then calcu-
lates the initial values for the mean vector and covariance matrix of
each state using the feature vectors assigned to that state. CARM

also calculates the initial transition probabilities by first counting
the number of transitions between every pair of states from the se-
quence of feature vectors of all training samples divided equally
amongst states and then dividing the counts by total number of
transitions in all training samples. To decide the number of states,
CARM iterates through various number of states and selects the
number that provides highest cross validation accuracy. To avoid
overfitting of Baum-Welch algorithm to a particular person or mov-
ing direction, in generating the model of an activity, we include
samples of that activity from different people and different move-
ment directions. Furthermore, we evaluate the models using both
10-fold cross validation and separated testing samples collected in
different environments to ensure that the models do not overfit on
samples from specific scenarios.

7.2 Real Time Activity Recognition
Once CARM generates HMMs for all activities, it can recognize

activities in real-time. We will first explain how CARM detects the
start and end of the activity and then explain how it recognizes the
unknown activity.

Activity Detection: To detect the start and end of an activity,
CARM monitors the second eigenvector q2 and the corresponding
principal component h2. Our activity detection method is based
on two key observations. First, in the absence of an activity, the ei-
genvector q2 varies randomly over neighboring subcarriers because
CSI streams contain uncorrelated values; whereas, in the presence
of an activity, the CSI streams become correlated and q2 varies
smoothly over neighboring subcarriers. Second, in the absence
of an activity, the principal component h2 has smaller variance;
whereas in the presence of an activity, it has higher variance.

CARM empirically calculates the variance, E{h2
2}, of the time

series h2 and the mean of first difference of the eigenvector q2

given by δq2
= 1

S−1

∑S
l=2 |q2(l) − q2(l − 1)|, where S is the

number of CSI streams and |q2(l)− q2(l− 1)| is the difference in
coefficients for neighboring subcarriers. In the presence of an activ-
ity, E{h2

2} has a higher value because the time-series for human
movement signal varies more frequently, whereas δq2

has a smaller
value because the eigenvector becomes more smooth. Therefore,
we define the activity indicator as E{h2

2}/δq2
. Figure 11 plots

E{h2
2}, δq2

, and the activity indicator over a period of about 10
seconds. We observe that activity indicator increase at 1.4 second
and decreases at 9 seconds, which is the start and end times of the
action, respectively. The activity indicator E{h2

2}/δq2
has better

detection performance because it has sharper edges than the met-
rics of E{h2

2} and δq2
.
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Figure 11: Activity detection indicators

To automatically detect the start or end of an activity, CARM
compares the activity indicator with a threshold that it adjusts dy-
namically based on the background noise level. To dynamically ad-
just the threshold, we use an Exponential Moving Average (EMA)
algorithm to update the detection threshold. In case of a sudden
increase in noise level, CARM can incorrectly detect the start of an
activity. To handle this, when CARM builds activity models, it also

73



collects some samples for the situation when there is no activity
and builds a model for “no activity” using these samples. CARM
classifies a detected activity using all activity models and decides
whether a detected activity indeed had an activity in it or not. If
it finds that there was no activity, it adjusts the detection threshold
accordingly.

Activity Recognition: CARM identifies the activity in follow-
ing four steps. First, it takes all CSI values between the start
and end times and denoises them using the PCA based denoising
method described in Section 5.4. Second, from every 200ms in-
terval between the start and end times, it extracts a 27 dimensional
feature vector as described in Section 6.1. Third, it uses dynamic
programming to calculate the likelihood of each HMM generating
this sequence of feature vectors [18]. Finally, the model with the
highest likelihood identifies the activity.

8. IMPLEMENTATION & EVALUATION

8.1 Implementation
CARM consists of two components: a laptop with a WiFi card

and a commercially available WiFi access point (AP). We imple-
mented CARM on a Think-pad X200 laptop equipped with Intel
5300 WiFi card and tested it using two commercially available
802.11ac APs: NETGEAR JR6100 and TP-Link TL-WDR7500.
To obtain CSI values from regular data frames transmitted by the
access point, we installed the CSI tool developed by Halperin et al.

on the laptop [9].
All the experiments that we report in this paper were performed

in the 5GHz frequency band with 20MHz bandwidth channels. We
choose 5GHz band for shorter wavelength, which lead to better
movement speed resolution. We also tested CARM in 2.4GHz.
Due to the longer wavelength, frequencies of the CSI waveforms
in 2.4GHz are lower for the same activity compared to those in
5GHz. CARM acquires CSI measurements from the CSI tool and
processes it in real-time using MATLAB. CARM is computation-
ally efficient. For example, on a Think-pad laptop with Intel i5-
3320 CPU and 4GB RAM, CARM takes 85.6ms to process 200ms
CSI values sampled at a rate of 2,500 samples/second. Note that
it is possible to further improve the computational efficiency of
CARM by implementing it in C or using DSP to accelerate the
signal processing.

8.2 Evaluation Setup
We collected training samples for eight different activities in our

lab, which is 7.7m in length and 6.5m in width, as shown in Figure
12(a). We collected a total of 1,400 samples for the testing activities
from 25 volunteers. The volunteers included 20 male and 5 female
graduate/undergraduate students with ages in the range of 19–22.

We evaluated the recognition accuracy of CAMR through two
sets of experiments, one is in the trained environments and the
other is in the untrained environments. We use the lab where we
collected the training dataset as the trained environments. For the
untrained environments, we evaluate on three typical indoor scen-
arios, including: 1) a large open lobby area, which has a length,
width, and height of 45m, 5.3m, and 4m, respectively; 2) a small
apartment, which has area of 70m2 as shown in Figure 12(b); 3) a
small office, which has a length, width, and height of 5.6m, 3.4m,
and 2.7m, respectively.

The activities for which we collected training samples are listed
in Table 1, along with their abbreviations and number of training
samples for each activity. We collected training samples for each
activity except walking and running at the location marked with star
in Figure 12(a). For walking and running, our volunteers followed

Table

TableWalking/running route
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Fridge
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room

Rx
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(b) Apartment

Figure 12: Floor plans

the path marked with a dashed line around the table in the center of
the lab. Tx and Rx represent the locations of the transmitter AP and
receiver laptop. While collecting the training data, we requested the
volunteers to change their orientation to ensure the generality of the
collected data. Triangles in Figures 12(a) and 12(b) represent the
locations where our volunteers performed activities when evaluat-
ing accuracy of CARM. The total training time for our activity data
set with 1,400 samples was 100.55 seconds on a laptop with Intel
i5-4285 CPU, as shown in Table 1. Note that our activities have
no location dependency. Furthermore, once CARM is trained on
the given training set, it can be directly applied to environments
and persons that have not been included in the training set. Thus,
CARM does not need the on-site training data collection as for E-
eyes [27]. Consequently, the one-time training can be done on a
large training set using a data center.

Activity Samples Training Time

(R) Running 205 16.38s

(W) Walking 315 26.84s

(S) Sitting down 266 14.49s

(O) Opening refrigerator 213 13.49s

(F) Falling 98 5.02s

(B) Boxing 75 4.88s

(P) Pushing one hand 72 7.00s

(T) Brushing teeth 96 7.35s

(E) Empty (i.e., no activity) 60 5.10s

Table 1: Summary of activity dataset

8.3 Activity Detection
Now we present the accuracy CARM achieves in detecting the

presence of an activity. We evaluate the accuracy using two metrics:
true positive rate (TPR) and false alarm rate (FAR). TPR is the ratio
of the number of times CARM correctly detects the presence of an
activity to the total number of times the activity is performed. FAR
is the ratio of the number of times that CARM incorrectly detects
the presence of an activity when actually there is no activity.
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Figure 13: Detection range of CARM
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CARM detects small movements such as pushing one hand and

large movements such as walking with a TPR larger than 98%

at distances of up to 5 meters and 12 meters, respectively. Fig-
ure 13 plots CARM’s TPR for two different activities in the open
lobby area as described in section 8.2, where the sender and re-
ceiver were separated by 3.5 meters. Each TPR for an activity
was calculated from 20 samples of that activity collected at three
different locations while ensuring that the distance of each point
from the receiver was the same. Our PCA denoising method has a
much longer detection range for walking compared to the range of
4 meters achieved by the low-pass filtering approach. Furthermore,
without PCA, low-pass filtering cannot reliably detect small move-
ments such as pushing at a distance of 2 meters. This shows that
compared to the conventional low-pass filtering approach, PCA is
more efficient in extracting small changes in CSI values caused by
human movements. Using PCA denoising, CARM achieves a large
coverage area: with a single Tx/Rx pair, it reliably detects the pres-
ence of activities in a 450m2 open region.

CARM has a low FAR of 1.4 false alarms per hour. To measure
CARM’s FAR, we record the activity log for 14 hours from 6:00pm
to 8:00am on a certain day when no one was around the sender
and receiver. During these 14 hours, we saw only 20 false alarms,
which were primarily caused by sudden increase in noise levels.

8.4 Activity Recognition
CARM achieves an average cross validation accuracy of 96.5%

across all activities. Figure 14 shows the recognition accuracy of
10-fold cross validation using the training data set collected in the
“lab”. Except for “sitting down”, “opening fridge” and “falling”,
CARM achieves close to 100% accuracy, when the sampling rate
is 2,500 samples per second. The accuracy for “empty” is 100%,
which means that if CARM incorrectly detects the presence of an
activity when in reality there was no activity, it can correctly find
out that there was no activity as soon as it evaluates the detected
sample against the activity models.
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Accuracy of CARM improves when CSI values are sampled at

a higher sampling rate, but the increase is not significant bey-

ond the sampling rate of 800 samples/second. Figure 14 plots
CARM’s recognition accuracy for each activity under four differ-
ent sampling rates. From this figure, we observe that with sampling
rates of 800 samples/second and higher, the average cross valida-
tion accuracy is over 94.8%, which is only a slight drop compared
to 96.5% achieved for a sampling rate of 2,500 samples/second.
Sampling rate of 800 samples/second is very close to the Nyquist
sampling rate because the frequency components in CFR power
go up to 300Hz due to human movements, as discussed in Section
5.2. When sampling rate further reduces to 400 samples/second,
the average accuracy reduces significantly to 87%. In comparison,
the average recognition accuracy for low-pass filtering approach is
only 73% with the sampling rate of 2,500 samples/second. In the
low-pass filtering approach, the accuracies for activities of “fall-
ing” and small activities such as “brushing teeth” drop significantly
because filtering cannot reliably preserve the high frequency com-

ponents and small fluctuations in CSI values. In our real-time ex-
periments, CARM tolerates wireless interference caused by other
devices that are using the same channel. When facing a high packet
loss rate, CARM interpolates the missing CSI values and uses a
lower sampling rate to achieve an acceptable recognition accuracy.
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Figure 15: Accuracy in different environments

CARM achieves an accuracy of more than 80% for environments

and persons that it has not been trained on. Figure 15 shows the ac-
curacy CARM achieves in different environments for each activity.
In each environment, we randomly picked 3 to 6 locations and per-
formed each activity for three times in each location to calculate the
recognition accuracy. Two volunteers who were not in the training
set performed these activities. Note that this figure does not have
results for “opening refrigerator” in the lobby and office, “running”
in the apartment and office due to equipment and space constraints.
In the lab, lobby, office and apartment, CARM achieves average
accuracy of 90%, 93%, 83% and 80%, respectively. For the en-
vironment that is the same as the training environment, i.e., “lab”,
the average accuracy reduces moderately to 90% with lower accur-
acy for a single activity, “opening refrigerator”, due to the different
ways of performing the activity. For the more challenging case
where CARM is applied to a new environment that it have no train-
ing data, the average accuracy drops to around 80%. Most of the
recognition errors are in a few activities, e.g., “sitting down” for
the lobby and apartment case and “brushing teeth” for the apart-
ment case. The major causes for the errors are due to the drastic
change in multi-path conditions. For example, there are no LOS
path between the sender and the receiver in the apartment case as
shown in Figure 12(b), while our training data are all collected in
the lab with LOS path. The performance of CARM can be im-
proved by including more scenarios in the training set. During the
experiments, there are other persons sitting or using computers in
the same room. CARM is robust to multiple persons coexisting
in the same room given that they do not move at the same time.
Recognizing simultaneous activities of multiple persons is left as
future work of this paper. Currently, CARM uses a single Tx/Rx
pair. The performance of CARM can be improved by simultan-
eously using multiple Tx/Rx pairs located at different positions in
the environment. We will explore this direction in our future work.

9. CONCLUSION
In this paper, we make the following three key contributions.

First, we propose the CSI-speed model, which quantifies the cor-
relation between CSI value dynamics and the movement speeds
of different human body parts, and the CSI-activity model, which
quantifies the correlation between the movement speeds of differ-
ent human body parts and a specific human activity. Second, we
propose several signal processing techniques, such as PCA based
denoising and DWT based feature extraction, for human activity re-
cognition based on the two models. Third, we implemented CARM
using commercial WiFi devices and evaluated it in several different
environments. Our results show that CARM achieves an average
accuracy of greater than 96%.
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