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Abstract. Foams, gels, emulsions, polymer solutions, pastes and even cell assemblies display both liquid
and solid mechanical properties. On a local scale, such “soft glassy” systems are disordered assemblies of
deformable rearranging units, the complexity of which gives rise to their striking flow behaviour. On a
global scale, experiments show that their mechanical behaviour depends on the orientation of their elastic
deformation with respect to the flow direction, thus requiring a description by tensorial equations for
continuous materials. However, due to their strong non-linearities, the numerous candidate models have
not yet been solved in a general multi-dimensional geometry to provide stringent tests of their validity. We
compute the first solutions of a continuous model for a discriminant benchmark, namely the flow around an
obstacle. We compare it with experiments of a foam flow and find an excellent agreement with the spatial
distribution of all important features: we accurately predict the experimental fields of velocity, elastic
deformation, and plastic deformation rate in terms of magnitude, direction, and anisotropy. We analyse
the role of each parameter, and demonstrate that the yield strain is the main dimensionless parameter
required to characterize the materials. We evidence the dominant effect of elasticity, which explains why
the stress does not depend simply on the shear rate. Our results demonstrate that the behaviour of soft
glassy materials cannot be reduced to an intermediate between that of a solid and that of a liquid: the
viscous, the elastic and the plastic contributions to the flow, as well as their couplings, must be treated
simultaneously. Our approach opens the way to the realistic multi-dimensional prediction of complex flows
encountered in geophysical, industrial and biological applications, and to the understanding of the link
between structure and rheology of soft glassy systems.

1 Introduction

Materials such as pastes [1] or polymer solutions display
both solid-like and liquid-like behaviors [2]; they are suc-
cessfully described by visco-elastic (VE) or visco-plastic
(VP) models. However, we still lack testable predictions
of the time- and space-dependent flows of soft glassy ma-
terials [3–6], that are made of disordered assemblies of de-
formable, rearranging units [3,7,8]. It had been suggested
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that fluctuations remain relevant even at large scale, in
which case detailed statistical theories of long-range cor-
relations and avalanches would be required [9,10]. This
view is challenged by recent experiments which suggest
that even these materials can be treated as continuous
materials described by tensorial equations [3,11]; thus in
principle partial differential equations could lead to the
long-awaited predictions.

Based on our experience with foams, we believe that
the reason of the difficulty comes from the fact that these
materials are simultaneously viscous, elastic, and plastic
(VEP). Under small deformation, a foam reversibly comes
back to its shape; at large deformation, it can be irre-
versibly sculpted and gets a new shape; under an increas-
ing deformation rate, it irreversibly flows, with an increas-
ing viscous stress [12–16]. Existing continuous models of
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foam flows include either a phenomenological scalar de-
scription [17,18], or a complete tensorial description of the
elasticity [19] or plasticity [7]. Overall, continuous VEP
models tend to successfully reproduce some experimental
measurements, such as elastic and loss moduli, or compli-
ance (see for instance refs. [20,19,21,15,8]). In the case of
other complex fluids, for instance dense colloidal suspen-
sions [22,23] or wormlike micelles solutions [24], tensorial
VEP models have also been developed, but tests were re-
stricted to simple geometries: steady shear, uniaxial elon-
gation, cylindrical Couette flow.

We want here to understand and predict VEP flows,
assuming that material properties are known. We thus
work downhill of statistical models which predict the ma-
terial properties from the microstructure [25]. Our ap-
proach is to test whether a continuous VEP model can
capture the essence and complexity of the flow properties,
especially the elasticity and its advection by the flow.

We thus need a VEP model as simple as possible: with
linear and isotropic coefficients, without fluctuations nor
long-range interactions. We require to use only physically
relevant parameters, which in principle are measurable.
We need a tensorial model in a multidimensional space
(what follows applies both in 2D and 3D). We need a
closed system of equations: constitutive equations, spe-
cific to the material under consideration; generic conser-
vation laws, in the spirit of hydrodynamics; and closure
equations, to unify the solid and liquid descriptions.

To really test a model, and also lead to practical
applications, we address the full spatial and orienta-
tional heterogeneity of a flow. We need to investigate
a controlled, reproducible flow which displays signifi-
cantly different V, E and P contributions. It should in-
volve a large range of shear rates, of tensorial orien-
tations, and of elastic deformations. It should display
elastic deformations either parallel, perpendicular or at
odd angles with respect to the shear rate. Most dis-
criminant, it should actually depend on two or more
dimensions of space, so that the advection of elastic
stress couples the shear and normal stress components
(see eqs. (8), (9)). This latter point, overlooked by most
models, is crucial to test whether the elastic stress
could be entirely determined by the shear rate, leading
to a VP rheology (such as Bingham [26] or Herschel-
Bulkley [27]). Recent experiments [28–30] suggest that
this is not the case: in fact, the stress, the shear rate
and the elastic deformation should be treated as in-
dependent variables, so that a full VEP treatment is
required.

One such flow is the well-documented flow around an
obstacle [31,32] (fig. 1). It displays a strong spatial het-
erogeneity, simultaneous VEP behaviors, a large range of
elastic deformations, several elongation and rotation rates,
and various relative orientations of the relevant tensors [7].
It enables to follow a bubble at different stages, while it
stretches, then while it relaxes: thus, even in a steady flow,
transient effects and relaxation times are apparent. It is
classically used as a stringent test to discriminate between
different models [33] (fig. 2).

Fig. 1. Top view of the experiments. The foam is quasi-
bidimensional, the flow (from left to right) is exactly bidi-
mensional. The channel is rectangular: length 1 m (only par-
tially shown), width 10 cm. The obstacle is circular, with radius
R = 1.5 cm. (a) Wet foam [11], liquid fraction φ = 7%, entrance
velocity V = 1 cm/s. (b) Dry foam, φ = 1.2%, V = 0.6 cm/s.
The definition of axes x and y is superimposed on the obstacle.
The origin O is in the middle of the obstacle.

We use foams as model systems of VEP materials. Ex-
periments with foams or emulsions, especially in 2 dimen-
sions, enable an easy, simultaneous visualisation of the
micro-structure (bubbles or droplets, which act as tracers
of velocity and deformation) and the large scale (global
flow heterogeneities).

To compare mesurements from discrete experiments
with continuous predictions from partial differential equa-
tions, we use the experimental tools we have developed [7].
V, E and P contributions are expressed in the same units,
favoring a unified description of solid and liquid behav-
iors; each of them is valid in all regimes (so that, e.g.,
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Fig. 2. Comparison of the flow around a circular obstacle
with different models. Reduced velocity (vx −V )/V along axis
y = 0 in wet foam experiment (closed squares, measured in
fig. 1a) is compared with the VEP calculation (present model,
εY = 0.1, λ = 0.2 s, η1/η2 = 0.1, k = 0), slow VEP (entrance

velocity V divided by 20), VP (Bingham model [26], with the
same Bingham number), VE (Oldroyd model [34], with the
same λ).

elastic contributions can be measured even out of the elas-
tic regime). These are local (in situ) measurements which
link the foam structure and rheology.

Our plan is as follows. In order to make this paper
self-contained, sect. 2 recalls Saramito model [21]; here we
write it by emphasizing how it unifies solid and liquid-
like behaviours. Section 3 briefly recalls the experimental
methods. It explains the careful resolution algorithm we
had to develop to deal with the strong non-linearities of
VEP equations, and a well-controlled space and time dis-
cretisation. Section 4 first fits the solutions to a wet foam
flow, fixing the values of the parameters. It then turns to
predictions of a foam with a higher yield strain, which
accurately match a dry foam flow. Section 5 includes con-
cluding remarks.

2 Model

2.1 Characteristics and past results of the model

We choose to use Saramito’s VEP model [21] because it
has a positive dissipation, thanks to the convexity of its
energy function. This implies that, at least for small de-
formations, it obeys by construction the second principle
of thermodynamics. It includes as limiting cases both the
VP Bingham model [26] and the VE Oldroyd model [34],
and generalises them to VEP. It can extend to large de-
formations and high velocities.

It has already been used for space- and time-dependent
predictions [21]. It has first been used to solve simple cases,
such as steady uniaxial elongation. It has also been applied

to oscillatory regimes, and calculations of G′, G′′, rigidity
and loss moduli.

It has then been implemented to calculate both time-
dependent and steady shear Couette flows, which depend
on one space variable (circular [35] or planar [36] geome-
tries). It involves two strong non-linearities, intrinsic to
VEP flows, and thus independent of the model: one be-
cause the plasticity appears above a yield point (eq. (3)),
and the other because of the advection of elastic stress
(eqs. (8), (9)). Despite these unavoidable difficulties, the
model has been solved [37–39]. The resulting velocity, elas-
ticity and plasticity fields agreed with experimental mea-
surements.

This improved our understanding of Couette flows [38,
39]. The localization of the velocity field results from the
stress heterogeneity, so that the circular geometry by it-
self can induce localisation. In planar geometry, where the
stress is a priori homogeneous, localisation necessarily re-
lies on another cause of heterogeneity, such as an external
friction. Initial normal stresses can be preserved even in
a steady flow, so that there are residual normal stresses
which depend on initial conditions linked with the foam
preparation method: the steady flow is not unique. De-
spite its simplicity, a Couette flow displays specific VEP
features [37]. For instance, at the boundary of the localised
region, the discontinuity of the velocity gradient depends
on the residual normal stresses, and thus on initial con-
ditions. For all these reasons, and because the range of
experimental data is limited, Couette flows have only a
limited ability to discriminate between models, or between
parameter values.

2.2 Notations and equations

2.2.1 Constitutive equations: solid mechanics

We start with constitutive equations specific of a semi-
fluid semi-solid material (see fig. 3). In order to emphasize
the dominant role of elasticity, we express them here in
terms of deformations and their rates, as is usual in the
context of solid mechanics

σtot = −pI + 2η1ε̇ + 2µεe, (1)

ε̇ = ε̇e + ε̇p, (2)

ε̇p =







1

λ

|εe| − εY

|εe| εe, when |εe| > εY ,

0, otherwise.
(3)

Equation (1) is a constitutive equation for the Cauchy
stress σtot, with pressure, viscous and elastic terms. Here
p is the pressure, I the identity tensor; ε̇ is the total de-
formation rate tensor, η1 is the viscosity of the material
apparent at small deformation (in the foam, it includes
the dissipation inside the soap films); εe is the elastic de-
formation tensor, µ the shear modulus.

Equation (2) recalls that ε̇ is shared between elastic ε̇e

and plastic ε̇p contributions.
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Fig. 3. Symbolic representation of the viscous, elastic, plastic
(VEP) model [21]: The spring symbolises an elastic stress pro-
portional to the elastic deformation, and stands for the elastic
modulus µ. The dashpots, with a viscous stress proportional
to the total deformation rate, stand for viscous dissipations η1,
η2. The solid friction element, which does not move until a suf-
ficient force is applied, and exerts a constant resistance when
it moves, stands for the plastic flow occurring when the elastic
deformation is larger than the yield strain εY .

Equation (3) is a plasticity equation, which specifies
ε̇p by stating that plasticity increases above the yield
strain εY : under a strong shear rate, the elastic de-
formation |εe| can become significantly higher than εY .
Here |εe| is the norm of εe, which we define as |εe| =

[(εe
yx)2 + (εe

xx − εe
yy)2/4]1/2 to facilitate the comparison

with a scalar shear (fixed shear direction xy with a given
amplitude ε), i.e., εe

xx − εe
yy = 0 and εe

yx = ε, so that
|εe| = ε [3]; the externally measured scalar shear is then
γ = 2|εe|. Another acceptable definition would be the Eu-
clidian norm of the deviatoric elastic strain tensor [38,39],

([(εe
xx − εe

yy)/2]2 +(εe
xy)2 +(εe

yx)2 + [(εe
yy − εe

xx)/2]2)1/2 =

[2(εe
yx)2+(εe

xx−εe
yy)2/2]1/2, which is

√
2 times larger than

|εe|. The value of εY is defined consistently with that of
|εe|.

In soft disordered materials, plasticity is related with
local rearrangements. In foams, these happen when bub-
bles swap neighbors and are called “T1” processes [12,
13,40]. They create a transient local deformation. Here λ
is the relaxation time of the material after such a local
deformation [41]. We can construct the dissipation due
to plasticity, which has the dimension of an effective vis-
cosity η2 = λµ: it determines the loss modulus at large
amplitude. The softness and deformability of the mate-
rial appears in the value of εY , of order of unity, so that
both the elastic and plastic behaviors are experimentally
observable; its glassy (i.e. disordered) nature implies that
λ, µ, εY are isotropic [3].

2.2.2 Conservation equations: fluid mechanics

Generic conservation equations for an isothermal flow are
expressed in terms of the velocity v and its derivatives, as

is usual in the context of fluid mechanics

ρv̇ = div σtot + fext, (4)

divv = 0. (5)

Equation (4) is the equation of dynamics; ρ is the den-
sity, v̇ = ∂tv + v · ∇v, and ρv̇ denotes the inertia term
(which we neglect below, see sect. 3.3); fext is the exter-
nal force: in the bidimensional flow experiments studied
below, the friction on the top and bottom boundaries
(e.g., horizontal glass or perspex plates) is approximately
fext = −kv, where k is a constant. We find experimentally
(see sect. 3.3) that k is small enough that in the present
flows the effect of fext is not measurable, so that we ne-
glect it.

Equation (5) describes the incompressibility of the
flow: it applies when the compressibility modulus is much
higher than the shear modulus, as is the case in foams [12–
14], when the flow is slower than the sound velocity and
when the overall pressure variation remains smaller than
ambient pressure.

2.2.3 Closing equations: linking solid and fluid mechanics

To close the system of eqs. (1)-(3) and eqs. (4), (5) requires
coupling the deformations to the velocity.

First, the total deformation rate equals the sym-
metrized velocity gradient D(v)

ε̇ = D(v) =
∇v + ∇v

T

2
. (6)

Second, the time variation of the elastic deformation
tensor εe accounts for its advection by the flow velocity v.
The model should be objective, that is, the expression of
the equations should remain the same for an observer who
has a movement of translation or rotation with respect to
the experiment. The advection of the elastic deformation
tensor is thus described with a frame-invariant tensorial
derivative [42]

ε̇e =
Dεe

Dt
. (7)

The objective derivative is [42,21]

Dεe

Dt
=

∂εe

∂t
+ (v · ∇)εe + βa(εe,∇v), (8)

where

βa(εe,∇v) = εe · W (v) − W (v) · εe

−a(D(v) · εe + εe · D(v)), (9)

Here W (v) = (∇v−∇v
T )/2 is the antisymmetric part of

the velocity gradient, and a ∈ [−1, 1] is the so-called “a
parameter” [21,42], whose effect is discussed in sect. 3.3.
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3 Methods

3.1 Experimental methods

Experimental set-ups have been described in refs. [11,7,
43]. Bubble distributions are monodisperse in size and dis-
ordered in geometry (shape, number of neighbors). While
bubbles pass through the field of view, no rupture is ob-
served, and coarsening is negligible.

The wet foam is prepared by direct bubbling into the
1m long channel. At its entrance in the channel, it displays
normal differences in elastic deformation, εe

xx − εe
yy (axis

2 in fig. 7).
For the dry foam, bubbles pass first through a chamber

(in which the foam drains): this chamber enables to vary
the liquid fraction over more than three decades, and ho-
mogeneizes the foam while relaxing its normal differences
in elastic deformation [43].

Experimental measurements treat solid and liquid be-
haviors with a unique set of mutually compatible tools [7].
We follow this approach for the 750 sequential images of
the wet foam [11,7] and 1000 images of the dry foam [7,43].
We perform discrete measurements over images of bubbles
which can be automatically identified using image analy-
sis, that is, which do not touch the obstacle.

Local quantities are measured inside boxes. The size
of the boxes should be small enough to capture the lo-
cal spatial variations of the measured fields. It should be
large enough that the number of bubbles (number of bub-
bles per box in an image, multiplied by the number of im-
ages) yields averages with small relative fluctuations. In
our case the measurements are averaged over 6 (respec-
tively, 2.7) bubbles in the wet (respectively, dry) foam.
Dollet and Graner [11] (and Janiaud and Graner [44] in
a Couette geometry) examined whether the discrete na-
ture of the stress relaxation associated with each T1 pro-
cess displays collective behavior effects (e.g. avalanches).
Avalanche-like events at such a small scale would lead to
extremely large fluctuations and/or a large asymmetry be-
tween positive and negative increments. No such signature
of avalanches has been found on the scale of the boxes. The
increments are almost Gaussian and the fluctuations with
time of the local quantities are directly related to the finite
number of bubbles inside each box. This supports the de-
scription of the flow using a continuous description based
on local averages.

The entrance velocity V is measured (±2%) as the av-
erage over the side of the field of view. The texture (bub-
ble size, elongation and packing) and its variation (bubble
stretching and rearrangements) enable to measure in situ
the velocity gradient (not shown), the elastic deformation
(±2%) and the plastic deformation rate (±7%) [7]. We
plot here deviatoric terms, see sect. 3.3.

3.2 Resolution

Equations (1)-(9) can be solved in 2D or in 3D. Their main
difficulties are intrinsinc to VEP flows, independently of

the details of the model. They reduce to a set of three par-
tial differential equations with three unknowns (εe,v, p)
and the coupled system is highly non-linear: its numerical
resolution needs to be performed carefully.

Here we solve these equations in 2D with a finite el-
ement algorithm first used for a simple Couette circu-
lar geometry [38,39], extended here to handle more com-
plex flow domains [37]. As in 1D, the stationary solution
is obtained by solving the time-dependent problem with
a second-order time-splitting algorithm, already used for
VE [45], generalized here to VEP; it allows to treat sepa-
ratly the two main non-linearities of the equations, namely
the plasticity term in eq. (3) and the stress transport term
in the objective derivative (eq. (8)). Unlike in 1D [38,39],
the stress transport term needs to be treated specifically
by upwinding techniques; we chose a robust method, the
discontinuous Galerkin scheme [46]. In addition, the non-
linearity linked to plasticity needs a much more careful
discretization than for the Couette resolution [38,39] to
ensure a proper decreasing of the residue of the station-
ary problem. The spatial discretization is performed with
a mixed finite-element method as in [33]. In order to get
a general method suitable for any geometry, the domain
is discretized with triangles.

The calculation domain is a channel, with entrance at
15R = 22.5 cm upstream and an exit at 30R = 45 cm
downstream of the obstacle. The mesh, made of 1100 tri-
angles, is locally refined near the obstacle (see fig. 4a).
We start from a foam at rest and enforce the entrance ve-
locity V . Unlike for most liquid flows, but in agreement
with foam flow experiments [11], we use slip boundary
conditions. Careful tests have been performed [37] in or-
der to ensure that the mesh is sufficiently refined and that
discretization does not affect the results presented here.
Figure 4b represents how the time-dependent calculations
converge towards the stationary solution. In fig. 4c, the
residual term decreases first rapidly, until n = 200. It
then reaches a plateau from n = 200 to 3000 which cor-
responds to the advection of initial defects. It eventually
reaches an asymptotical regime with a constant slope of
convergence. Iterations were stopped when the residual
term reached 10−7. Calculations in 2D run in half a day
on a Intel T7300 Core 2 Duo processor (2 GHz, 4 Mb cache,
32 bits). The 2D algorithm has been validated by repro-
ducing the 1D Couette calculation [38,39], which runs in
a few minutes.

3.3 Choice of parameters

The parameter with the main effect is εY : a change of
±20% suffices to visibly affect the main features of the
flow. In a foam, its value is expected to depend mostly
on the liquid fraction and on the dimension (2D or 3D),
and possibly on the area dispersity; on the opposite, the
average area and the physico-chemical properties of the
foam are not expected to affect the value of εY .

We have tested the effect of varying the other parame-
ters, one by one. Like in Couette flow [38,39], they barely
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Fig. 4. Numerical convergence of calculations (see text).
(a) Mesh used for the actual calculations; for convergence tests,
the results have been compared with calculations performed on
a finer mesh [37]. (b) The L2 norm of the stationary residues
of eqs. (1)-(5) is displayed during the calculation which led to
figs. 9-12. From top to bottom: n = 10, 200, 1000 and 3000
time iterations. Figures indicate x/R, where R is the obsta-
cle radius. (c) The same L2 norm of the stationary residues is
plotted versus time iterations.

affect the flow, even if varied over a large range, as we now
discuss.

The value k of the friction on the plates can be deter-
mined experimentally from the overall pressure gradient
∇p across the channel length: k = ∇p/V = 9300Pa s m−2.
If we take this value, we obtain a prediction indiscern-
able from k = 0. Only by taking a ten times larger fric-
tion, k = 105 Pa s m−2, does the change become visible. It
means that here the limit k → 0 is regular. This case is
similar to cylindrical Couette geometry, but different from
planar Couette geometry [38,39].

We choose η1/η2 = 0.1 according to the Couette
case [38,39], since it lies in the middle of a range where its
exact value barely affects the flow, even up to a factor of

10. The Reynolds number Re = ρV R/(η1+η2) ≈ 5×10−3

is much smaller than 1, so that we neglect the inertia term
ρv̇ in eq. (4).

We choose the co-rotational derivative [42], with a = 0,
so that εe is deviatoric. In that case, the term βa in
eqs. (8), (9) has a zero trace: hence if the trace of εe is ini-
tially zero, it remains zero [37]. In the low-velocity regime
explored here, any other choice of the objective derivative,
with a parameter ranging from a = −1, lower-convected
derivative, to a = 1, upper-convected [42], would only
change the trace of εe. Further investigations might deter-
mine the value of a by comparison with the experimental
values of this trace.

The relaxation time λ is related to the Weissenberg
number We = λV/R. We distinguish three velocity
regimes. At high velocity, We of order 1 or higher, the ma-
terial rheology can display non-linearities in addition to
those already present in the model. Since foams rupture
at high velocities [43,47], this regime would be easier to
investigate with other materials. In the low velocity range,
We greater than 10−2 but smaller than 1, the exact value
of We does not affect the flow. This is the case for both ex-
periments considered here, as well as for several foam flow
experiments reported in the literature. Further decreasing
We over two or three decades would lead to the ultra slow
range, where the fore-aft asymmetry strongly increases.
This is done in very few well-controlled experiments [43].
The limit We → 0 at constant εY is singular: it implies a
divergence of the Bingham number Bi = 2εY /We [21]. In
fact, the ultra slow regime is not quasi-static [15,18,48].
and does not exactly match quasi-static simulations [18].

3.4 Representations

Results are plotted either as maps or graphs.
Maps enable a global quantitative comparison between

calculations and experiments: spatial distribution, mag-
nitude, orientation of different quantities. Velocities are
displayed as arrows. For clarity, they are presented in the
average reference frame of the foam, as if a movable obsta-
cle was displaced towards the left within a fixed foam, i.e.
(vx − V )/V . Traceless tensors are represented by circles.
Their two eigenvalues have the same absolute value. We
indicate the direction of the positive one by a thin line.
The direction of the negative one, not represented, is per-
pendicular. The top half, in red, is the present calculation
using a continuous model, performed in the half-plane as-
suming top-bottom symmetry. Thin lines are isovalues of
the stream function. The bottom half, in blue, are experi-
mental data obtained as averages over bubbles. Thin lines
are trajectories deduced from the experimental velocity
field, plotted with approximately the same density as in
calculations.

Graphs of components along selected axes enable de-
tailed quantitative comparisons between calculations and
experiments: position and amplitude of extrema, shape of
curves, concavity, inflexion points, precision of the agree-
ment. Axes are chosen to coincide with the measurements
of ref. [11]: axis 1 is the symmetry axis, passing through
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Fig. 5. (Colour on-line) Velocity and elastic deformation of wet foam, represented as explained in sect. 3.4. Thick colored arrows:
velocity field. Circles: elastic deformation tensors; the positive (respectively, negative) eigenvalue corresponding to elongation
(respectively, compression) is represented by a line (respectively, not represented). Thin lines: stream lines. Top half (red):
present calculation using the continuous model (same data as fig. 2): εY = 0.1, λ = 0.2 s, η1/η2 = 0.1, k = 0. Bottom half (blue):
experimental data obtained as averages over bubbles shown in fig. 1a. Scale: bar: 1 (dimensionless) for the elastic eigenvalues
(circle diameter); black arrow: entrance velocity V .

the obstacle center, parallel to the flow, y = 0; axis 2 is
parallel to the flow, close to the obstacle y = ±2.5 cm;
axis 3 is perpendicular to the flow, passing through the
obstacle center, x = 0; axis 4 is perpendicular to the flow,
upstream of the obstacle, x = −2.4 cm; axis 5 is perpendic-
ular to the flow, downstream of the obstacle, x = 2.4 cm.
We do not plot components which vanish due to symme-
try, such as vy or εe

xy along the symmetry axis. Red lines
are predictions, blue symbols are experimental tests.

4 Results

4.1 Wet foam flow

First, as a preliminary characterization, we study the flow
of a wet foam (7% liquid fraction, fig. 1a). We calculate
the measurable fields: velocity v, elastic deformation εe,
plastic deformation rate ε̇p. We use the parameters ob-
tained in refs. [38,39] and rescale them to the geome-
try of the present set-up. We investigate separately the
effect of each parameter (see sect. 3.3). We check that,
with a yield strain εY = 0.1 ± 0.02, the calculations
agree well simultaneously with all available experimen-
tal data (fig. 2 and figs. 5-8). Such value of εY is the
expected order of magnitude for a foam with this liquid
fraction [7].

Other parameters have less effect. We use λ = 0.2 ±
0.1 s [11] and η1/η2 = 0.1. We take k = 0 without signif-
icantly affecting the results. With a shear modulus esti-
mated [11] around µ = 13 ± 1Nm−2, this translates into
actual values: σY = 2µεY = 2.6Nm−2, η2 = λµ = 2.6Pa s
and η1 = 0.1 η2 = 0.26Pa s.

In such a VEP flow, elastic deformations are present in
the wake of the obstacle at arbitrarily low velocity. Plas-
ticity prevents the increase of extensional deformation,
breaking the up-downstream (fore-aft) symmetry (fig. 2).
A velocity overshoot, the so-called “negative wake”, is
clearly visible behind the obstacle (fig. 2). This charac-
teristic feature of VEP flows is barely affected even if we
vary V across the low-velocity regime, confirming exper-
imental observations [11]. For instance, dividing V by 20
barely changes the overshoot (fig. 2).

This strongly contrasts with VP flows, which are al-
ways fore-aft symmetric [33]. VE flows represent a mixed
situation, where the negative wake has already been evi-
denced, both experimentally [49] and numerically [50,51].
In fact, it occurs for low extensional viscosity fluids and
models (e.g., FENE-CR [51] but not Oldroyd-B [34]), at
elongational rates large enough in comparison with the
inverse relaxation time, so that the elastic deformation
does not vanish. However, at the low velocity investi-
gated here, the VE flow is completely fore-aft symmetric
(fig. 2), and even indiscernible from viscous flows, what-
ever the viscosity. To interpret this set of observations,
it seems that the overshoot appears when the elastic de-
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Fig. 6. (Colour on-line) Velocity of wet foam (same data as fig. 5): plots along axes 1-5 (shown in fig. 5). Red lines are
predictions, blue symbols are experimental data. (vx − V )/V : solid thick lines and closed squares; vy/V : dashed thin lines and
open squares.

formation ceases to follow passively the total deformation
rate. This can occur if there is a mechanism which sat-
urates the value of elastic deformation. In VE materials,
such mechanism exists in some models [50,51], but only
at high velocity; at low velocity, it disappears in all mod-
els. Conversely, in VEP materials the overshoot ampli-
tude directly depends on εY : such materials seem to ex-
hibit an elastic response at any velocity, even arbitrarily
low.

To summarize this first test, by adjusting only one pa-
rameter, whose value has the expected order of magnitude,
we can adjust both qualitative and quantitative features
of all available data. We reproduce the observed negative
wake and evidence the specificity of VEP flows.

4.2 Dry foam flow

Second, we turn to prediction. Since the parameter which
has the most significant effect on the flow is the yield
strain [11] (sect. 3.3), we choose to predict the flow for
a twice larger value, εY = 0.2.

This prediction is plotted in figs. 9-12. The overshoot
on the symmetry axis is larger and closer to the obstacle
than for εY = 0.1 (fig. 13): this reflects a larger effect of
the elastic deformation.

To check this prediction, we then perform a dry foam
experiment, since decreasing the liquid fraction of a foam
is expected to affect especially the yield strain. With 1.2%
liquid fraction, (fig. 1b), we observe that εe

max, the max-
imum value of εe measured on the experiment, is twice
as much that of the wet foam. The effect of elasticity is
even stronger and the agreement with our prediction even
better, without adjusting any parameter. Measurements
confirm the predicted spatial distribution, magnitude, di-
rection, anisotropy of fields.

The bubble velocity (figs. 9-10) passes the three most
stringent tests. First, the position and magnitude of over-
shoot on the symmetry axis (fig. 10). Second, the graph
along the axis 5 (fig. 10). And third, the exact position
of the arrest points, defined in the reference frame of the
foam, as points where vx − V = 0: close to axis 5, on
y = 0 and ±5 cm, see fig. 9. Other axes confirm the agree-
ment.
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Fig. 7. (Colour on-line) Elastic deformation of wet foam (same data as fig. 5): plots along axes 1-5 (shown in fig. 5). Red lines
are calculations, blue symbols are experimental data: (εe

xx − εe
yy)/2: solid thick lines and closed circles; εe

xy: dashed thin lines
and open circles.

The bubble elastic deformation too agrees remark-
ably well in spatial distribution, amplitude and direction
(figs. 9-11). Interestingly, its orientation does not directly
correlate with that of streamlines, or equivalently of the
velocity vectors (fig. 9). In addition, the elastic deforma-
tion field extends more than the velocity gradient field
(fig. 9), which itselfs extends more than the plastic defor-
mation rate field (fig. 12). The three fields thus have a
different spatial extension [7]. Specifically, the elastic de-
formation is not determined solely by the velocity gradient
(fig. 14). This strongly contrasts with the scalar, station-
ary case where the elastic deformation can be eliminated
and the rheology expressed as a function of velocity gradi-
ent only (as, e.g., with the Herschel-Bulkley model [27]).
Note that residual normal stresses are visible beyond the
obstacle. Unlike in the Couette case [38,39], here they are
reproducible and their origin is understood: they are a di-
rect effect of the obstacle, and do not depend on the foam
preparation method.

The plastic deformation rate is calculated as the to-
tal deformation rate minus the elastic deformation rate
(eq. (2)). Its spatial distribution and directions agree with

that of the experimental measurements, which represent
the time-averaged orientation, frequency and anisotropy
of the bubble rearrangements (fig. 12).

5 Discussion and conclusion

To summarize, a continuous description of viscous, elas-
tic, plastic material with physically meaningful parame-
ters can reproduce and even successfully predict a tenso-
rial, spatially developed flow of a disordered rearranging
structure.

We analyse and interpret the effect of each parameter
separately. We emphasize the dominant role of elasticity
and thus identify the yield strain as the most important
parameter. The flow does not reduce to VE or VP sep-
arately, so that we emphasize the specific complexity of
VEP materials.

Our method opens the way to computing two- or three-
dimensional flows under any type or amplitude of defor-
mation. It applies to those depending on one space vari-
able: for instance a flow through a channel [28,29], or



Page 10 of 15 The European Physical Journal E

R

V
ε̇ pxy

R

2V
(ε̇
p
xx − ε̇

p
yy)

x/R

(axis 1)

420-2-4

0.4

0.2

0

-0.2

-0.4

x/R

(axis 2)

420-2-4

y/R

(axis 3)

20-2

0.4

0.2

0

-0.2

-0.4

y/R

(axis 4)

20-2

y/R

(axis 5)

20-2
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Fig. 9. Test of dry foam flow prediction (εY = 0.2): velocity and elastic deformation map (same symbols as fig. 5). Top half
(red): present calculation using a continuous model. Bottom half (blue): experimental data obtained as averages over bubbles
shown in fig. 1b. Scale: bar: 1 (dimensionless) for the elastic eigenvalues (circle diameter); black arrow: entrance velocity V .
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Fig. 10. Velocity of dry foam (εY = 0.2): plots along axes 1-5 (shown in fig. 9). Same data as fig. 9, same symbols as fig. 6.
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Fig. 11. Elastic deformation of dry foam (εY = 0.2). Same data as fig. 9, same symbols as fig. 7.

during simultaneous squeezing and shearing [3]. It also
applies to those depending on two space variables: for
instance a flow through a hole in 2D [7,52], or in 3D
with axisymmetry. At the expense of longer calculations,
it can even apply to flows which depend on three space
variables, for instance through a twisted or branching
pipe.

The model has been kept as simple as possible. On
the one hand, if we suppress one or another of its in-
gredients, our algorithm still can solve it, and the re-
sulting solution lacks some of the experimental features.
On the other hand, it can be progressively enriched by
incorporating additional non-linearities, for instance re-
lated with the physico-chemistry of foams. When the ve-
locity or the rigidity of the surfactant layer increases,
shear thinning effects [16] could be introduced by an
extended version of the VEP model [53] based on an
Herschel-Bulkley viscoplasticity [27] instead of a Bing-
ham one, as observed in [17,54]. The friction on walls
too scales non-linearly with high velocity [16]. Non-
linear elasticity at large deformation, although seldom
reached in foams [7], can too be taken into account [19,
14]. At low velocity, plasticity seems to appear progres-

sively: some bubbles begin to rearrange below the yield
strain [7].

More generally, the model can be adapted specifically
to any given VEP material of known properties. The value
of the parameters of eqs. (1)-(9) depends on the micro-
structure, its disorder and its physico-chemical properties.
This is where the present approach can be enriched by
statistical models based on the micro-structure [4,28,29,
9,10,14,48,55].
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For each point of the mesh used for the actual computation
(fig. 4a), we plot the shear component εe

xy of the elastic defor-
mation vs. the shear component ε̇xy of the velocity gradient.
The points do not gather on a master curve as would be the
case with, e.g., the Herschel-Bulkley model [27].
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