
Understanding and Using Context

Anind K. Dey

College of Computing & GVU Center, Georgia Institute of Technology, Atlanta, GA, USA

Abstract: Context is a poorly used source of information in our computing environments. As a result, we have an impoverished
understanding of what context is and how it can be used. In this paper, we provide an operational definition of context and discuss the
different ways in which context can be used by context-aware applications. We also present the Context Toolkit, an architecture that
supports the building of these context-aware applications. We discuss the features and abstractions in the toolkit that make the task of
building applications easier. Finally, we introduce a new abstraction, a situation which we believe will provide additional support to
application designers.

Keywords: Application support; Context; Context-awareness; Situation-awareness

1. Introduction

Humans are quite successful at conveying ideas
to each other and reacting appropriately. This is
due to many factors: the richness of the language
they share, the common understanding of how
the world works, and an implicit understanding
of everyday situations. When humans talk with
humans, they are able to use implicit situational
information, or context, to increase the conversa-
tional bandwidth. Unfortunately, this ability to
convey ideas does not transfer well to humans
interacting with computers. In traditional inter-
active computing, users have an impoverished
mechanism for providing input to computers.
Consequently, computers are not currently
enabled to take full advantage of the context
of the human-computer dialogue. By improving
the computer’s access to context, we increase the
richness of communication in human-computer
interaction and make it possible to produce more
useful computational services.

In order to use context effectively, we must
understand what context is and how it can be
used, and we must have architectural support.
An understanding of context will enable appli-
cation designers to choose what context to use in
their applications. An understanding of how
context can be used will help application
designers determine what context-aware beha-
viours to support in their applications. Finally,
architectural support will enable designers to
build their applications more easily. This archi-

tectural support has two parts: services and
abstractions.

In this paper, we will review previous
attempts to define and provide a characterisation
of context and context-aware computing, and
then present our own definition and character-
isation. We then discuss how this increased
understanding informs the development of a
shared infrastructure, the Context Toolkit1, for
context-sensing and context-aware application
development. We discuss both the services
offered by the toolkit and the programming
abstractions it provides to designers.

2. What is Context?

To develop a specific definition that can be used
prescriptively in the context-aware computing
field, we will look at how researchers have
attempted to define context in their own work.
While most people tacitly understand what
context is, they find it hard to elucidate. Previous
definitions of context are done by enumeration
of examples or by choosing synonyms for
context.

2.1. Previous definitions of context

In the work that first introduces the term
‘‘context-aware’’, Schilit and Theimer [1] refer
to context as location, identities of nearby

4

Springer-Verlag London Ltd
Personal and Ubiquitous Computing (2001) 5:4–7

1The Context Toolkit can be downloaded from http://
www.cc.gatech.edu/fce/contexttoolkit

people and objects, and changes to those objects.
These types of definitions that define context by
example are difficult to apply. When we want to
determine whether a type of information not
listed in the definition is context or not, it is not
clear how we can use the definition to solve the
dilemma.

Other definitions have simply provided syno-
nyms for context; for example, referring to
context as the environment or situation [2–4].
As with the definitions by example, definitions
that simply use synonyms for context are
extremely difficult to apply in practice. The
definitions by Schilit et al. [5] and Pascoe [6] are
closest in spirit to the operational definition we
desire. Schilit et al. claim that the important
aspects of context are: where you are, who you
are with, and what resources are nearby. Pascoe
defines context to be the subset of physical and
conceptual states of interest to a particular
entity. These definitions are too specific. Con-
text is all about the whole situation relevant to
an application and its set of users. We cannot
enumerate which aspects of all situations are
important, as these will change from situation to
situation. For this reason, we could not use these
definitions provided.

2.2. Our definition of context

Context is any information that can be used to characterise the
situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and applications themselves.

This definition makes it easier for an application
developer to enumerate the context for a given
application scenario. If a piece of information
can be used to characterise the situation of a
participant in an interaction, then that informa-
tion is context. Take the canonical context-
aware application, an indoor mobile tour guide,
as an example. The obvious entities in this
example are the user, the application and the
tour sites. We will look at two pieces of
information – weather and the presence of
other people – and use the definition to
determine whether either one is context. The
weather does not affect the application because
it is being used indoors. Therefore, it is not
context. The presence of other people, however,
can be used to characterise the user’s situation. If
a user is travelling with other people, then the
sites they visit may be of particular interest to
them. Therefore, the presence of other people is

context because it can be used to characterise
the user’s situation.

3. Defining Context-Aware
Computing

Context-aware computing was first discussed by
Schilit and Theimer [1] in 1994 as software that
‘‘adapts according to its location of use, the
collection of nearby people and objects, as well
as changes to those objects over time’’. Since
then, there have been numerous attempts to
define context-aware computing, most of which
have been too specific [7].

3.1. Our definition of context-aware

A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends
on the user’s task.

We have chosen a general definition of context-
aware computing. When we try to apply previous
definitions to established context-aware applica-
tions, we find that they do not fit.

3.2. Features for context-aware
applications

Similar to the problem of defining context-
aware, researchers have also tried to specify the
important features of a context-aware applica-
tion [5,6]. Again, these features have tended to
be too specific to particular applications.

Our proposed categorisation combines the
ideas from previous taxonomies and attempts to
generalise them to satisfy all existing context-
aware applications. There are three categories of
features that a context-aware application can
support:

. presentation of information and services to a
user

. automatic execution of a service for a user

. tagging of context to information to support
later retrieval.

4. Support for Building
Applications

With an understanding of what context is and
the different ways in which it can be used,
application builders can more easily determine
what behaviours or features they want their

5

Understanding and Using ContextUnderstanding and Using Context

applications to support and what context is
required to achieve these behaviours. However,
something is still missing. Application builders
may need help moving from the design to an
actual implementation. This help can come in
two forms. The first is a combination of
architectural services or features that designers
can use to build their applications from. The
second form is abstractions that allow designers
to think about their applications from a higher
level. We have built an architecture, the
Context Toolkit, that contains a combination
of features and abstractions to support context-
aware application builders. In this section, we
will discuss the features and abstractions in the
Context Toolkit, and propose a new abstraction.

4.1. Features for context-aware
applications

The Context Toolkit makes it easy to add the
use of context to existing non-context-aware
applications and to evolve existing context-
aware applications. In addition, the architecture
makes context-aware applications resistant to
changes in the context-sensing layer. It encap-
sulates changes and the impact of changes, so
applications do not need to be modified.

Our architecture is built on the concept of
enabling applications to obtain the context they
require without them having to worry about how
the context was sensed. In a previous work, we
presented the context widget [8], an abstraction
that implements this concept. A context widget
is responsible for acquiring a certain type of
context information and it makes that informa-
tion available to applications in a generic
manner, regardless of how it is actually sensed.
Applications can access context from widgets
using traditional poll and subscribe methods,
commonly available with graphical user interface
(GUI) widgets.

With most GUI applications, widgets are
instantiated, controlled and used by only a single
application. In contrast, our context-aware
applications do not instantiate individual con-
text widgets, but must be able to access existing
ones, when they require. To meet this require-
ment, context widgets operate independently from
the applications that use them. This eases the
programming burden on the application designer
by not requiring them to maintain the context
widgets, while allowing easy communication
with them. Because context widgets run inde-

pendently of applications, there is a need for
them to be persistent, available all the time.

Because an important part of context is
historical information, the Context Toolkit
provides support for the storage of context.
Context widgets automatically store all of the
context they sense and make this history
available to any interested applications. Appli-
cations can use historical information to predict
the future actions or intentions of users. This
prediction or interpretations functionality is
encapsulated in the context interpreter abstrac-
tion. Interpreters accept one or more types of
context and produce a single piece of context.
An example is converting from a name to an
email address. A more complicated example is
interpreting context from all the widgets in a
conference room to determine that a meeting is
occurring.

Traditional user input comes from the key-
board and mouse. These devices are connected
directly to the computer they are being used
with. When dealing with context, the devices
used to sense context most probably are not
attached to the same computer running the
application. For example, an indoor infrared
positioning system may consist of many infrared
emitters and detectors in a building. The sensors
must be physically distributed and cannot all be
directly connected to a single machine. The
Context Toolkit makes the distribution of the
context architecture transparent to context-
aware applications, mediating all communica-
tions between applications and components.

The final abstraction supported by our archi-
tecture is aggregation. Context aggregators aggre-
gate or collect context. The notion of an
aggregator comes directly from our definition of
context. We defined context as information used
to characterise the situation of an entity. If we
think of a context widget as being responsible for
a single piece of information, we need an
abstraction to represent an entity. This abstrac-
tion, a context aggregator, is responsible for all
the context for a single entity. When designers
think about context and interactions, it is
natural for them to think in terms of entities,
and that makes an aggregator the correct
abstraction to use for building applications.
Aggregators gather the context about an entity
(e.g. a person) from the available context
widgets, behaving as a proxy to context for
applications.

6

A. K. Dey

To summarise, the Context Toolkit supports
common features required by context-aware
applications: capture and access of context,
storage, distribution, and independent execution
from applications. The toolkit provides three
abstractions: widgets, interpreters and aggrega-
tors.

4.2. The situation abstraction

The support provided by the Context Toolkit
has enabled us to build a number of applications
that would otherwise have been difficult to build.
However, we have recently been experimenting
with a new type of abstraction for supporting
application builders. This new abstraction, a
situation, is at a level above widgets, interpreters
and aggregators.

The idea of the situation abstraction was also
derived from our definition of context. Cur-
rently, application designers need to explicitly
poll and subscribe to widgets and aggregators for
context information and call on interpreters to
determine when relevant entities are in a
particular state so they can take action. This
collection of states can be described as a
situation.

The situation abstraction is exactly that: a
description of the states of relevant entities. We
believe that providing this description requires
less effort than determining which individual
context components need to be contacted and
determining when the collective situation has
been realised or satisfied. Instead, the Context
Toolkit is responsible for the translation of the
description to the ‘‘wiring’’ of the context
components and for determining when the
individual elements of the situation have been
collectively satisfied. Now context-aware appli-
cation designers can concentrate on the heart of
the design process: determining what context-
aware features their application should support
and when should they be enacted.

We currently have limited support for the
situation abstraction. We are struggling with the
tradeoff between supporting extremely complex
situations and providing a simple method for
describing situations. Ideally, we would like to
support both simultaneously. By simplifying the

process for determining when interesting events
occur, the situation abstraction may prove to be
useful for end users. One of the holy grails of
context-aware computing is to have applications
that do the right thing at the right time for users.
While designers who have domain-specific
expertise can determine part of the solution,
they will obviously not think of everything that
is needed to support individual users. It is the end
user who is in the best position to further
specialise context-aware applications to meet
their individual needs. The situation abstraction
may allow users to perform this specialisation.

We would like to carry out user studies to
investigate whether the situation abstraction is
appropriate for both application designers and
end-users and how it compares to the original
abstractions of widgets, aggregators and inter-
preters.

References

1. Schilit B, Theimer M. Disseminating active map
information to mobile hosts. IEEE Network 1994; 8: 22–32

2. Brown PJ. The Stick-e document: a framework for creating
context-aware applications. In: Proceedings of Electronic
Publishing ’96; 259–272

3. Rodden T, Cheverst K, Davies K, Dix A. Exploiting
context in HCI design for mobile systems. Workshop on
Human Computer Interaction with Mobile Devices,
1998, http://www.dcs.gla.ac.uk/njohnson/papers/mobile/
HCIMD1.html

4. Ward A, Jones A, Hopper A. A new location technique
for the active office. IEEE Personal Communications 1997;
4: 42–47

5. Schilit B, Adams N, Want R. Context-aware computing
applications. In: First International Workshop on Mobile
Computing Systems and Applications, 1994; 85–90

6. Pascoe J. Adding generic contextual capabilities to
wearable computers. In: Proceedings of 2nd International
Symposium on Wearable Computers, 1998; 92–99

7. Dey AK, Abowd GD. Towards a better understanding of
context and context-awareness. CHI’2000 Workshop on
the What, Who, Where, When, and How of Context-
Awareness, 2000, ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/
99-22.pdf

8. Salber D, Dey AK, Abowd GD. The Context Toolkit:
aiding the development of context-enabled applications.
In: Proceedings of CHI’99; 434–441

Correspondence to: A. K. Dey, Future Computing Environ-
ments Group, College of Computing & GVU Center,
Georgia Institute of Technology, Atlanta, GA, 30332-0280,
USA. Email: anind@cc.gatech.edu

7

Understanding and Using ContextUnderstanding and Using Context

