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ABSTRACT 

Time series analyses are statistical methods used to assess trends in repeated measurements taken 

at regular intervals and their associations with other trends or events taking account of the 

temporal structure of such data. Addiction research often involves assessing associations between 

trends in target variables (e.g. population cigarette smoking prevalence) and predictor variables 

(e.g. average price of a cigarette) known as a multiple time series design, or interventions or events 

(e.g. introduction of an indoor smoking ban) known as an interrupted time series design. There are 

many analytical tools available, each with its own strengths and limitations. This paper provides 

addiction researchers with an overview of many of the methods available (GLM, GLMM, GLS, 

GAMM, ARIMA, ARIMAX, VAR, SVAR, VECM), and guidance on when and how they should be used, 

sample size determination, reporting, and interpretation. The aim is to provide increased clarity for 

researchers proposing to undertake these analyses concerning what is likely to be acceptable for 

publication in journals such as Addiction. Given the large number of choices that need to be made 

when setting up time series models, the guidance emphasises the importance of pre-registering 

hypotheses and analysis plans before the analyses are undertaken. 
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INTRODUCTION 

Time series analyses (TSA) are statistical methods for the analysis of multiple measurements of one 

or more variables over time. Sometimes these data reflect responses collected from a single 

research participant; but more commonly in social, behavioural and epidemiological research, TSA 

are used to study a variable of interest aggregated for a group, region or country. TSA can be a 

powerful tool for informing public health policy. There are comprehensive modules on TSA in 

statistical software (e.g. R and STATA) and several textbooks (1-4). TSA require the researcher to 

navigate a process of statistical modelling that requires a grasp of concepts, terminology and 

parameters that will be new to many in the addiction sciences.  

This article provides an introduction to the topic, tailored to addiction research, setting out when it 

is appropriate to use each method and how to report and interpret findings. The paper is 

structured in four parts: Part 1 covers uses of TSA and how to plan the analyses; Part 2 focuses on 

TSA concepts and requirements; Part 3 looks at how to conduct TSA; and Part 4 describes how to 

report the results. For space reasons, we limit the article to the main TSA approaches that are 

supported by major statistical packages. The main types of analysis covered are: Generalised Least-

Squares (GLS) and Generalised Linear Mixed Models (GLMM), Generalised Additive Mixed Models 

(GAMM), Autoregressive Integrated Moving Average (ARIMA) and Autoregressive Integrated 

Moving Average with Exogenous Variables (ARIMAX) models, Vector Autoregression (VAR) and 

Structural Vector Autoregressive models (SVAR), and Vector Error Correction Models (VECM). 

PART 1: USES OF TSA AND PLANNING THE ANALYSES 

Uses of TSA 

There are several types of question that can be addressed by TSA. Simple ‘trend analysis’ assesses 

whether there is evidence for a change in the level of a series over time. For example, a study of 

first year college students used TSA to assess whether there was an increase in use of tobacco, 

alcohol and cannabis at the beginning and end of the academic year (5).  

‘Multiple TSA’ assess whether a temporal trend in a target variable is linked to trends in other 

variables. In the smoking field, Beard et al examined whether the growth in prevalence of e-

cigarette use was linked to a decline in the use of licensed nicotine products such as nicotine skin 

patches (6). Langley et al assess the temporal association between a standardised measure of 

tobacco control advertising exposure on television and the number of calls to a national stop 
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smoking helpline (7). Brunt et al assess the association between changes in the price and quality of 

cocaine and changes in the incidence of addiction treatment episodes and hospital admissions (8). 

‘Interrupted TSA’ assess whether an event or shift in policy was associated with a change in the 

trend of a target variable. For example, Holder and Wagenaar studied changes in the rate of road 

traffic crashes after the introduction of a law on training for responsible alcohol-serving in licensed 

premises (9). An interrupted TSA was used to evaluate the effect on smoking prevalence of the 

partial tobacco point of sale display ban in large shops in England (10). Other studies have used 

interrupted TSA to evaluate: the impact on smoking cessation of temporarily suspending large-scale 

tobacco mass media campaigns (11); the introduction of the smoking cessation drug, varenicline, 

on prescribing of smoking cessation medications (12); the impact of introducing flexible alcohol 

trading hours on rates of violence, robbery and total crime (13); and changes in sale of alcohol 

following a ban on discounted alcohol products in shops and supermarkets (14). 

TSA are also used in ‘forecasting’: projecting forward from past values of a series. For example, 

alcohol consumption over a prospective 10-year period was forecast for the Czech Republic (15). In 

the United States, age-specific mortality rates for men and women have been forecast using the 

decline in the prevalence of tobacco smoking (16).  

Data sources and design issues 

There are many suitable data sources for TSA, including official registries, repeated cross-sectional 

surveys and longitudinal studies of cohorts and panels. Examples include the Swiss HIV Cohort 

Study established in 1988 which continuously enrolled HIV-infected people who attended out-

patient clinics at seven centres (17), and The Health Improvement Network (THIN) database in 

England (18, 19). TSA can be difficult to use in cohort and panel samples because of follow-up 

attrition (20), but this situation is improving with the advent of mobile/smartphone technologies 

(21-23). 

At an individual level, data can be used from multiple repeated measurements from individuals in 

n-of-1 studies. For example, ecological momentary assessment generates large quantities of data 

from individuals (24) and digital mobile applications similarly can generate time series on usage, 

inputs, processes and outcomes (25). 

In multiple TSA the coefficient linking a given input series to an output series can be interpreted as 

the association between the input and output series after adjusting for or removing any underlying 

trend and other input series included in the analysis. In interrupted TSA, a ‘dummy’ variable (taking 
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the value 0 or 1) is used in the input series to reflect time points when events occur, or pre-versus 

post-initiation of a policy etc. The resulting coefficient can be interpreted as the change in the value 

or trend of the outcome variable linked to the presence or onset of the event or policy after 

adjusting for or removing any underlying trend and other input variables (11).  TSA can be used 

with many types of data, including counts and percentages (e.g. number of heroin users arrested, 

the number of fatal drug-related poisoning cases, and the prevalence of adult smoking), binary data 

and continuous measures (e.g. amount spent on alcohol per week).  

It is important to appreciate limitations of TSA. First, they can only assess associations at the 

temporal granularity of the series. Thus if the data are weekly, TSA are assessing week-by-week 

changes, not changes over a longer or shorter time frame. For example, showing an association 

between monthly spend on anti-tobacco mass media campaigns and attempts to stop smoking 

does not mean that a similar association would be found with annual spend. Secondly, TSA have 

limited ability to detect associations between input and output variables that accumulate over a 

long period. For example, anti-alcohol mass media campaigns may not have a detectable effect in 

the short term but may contribute to cultural change that accumulates over a period of years. 

Detecting such an effect would be very problematic for TSA. 

Sample size  

Statistical power calculations can inform study planning (26). Unfortunately, power calculations, 

such as those provided for linear regression and ANOVA in G*Power(27, 28), are not suitable for 

time series data.  In TSA it is necessary to account for autocorrelation, seasonality and lag effects 

(see below).  Calculations are provided by McLeod and Vingili (29, 30) for interrupted time series 

designs. However, the recommended method is to use a power simulation, and there are several 

statistical packages that can do this (e.g. R). The procedure involves running many TSA models on 

randomly generated data with expected parameter estimates and calculating power from the 

proportion of observations which return results at a given level of statistical significance.  

In general, the sample size required will increase with the number of parameters to be estimated, 

and the amount of noise in the data. It is important to accurately reflect changes over time in the 

simulation and to include all covariate estimates of interest. There should always be more time 

points than the total number of variables, autocorrelation and lag terms and some experts 

recommend at least 50-100 time points (31-33). At least two years of monthly data has been 

proposed to allow adjustment for seasonality, with a preference for equal proportions of data 

collection before and after the event or change in the input variable for an interrupted TSA (26). 
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Individual-level analyses generally provide greater power, and a larger number of observations 

aggregated to create each data point are likely to give more stable estimates (34).  

PART 2: TIME SERIES CONCEPTS  

The data for any TSA are typically partitioned into three main components: a trend component, a 

seasonal component and a random component (35). As an example, Figure 1 displays a 

hypothetical de-composition of data on the prevalence of excessive alcohol consumption over time 

(36 monthly waves of data collection).  

The ‘trend’ chart in the top right-hand panel shows a plotted trend derived from observed data in 

the top left panel (using a 12-month two-point moving average). It appears that the prevalence 

declines in a roughly linear manner over time. 

The ‘seasonal’ chart in the bottom left panel in Figure 1 shows a cyclical pattern derived from the 

data in the top left panel. We note that weekly seasonality can be modelled if the data are 

collected daily. This would reflect cyclical changes due to the day of the week (e.g. showing that 

more alcohol is consumed at the weekend).  

The ‘random’ chart shows the component that represents unexplained variance. This represents 

any remaining variation in the series that is not accounted for by the trend and seasonality 

components.  

Underlying trends and stationarity  

To make inferences about the impact of the introduction of a policy or intervention or how two 

time series covary it is important to address any underlying long-term trends. This can be done 

either a) by systematically modelling the trend or b) removing it from the data. Screening a data 

series for an underlying trend is achieved by assessing the association between values and their 

position in the series. 

Modelling of the underlying trend in a series can be accomplished by including a linear or 

polynomial term reflecting time points as an independent variable in a statistical model. Greater 

flexibility can be achieved with the use of fractional polynomials or what are known as ‘restricted 

cubic splines’.  

Removing any underlying trend involves transforming the data in some way to make it ‘stationary’ 

(stationary refers to a time series is one whose statistical properties such as mean, variance, 
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autocorrelation, etc. are all constant over time).. There are several options for making a series 

stationary. First, one can remove a trend through ‘differencing’, which involves using the 

differences between observations rather than the observations themselves. A series of ‘first 

differences’ (subtract values at time t from values at time t+1) will work to remove linear trends 

(36). ‘Seasonal differencing’ involves subtracting values from values that are a fixed number of time 

points ahead (e.g. taking values at t from values at t+12 in monthly data).  

In situations where there is evidence of a non-constant slope (e.g. an exponential trend), second 

differences (taking the first difference of the already differenced series) will often render the series 

stationary (37) In practice, it is almost never necessary to go beyond second differencing (36). 

However, if a series does exhibit higher degree polynomial trends, an order of differencing equal to 

that degree may be required (38).  

There are several ‘unit root’ tests that can help determine the number of differences required for 

the time series to be made stationary. Two of the most commonly used of these are the augmented 

Dickey-Fuller (ADF) test and the Phillips Perron tests (39, 40).  

Researchers should guard against over-differencing. To assess the presence of over-differencing, 

the autocorrelation of the differenced data should be calculated (see below). A rule of thumb is 

that the lag-1 autocorrelation should not be more negative than -0.5 (see section on 

autocorrelation for more details) (41). 

Another way to address non-stationarity is to use natural logarithmic or square root 

transformations (38). Of the two, the natural logarithmic transformation is often preferred as it has 

the statistical property of converting absolute changes to percentage changes, which makes for 

easier interpretation of the outputs. The main priority here is to stabilise the variance of the 

underlying series. Failure to stabilise the variance can reduce forecasting precision and undermine 

accurate assessment of associations (42). It is often necessary to difference and transform a time 

series. 

In the previous example of prevalence of excessive alcohol consumption, the ADF test suggested 

that one order of differencing was required with no seasonal differencing. Figure 2 shows a plot of 

the time series data for excessive alcohol consumption following a natural log transformation and 

first order differencing. 

Autocorrelation 
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There is autocorrelation within a series if values in the series are in some way statistically 

associated with earlier values. There are two main types of autocorrelation: autoregressive (AR) 

and moving average (MA). The former occurs when values in a series are correlated with earlier 

values. The latter occurs when values in a series are a function of the degree of prediction error of 

earlier values after taking account of any correlation between the values. For example, AR(1) means 

that values of a series at one point in time are correlated with immediately preceding values. MA(1) 

means that values of a series are a function of the difference between the immediately preceding 

value and a predicted value (the error) from a regression of values on to immediately preceding 

values. In both cases the ‘lag’ is said to be one. Where the autocorrelations involve preceding 

values going further back from the current values, the lag value increases. 

The degree of autocorrelation across a set of lags is called the autocorrelation function (ACF) and 

this plays a key role in model selection and evaluation. To determine which type of autocorrelation 

applies in a given case, the researcher checks the ACF and Partial ACF (PACF). The PACF shows 

autocorrelations between values at a point in time and the lagged values 1, 2, 3 etc in which 

correlations for higher lags are adjusted for correlations at lower lags.  

As a rule of thumb, if the PACF displays a sharp cut-off (for example a large lag-1 autocorrelation 

but small lag autocorrelation and/or the lag-1 autocorrelation is positive), it is best to add an AR 

term. If the ACF displays a sharp cut-off and/or the lag-1 autocorrelation is negative, the addition of 

an MA term should be considered (43). For example, the ACF and PACF in Figure 3 suggest an MA 

and AR autocorrelation term may be needed, as both cut off abruptly after a lag of 1 and 2 

respectively. 

Lagged effects 

The effects of an intervention or event can be gradual or delayed. In these cases, lagged effects 

need to be considered in the analysis (34). For example, a hypothetical intervention may have been 

introduced in July 2008 but publicity campaigns were not implemented until two months later. In 

this instance one would model the impact of the intervention in July 2008 and the impact of the 

intervention assuming a delay in August 2008 and September 2008. Alternative models with varying 

lag effects can be compared using a measure of fit such as the Bayesian Information Criterion (BIC) 

or Akaike's Information Criterion (AIC(43)). 

Lagged effects can also be encountered in multiple TSA. For example, monthly prevalence of 

smoking cessation may not immediately impact on alcohol consumption but may start to have an 

effect a month or two later (44). The presence of lags can be assessed using the same methods as 
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for interrupted TSA or by using the sample cross correlation function (CCF). The CCF provides a set 

of sample correlations between the input series (X) at time t+h and the output series (Y) at time t, 

where h can be any value reflecting past or future points of data collection. For example, the 

researcher may be interested in the effect on the output series (Y) at month three of the input 

series (X) two months prior i.e., 𝑋3−2~𝑌3 (3).  

Generally, ‘pre-whitened’ data are used in conjunction with the CCF as this aids interpretation by 

removing autocorrelation in the series that may cause spurious cross-correlation effects. Pre-

whitening decorrelates the input series and then applies the same filter (autoregressive model) to 

the output series. 

Confounding 

Causality can generally be inferred from randomised controlled trials (i.e. where participants are 

randomly assigned to an intervention versus comparison group) and procedures are put in place to 

remove bias, such as blinding participants. Although causality can less confidently be inferred from 

observational research designs, an assessment can be done to determine how far causal inference 

is justified (e.g. using the Bradford Hill Criteria (45)). Whether the design is experimental or 

observational, it is important to consider, measure and adjust for potential confounding in TSA. At 

the individual level this may involve including socio-demographic characteristics; at the population 

level it may involve other interventions and policies that are being introduced in that population. 

These potential confounders should be pre-defined in the analysis plan.  

Outliers 

Outliers are values that are very different from the majority of those in a time series. Outliers can 

be problematic for TSA because they may exert a disproportionate influence on coefficient 

estimates (46). Outliers may be justifiably removed if they are determined to be errors and they fall 

at the start or end of the series.  

One useful package is ‘tsoutliers’ in R which identifies and suggests possible replacement values by 

using an iterative outlier detection approach descibed by Chen and Liu (47, 48). However, this 

procedure may misidentify a valid shift in level as an outlier or fail to detect outliers due to masking 

(49). If outliers are removed it is important to run and report a sensitivity analysis with their 

inclusion (50). The procedure for detecting and removing outliers should be pre-specified in the 

statistical analysis plan to reduce risk of researcher bias.  
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Missing data  

Missing data present major problems for TSA. If TSA are being conducted on aggregated data from 

surveys or cohorts and these have differing amounts and types of missing data in the samples 

generating the aggregate value, any temporal changes may reflect this ‘missingness’ rather than 

anything real in the population.  

If data for particular time points are completely missing, TSA cannot be undertaken unless 

assumptions are made to  impute those missing values. ‘Last observation carried forward’ or ‘mean 

subtitution’ are sometimes used but may create bias (51). This is especially true for multiple TSA 

where there are additional levels of complexity in the form of lagged relationships and 

autocorrelations that need to be accounted for.  

An alternative is multiple imputation. This proceeds by predicting missing data with plausible values 

to create multiple completed datasets and then applying standard complete-data procedures to 

each one and combining the results (52). Several multiple imputation packages designed for time 

series data are available. The multiple imputation package ‘Amelia’ in R works by directly adding 

lags and time, and its polynomials, as covariates (53). Other R packages for multivariate data 

include MICE (54) and VIM (55). Several methods have also been proposed for univariate series (56) 

including ‘imputeTS’ (57). 

PART 3: SELECTING AN ANALYSIS MODEL 

There are numerous statistical methods that can be used to analyse time series data. The choice of 

method depends on the study design, the research question and the number of input and output 

series. We provide R code for the analyses specified below (Appendix 1 in the Supplementary File). 

Generalised Linear Models and Linear Regression  

In the absence of autocorrelation, generalised linear models (e.g. Poisson regression for low 

frequency rate data and logistic regression for binary data) and linear regression (including its 

variants polynomial regression, power and logarithmic regression) can be applied if there is interest 

in descriptive or explanatory modelling by regressing an output series (𝑦) on to a time trend: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑛𝑑 

If the TSA question is the impact of an event or intervention, a ‘segmented (or piecewise) regression’ 

can be used by adding two additional terms: 1) a variable reflecting the introduction of the 
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intervention (e.g. a dummy variable coded for before the event [0] and after [1]) and 2) a variable 

reflecting the change in slope following the intervention (e.g. a variable coded for before the event 

[0] and after [1…n], where n is the total number of time points to the end of the series): 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑛𝑑 + 𝛽2𝑙𝑒𝑣𝑒𝑙𝑡 + 𝛽3𝑠𝑙𝑜𝑝𝑒 + 𝑒𝑡 

An alternative specification commonly used is as follows: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑛𝑑 + 𝛽2𝑙𝑒𝑣𝑒𝑙𝑡 + 𝛽3[𝑡𝑟𝑒𝑛𝑑 ×  𝑙𝑒𝑣𝑒𝑙] + 𝑒𝑡 

In this case, 𝛽1 represents the underlying pre-intervention trend, 𝛽2 is the level change following the 

intervention and 𝛽3 indicates the slope change following the intervention. The prior specification is 

preferred as interaction terms can become complex, particularly if there is interest in estimating the 

mediation effect of other variables. Interpretation also often requires further data preparation, such 

as ‘centering’ (58).  

If the question is how two time series co-vary, this can be assessed by including the input time series 

data (x) as a continuous predictor variable. The regression model is specified as: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑛𝑑 + 𝛽2𝑥 + 𝑒𝑡 

Lag effects can be assessed by deriving a backward shifted variable and including this along with the 

original version in the model. This would specify the associations between past values of x and 

current values of y plus current values of x and current values of y, whilst adjusting for each other. 

However, the analyses described below are preferred to test for lag effects because the inclusion of a 

backward shifted variable in the model can result in high collinearity of input variables.  

To adjust for seasonality, four breakpoints can be used to reflect the four seasons or 12 to reflect 

each month. An alternative is to estimate discrete intercepts for each month (e.g. including dummy 

variables to represent each month), but this is often undesirable because the degrees of freedom are 

increased and power is reduced. Moreover, seasonal variation is more realistically represented in a 

smooth, continuous rather than discrete fashion. A smoother reflection of seasonality can be 

adjusted for by calculating a seasonal index which is an average of residuals for a given time period, 

and subtracting these from the data (59).  

Natural ‘cubic splines’ can also be included in the regression model (60). A cubic spline consists of 

piecewise third-order polynomials - a set of cubic curves joined at break points.  The choice between 

the seasonal index and natural cubic splines depends on whether seasonal effects are theoretically 

important, with the former being easier to interpret but the latter usually more likely to represent 
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the underlying trend. It should be noted that to model monthly or weekly seasonality the time series 

must contain at least two cycles (i.e. two years for monthly seasonality or two weeks for daily 

seasonality). There are also other cyclical environmental factors that may need to be considered, 

such as temperature and weather (61). 

Generalised Least-Squares  

An extension of linear regression known as Generalised Least-Squares (GLS) can estimate a linear 

model at the individual or aggregated level while allowing possible unequal variances and 

correlations between error terms (62). GLS models have been successfully applied in the addictions 

field. For example, they have been used to estimate the association between alcohol consumption 

and mortality and liver cirrhosis rates (63, 64). GLS cannot be used with non-normally distributed 

data, and there can be inflated probabilities of Type 1 error when the covariance structure of the 

data is incorrectly specified (65). 

Generalised Linear Mixed Models  

For time series data with repeated observations on individuals in a sample, autocorrelation can be 

accounted for in a Generalised Linear Mixed Model (GLMM; also known as a hierarchical or multilevel 

model). A GLMM includes a random term with time nested within individuals, and with a covariance 

matrix consisting of AR and/or MA terms. Any misspecification of the covariance matrix can produce 

biased estimates (66).  

Where there is uncertainty about the covariance matrix, an alternative approach is Generalised 

Estimating Equations (GEEs). GEEs treat the covariance matrix of responses as nuisance parameters 

and account for correlations using what are known as ‘sandwich-type’ variance estimates (66). It 

should be noted that GEEs have their own limitations and can only work at one level of clustering 

(67). GLMM and GEE are only suitable where data on individuals are being used to derive time series 

parameters at the population level (i.e. where there is clustering).  

Generalised Additive Models and Generalised Additive Mixed Models 

In recent years, there has been a move towards semi-parametric extensions of GLM and GLMM, 

called Generalised Additive Models or Generalised Additive Mixed Models (GAM and GAMM). The 

ideas behind these extensions are: 1) that seasonality is adjusted for using data driven smoothing 

‘splines’ comprised of a series of knots (e.g. 12 knots for 12 months) which have been shown to 

yield regression coefficients and variance estimates that are less biased; 2) smoothing terms that 
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can offer a flexible alternative to specifying polynomial time trend terms in GLM and GLMM and; 3) 

although GAMM allows clustering effects to be specified, there is no requirement for a grouping 

level, so it can be used with pre-aggregated data (68).  

GAMM also has limitations, including increased computational demands for complex modelling (69, 

70). This is particularly true for binary outcomes when ‘penalised quasi-likelihood’, an alternative to 

maximum likelihood when there is evidence of over-dispersion, is used to estimate parameters. 

Over-dispersion is the presence of greater variability in a data set than would be expected and its 

absence is a pivotal assumption for logistic and Poisson models. Quasi-likelihood models tend to 

underestimate the standard error of the fitted parameters for Poisson data with a mean number of 

counts of less than five (71). A number of recommendations have been given to improve 

computational performance issues, including the use of a Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) optimiser and the use of grouping factors when specifying the correlation structure (71).  

Autoregressive Integrated Moving Average (ARIMA) 

Autoregressive Integrated Moving Average (ARIMA) refers to regression-based models that assume 

time series values are continuous or count-based measurements. These models are typically used 

to model the impact of an intervention and more accurately take account of autocorrelation by the 

inclusion of both seasonal and non-seasonal AR and MA terms (72, 73). ARIMA modelling is more 

flexible than GAMM for interrupted TSA because it allows the researcher to estimate whether 

changes in the output series pre-empted the intervention and whether these effects were transient 

or permanent. To achieve this, the input variables are entered as ‘dummy’ codes (either 1 or 0 

depending on whether the intervention is hypothesised to be in operation or not). For example, if a 

pulse effect is hypothesised this would take values 0 before the intervention, 1 during the period 

where it is implemented, and 0 after the intervention.  

ARIMA models are often denoted as ARIMA(q,d,p), where q is the number of AR terms, d is the level 

of differencing and p is the number of MA terms. If a seasonal model is to be specified, known as a 

seasonal ARIMA or SARIMA, then this is often denoted as ARIMA(q,d,p)(Q,D,P)s, where s reflects the 

seasonal order (e.g. 12 if monthly or 4 if quarterly), Q is the seasonal AR terms, D seasonal 

differencing and P seasonal MA terms.  

ARIMA models are affected by issues of non-linearity, multicollinearity and heteroscedasticity (43, 

74).  Violations of these assumptions underlying the model may be managed by data transformation, 

but this risks introducing bias and losing efficiency (75). Researchers can judge model fit with a 

variety of indicators including the AIC and BIC where the lowest values can point to the preferred 
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number of lags and extent of AR and/or MA autocorrelation (35). The Ljung-Box test for white noise 

and ACF of the residuals of the best fitting models can also indicate whether additional terms are 

needed.  

ARIMA models have the additional assumption that coefficients of the autocorrelation terms should 

contribute significantly to the model and fall within the bounds of stationarity and invertibility; i.e. 

the coefficient values for the autocorrelation terms should be >1 or <1 in total). This ensures that the 

series is stationary around its mean. For example, if two AR terms are included in a model with values 

of 0.5 and 1.1, this would violate the assumption. The solution would be to return to a simpler model 

with one AR term. As with GAMM and GLMM there are concerns regarding model misspecification 

and researchers are advised to use a variety of methods during model selection to inform decisions 

about parameter inclusion (e.g. the ACF, PACF, plots of residuals and AIC or BIC). 

Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) 

Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX)  is an extension of 

ARIMA that is particularly suited to undertaking multiple TSA: explaining changes in the value of an 

output data series as a function of current and prior values of one or more input series (43, 76). For 

example, it was recently used to assess whether changes in smoking prevalence had been associated 

with changes in the prevalence of high-risk drinking at a population level in England (44).  

ARIMAX models have an additional assumption known as ‘weak exogeneity’ which specifies that 

there is no reverse causal pathway (i.e. Y can depend on the lagged values of X, but not vice versa). 

This can be assessed with the Granger Causality test (77). Some argue that this test can also be used 

to support the claim that the input variable is having a causal effect on the output variable, but this is 

only the case if there are no other threats to a causal interpretation (78). 

ARIMAX models have a major advantage over regression-based methods such as GLMM and 

GAMM because they explicitly include the effect of the occurrence order of the values in the series. 

For example, it is possible that both current and past smoking rates affect current levels of 

excessive alcohol consumption. ARIMAX models use chronological information contained in the 

time series through ‘transfer functions’ in which current and past values of an independent variable 

can both be used for prediction (79).  

The major disadvantage of ARIMA and ARIMAX models is their inability to assess moderation 

effects. For example, researchers in a recent comparative analysis of the relationship between 

aggregate alcohol consumption and homicide rates in Russia and in the United States ran separate 
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models for each country and compared the effects. They concluded that the role of alcohol in 

homicide seems to be larger in Russia than in the United States (80). However, they could not test 

the difference between the trends in the different regions directly.  

If a stratified analysis approach is taken in lieu of a direct test of moderation effects, it is 

recommended that standardised coefficients are used to allow comparisons between groups. 

Results can then be interpreted in terms of standard deviations rather than original units. The fit of 

the different models (e.g. for each country) can also be compared using the AIC or BIC. Another 

solution may be the use of a Autoregressive Fractionally Integrated Moving Average (ARFIMA) and 

multilevel modeling (MLM) framework (ARFIMA-MLM) to estimate both individual and aggregated 

level effects (81). However, such models are generally only suitable when modelling long-run 

behaviour. 

Vector Autoregression 

Vector Autoregression (VAR) can be used for most multiple time series analysis and is preferred 

when causal relationships may be bi-directional. It captures linear interdependencies among 

multiple time series simultaneously, with one equation computed per variable. Each equation 

consists of a constant, a lag term which captures the influence of the lag of a variable on itself and 

the lag on the other variable(s), and an error component. Screening of each series for stationarity is 

done by unit root testing and autocorrelation is captured by lags, which are selected using the AIC 

or BIC. Evidence for Granger causality is then sought and the recommended model is fitted, and 

autocorrelation and normality among the residuals are assessed via the Jaques Barra test (82).  

There are several rules of thumbs to help in the selection of the number of lags when running a 

VAR model. It has been suggested that the model should typically include enough lags to capture 

the full cycle of the data (e.g. 12 lags for monthly data). It should be expected that there will be a 

seasonality effect carried over from year to year and across the months, so greater series lengths 

may be necessary. Another rule of thumb, is that the lag length should not use up too many 

degrees of freedom (i.e. max 𝑙𝑎𝑔 = 
𝑡−1

𝑚
, where m is the number of exogenous variables and t the 

number of observations). For example, a time series with 60 periods and three variables should not 

include more than about 20 lags (83). Interpretation of the results of a VAR can be difficult, 

particularly if there are large numbers of lags.  

Orthogonalised Impulse Response Functions (OIRF) are usually plotted to assess how an event 

affects current and future values of one or more output variables. Figure 4 gives a graphical 

representation of the OIRF for a VAR model using simulated data to assess the association between 
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smoking prevalence and prevalence of high-risk drinking. The OIRF shows the change in the 

prevalence of high-risk drinking in response to a change in smoking prevalence in the same month 

and in the subsequent months. The dashed blue line represents the estimate at different time lags, 

and the shaded area is the 95% confidence interval. The IRF suggests that there is an effect of 

smoking prevalence on high-risk drinking prevalence in the same period. A cumulative IRF can also 

be derived which shows the overall effect of an event (i.e. the total change in the response variable 

following a change in the input variable at different time lags).  

Structural Vector Autoregressive models  

VAR models only use the lags of one series and may therefore miss valuable information when 

‘instantaneous’ causality is present (i.e. values in one variable influence values in another within 

the same observation period). As a solution, Structural Vector Autoregressive Models (SVAR) helps 

to model the temporal relationships between series and place restrictions so that relationships can 

be specified in a unidirectional manner. The analysis proceeds following the generation of 

stationary data with the specification of a matrix which contains parameter constraints. In simple 

two-series TSA the matrix is generally specified as: 

[
𝑋 → 𝑋 𝑌 → 𝑋
𝑋 → 𝑌 𝑌 → 𝑌

] 

If the aim is only to assess the relationship from X to Y, it is assumed that the effect of X on X and Y on 

Y is 1, and the effect of Y on X is 0. Therefore, the only parameter that needs to be estimated is XY. 

This would be appropriate for a unidimensional model for the evaluation of tobacco and alcohol 

control policies when it can be assumed that causal relationships run from the policy to the outcome 

but not from the outcome to the policy.  

As with VAR analysis, appropriate lags which account for the presence of autocorrelation can be 

assessed by comparing models using measures of goodness of fit (83). The output is also in the 

form of an impulse response function, which indicates how a change in the variable X affects future 

values of Y. SVAR was used recently to evaluate the effect of tobacco control media campaigns and 

pharmaceutical company-funded advertising for nicotine replacement therapy on smoking 

cessation activity (7).   

Vector Error Correction Models  

VAR and SVAR models are not suitable in the presence of ‘co-integrating relationships’. This 

phenomenon arises when two variables share a common trend, and the linear combination of the 

variables is stationary. For example, the number of cigarettes smoked per day and amount spent on 
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cigarettes per day may both exhibit a downward trend over time. Because both series are driven by 

the same trend, the consumption/expenditure ratio will fluctuate about a constant mean i.e. the 

difference between series has no obvious trend. This is shown graphically in Figure 5. Co-integrating 

relationships can be addressed by re-parameterising the VAR/SVAR model as a Vector Error 

Correction Model (VECM).  

The presence of co-integrated variables can be tested using the Johansen procedure (84). This tests 

the null hypothesis that the test statistic is equal to 0 (i.e. that there is no co-integration at all). If 

co-integration had been present, then a VECM model would be run and an impulse response 

functions obtained. VECM has been used in the addictions field to assess the relationship between 

alcohol advertising, price and consumption, and to monitor illicit psychostimulants and related 

health issues (85, 86). 

Table 1 gives an overview of the key analysis types, what they are used for, required sample sizes, 

statistical packages that can be used in R and what assumptions must be met. Tables 2 and 3 give 

an overview of the stages in GAMM/ARIMA/ARIMAX and VAR/SVAR/VECM, respectively.  

Stages in time series analysis with autocorrelations 

Eight stages are proposed for GAMM and ARIMA/ARIMAX modelling: 1) assess the presence of 

autocorrelation, 2) assess the presence of seasonality, 3) determine if the series is stationary (for 

ARIMAX), 4) identify the number of AR and/or MA terms, 5) identify lags, 6) select the baseline 

model, 7) run the model and check for additional autocorrelation and 8) check the assumption of 

normality, significance of autocorrelation terms and whether they are in the bounds of invertibility 

and stationarity.  

Seven stages are proposed for VAR/SVAR/VECM modelling: 1) determine if the series is stationary, 

2) identify the number of lags, 3) run the model and assess additional autocorrelation, 4) check the 

assumption of normality of the residuals, 5) visualise the dynamic relationships, 6) check for 

causality and 7) check for the presence of co-integrated variables. 

PART 4: REPORTING TSA 

There are several useful guides to reporting TSA, including an extension of the ‘Strengthening the 

Reporting of Observational Studies in Epidemiology’ (STROBE) guideline (34, 87, 88). In this part of 

the paper we extend these to more types of TSA and focus on examples in the field of addiction. A 

summary of our guidelines is provided in Table 4. 
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Statistical analysis plans and related protocols should be registered online prior to data analysis (e.g. 

using Open Science Framework (http://osf.io/) or AsPredicted (http://AsPredicted.org/) (89). 

Changes to the analyses, and additional analyses undertaken after seeing any results should be 

added to that record.  

Research reports should include, as a minimum, information on stationarity, seasonality, 

autocorrelation, lags and criteria for model fit. For interrupted time series designs additional 

information is required in terms of the intervention time point, number of data points pre- and post-

intervention and use of a graphical display with the time points clearly defined.  

Coefficients are interpreted in a similar way to those from a simple regression model except when 

the data have been made stationary prior to data analysis. Interpretation also depends on whether a 

log transformation or equivalent has been performed. As an example, Table 5 provides a set of 

standard interpretations of coefficients under different log transformation scenarios in the presence 

of stationary data. For example, when the input and output time series have been log transformed 

using a natural log transformation and the data made stationary we can interpret the coefficients in 

terms of elasticity i.e. a change of 1% from the overall mean value in the input series leads to a β % 

change from the overall mean in the output series. 

Researchers should also consider the use of Bayes Factors to help in the interpretation of null 

findings. In frequentist statistics, it is not justified to argue that a ‘non-significant’ finding provides 

evidence for the null hypothesis. Jeffreys (90) has proposed that we regard a Bayes Factor of less 

than 1/3rd as providing strong evidence that the null hypothesis is more likely than the experimental 

hypothesis, and a Bayes Factor between 1/3rd and 3 as meaning that the data are insensitive. Several 

software packages are available for the calculation of Bayes Factors including an online calculator 

(91) and R code (92). Both approaches require the specification of an expected effect size (i.e. a 

plausible range of predicted values based on previous studies, judgement or clinical significance), the 

obtained effect size (e.g. mean difference or log odds ratio) and standard error of this parameter. 

For further details see (93).  

DISCUSSION 

Apart from simple trend analyses, there are two main types of TSA: 1) interrupted TSA which are 

used to assess the impact of interventions, events or policies on a time series and 2) multiple TSA 

which aim to assess how two or more time series co-vary. Both have several components that need 

to be considered in the analysis process including the presence of autocorrelation, seasonality and 

http://osf.io/
http://aspredicted.org/
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lags, and the need for log transformations and differencing to ensure stationarity in the mean and 

variance.  

This paper started by considering regression methods which are appropriate for analyses in the 

absence of autocorrelation. For interrupted time series designs in the presence of autocorrelation, 

ARIMA and GAMM are commonly used. Factors to consider when deciding between these two 

options include the nature of the effect (e.g. step level change or pulse effect), and the use of pre-

aggregated versus individual level data. It is more appropriate to use individual level data when 

there is reason to believe that the intervention does not have the same uniform effect across all 

cases. ARIMAX is widely used for multiple TSA as it better accounts for autocorrelation. VAR, SVAR 

or VECM are increasingly widely used for multiple time series and are required when there may be 

bidirectional causal associations between variables. 

We have not covered the use of time series data for forecasting, nor have we covered methods of 

validating models. For forecasting, ARIMA/ARIMAX and VAR models are commonly used (41). It 

should also be noted that other approaches exist for the analysis of time series data that are 

beyond the scope of this paper (see (35, 87, 94). These other related types of analysis include the 

use of simultaneous or structural equation models (SEQ) (83) and ARIMA in conjunction with a 

Generalised AutoRegressive Conditional Heteroscedasticity (GARCH) models. The latter removes 

the need for the assumption of constant variance over-time, but optimisation problems are 

common (95).  

Random Forest regression, based on decision trees, is also widely reported in the machine learning 

literature (96). For single case intervention analysis, the interrupted time series experiment (ITSE) 

method has been proposed, although it has major limitations (97). Latent growth curve modelling 

provides another useful method for analysing intervention effects on individual cases (98) and 

aggregated time series (99). Use of artificial neural networks has also been suggested as a method 

for TSA which can capture non-linearity and chaotic behaviour (100).  Finally, periodograms and 

spectral analysis can be used to identify complex cycles and seasonality in the data (101).  
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Figure 1: Decomposition of time series data for a hypothetical series of prevalence of excessive 

alcohol consumption in a population  
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Figure 2: Hypothetical time series data for excessive alcohol consumption after (a) a log 

transformation and (b) first order differencing to remove non-stationarity  

 

Figure 3: ACF and PACF for excessive alcohol consumption after differencing 
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Figure 4: (a) Orthogonalised Impulse Response Function and (b) Cumulative Impulse Response 

Function for a VAR model of smoking prevalence and high-risk drinking 

 

 

Figure 5: Demonstration of co-integration: graph shows the mean expenditure on cigarettes and 
cigarette consumption per day as well as the difference between the two 
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Table 1: Summary of TSA features 

TSA 
model 

Used for  R packages Level of 
data 
analysis 

Variable type 
of output 
series 

Autocorrelation Seasonality 
adjustment 

Sample size Assumptions 

GLMM  Trend analysis and 
interrupted time series 
analysis; can also assess 
multiple time series if there 
are no lag effects 

‘glmm’(102)  
‘lme4’ (103) 
‘nlme’(104) 

Individual  Any Can account for MA and AR 
autocorrelation 

Seasonal index, 
seasonal dummy 
variable or natural 
cubic splines 

Fewer than 50 data points leads to biased 
estimates (105, 106). If data are at the individual 
level sample size should be at least 100 
participants per time point (106). 

Standard regression assumptions 
apply e.g. normally distributed errors 

GLS Trend analysis and 
interrupted time series 
analysis; can also assess 
multiple time series if there 
are no lag effects 

‘nlme’(104) Individual 
or 
aggregated 

Any Can account for MA and AR 
autocorrelation 

Seasonal index, 
seasonal dummy 
variable or natural 
cubic splines 

Fewer than 50 data points leads to biased 
estimates (105, 106). If data are at the individual 
level sample size should be at least 100 
participants each time point (106). 

Standard regression assumptions 
apply as for GLMM with the Gaussian 
distribution. 

GAMM Trend analysis and 
interrupted time series 
analysis; can also assess 
multiple time series if there 
are no lag effects 

‘mgcv’ (107)  
‘gamm4’ 
(108) 

Individual 
or 
aggregated  

Any Can account for MA and 

AR autocorrelation 

Seasonal index, 

seasonal dummy 

variable or natural 

smoothing terms 

Large sample sizes required as for generalised 

linear mixed models, but larger if smoothing 

terms are used with multiple knots e.g. 12 

knots are used for 12 months generally (109). 

Sample size at lower level has a smaller impact, 

though at least 100 participants are 

recommended (106). 

As GAMM are semi-parametric 

extensions of GLMs; the only 

underlying assumption made is that 

the functions are additive and that 

the components are smooth. 

ARIMA Trend analysis and 
interrupted time series 
analysis 

 ‘forecast’ 
(110) 

Aggregated Continuous Can account for both 

seasonal and non-

seasonal MA and AR 

autocorrelation 

Accounted for 

through seasonal 

differencing and the 

use of seasonal MA 

and AR terms 

Some have recommended at least 50-100 

observations in total (31, 32), while others have 

argued that short-time series data can be used 

so long as there are more observation periods 

than parameters (33). 

Standard parametric assumptions 

e.g. linearity, multicollinearity and 

heteroscedasticity as well as 

stationarity and invertibility. 

ARIMAX Multiple time series analysis; 
can also add interrupted 
time series as covariates 

‘TSA’ (111) Aggregated Continuous Can account for both 

seasonal and non-

seasonal MA and AR 

autocorrelation 

Accounted for 

through seasonal 

differencing and the 

use of seasonal MA 

and AR terms 

Some have recommended at least 50-100 

observations in total (31, 32), while others have 

argued that short-time series data can be used 

so long as there are more observation periods 

than parameters (33).  

Same as for ARIMA plus the 

assumption of weak exogeneity. 

VAR  Multiple time series analysis 
with bidirectional causation 
between input and output 
variables 

‘vars’ (112) Aggregated Continuous Does not include MA 
terms, but approximates 
any existing MA patterns 
with extra AR lags 

Seasonal dummy 
variables can be 
added as exogenous 
variables 

Similar sample size to ARIMAX models, with a 
large number of data points required if a 
seasonal dummy variable is included. 

VAR and SVAR are not suitable in the 
presence of co-integrating 
relationships 

VECM Multiple time series analysis 
with bidirectional causation 
between input and output 
variables 

‘tsDyn’ (113) Aggregated Continuous Does not include MA 
terms, but approximates 
any existing MA patterns 
with extra AR lags 

Seasonal dummy 
variables can be 
added as exogenous 
variables 

Similar sample size to ARIMAX models, with a 
large number of data points required if a 
seasonal dummy variable is included. 

VAR and SVAR are not suitable in the 
presence of co-integrating 
relationships 

SVAR Multiple time series analysis ‘vars’(112) Aggregated Continuous Does not include MA Seasonal dummy Similar sample size to ARIMAX models, with a VAR and SVAR are not suitable in the 
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with bidirectional causation 
between input and output 
variables 

terms, but approximates 
any existing MA patterns 
with extra AR lags 

variables can be 
added as exogenous 
variables 

large number of data points required if a 
seasonal dummy variable is included. 

presence of co-integrating 
relationships 
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Table 2: Steps in TSA for GAMM/ARIMA/ARIMAX models  

Step Method Multiple time series Interrupted time series 

Assess the presence of 
autocorrelation 

Simple lag-1 
autocorrelation can be 
detected with the use of 
the Durbin Watson 
statistic. For more 
complex patterns, the 
Autocorrelation Function 
(ACF) and Partial 
Autocorrelation Function 
(PACF) should be referred 
to.  

No autocorrelation 
Simple regression 
Autocorrelation 
ARIMAX 

No autocorrelation 
Simple regression 
Autocorrelation 
GAMM if limited number of data points, only 
interested in step level effects and want to assess 
moderation of individual level variables. 
ARIMA if long time series and interested in 
differing patterns of effects (e.g. pulse, step and 
delayed effects). 
 

Assess the presence of 
seasonality 

Plot of the raw time series 
data and use the ACF and 
PACF. Look for significant 
lags at seasonal points 
(e.g. lag 4 and 8 for 
quarterly data) in the 
later, and cyclical patterns 
in the former. 

No seasonal effects 
Simple regression if no autocorrelation. 
ARIMAX if autocorrelation is present 
Seasonal effects 
Simple regression with a cubic spline if 
no autocorrelation (STOP). 
ARIMAX if autocorrelation is also 
present. 

No seasonal effects  
Simple regression if no autocorrelation. 
GAMM if autocorrelation is present and you have 
limited number of data points, only interested in 
step level effects and want to assess moderation 
of individual level variables. 
ARIMA if autocorrelation is present and you have 
a long-time series and interested in differing 
patterns of effects (e.g. pulse, step and delayed 
effects). 
Seasonal effects 
Simple regression with a cubic spline if no 
autocorrelation. 
GAMM if autocorrelation is present and you have 
limited number of data points, only interested in 
step level effects and want to assess moderation 
of individual level variables. 
ARIMA if autocorrelation is present and you have 
a long-time series and interested in differing 
patterns of effects (e.g. pulse, step and delayed 
effects). 

Determine if the series 
is stationary 

If autocorrelation is 
present, check if the 
series is stationary. This 
can be done by using unit 
root tests and visually 
inspecting the series 
graphically 

If the variance is not constant over 
time, consider a natural logarithmic 
transformation. If the mean is not 
constant over time, difference the data. 
Consider both seasonal and non-
seasonal differencing.  

If the variance is not constant over time, consider 
a natural logarithmic transformation. If the mean 
is not constant over time, difference the data. 
Consider both seasonal and non-seasonal 
differencing. 

Identify the number of 
AR and MA terms 

The ACF and PACF can be 
used to determine the 
number of 
autocorrelation terms 
required.  

A steadily decaying ACF and a PACF that 
drops after p lags would be consistent 
with an AR term. In contrast, an MA 
term would be consistent with a ACF 
that drops off after q lags and a gradual 
decay in the PACF. 

A steadily decaying ACF and a PACF that drops 
after p lags would be consistent with an AR term. 
In contrast, an MA term would be consistent with 
a ACF that drops off after q lags and a gradual 
decay in the PACF. 

Identify any lags This can be done by 
comparing models with 
different lag effects using 
the AIC. For multiple time 
series analysis, the CCF 
can be used. 

If there is evidence of lag effect include 
this in the ARIMAX model by specifying 
a transfer function. 

If there are no lag effects continue with the 
chosen analysis, if there is evidence of a lag 
effect consider using ARIMA models.  

Select the baseline 
model   

Run the baseline model 
with the input series (and 
covariates) included and 
compare with other 
models using the AIC 

If other models provide a better fit, 
consider these over the baseline model.  

If other models provide a better fit, consider 
these over the baseline model. 

Run the model and 
check for additional 
autocorrelation 

Examine the model 
residuals and check the 
Ljung-Box test 

If the residuals form a random pattern 
and the Ljung-Box test is non-significant 
do not change model. If a pattern 
remains and there is evidence of 
further autocorrelation consider adding 
additional seasonal or non-seasonal AR 
and MA terms. 

If the residuals form a random pattern and the 
Ljung-Box test is non-significant do not change 
model. If a pattern remains and there is evidence 
of further autocorrelation consider adding 
additional seasonal or non-seasonal AR and MA 
terms. The latter of which can only be added to 
ARIMA models. 

Check the assumption 
of normality, 
significance of 
autocorrelation terms 

These can be checked 
with q-q plots and 
assessing the size and 
significance of 

If MA and AR terms do not contribute 
significantly or violate the assumption 
of bounds of invertibility and 
stationarity remove from the analysis. 

If MA and AR terms do not contribute 
significantly or violate the assumption of bounds 
of invertibility and stationarity remove from the 
analysis. 
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and within bounds of 
invertibility and 
stationarity. 

coefficients. 
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Table 3: Steps in a VAR/SVAR/VECM 

Step Method 

Determine if the series is stationary If autocorrelation is present, check if the series is 
stationary. This can be done by using unit root 
tests and visually inspecting the series graphically 

Identify the number of lags This can be done by comparing models with 
different lag effects using the AIC. 

Run the model and assess additional 
autocorrelation 

Autocorrelation among the residuals assessed 
using a Portmanteau test 

Check the assumption of normality of 
residuals 

This can be done using the Jarque-Bera normality 
tests for multivariate series 

Visualise the equations Calculate the impulse response function and 
cumulative impulse response function 

Check for causality Run the Granger causality test and instant 
causality test 

Check for the presence of co-integrated 
variables 

Run the Johansen procedure. 
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Table 4: Guidelines for the reporting of TSA  

Item Recommendation 

Title  (a) Indicate the type of TSA e.g. trend analysis, interrupted TSA, multiple TSA or 
forecasting 

(b) Indicate the study design e.g. repeated cross-sectional, open cohort or 
longitudinal cohort 

(c) Indicate the study population e.g. population sample of those in England 

Abstract (a) Provide an informative summary of what was done with reference to: 
a. Type of TSA 
b. Study design 
c. Study population 

(b) Report relevant coefficients with confidence intervals and p-values 
(c) Provide a balanced conclusion based on correlational not causal statements 

Introduction (a) Explain the rationale and background for conducting the TSA analysis 
(b) Clearly state the specific objectives, including pre-specified hypotheses (these 

should be pre-registered on the Open Science Framework or equivalent along 
with the analysis plan) 

Methods 
Study design  
Participants 
 
Measures 
 
 
 
Sample size 

 
(a) Clearly state the study design and all data sources including dates of data 

collection and a statement on data access 
(b) Comment on change in data sources over time 
(a) If data are initially collected at the individual level give eligibility criteria and 

method of selection and recruitment. If data are collected at the aggregated level 
give eligibility criteria 

(a) Define all independent variables e.g. input series for multiple TSA and dummy 
coded intervention variables for interrupted TSA  

(b) Define all dependent variables i.e. the output series 
(c) Define all covariates/confounding variables adjusted for in the study 
(d) Define any moderators or stratified variables 
(a) Explain how the sample size was arrived at and if it is adequate in terms of the 

length of the series and the number of data points within each wave if at the 
individual level 

Statistical analysis (a) The analysis plan should be pre-registered on the Open Science Framework or 
equivalent along with objectives and hypotheses. Changes and extension to the 
analysis should be recorded 

(b) Report statistical software and packages used for the analysis 
(c) Explain how missing data and outliers will be assessed, reasons for them, and 

how they will be handled e.g. deletion, multiple imputation or last one carried 
forward 

(d) Explain how seasonality, autocorrelation and lags will be assessed (e.g. indices of 
fit such as the AIC and BIC, PACF and ACF, CCF) and addressed (e.g. seasonal 
index, cubic splines, smoothing terms, seasonal and non-seasonal AR and MA 
terms and transfer functions) 

(e) Describe the statistical analysis and how assumptions will be assessed 
a. Parametric (e.g. for GLMM/ARIMA/ARIMAX) – normally distributed 

errors, linearity and homoscedasticity 
b. Multicollinearity for all analyses 
c. Stationarity (e.g. ARIMAX/ARIMA) 
d. Weak exogenenity (e.g. ARIMAX/VAR/SVAR/VECM) 
e. Bound of stationarity and invertibility (e.g. ARIMA/ARIMAX) 
f. Cointegration (e.g. VECM) 
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Table 4: Guidelines for the reporting of TSA (continued) 

Item Recommendation 

Statistical analysis (a) Describe how violations of the assumptions will be handled 
a. Transformations e.g. log transformation for stationarity and parametric 

assumptions 
b. Differencing for stationarity 
c. Selection methods for multicollinearity  
d. Other analysis options 

(b) (64, 93)Consider the calculation of Bayes Factors to aid interpretation of null 
findings (64, 93)  

(c) State all underlying assumptions 
(d) State any unplanned sensitivity analyses and the reasons for them 
(e) Explain how any continuous variables were categorised for the analysis and 

comment on changes in variable coding over time 
(f) Give guidelines on the interpetation of coefficients taking into account 

transformations of the data (see Table 5 for examples) 

Results 
Participants 
 
Descriptive statistics 
 
 
Main results 
 
Other analysis 
Visual displays 

 
(a) If data are available at the individual level report the total number taking part in 

the study (and the average number recruited at each stage if cross-sectional). For 
cohort studies give details on those lost to follow up. 

(a) If data are available at the individual level report characteristics e.g. 
demographic. If data are available at the aggregated level report the start, end 
and average values of each series in the analysis 

(b) Provide graphical figures of the aggregated data over time 
(a) Give adjusted and unadjusted estimates and their precision e.g. 95% confidence 

interval and, if applicable, Bayes Factors 
(b) Specify the final model e.g. AR and MA terms, order of differencing and presence 

of lags 
(a) Report any analyses e.g. moderation, subgroup and unplanned sensitivity 
(a) Present results using a graphical display with intervention time point(s) clearly 

defined for interrupted time series 

Discussion 
Key results 
Limitations 
Interpretation 
Implications/future research 

 
(a) Summaries the main findings with reference to the study objectives and aims 
(a) Discuss all limitations of the study with a focus on possible bias and imprecision 
(a) Give a cautious overall interpretation of results relating them to previous studies 
(a) Discuss the possible implications of the findings in relation to policy, clinical 

objectives etc 
(b) Consider avenues for future research  

Other information 
Funding 
Ethical approval 
Conflicts of interest 

 
(a) Gives sources of funding for the study 
(a) Explain if ethical approval was sought and how 
(a) Clearly state any conflicts of interest in relation to the paper  
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Table 5: Interpretation of coefficients for predictors in GAMM/ARIMA/ARIMAX/VAR models with 

stationary data  

Predictor variable Dependent variable Interpretation 

Binary (dummy)  Continuous  The introduction of X resulted in a β units change in the 
average of Y 

Continuous  Continuous  For every one-unit change in the average of X, the 
average of Y changes by β units 

Log transformed continuous  Continuous  A one percent change in the average of X leads to a 

β × ln (
101

100
) [~ 𝛽/ 100] change in the average value of Y 

Binary (dummy)  Log transformed continuous  The introduction of X resulted in a (𝑒𝛽 − 1) ×

100 [~ 𝛽 x 100] percentage change in the average 
value of Y 

Continuous  Log transformed continuous A one percent change in the average of X leads to a 

(𝑒𝛽 − 1)  × 100 [~ 𝛽 x 100] percentage change in the 

average value of Y  

Log transformed continuous  Log transformed continuous A one percent change in the average of X leads to a 

(1.01𝛽 − 1)  × 100 [~ 𝛽] percentage change in the 

average value of Y 

Note: for ARIMA/ARIMAX models which are stationary i.e. have a constant mean and variance over time, interpretation is in 
terms of the series mean e.g. for a log-log model a 1% change in the mean of series y leads to a β% change in the mean of 
series of X. 

 

 

  



 

 
This article is protected by copyright. All rights reserved. 

 

Appendix A: Glossary 

Aggregated data: Groups of observations are replaced with summary measures. 

ARIMA (Autoregressive Integrated Moving Average): a form of regression analysis that seeks to 

predict future trends whilst taking into account underlying trends, seasonality and autocorrelation. 

Can be extended to assess the effect of policies or interventions in an interrupted time series design. 

ARIMAX (Autoregressive Integrated Moving Average with Exogeneous Input): a form of regression 

analysis which seeks to assess how two time series covary whilst taking into account underlying 

trends, seasonality and autocorrelation. 

Autocorrelation: Estimates or regression residuals at one time point are correlated with the 

estimates or residuals at a subsequent time point. 

Co-integrating relationship: Two variables share a common stochastic trend in such a way that a 

linear combination of the variables is stationary.   

Differencing: A means by which to make a time series stationary by transforming the series into on 

made up of the difference between values at time t and values at time t+n. 

GAM (Generalised Additive Model): Is a generalized linear model which uses an additive modelling 

technique where the impact of the predictive variables is captured through smooth functions. 

GLS (Generalised Least Squares): A statistical technique that allows one to perform linear regression 

when there is a certain degree of autocorrelation between the residuals. 

GLMM (Generalised Linear Mixed Model): An extension to GLM (see below) which contains random 

effects to account for clustering. 

GLM (Generalised Linear Model): A flexible generalization of linear regression that allows for 

response variables that have error distributions other than a normal distribution. 

Parametric test: Makes assumptions about the parameters of the population distribution(s) from 

which one's data are taken. Non-parametric tests are often referred to as ‘distribution-free’ tests. 

Polynomial terms: Relationships between the independent variable and the dependent variable is 

modelled as an nth degree polynomial e.g. quadratic (^2) and cubic (^3). 

Smoothing spline: Provide a flexible way of representing the relationship between two variables 

involving fitting of piecewise polynomial terms with breakpoints or changes in the strength and 

direction of the association.  

Stationary: A stationary time series is one whose properties do not depend on the time at which the 

series is observed. So, a time series with trends or with seasonality cannot be stationary as they will 

affect the value of the time series at different times. In general, a stationary time series will have no 

predictable patterns in the long-term. 
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SVAR (Structural Vector Autoregressive Model): An extension of VAR (see below) that helps to 

model the temporal relationships between series by placing restrictions so that relationships can be 

specified in a unidirectional manner. 

VAR (Vector Autoregression): A model that allows specification of bi-directional causal associations 

between two time series.  

Vector Error Correction Model (VECM): An extension of SVAR and VAR which is used in the presence 

of co-integrating relationships. 

Pre-whitening: A procedure that converts an input series into one with a mean of zero and no 

autocorrelation and applies the same transformation to an output series.  

Weak exogeneity: An assumption of ARIMAX models which specifies that there is no reverse causal 

pathway with the output series having an effect on any of the input variables. 

White noise: A white noise series has a mean of zero and no autocorrelation. 
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