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Abstract

This paper provides an analytical overview of the dynamics involved in force control. Models are
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Introduction

' - Force control originated from the need to allow machines to interact in a controlled manner with
uncertain environments [7]. In order to control force with purely position-based systems, a precise model
of the mechanism and knowledge of the exact location (and stiffness) of the environment are required.
With the use of force feedback from the interaction which takes place, very little model information is
required in order to close a loop around contact force.

A useful example, shown Li Figure 1, is the task of following a specified contact force "trajectory".
We will give desired contact force commands Fd(t) to the robot arm controller. We would like the robot
to contact its workpiece with the specified interaction force. The measurement from the wrist force
sensor, Fs(t), is used by the controller to calculate the force error, F,(t). Note that the workpiece position
may be changing, and the controller will still attempt to track the desired force trajectory. This paper
discusses some of the practical iimtaions on the bandwidth of such systems.

There are many implementations of force controllers. The scheme described above, which uses the
endpoint force information and makes no use of position feedback information, is termed explicit force
control [81. Other methods of accommodating environmental constraints include stiffness control [ I I],
damping control [141, and impedance control [6]. In contrast, these methods all use joint position and/or
velocity in addition to endpoint force feedback to achieve the desired response. They implement various
control schemes which use sensed forces to alter inner position and velocity loop setpoints. In the case of
hybrid control [9], directions can be specified for either pure position control or force control. All of

.,~,: these schemes are reviewed in [15]. Since these methods close servo loops around the joint position
__ and/or velocity, their effective impedance then becomes the "open-loop" plant for the endpoint force

control loop. From this viewpoint, the importance of understanding the stability of the explicit force loop
is clear.

The major obstacle in the development of active robot force control is the performance limitation
inherent in all of the above implementations. In order to track faster force trajectories, the closed-loop
bandwidth must be increased. To accomplish this, the control gains are raised. However, the gains
cannot be increased beyond some limits, as the system will become violently unstable. This tradeoff of
stability versus performance results in sluggish closed-loop systems. It is not clear, however just what
gives rise to this performance limitation. After all, the limit is generally not predicted by the model used
in the controller design. Researchers have proposed many possible sources of the stability problem:

* environment stiffness 
01.IC

" sensor dynamics COPY

" workpiece dynamics -,l r

" arm flexibility NTIs 0 ,,,J

" actuator bandwidth 3

" digital sampling rate
" control saturation . - . . .

" low-pass filtering
* impact forces unon workpiece contact -
* drive train backlash .- ',, ,,

" bearing friction .

I - -- - -
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In fact, many of these suspected causes may actually be able to drive some mechanical systems

unstable. They are all worth considering; however, careful analysis shows that not all of them are

important in robot systems. This paper addresses these issues by developing dynamic models intended to

describe the behavior of robot systems under the influences that these effects may have. The discussion

presented here extends the work described in [3].

This analysis begins with simple dynamic models of the robot arm, sensor, grip, and workpiece.

The difficulty presented by non-colocated sensors and actuators is discussed. Next, limitations in the

actuator dynamics are investigated to show their importance. The analysis continues with the

consideration of drive-train and task nonlinearities, and various linear controller designs. Finally. the
relative importance of the effects presented is assessed, and promising solution ideas are proposed.

Throughout the analysis, the case of one-axis explicit force control is discussed, although the principles

apply to the other force control schemes as well. Numerical values are not given for the model

parameters, so the results are appropriate to a broad class of robot systems. The plots also do not contain

numerical markings on the axes. Only their general shapes are significant.

Linear Plant Dynamics .

To begin the analysis, we will first consider the dynamics of a single-axis robot arm, coupled to its

workpiece through the force sensor. In this linear model, show ni in Figure 2, the robot endpoint is always

attached to the workpiece by the sensor. The robot is describe,, by the single mass mr, and is coupled to

the workpiece mass m w through the sensor stiffness k,. The actuator is represented by the input force F.

The equations of motion describing the response of the model to its input can be derived and are given in ,,.

[3]. Implementing the explicit force control law F = kAFd - Fs], and plotting the root locus as the

feedback gain kf is varied, shows that for all gains, the system is stable, Figure 3.

Higher-Order Dynamics
When the higher-order dynamics of the arm itself are included in the model, the effect of

non-colocation is illustrated. Notice that in the model of Figure 4. the actuator and sensor are not

attached to the same point on the arm, as they are in ie model of Figure 2. The actuator and sensor in the

model of Figure 4 are said to be non-colocated [5]. The root locus plot. Figure 5, now shows that for low

gains the system is stable, and for high gains the system is unstable. This phenomenon is discussed in

more detail in [3].

It is now interesting to observe the effect of significant dynamics (at frequencies within the desired

closed-loop bandwidth) attributable to motion of the robot base or of the sensor and grip. The robot base

mass is included in the next model, shown in Figure 6, as well as the sensor mass and grip compliance.

The root locus plot tor this model, using the simple force control law, is given in Figure 7. It shows that

while these new effects did change the dynamics of the system. there is still only one mode which goes

unstable. If the net stiffness of the sensor, grip. and workpiece is lower than that of the arm itself,

stability can be maintained, but still only for limited bandwidth. Soft grip and/or sensor have been

suggested [1. 101 even though large steady-state errors may result if uncompensated.

In fact, if we remove all the dynamics except for those of the arm itself, and represent the workpiece

as a rigid wall. we have the model of Figure 8. The root locus plot, Figure 9, for this simpler system still

shows the same basic shape. These models show that any dynamics to the left of the actuator or to the ,
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right of the sensor that are significant, add poles and zeros in equal numbers. The dynamics between the
actuator and sensor add more poles than zeros. These dynamics cause modes to go unstable as the loop is

S' closed by the force control law. Therefore, much of the remaining analysis will refer to the two-mass

robot model of Figure 8, since it is the simplest model with the non-colocated actuator/sensor pair.

Limited Actuator Bandwidth
The explicit force control law F = kAFd - F J assumes the actuator to respond perfectly. Suppose

that the actuator cannot respond well to components of the input signal above some cutoff frequency.
This effect can also drive a stable system to instability. The very simple model of Figure 10 shows the
actuator modeled with a first-order lag. For a=oo, the system is stable, even at very high gains. For finite
a, however, the lag introduced by the actuator at frequencies above its first-order cutoff at a, drives this
colocated actuator/sensor pair unstable, as shown by the root locus plot in Figure 11.

Unlike the workpiece, sensor, and base dynamics, which each add poles and zeros equal in number,
the actuator bandwidth cutoff adds more poles than zeros, which degrades the performance more
seriously, just as did the higher-order arm dynamics.

Summary
The important conclusions to draw from the robot system model analysis are:

* If arm vibratory modes are significant, then the closed-loop bandwidth limitation will be

maintenance of stability for these modes.

* If workpiece, sensor, or base dynamics are significant, then these open-loop cutoffs will also

limit the closed-loop bandwidth.

* If grip compliance is significant, it degrades performance by lowering the effective loop gain,

k- k g.

4 If actuator bandwidth is significant, then the closed-loop bandwidth is also restrained by this
crossover frequency.

Note that since sensed contact force Fs is proportional to endpoint position, the issues in force
control of a flexible arm become analogous to those in endpoint control of a flexible space structure.
Research in that area can be applied directly to robotics [2].

Plant Nonlinearities

There are many nonlinear dynamic aspects of robot systems to be considered. Some of these
include: dynamic coupling between axes, joint friction, transmission backlash, and actuator saturation.
For the most part, these effects should be neglected in control system design. The higher-order dynamics
and cross coupling terms are often small [121. However, friction, backlash, and saturation can indeed
give rise to undesirable behavior, in particular when coupled with integral control. Coulomb friction and
sZictiin can change the stability bounds found by linear analysis [13.

A useful generalization to guide initial controller design is the following: Nonlinearities may
decrease the allowable loop gain (and thus decrease the closed-loop bandwidth) only for linear systems
which already have stability limitations, like that shown in Figure 8. For systerns with significant
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nonlinearities, the choice of controller configuration must be verified by simulation, where the inclusion

of the nonlinear effects is relatively easy.

The example presented below discusses the workpiece contact discontinuity, which represents one
of the more difficult nonlinearities to be dealt with. Other examples include actuator saturation [12] and

suction [13]. This area is a topic of ongoing research.

Discontinuity at the Workpiece Contact
Perhaps the most severe mechanical nonlinearity for the closed-loop system to deal with is the

discontinuity at the workpiece contact. When the robot cndpoint is in contact with the workpiece, the
system behaves like the linear system analyzed above. When the endpoint is not in contact with the
workpiece, then not only do the dynamics change (the first mode becomes a rigid-body mode, etc.), but
also the closed-loop system becomes open loop (but not unforced) since the feedback from the sensor

goes away.

Figure 12 shows a nonlinear version of the two-mass model of Figure 8. In this model, the robot

and workpiece can separate when the contact force becomes zero. When the linear control law
F = kiFi - Fs] is implemented as above, nonlinear simulations have shown time responses resembling

Figure 13.

The nonlinear system exhibits limit cycles for some values of gain. For all gains higher than the

critical gain predicted by the linear analysis, the system will limit cycle. For some gains lower than the
critical gain predicted by the linear analysis, the system will also limit cycle. For other low gains,
however, the system is always stable. The limit cycle performance depends upon all the system

parameters, as well as the initial conditions, and of course the feedback gain. (Coulomb friction, on the
other hand, can extend the stability range found by linear analysis [131.) Most significant, however, is the
fact that the discontinuity only brings about limit cycles in systems which do have a critical gain limit.
With a rigid-body robot model, no limit cycle response is displayed.

Controller Dynamics

The explicit force control law F = At{FJ - Fs] may only be the starting point in an actual controller
design. The control may in fact be implemented digitally, and may include other dynamics. Note that the

closing of inner position and velocity loops alters the effective impedance. This merely changes G(s),
which in turn moves the "open-loop" poles for the force loop.

Digital Control Implementation
Historically, digital effects have predominated the force-controlled instabilities observed in the

laboratory. Slow sampling can certainly miss the important dynamics as they take place. Whitney
presents criteria for choosing the digital sampling interval for various force control schemes [15]. With
modem computer-based controllers, sample rate can be sufficiently fast to avoid this cause of instability.

Filtering
A common tiought, upop the observance of the violently unstable behavior of a force-controlled ,

robot in the laboratory, is to "filter out the components of the signal which are exciting the unstable

dynamics". This scheme is depicted in the block diagram of Figure 14.

Suppose that the plant G(s) is the two-mass model of Figure 8, which displays unstable behavior

'

11.A - *a:, ''p ~~- - -A A' 4 ,- pa. -.
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that results from the non-colocation. Let us see what is the effect of adding a low-pass filter in the
.~, feedforward loop. The new root focus plot is drawn in Figure 15. The system is still unstable at high

gains. In fact, comparing Figure 15 with Figure 9 shows that the filter can make the system go unstable
even faster (at lower gain and lower closed-loop bandwidth). This is not surprising, since filtering adds
poles, and so there are now four asymptotes. Low-pass filtering is a part of almost every controller
implementation, and both the order and cutoff frequency of the filter must be chosen carefully. Filtering
the sensed force rather than the force error signal yields the same closed-loop characteristic equation, and
so it has the same root locus plot. Filtering in the feedforward loop is usually preferred for better
disturbance rejection.

P1 Control
To eliminate steady-state error to step changes in desired contact force, integral control is often

added. The P1 force controller includes the integral of the force error and takes the form of Figure 16. To
demonstrate the effect of adding the integral term to the simple force controller, we will let G(s) represent
the two-mass model of Figure 8. For ki-=0, we have the root locus plot of Figure 9. For k > 0, we have the
root locus plot shape (for varying kf) drawn in Figure 17. The PI controller adds a pole at the origin and

* adds a zero at s-k,. Clearly this scenario is detrimental to performance. This is analogous to adding a
lag compensator, which "destabilizes" the system.

PD Control
.4' Faster response can often be achieved by allowing the actuator to respond to the changes in the error

in addition to the error itself. The PD force controller would be constructed as in Figure 18. Again, let
G(s) represent the two-mass model of Figure 8 which displayed an instability at high A For kd=O, we
have the root locus plot of Figure 9. For kd> 0, we have the root locus plot shape (for varying Y~ that is
shown in Figure 19. The derivative term adds a zero at s--- l/kd, which contributes phase lead. This zero
tends to "stabilize" the closed-loop system. Compare the root locus plot of Figure 19 with that of Figure
9.

Lead Compensation
Since the PD force controller looked promising, let us now investigate the effect of adding a lead

compensator to the simple force control law. The lead compensator makes the controller take the form of
Figure 20. To demonstrate the effect of the lead compensator, consider again the two-mass robot model
of Figure 8 as G(s). The root locus plot is drawn in Figure 21. The lead compensator adds a zero at s=-a
and a pole at s=-b. With the zero at a lower frequency, phase lead is introduced over a finite frequency
range. This effect can increase the closed-loop bandwidth. In the root locus plot shown in Figure 21, the
loci which cross the imaginary axis do so at a higher frequency with the lead compensator. Judicious
choice of the frequencies a and b can result in superior closed-loop performance. Higher-order
compensators may be able to increase the bandwidth even further, but may also be more susceptible to
modeling errors.

Sum ma ry
The important conclusions to draw from the controller implementation analysis are:

w. * Digital effects are significant, but should not present a problem in modem computer-based

systems.

*Low-pass filtering and PI control add destabilizing poles, which introduce phase lag and limit

closed-loop bandwidth.
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* PD control and lead compensation add zeros which provide phase lead at low frequency.

This effeci is able to increase closed-loop bandwidth.

Conclusions

Closed-loop endpoint force control is difficult because it involves non-colocated sensors and

actuators. For robot structures that can be modeled as rigid, simply closing the force loop always yields a

stsble system. However, significant dynamics of the robot arm between the wrist force sensor and the

joint actuators are very important. When the control loop is closed to give desirable performance to the

rigid-body mode, the higher modes can become unstable. Gevarter provides a detailed discussion of this
effect [51. The dynamics of the robot system that are not between the actuator and sensor can also limit

the overall system performance, but they do not affect the system stability in the same manner.

Nonlinearities also can change the system performance. The discontinuity at the workpiece contact

can decrease the feedback gain allowable to one below the critical gain found by linear analysis. On the

other hand, joint friction can extend the stability region [131.

Controller dynamics are equally as important as the plant characteristics. Digital effects should not

pose a problem with the computational speed of today's microprocessors. Limited actuator bandwidth,
low-pass filtering, and integral control all add low-frequency poles. These poles introduce phase lag,
which can even cause rigid robots to have stability limits on the force feedback gain. Derivative control

and lead compensation, on the other hand, add low-frequency zeros, which provide phase lead. These

control schemes have the potential to raise the closed-loop bandwidth, improving active force control

performance.

It may be possible to further improve performance by the use of some more creative control

strategies. A sophisticated model of the robot vibratory modes and their coupling of input forces to

output motions could be used along with more sensors to give reliable information about the response of

these modes. A nonlinear control strategy could be developed, which is matched to the nonlinear
dynamic characteristics of the task to be performed. Active nonlinear elements in the mechanical system
itself could be included, perhaps at the interface between the sensor and the workpiece. Finally, we could

use knowledge about the dynamics involved in the execution of typical tasks in order to change the
control strategy as the procedure actually takes place.

References

IlI An, C.H.
Trajectory and Force Control of a Direct Drive Arm.
PhD thesis. Massachusetts Institute of Technology, September 1986.

12) Cannon, R.H. and Rosenthal, D.E.
Experiments in Control of Flexible Structures with Noncolocated Sensors and Actuators.
AIAA Journal of Guidance and Control, September-October 1984, vol. 7, no. 5, pp. 546-553.

[31 Eppinger, S.D. and Seering. W.P.
On Dynamic Models of Robot Force Control.

In Proceedings of International Conference on Robotics and Automation. IEEE, April 1986, pp.
29-34. Also in MIT Artificial Intelligence Laboratory Memo, no. AIM-910).

VA1 l>"I
)l'~~~~~~~~~~~~~ ~~~~~~~~ A, ' ' ". -,. .. •. . --. . . ..



P7

[4] Eppinger, S.D. and Seering, W.P.
Understanding Bandwidth Limitations in Robot Force Control.
In Proceedings of International Conference on Robotics and Automation. '.E, April 1987, pp.

904-909.

[5] Gevarter, W.B.
Basic Relations for Control of Flexible Vehicles.
AIAA Journal, April 1970, vol. 8, no. 4, pp. 666-672.

[6] Hogan, N.
Impedance Control of Industrial Robots.
Robotics and Computer-Integrated Manufacturing , vol. 1, no. 1, pp. 97-113, 1984.

[7] Mason, M.T.

Compliance and Force Control For Computer Controlled Manipulators.
In Transactions on Systems, Man, and Cybernetics. IEEE, June 1981, vol. SMC-1 1, no. 6, pp.

418-432.

[8] Nevins, J.L. and Whitney, D.E.
The Force Vector Assembler Concept.
In Proceedings, First CSIM-IFToMM Symposium on Theory and Practice of Robots and

Manipulators. ASME, Udine, Italy, September 1973.

[91 Raibert, M.H. and Craig, J.J.
Hybrid Position/Force Control of Manipulators.
In Journal of Dynamic Systems, Measurement and Control. ASME, June 1981, vol. 103, no. 2.

[101 Roberts, R.K., Paul, R.P., and Hiliberry, B.M.
The Effect of Wrist Force Sensor Stiffness on the Control of Robot Manipulators.
In Proceedings of International Conference on Robotics and Automation. IEEE, March 1985.

[111 Salisbury, J.K.
Active Stiffness Control of a Manipulator in Cartesian Coordinates.
In Proceedings of 1 9 h Conference on Decision and Control. IEEE, vol. 1, December 1980.

[121 Sweet, L.M. and Good, M.C.
Redefinition of the Robot Motion Control Problem.
IEEE Control Systems Magazine , August 1985, pp. 18-25.

(131 Townsend, W.T. and Salisbury, J.K.
The Effect of Coulomb Friction and Stiction on Force Control.
In Proceedings of International Conference on Robotics and Automation. IEEE, April 1987.

[141 Whitney, D.E.
Force Feedback Control of Manipulator Fine Motions.
In Journal of Dynamic Systems, Measurement and Control. AS ME, June 1977, vol. 99, pp. 91-97.

[151 Whitney, D.E.
Historical Perspective and State of the Art in Robot Force Control.
In Proceedings of International Conference on Robotics and Automation. IEEE, March 1985.

?N



Figures

robot sensor

workpiece

The force controller is designed to minimize force errors Fe calculated as the difference between

the desired force trajectory Fd and the sensed contact force F . The endpoint position may even be '

unimportant.

Figure 1: A Sample Robot Task and Force Controller
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Figure 2: Robot Model Including Workpiece Dynamics
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Figure 3: Root Locus Plot for the Model of Figure 2
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Figure 4: Robot Model Including Higher-Order Arm Dynamics
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Figure 5: Root Locus Plot for the Model of Figure 4
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Figure 6: Robot Model Including Base, Sensor, and Grip
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Figure 7: Root Locus Plot for the Model of Figure 6
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Figure 8: Robot Model Including Arm Dynamics Only
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Figure 10: Rigid-Body Robot Model With
Actuator Bandwidth Limitation
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Figure 11: Root Locus Plot for the Model of Figure 10
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Figure 12: Robot Model with Discontinuity at Workpiece Contact
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Figure 13: Simulation Time Response for the Model of Figure 12 a'
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Figure 14: Filtered Force Control Law
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Figure 15: Root Locus Plot for the Controller of Figure 14
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Figure 16: PI Force Control Law gm
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Figure 17: Root Locus Plot for the Controller of Figure 16
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Figure 18: PD Force Control Law
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Figure 19: Root Locus Plot for the Controller of Figure 18
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Figure 20: Lead Compensator Force Control Law
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Figure 21: Root Locus Plot for the Controller of Figure 20
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