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Abstract

How can we explain the predictions of a black-

box model? In this paper, we use influence func-

tions — a classic technique from robust statis-

tics — to trace a model’s prediction through the

learning algorithm and back to its training data,

thereby identifying training points most respon-

sible for a given prediction. To scale up influence

functions to modern machine learning settings,

we develop a simple, efficient implementation

that requires only oracle access to gradients and

Hessian-vector products. We show that even on

non-convex and non-differentiable models where

the theory breaks down, approximations to influ-

ence functions can still provide valuable infor-

mation. On linear models and convolutional neu-

ral networks, we demonstrate that influence func-

tions are useful for multiple purposes: under-

standing model behavior, debugging models, de-

tecting dataset errors, and even creating visually-

indistinguishable training-set attacks.

1. Introduction

A key question often asked of machine learning systems

is “Why did the system make this prediction?” We want

models that are not just high-performing but also explain-

able. By understanding why a model does what it does, we

can hope to improve the model (Amershi et al., 2015), dis-

cover new science (Shrikumar et al., 2016), and provide

end-users with explanations of actions that impact them

(Goodman & Flaxman, 2016).

However, the best-performing models in many domains —

e.g., deep neural networks for image and speech recogni-

tion (Krizhevsky et al., 2012) — are complicated, black-

box models whose predictions seem hard to explain. Work

on interpreting these black-box models has focused on un-

derstanding how a fixed model leads to particular predic-

tions, e.g., by locally fitting a simpler model around the test
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point (Ribeiro et al., 2016) or by perturbing the test point to

see how the prediction changes (Simonyan et al., 2013; Li

et al., 2016b; Datta et al., 2016; Adler et al., 2016). These

works explain the predictions in terms of the model, but

how can we explain where the model came from?

In this paper, we tackle this question by tracing a model’s

predictions through its learning algorithm and back to the

training data, where the model parameters ultimately de-

rive from. To formalize the impact of a training point on a

prediction, we ask the counterfactual: what would happen

if we did not have this training point, or if the values of this

training point were changed slightly?

Answering this question by perturbing the data and retrain-

ing the model can be prohibitively expensive. To overcome

this problem, we use influence functions, a classic tech-

nique from robust statistics (Cook & Weisberg, 1980) that

tells us how the model parameters change as we upweight

a training point by an infinitesimal amount. This allows us

to “differentiate through the training” to estimate in closed-

form the effect of a variety of training perturbations.

Despite their rich history in statistics, influence functions

have not seen widespread use in machine learning; to the

best of our knowledge, the work closest to ours is Wo-

jnowicz et al. (2016), which introduced a method for ap-

proximating a quantity related to influence in generalized

linear models. One obstacle to adoption is that influ-

ence functions require expensive second derivative calcu-

lations and assume model differentiability and convexity,

which limits their applicability in modern contexts where

models are often non-differentiable, non-convex, and high-

dimensional. We address these challenges by showing that

we can efficiently approximate influence functions using

second-order optimization techniques (Pearlmutter, 1994;

Martens, 2010; Agarwal et al., 2016), and that they remain

accurate even as the underlying assumptions of differentia-

bility and convexity degrade.

Influence functions capture the core idea of studying mod-

els through the lens of their training data. We show that

they are a versatile tool that can be applied to a wide variety

of seemingly disparate tasks: understanding model behav-

ior, debugging models, detecting dataset errors, and cre-

ating visually-indistinguishable adversarial training exam-

ples that can flip neural network test predictions, the train-

ing set analogue of Goodfellow et al. (2015).
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2. Approach

Consider a prediction problem from some input space X
(e.g., images) to an output space Y (e.g., labels). We are

given training points z1, . . . , zn, where zi = (xi, yi) ∈
X × Y . For a point z and parameters θ ∈ Θ, let

L(z, θ) be the loss, and let 1
n

∑n
i=1 L(zi, θ) be the em-

pirical risk. The empirical risk minimizer is given by

θ̂
def
= argminθ∈Θ

1
n

∑n
i=1 L(zi, θ).

1 Assume that the em-

pirical risk is twice-differentiable and strictly convex in θ;

in Section 4 we explore relaxing these assumptions.

2.1. Upweighting a training point

Our goal is to understand the effect of training points on a

model’s predictions. We formalize this goal by asking the

counterfactual: how would the model’s predictions change

if we did not have this training point?

Let us begin by studying the change in model pa-

rameters due to removing a point z from the train-

ing set. Formally, this change is θ̂−z − θ̂, where

θ̂−z
def
= argminθ∈Θ

∑

zi 6=z L(zi, θ). However, retraining

the model for each removed z is prohibitively slow.

Fortunately, influence functions give us an efficient approx-

imation. The idea is to compute the parameter change if z

were upweighted by some small ǫ, giving us new param-

eters θ̂ǫ,z
def
= argminθ∈Θ

1
n

∑n
i=1 L(zi, θ) + ǫL(z, θ). A

classic result (Cook & Weisberg, 1982) tells us that the in-

fluence of upweighting z on the parameters θ̂ is given by

Iup,params(z)
def
=

dθ̂ǫ,z

dǫ

∣

∣

∣

ǫ=0
= −H−1

θ̂
∇θL(z, θ̂), (1)

where H
θ̂

def
= 1

n

∑n
i=1 ∇

2
θL(zi, θ̂) is the Hessian and is

positive definite (PD) by assumption. In essence, we form

a quadratic approximation to the empirical risk around θ̂

and take a single Newton step; see appendix A for a deriva-

tion. Since removing a point z is the same as upweighting

it by ǫ = − 1
n

, we can linearly approximate the parame-

ter change due to removing z by computing θ̂−z − θ̂ ≈
− 1

n
Iup,params(z), without retraining the model.

Next, we apply the chain rule to measure how upweighting

z changes functions of θ̂. In particular, the influence of

upweighting z on the loss at a test point ztest again has a

closed-form expression:

Iup,loss(z, ztest)
def
=

dL(ztest, θ̂ǫ,z)

dǫ

∣

∣

∣

ǫ=0
(2)

= ∇θL(ztest, θ̂)
⊤ dθ̂ǫ,z

dǫ

∣

∣

∣

ǫ=0

= −∇θL(ztest, θ̂)
⊤H−1

θ̂
∇θL(z, θ̂).

1We fold in any regularization terms into L.

2.2. Perturbing a training input

Let us develop a finer-grained notion of influence by study-

ing a different counterfactual: how would the model’s pre-

dictions change if a training input were modified?

For a training point z = (x, y), define zδ
def
= (x + δ, y).

Consider the perturbation z 7→ zδ , and let θ̂zδ,−z be the

empirical risk minimizer on the training points with zδ in

place of z. To approximate its effects, define the parameters

resulting from moving ǫ mass from z onto zδ: θ̂ǫ,zδ,−z
def
=

argminθ∈Θ
1
n

∑n
i=1 L(zi, θ) + ǫL(zδ, θ) − ǫL(z, θ). An

analogous calculation to (1) yields:

dθ̂ǫ,zδ,−z

dǫ

∣

∣

∣

ǫ=0
= Iup,params(zδ)− Iup,params(z)

= −H−1

θ̂

(

∇θL(zδ, θ̂)−∇θL(z, θ̂)
)

. (3)

As before, we can make the linear approximation θ̂zδ,−z −

θ̂ ≈ − 1
n
(Iup,params(zδ) − Iup,params(z)), giving us a closed-

form estimate of the effect of z 7→ zδ on the model. Anal-

ogous equations also apply for changes in y. While in-

fluence functions might appear to only work for infinitesi-

mal (therefore continuous) perturbations, it is important to

note that this approximation holds for arbitrary δ: the ǫ-

upweighting scheme allows us to smoothly interpolate be-

tween z and zδ . This is particularly useful for working with

discrete data (e.g., in NLP) or with discrete label changes.

If x is continuous and δ is small, we can further approxi-

mate (3). Assume that the input domain X ⊆ R
d, the pa-

rameter space Θ ⊆ R
p, and L is differentiable in θ and x.

As ‖δ‖ → 0, ∇θL(zδ, θ̂)−∇θL(z, θ̂) ≈ [∇x∇θL(z, θ̂)]δ,

where ∇x∇θL(z, θ̂) ∈ R
p×d. Substituting into (3),

dθ̂ǫ,zδ,−z

dǫ

∣

∣

∣

ǫ=0
≈ −H−1

θ̂
[∇x∇θL(z, θ̂)]δ. (4)

We thus have θ̂zδ,−z − θ̂ ≈ − 1
n
H−1

θ̂
[∇x∇θL(z, θ̂)]δ. Dif-

ferentiating w.r.t. δ and applying the chain rule gives us

Ipert,loss(z, ztest)
⊤ def

= ∇δL(ztest, θ̂zδ,−z)
⊤
∣

∣

∣

δ=0
(5)

= −∇θL(ztest, θ̂)
⊤H−1

θ̂
∇x∇θL(z, θ̂).

Ipert,loss(z, ztest)
⊤δ tells us the approximate effect that z 7→

z+ δ has on the loss at ztest. By setting δ in the direction of

Ipert,loss(z, ztest), we can construct local perturbations of z

that maximally increase the loss at ztest. In Section 5.2, we

will use this to construct training-set attacks. Finally, we

note that Ipert,loss(z, ztest) can help us identify the features

of z that are most responsible for the prediction on ztest.

2.3. Relation to Euclidean distance

To find the training points most relevant to a test point, it

is common to look at its nearest neighbors in Euclidean
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Figure 1. Components of influence. (a) What is the effect of the training loss and H−1

θ̂
terms in Iup,loss? Here, we plot Iup,loss against

variants that are missing these terms and show that they are necessary for picking up the truly influential training points. For these

calculations, we use logistic regression to distinguish 1’s from 7’s in MNIST (LeCun et al., 1998), picking an arbitrary test point ztest;

similar trends hold across other test points. Green dots are train images of the same label as the test image (7) while red dots are 1’s.

Left: Without the train loss term, we overestimate the influence of many training points: the points near the y=0 line should have

Iup,loss close to 0, but instead have high influence when we remove the train loss term. Mid: Without H−1

θ̂
, all green training points are

helpful (removing each point increases test loss) and all red points are harmful (removing each point decreases test loss). This is because

∀x, x � 0 (all pixel values are positive), so x ·xtest ≥ 0, but it is incorrect: many harmful training points actually share the same label as

ztest. See panel (b). Right: Without training loss or H−1

θ̂
, what is left is the scaled Euclidean inner product ytesty ·σ(−ytestθ

⊤xtest) ·x
⊤

testx,

which fails to accurately capture influence; the scatter plot deviates quite far from the diagonal. (b) The test image and a harmful training

image with the same label. To the model, they look very different, so the presence of the training image makes the model think that the

test image is less likely to be a 7. The Euclidean inner product does not pick up on these less intuitive, but important, harmful influences.

space (e.g., Ribeiro et al. (2016)); if all points have the

same norm, this is equivalent to choosing x with the largest

x ·xtest. For intuition, we compare this to Iup,loss(z, ztest) on

a logistic regression model and show that influence is much

more accurate at accounting for the effect of training.

Let p(y | x) = σ(yθ⊤x), with y ∈ {−1, 1} and σ(t) =
1

1+exp(−t) . We seek to maximize the probability of the

training set. For a training point z = (x, y), L(z, θ) =
log(1 + exp(−yθ⊤x)), ∇θL(z, θ) = −σ(−yθ⊤x)yx,

and Hθ = 1
n

∑n
i=1 σ(θ

⊤xi)σ(−θ⊤xi)xix
⊤
i . From (2),

Iup,loss(z, ztest) is:

−ytesty · σ(−ytestθ
⊤xtest) · σ(−yθ⊤x) · x⊤

testH
−1

θ̂
x.

We highlight two key differences from x · xtest. First,

σ(−yθ⊤x) gives points with high training loss more influ-

ence, revealing that outliers can dominate the model pa-

rameters. Second, the weighted covariance matrix H−1

θ̂
measures the “resistance” of the other training points to the

removal of z; if ∇θL(z, θ̂) points in a direction of little

variation, its influence will be higher since moving in that

direction will not significantly increase the loss on other

training points. As we show in Fig 1, these differences

mean that influence functions capture the effect of model

training much more accurately than nearest neighbors.

3. Efficiently Calculating Influence

There are two computational challenges to using

Iup,loss(z, ztest) = −∇θL(ztest, θ̂)
⊤H−1

θ̂
∇θL(z, θ̂). First, it

requires forming and inverting H
θ̂
= 1

n

∑n
i=1 ∇

2
θL(zi, θ̂),

the Hessian of the empirical risk. With n training points

and θ ∈ R
p, this requires O(np2 + p3) operations, which

is too expensive for models like deep neural networks with

millions of parameters. Second, we often want to calculate

Iup,loss(zi, ztest) across all training points zi.

The first problem is well-studied in second-order optimiza-

tion. The idea is to avoid explicitly computing H−1

θ̂
; in-

stead, we use implicit Hessian-vector products (HVPs) to

efficiently approximate stest
def
= H−1

θ̂
∇θL(ztest, θ̂) and then

compute Iup,loss(z, ztest) = −stest · ∇θL(z, θ̂). This also

solves the second problem: for each test point of inter-

est, we can precompute stest and then efficiently compute

−stest · ∇θL(zi, θ̂) for each training point zi.

We discuss two techniques for approximating stest, both

relying on the fact that the HVP of a single term in H
θ̂
,

[∇2
θL(zi, θ̂)]v, can be computed for arbitrary v in the same

time that ∇θL(zi, θ̂) would take, which is typically O(p)
(Pearlmutter, 1994).

Conjugate gradients (CG). The first technique is a stan-

dard transformation of matrix inversion into an optimiza-

tion problem. Since H
θ̂

≻ 0 by assumption, H−1

θ̂
v ≡

argmint{
1
2 t

⊤H
θ̂
t − v⊤t}. We can solve this with CG

approaches that only require the evaluation of H
θ̂
t, which

takes O(np) time, without explicitly forming H
θ̂
. While an

exact solution takes p CG iterations, in practice we can get

a good approximation with fewer iterations; see Martens

(2010) for more details.

Stochastic estimation. With large datasets, standard CG

can be slow; each iteration still goes through all n train-

ing points. We use a method developed by Agarwal et al.

(2016) to get an estimator that only samples a single point

per iteration, which results in significant speedups.
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Dropping the θ̂ subscript for clarity, let H−1
j

def
=

∑j
i=0(I−

H)i, the first j terms in the Taylor expansion of H−1.

Rewrite this recursively as H−1
j = I + (I − H)H−1

j−1.

From the validity of the Taylor expansion, H−1
j → H−1 as

j → ∞.2 The key is that at each iteration, we can substi-

tute the full H with a draw from any unbiased (and faster-

to-compute) estimator of H to form H̃j . Since E[H̃−1
j ] =

H−1
j , we still have E[H̃−1

j ] → H−1.

In particular, we can uniformly sample zi and use

∇2
θL(zi, θ̂) as an unbiased estimator of H . This gives

us the following procedure: uniformly sample t points

zs1 , . . . , zst from the training data; define H̃−1
0 v =

v; and recursively compute H̃−1
j v = v +

(

I −

∇2
θL(zsj , θ̂)

)

H̃−1
j−1v, taking H̃−1

t v as our final unbiased es-

timate of H−1v. We pick t to be large enough such that H̃t

stabilizes, and to reduce variance we repeat this procedure

r times and average results. Empirically, we found this sig-

nificantly faster than CG.

We note that the original method of Agarwal et al. (2016)

dealt only with generalized linear models, for which

[∇2
θL(zi, θ̂)]v can be efficiently computed in O(p) time.

In our case, we rely on Pearlmutter (1994)’s more general

algorithm for fast HVPs, described above, to achieve the

same time complexity.3

With these techniques, we can compute Iup,loss(zi, ztest)
on all training points zi in O(np + rtp) time; we show in

Section 4.1 that empirically, choosing rt = O(n) gives ac-

curate results. Similarly, we compute Ipert,loss(zi, ztest)
⊤ =

− 1
n
∇θL(ztest, θ̂)

⊤H−1

θ̂
∇x∇θL(zi, θ̂) with two

matrix-vector products: we first compute stest, then

s⊤test∇x∇θL(zi, θ̂), with the same HVP trick. These

computations are easy to implement in auto-grad systems

like TensorFlow (Abadi et al., 2015) and Theano (Theano

D. Team, 2016), as users need only specify L; the rest is

automatically handled.

4. Validation and Extensions

Recall that influence functions are asymptotic approxima-

tions of leave-one-out retraining under the assumptions that

(i) the model parameters θ̂ minimize the empirical risk,

and that (ii) the empirical risk is twice-differentiable and

2We assume w.l.o.g. that ∀i,∇2

θL(zi, θ̂) 4 I; if this is not
true, we can scale the loss down without affecting the parameters.

In some cases, we can get an upper bound on ∇2

θL(zi, θ̂) (e.g., for
linear models and bounded input), which makes this easy. Other-
wise, we treat the scaling as a separate hyperparameter and tune
it such that the Taylor expansion converges.

3To increase stability, especially with non-convex models (see
Section 4.2), we can also sample a mini-batch of training points
at each iteration, instead of relying on a single training point.

Figure 2. Influence matches leave-one-out retraining. We arbi-

trarily picked a wrongly-classified test point ztest, but this trend

held more broadly. These results are from 10-class MNIST. Left:

For each of the 500 training points z with largest
∣

∣Iup,loss(z, ztest)
∣

∣,

we plotted − 1

n
· Iup,loss(z, ztest) against the actual change in test

loss after removing that point and retraining. The inverse HVP

was solved exactly with CG. Mid: Same, but with the stochastic

approximation. Right: The same plot for a CNN, computed on

the 100 most influential points with CG. For the actual difference

in loss, we removed each point and retrained from θ̃ for 30k steps.

strictly convex. Here, we empirically show that influence

functions are accurate approximations (Section 4.1) that

provide useful information even when these assumptions

are violated (Sections 4.2, 4.3).

4.1. Influence functions vs. leave-one-out retraining

Influence functions assume that the weight on a training

point is changed by an infinitesimally small ǫ. To investi-

gate the accuracy of using influence functions to approx-

imate the effect of removing a training point and retrain-

ing, we compared − 1
n
Iup,loss(z, ztest) with L(ztest, θ̂−z) −

L(ztest, θ̂) (i.e., actually doing leave-one-out retraining).

With a logistic regression model on 10-class MNIST,4 the

predicted and actual changes matched closely (Fig 2-Left).

The stochastic approximation from Agarwal et al. (2016)

was also accurate with r = 10 repeats and t = 5, 000 iter-

ations (Fig 2-Mid). Since each iteration only requires one

HVP [∇2
θL(zi, θ̂)]v, this runs quickly: in fact, we accu-

rately estimated H−1v without even looking at every data

point, since n = 55, 000 > rt. Surprisingly, even r = 1
worked; while results were noisier, it was still able to iden-

tify the most influential points.

4.2. Non-convexity and non-convergence

In Section 2, we took θ̂ as the global minimum. In practice,

if we obtain our parameters θ̃ by running SGD with early

stopping or on non-convex objectives, θ̃ 6= θ̂. As a result,

Hθ̃ could have negative eigenvalues. We show that influ-

ence functions on θ̃ still give meaningful results in practice.

Our approach is to form a convex quadratic approxima-

tion of the loss around θ̃, i.e., L̃(z, θ) = L(z, θ̃) +

4We trained with L-BFGS (Liu & Nocedal, 1989), with L2

regularization of 0.01, n = 55, 000, and p = 7, 840 parameters.
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Figure 3. Smooth approximations to the hinge loss. (a) By varying t, we can approximate the hinge loss with arbitrary accuracy: the

green and blue lines are overlaid on top of each other. (b) Using a random, wrongly-classified test point, we compared the predicted

vs. actual differences in loss after leave-one-out retraining on the 100 most influential training points. A similar trend held for other test

points. The SVM objective is to minimize 0.005 ‖w‖2
2
+ 1

n

∑

i
Hinge(yiw

⊤xi). Left: Influence functions were unable to accurately

predict the change, overestimating its magnitude considerably. Mid: Using SmoothHinge(·, 0.001) let us accurately predict the change

in the hinge loss after retraining. Right: Correlation remained high over a wide range of t, though it degrades when t is too large. When

t = 0.001, Pearson’s R = 0.95; when t = 0.1, Pearson’s R = 0.91.

∇L(z, θ̃)⊤(θ− θ̃)+ 1
2 (θ− θ̃)⊤(Hθ̃+λI)(θ− θ̃). Here, λ is

a damping term that we add if Hθ̃ has negative eigenvalues;

this corresponds to adding L2 regularization on θ. We then

calculate Iup,loss using L̃. If θ̃ is close to a local minimum,

this is correlated with the result of taking a Newton step

from θ̃ after removing ǫ weight from z (see appendix B).

We checked the behavior of Iup,loss in a non-convergent,

non-convex setting by training a convolutional neural net-

work for 500k iterations.5 The model had not converged

and Hθ̃ was not PD, so we added a damping term with

λ = 0.01. Even in this difficult setting, the predicted and

actual changes in loss were highly correlated (Pearson’s R

= 0.86, Fig 2-Right).

4.3. Non-differentiable losses

What happens when the derivatives of the loss, ∇θL and

∇2
θL, do not exist? In this section, we show that in-

fluence functions computed on smooth approximations to

non-differentiable losses can predict the behavior of the

original, non-differentiable loss under leave-one-out re-

training. The robustness of this approximation suggests

that we can train non-differentiable models and swap out

non-differentiable components for smoothed versions for

the purposes of calculating influence.

To see this, we trained a linear SVM on the same 1s

vs. 7s MNIST task in Section 2.3. This involves min-

5The network had 7 sets of convolutional layers with tanh(·)
non-linearities, modeled after the all-convolutional network from
(Springenberg et al., 2014). For speed, we used 10% of the
MNIST training set and only 2,616 parameters, since repeatedly
retraining the network was expensive. Training was done with
mini-batches of 500 examples and the Adam optimizer (Kingma
& Ba, 2014). The model had not converged after 500k iterations;
training it for another 500k iterations, using a full training pass
for each iteration, reduced train loss from 0.14 to 0.12.

imizing Hinge(s) = max(0, 1 − s); this simple piece-

wise linear function is similar to ReLUs, which cause non-

differentiability in neural networks. We set the deriva-

tives at the hinge to 0 and calculated Iup,loss. As one

might expect, this was inaccurate (Fig 3b-Left): the sec-

ond derivative carries no information about how close a

support vector z is to the hinge, so the quadratic approx-

imation of L(z, θ̂) is linear (up to regularization), which

leads to Iup,loss(z, ztest) overestimating the influence of z.

For the purposes of calculating influence, we approximated

Hinge(s) with SmoothHinge(s, t) = t log(1+exp( 1−s
t
)),

which approaches the hinge loss as t → 0 (Fig 3a). Using

the same SVM weights as before, we found that calculat-

ing Iup,loss using SmoothHinge(s, 0.001) closely matched

the actual change due to retraining in the original Hinge(s)
(Pearson’s R = 0.95; Fig 3b-Mid) and remained accurate

over a wide range of t (Fig 3b-Right).

5. Use Cases of Influence Functions

5.1. Understanding model behavior

By telling us the training points “responsible” for a given

prediction, influence functions reveal insights about how

models rely on and extrapolate from the training data. In

this section, we show that two models can make the same

correct predictions but get there in very different ways.

We compared (a) the state-of-the-art Inception v3 network

(Szegedy et al., 2016) with all but the top layer frozen6 to

(b) an SVM with an RBF kernel on a dog vs. fish image

classification dataset we extracted from ImageNet (Rus-

sakovsky et al., 2015), with 900 training examples for each

class. Freezing neural networks in this way is not uncom-

6We used pre-trained weights from Keras (Chollet, 2015).
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mon in computer vision and is equivalent to training a lo-

gistic regression model on the bottleneck features (Don-

ahue et al., 2014). We picked a test image both models

got correct (Fig 4-Top) and used SmoothHinge(·, 0.001)
to compute the influence for the SVM.

As expected, Iup,loss in the RBF SVM varied inversely with

raw pixel distance, with training images far from the test

image in pixel space having almost no influence. The In-

ception influences were much less correlated with distance

in pixel space (Fig 4-Left). Looking at the two most help-

ful images (most positive −Iup,loss) for each model in Fig

4-Right, we see that the Inception network picked up on the

distinctive characteristics of clownfish, whereas the RBF

SVM pattern-matched training images superficially.

Moreover, in the RBF SVM, fish (green points) close to

the test image were mostly helpful, while dogs (red) were

mostly harmful, with the RBF acting as a soft nearest

neighbor function (Fig 4-Left). In contrast, in the Incep-

tion network, fish and dogs could be helpful or harmful for

correctly classifying the test image as a fish; in fact, some

of the most helpful training images were dogs that, to the

model, looked very different from the test fish (Fig 4-Top).

Figure 4. Inception vs. RBF SVM. Bottom left:

−Iup,loss(z, ztest) vs. ‖z − ztest‖
2

2
. Green dots are fish and

red dots are dogs. Bottom right: The two most helpful training

images, for each model, on the test. Top right: An image of a

dog in the training set that helped the Inception model correctly

classify the test image as a fish.

5.2. Adversarial training examples

In this section, we show that models that place a lot of in-

fluence on a small number of points can be vulnerable to

training input perturbations, posing a serious security risk

in real-world ML systems where attackers can influence the

training data (Huang et al., 2011). Recent work has gener-

ated adversarial test images that are visually indistinguish-

able from real test images but completely fool a classifier

(Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016).

We demonstrate that influence functions can be used to

craft adversarial training images that are similarly visually-

indistinguishable and can flip a model’s prediction on a sep-

arate test image. To the best of our knowledge, this is the

first proof-of-concept that visually-indistinguishable train-

ing attacks can be executed on otherwise highly-accurate

neural networks.

The key idea is that Ipert,loss(z, ztest) tells us how to mod-

ify training point z to most increase the loss on ztest.

Concretely, for a target test image ztest, we can construct

z̃i, an adversarial version of a training image zi, by ini-

tializing z̃i := zi and then iterating z̃i := Π(z̃i +
α sign(Ipert,loss(z̃i, ztest))), where α is the step size and Π
projects onto the set of valid images that share the same 8-

bit representation with zi. After each iteration, we retrain

the model. This is an iterated, training-set analogue of the

methods used by, e.g., Goodfellow et al. (2015); Moosavi-

Dezfooli et al. (2016) for test-set attacks.

We tested these training attacks on the same Inception net-

work on dogs vs. fish from Section 5.1, choosing this pair

of animals to provide a stark contrast between the classes.

We set α = 0.02 and ran the attack for 100 iterations

on each test image. As before, we froze all but the top

layer for training; note that computing Ipert,loss still involves

differentiating through the entire network. Originally, the

model correctly classified 591 / 600 test images. For each

of these 591 test images, considered separately, we tried to

find a visually-indistinguishable perturbation (i.e., same 8-

bit representation) to a single training image, out of 1,800

total training images, that would flip the model’s predic-

tion. We were able to do this on 335 (57%) of the 591

test images. By perturbing 2 training images for each test

image, we could flip predictions on 77% of the 591 test im-

ages; and if we perturbed 10 training images, we could flip

all but 1 of the 591. The above results are from attacking

each test image separately, i.e., using a different training set

to attack each test image. We also tried to attack multiple

test images simultaneously by increasing their average loss,

and found that single training image perturbations could si-

multaneously flip multiple test predictions as well (Fig 5).

We make three observations about these attacks. First,

though the change in pixel values is small, the change in

the final Inception feature layer is significantly larger: us-

ing L2 distance in pixel space, the training values change

by less than 1% of the mean distance of a training point to

its class centroid, whereas in Inception feature space, the

change is on the same order as the mean distance. This

leaves open the possibility that our attacks, while visually-

imperceptible, can be detected by examining the feature

space. Second, the attack tries to perturb the training ex-
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Figure 5. Training-set at-

tacks. We targeted a

set of 30 test images fea-

turing the first author’s

dog in a variety of poses

and backgrounds. By

maximizing the average

loss over these 30 im-

ages, we created a visually-

imperceptible change to

the particular training im-

age (shown on top) that

flipped predictions on 16

test images.

ample in a direction of low variance, causing the model to

overfit in that direction and consequently incorrectly clas-

sify the test images; we expect attacking to be harder as

the number of training examples grows. Third, ambiguous

or mislabeled training images are effective points to attack:

the model has low confidence and thus high loss on them,

making them highly influential (recall Section 2.3). For ex-

ample, the image in Fig 5 contains both a dog and a fish and

is highly ambiguous; as a result, it is the training example

that the model is least confident on (with a confidence of

77%, compared to the next lowest confidence of 90%).

This attack is mathematically equivalent to the gradient-

based training set attacks explored by Biggio et al. (2012);

Mei & Zhu (2015b) and others in the context of different

models. Biggio et al. (2012) constructed a dataset poison-

ing attack against a linear SVM on a two-class MNIST task,

but had to modify the training points in an obviously distin-

guishable way to be effective. Measuring the magnitude of

Ipert,loss gives model developers a way of quantifying how

vulnerable their models are to training-set attacks.

5.3. Debugging domain mismatch

Domain mismatch — where the training distribution does

not match the test distribution — can cause models with

high training accuracy to do poorly on test data (Ben-David

et al., 2010). We show that influence functions can identify

the training examples most responsible for the errors, help-

ing model developers identify domain mismatch.

As a case study, we predicted whether a patient would be

readmitted to hospital. Domain mismatches are common

in biomedical data, e.g., different hospitals serve different

populations, and models trained on one population can do

poorly on another (Kansagara et al., 2011). We used logis-

tic regression to predict readmission with a balanced train-

ing dataset of 20K diabetic patients from 100+ US hospi-

tals, each represented by 127 features (Strack et al., 2014).7

7Hospital readmission was defined as whether a patient would
be readmitted within the next 30 days. Features were demo-

3 out of the 24 children under age 10 in this dataset were

re-admitted. To induce a domain mismatch, we filtered out

20 children who were not re-admitted, leaving 3 out of 4 re-

admitted. This caused the model to wrongly classify many

children in the test set. Our aim is to identify the 4 children

in the training set as being “responsible” for these errors.

As a baseline, we tried the common practice of looking at

the learned parameters θ̂ to see if the indicator variable for

being a child was obviously different. However, this did

not work: 14/127 features had a larger coefficient.

Picking a random child ztest that the model got wrong, we

calculated −Iup,loss(zi, ztest) for each training point zi. This

clearly highlighted the 4 training children, each of whom

were 30-40 times as influential as the next most influential

examples. The 1 child in the training set who was not read-

mitted had a very positive influence, while the other 3 had

very negative influences. Moreover, calculating Ipert,loss on

these 4 children showed that the ‘child’ indicator variable

contributed significantly to the magnitude of Iup,loss.

5.4. Fixing mislabeled examples

Labels in the real world are often noisy, especially if crowd-

sourced (Frénay & Verleysen, 2014), and can even be ad-

versarially corrupted. Even if a human expert could rec-

ognize wrongly labeled examples, it is impossible in many

applications to manually review all of the training data. We

show that influence functions can help human experts pri-

oritize their attention, allowing them to inspect only the ex-

amples that actually matter.

The key idea is to flag the training points that exert the

most influence on the model. Because we do not have ac-

cess to the test set, we measure the influence of zi with

Iup,loss(zi, zi), which approximates the error incurred on zi
if we remove zi from the training set.

Our case study is email spam classification, which relies

graphic (e.g., age, race, gender), administrative (e.g., length of
hospital stay), or medical (e.g., test results).
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on user-provided labels and is also vulnerable to adversar-

ial attack (Biggio et al., 2011). We flipped the labels of a

random 10% of the training data and then simulated manu-

ally inspecting a fraction of the training points, correcting

them if they had been flipped. Using influence functions

to prioritize the training points to inspect allowed us to re-

pair the dataset (Fig 6, blue) without checking too many

points, outperforming the baselines of checking points with

the highest train loss (Fig 6, green) or at random (Fig 6,

red). No method had access to the test data.

Figure 6. Fixing mislabeled examples. Plots of how test accu-

racy (left) and the fraction of flipped data detected (right) change

with the fraction of train data checked, using different algorithms

for picking points to check. Error bars show the std. dev. across

40 repeats of this experiment, with a different subset of labels

flipped in each; error bars on the right are too small to be seen.

These results are on the Enron1 spam dataset (Metsis et al., 2006),

with 4,147 training and 1,035 test examples; we trained logistic

regression on a bag-of-words representation of the emails.

6. Related Work

The use of influence-based diagnostics originated in statis-

tics in the 70s and 80s, driven by seminal papers by Cook

and others (Cook, 1977; Cook & Weisberg, 1980; 1982),

though similar ideas appeared even earlier in other forms,

e.g., the infinitesimal jackknife (Jaeckel, 1972). Earlier

work focused on removing training points from linear mod-

els, with later work extending this to more general models

and a wider variety of perturbations (Cook, 1986; Thomas

& Cook, 1990; Chatterjee & Hadi, 1986; Wei et al., 1998).

Most of this prior work focused on experiments with small

datasets, e.g., n = 24 and p = 10 in Cook & Weisberg

(1980), with special attention therefore paid to exact solu-

tions, or if not possible, characterizations of the error terms.

Influence functions have not been used much in the ML

literature, with some exceptions. Christmann & Stein-

wart (2004); Debruyne et al. (2008); Liu et al. (2014) use

influence functions to study model robustness and to do

fast cross-validation in kernel methods. Wojnowicz et al.

(2016) uses matrix sketching to estimate Cook’s distance,

which is closely related to influence; they focus on priori-

tizing training points for human attention and derive meth-

ods specific to generalized linear models.

As noted in Section 5.2, our training-set attack is mathe-

matically equivalent to an approach first explored by Big-

gio et al. (2012) in the context of SVMs, with follow-up

work extending the framework and applying it to linear

and logistic regression (Mei & Zhu, 2015b), topic mod-

eling (Mei & Zhu, 2015a), and collaborative filtering (Li

et al., 2016a). These papers derived the attack directly from

the KKT conditions without considering influence, though

for continuous data, the end result is equivalent. Influ-

ence functions additionally let us consider attacks on dis-

crete data (Section 2.2), but we have not tested this em-

pirically. Our work connects the literature on training-

set attacks with work on “adversarial examples” (Goodfel-

low et al., 2015; Moosavi-Dezfooli et al., 2016), visually-

imperceptible perturbations on test inputs.

In contrast to training-set attacks, Cadamuro et al. (2016)

consider the task of taking an incorrect test prediction and

finding a small subset of training data such that changing

the labels on this subset makes the prediction correct. They

provide a solution for OLS and Gaussian process models

when the labels are continuous. Our work with influence

functions allow us to solve this problem in a much larger

range of models and in datasets with discrete labels.

7. Discussion

We have discussed a variety of applications, from creat-

ing training-set attacks to debugging models and fixing

datasets. Underlying each of these applications is a com-

mon tool, the influence function, which is based on a sim-

ple idea — we can better understand model behavior by

looking at how it was derived from its training data.

At their core, influence functions measure the effect of lo-

cal changes: what happens when we upweight a point by

an infinitesimally-small ǫ? This locality allows us to de-

rive efficient closed-form estimates, and as we show, they

can be surprisingly effective. However, we might want to

ask about more global changes, e.g., how does a subpopu-

lation of patients from this hospital affect the model? Since

influence functions depend on the model not changing too

much, how to tackle this is an open question.

It seems inevitable that high-performing, complex, black-

box models will become increasingly prevalent and impor-

tant. We hope that the approach presented here — of look-

ing at the model through the lens of the training data —

will become a standard part of the toolkit of developing,

understanding, and diagnosing machine learning.

The code and data for replicating our experiments is avail-

able on GitHub http://bit.ly/gt-influence

and Codalab http://bit.ly/cl-influence.

http://bit.ly/gt-influence
http://bit.ly/cl-influence
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