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1 Introduction

The built environment (BE) harbors diverse microbial
populations including viruses, bacteria, fungi, and proto-
zoa (Adams et al., 2016; Gilbert and Stephens, 2018;
Dannemiller, 2019), which collectively constitute the
microbiomes of the built environment (MoBE). Humans
have extensive interactions with the microbiomes that are
in the air circulating in buildings, in the water flowing in

plumbing systems, and on the surfaces from the most
inaccessible to the most touched objects (NASEM, 2017).
In developed countries, people spend about 90% of their
time indoor (Klepeis et al., 2001). Increasing urbanization
and modernization will likely make people in developing
countries spend more time indoors (Popkin, 1999). Thus,
the majority of microbiomes encountered by most humans
during their lifetime are those present in the BE (Leung and
Lee, 2016). There are diverse taxonomic groups in MoBE,
which has been revealed by the rapid development and
application of culture-independent, high-throughput
sequencing techniques. Evidently, it is essentially impos-
sible to characterize MoBE with conventional culture-
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H I G H L I G H T S

•The built environment, occupants, and micro-

biomes constitute an integrated ecosystem.

•This review summarizes research progress which

has focused primarily on microbiomes.

•Critical research needs include studying impacts

of occupant behaviors on microbiomes.
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G R A P H I C A B S T R A C T

A B S T R A C T

Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive
interactions that impact one another. Understanding the interactions between these systems is essential
to develop strategies for effective management of the built environment and its inhabitants to enhance
public health and well-being. Numerous studies have been conducted to characterize the microbiomes
of the built environment. This review summarizes current progress in understanding the interactions
between attributes of built environments and occupant behaviors that shape the structure and dynamics
of indoor microbial communities. In addition, this review also discusses the challenges and future
research needs in the field of microbiomes of the built environment that necessitate research beyond
the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms
between the built environment, occupants, and microbiomes, which will provide a knowledge base for
the development of transformative intervention strategies toward healthy built environments. The
pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the
urgency and significance of understanding the complex interactions between the built environment,
occupants, and microbiomes, which is the focus of this review.
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dependent techniques, which are capable of targeting only
a small portion of the MoBE that can be cultivated under
laboratory conditions. Common bacterial genera in indoor
environments include Pseudomonas, Acinetobacter, Sta-
phylococcus, Corynebacterium, Sphingomonas, and Clos-

tridium, while common fungi may be represented by
populations associated with Cladosporium, Penicillium,
and Aspergillus (Wilkins et al., 2016). The MoBE differs
considerably in built environments with different function-
alities, such as residential homes, hospitals, schools and
daycare centers, transit systems, shopping malls, public
restrooms, offices, museums, food processing facilities,
fitness centers, aircraft, and even the international space
station (Tringe et al., 2008; Kembel et al., 2014; Leung et
al., 2014; Mukherjee et al., 2014; Checinska et al., 2015;
Kettleson et al., 2015; Nordahl Petersen et al., 2015;
Bokulich et al., 2016; Brooks et al., 2017; Täubel and
Leppänen, 2017). Most studies are focused on bacteria and
fungi, because of methodological limitations to profiling
viruses. The few reports studying viral constituents of the
MoBE targeted specific viruses in distinct BE such as
intensive care units (ICUs) (Bramley et al., 2012).
MoBE has profound impacts on human health and well-

being. Microbial pathogens are responsible for more than
400 million years of life lost annually worldwide
(Fitzpatrick et al., 2019), some of which are results of
transmission of pathogens via air, water, and surface
contact in the BE (Madhav et al., 2017). It should be noted
that the BE is considered as a major venue that facilitates
the transmission of the novel coronavirus (SARS-CoV-2)
(Allen and Marr, 2020; Prather et al., 2020), which is a
pandemic that has infected millions and is still spreading
rapidly. The resulting economic losses will be unprece-
dented. In addition, transmission in the BE is also
responsible for the spread of influenza (e.g. by contacting
contaminated objects) and Legionella (e.g. via inhalation
of contaminated water droplets), leading to significant
human and economic losses. Flu alone costs the US
healthcare system an average of $11.2 billion each year
(Putri et al., 2018). During the 2019‒2020 flu season, an
estimated 16000 people have died of flu. The case-fatality
rate of Legionnaires' disease, caused by Legionella, can be
as high as 50% in certain outbreaks (Prussin et al., 2017).
The transmission of microbial pathogens in the BE is also
manifested by the fact that every year there are 1.7 million
hospital acquired infections (HAIs) in the US, resulting in
99000 related deaths every year (Curtis, 2008). Moreover,
about 21% of asthma cases in the US can be attributed to
dampness and mold in the BE, particularly residential
homes, costing $3.5 billion annually (Mudarri and Fisk,
2007). It was found that reduced microbial diversity in the
BE is associated with the development of asthma (Ege et
al., 2011). In addition, MoBE may affect immune system
functions through interactions with the host-associated
microbiota, and further impact occupants’ mental health
(Hoisington et al., 2015). Having the simplistic assumption

that microbiomes are “bad,” people conventionally have
attempted to suppress microbial growth and eradicate
microorganisms from the BE. However, the MoBE
research community has become increasingly aware of
the beneficial roles “good”microbiomes play in preventing
diseases (Turnbaugh et al., 2006; Round and Mazmanian,
2009; Bultman, 2014; Hsiao et al., 2013; Ridaura et al.,
2013; Lowry et al., 2016; Dai et al., 2017). One example is
that exposure to microbiomes from dogs (Liu et al., 2015)
and traditional farm-type environments (Kirjavainen et al.,
2019) early in life has been linked to reduced probability of
developing asthma.
To develop strategies for sustainable management of the

BE to promote public health and well-being, it is essential
to understand the processes underlying the interactions
between the microbiomes, BE, and occupants. To this end,
numerous studies have been conducted to characterize the
MoBE and subsequently its linkages to the attributes of BE
design and operation, as well as occupant behaviors. BE,
occupants, and microbiomes constitute a system of
ecosystems with extensive interactions that impact one
another. The composition and dynamics of the MoBE,
which is a frequent target for microbial control, have been
found to be impacted considerably by the occupants as
well as BE design and operation. This review summarizes
our current understanding of how BE design and operation,
and occupant behaviors and activities interact to shape
MoBE. The review also discusses the opportunities,
challenges and future research directions in the field of
MoBE to move beyond the basic characterization of MoBE
in order to gain mechanistic understanding of the
interactions between BE, occupants, and microbiomes at
various spatiotemporal resolutions, which would support
the development of transformative and effective interven-
tion strategies toward healthy BE.

2 Bibliographic overview

2.1 Co-authorship network by country

To include relevant literature in the field of MoBE in this
review, we searched and collected all published items in
Web of Science (WOS) having the term “built environ-
ment” and “microbi*” in the abstract/title/keywords. A
total of 1403 publications related to MoBE were collected
from 1991 to February 2020. Since MoBE is likely distinct
geographically, the publication data was uploaded to
VOSviewer to create a co-authorship network by country
(van Eck and Waltman, 2010), showing that authors who
published work in the field of MoBE are from 95 countries.
The number of countries with 5 or more MoBE-related
publications is 46, indicating the concentration of MoBE
research in a small number of countries (Fig. 1). Among
the countries represented in the network, authors from the
US contributed to more than 25% of all the publications on
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MoBE. More revealing is the observation that research
collaboration is stronger between countries already with
high levels of MoBE research, which are mostly conducted
in developed countries (Fig. 1). For example, the US has a
very high level of collaboration with Germany and
Belgium in MoBE research. Given the potential differ-
ences in MoBE between developed and developing
countries, it is necessary to expand MoBE search in
developing countries to address issues of global impact,
such as the transmission of pathogens in BE, which may
differ considerably in countries with distinct BE design
and operation attributes.

2.2 Keyword co-occurrence network

VOSviewer was also used to create a keywords co-
occurrence network, which could be used to identify key
components included for MoBE analysis (Lee and Su,
2010). A total of 3989 author keywords were identified in
1403 publications on the topic of MoBE. These keywords
were reduced to 110 by using minimum occurrences of 5,
which was used to develop a co-occurrence network
consisting of 110 keywords and 563 links (Fig. 2). As
expected, microbiome, built environment, bacteria, and
fungi are the four dominant keywords in the published
items. In comparison, keywords related to specific BE

attributes, such as air, surface, and water quality, have
received less research attention and are not frequently
investigated together with the microbiomes, indicated by
the long distance between these keywords and the center of
the network (Fig. 2). Given the significant impact of BE
attributes on MoBE, the general lack of research efforts to
linking BE attributes to MoBE indicates an important gap
that needs to be closed in future studies (Kembel et al.,
2012; Leung et al., 2014). Moreover, virus is absent as a
keyword in the network, indicating that, despite the
significance of viruses as a part of MoBE, few studies
have investigated viruses as constituents of MoBE.

3 Impacts of occupancy on MoBE

The occupants of BE play an important role in shaping
MoBE (Smith et al., 2013; Nice and Bole, 2016). It has
been demonstrated that high occupancy increases the
accumulation of human-associated microorganisms (Hos-
podsky et al., 2012; Kembel et al., 2012; Qian et al., 2012;
Kembel et al., 2014; Meadow et al., 2014a; Meadow et al.,
2014b; Miletto and Lindow, 2015; Ross and Neufeld,
2015; Dannemiller et al., 2016; Kang et al., 2018) and
potential microbial transmission through increased social
interactions, direct or indirect contact with surfaces, and air

Fig. 1 Bibliometric map based on the network of co-authorship relationships among 46 countries, with the color of the network

representing publication count by country. The distance between countries in the network represents the level of collaboration, i.e. the

smaller the distance between the two countries, the greater number of publications contributed by authors from both countries.
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flow (Salathe et al., 2010; Andrews et al., 2014; Wood
et al., 2014). The MoBE associated with indoor dust and
surfaces are specifically enriched with microbial popula-
tions originated from the human skin, gut, oral, and
urogenital microbiomes (Flores et al., 2011; Jeon et al.,
2013; Adams et al., 2014; Lax et al., 2014; Leung et al.,
2014; Meadow et al., 2014a; Afshinnekoo et al., 2015;
Gibbons et al., 2015). This is expected as it is estimated
that humans emit in the order of 106 particles and 107

bacterial genome copies per hour (Qian et al., 2012; You
et al., 2013). It is worth noting that the microbial clouds
emitted from individual human occupants could be
different. For instance, people with contrasting health
conditions exhibit distinct microbiomes (Hoisington et al.,
2015; Lloyd-Price et al., 2016). The distribution of
occupant-associated indoor microbiomes can also be
linked to the duration that individuals spend in the BE
and the type of activities performed (Dunn et al., 2013; Lax
et al., 2014; Adams et al., 2015b; Meadow et al., 2015;
Karkman et al., 2017; Luongo et al., 2017; Ross et al.,
2017), which could partially explain the differences in
MoBE of different functionalities including hospitals,
residences, and schools (Meadow et al., 2015).
Occupant-associated microbiomes may disperse into the

BE via three pathways (Fig. 3): 1) direct human contact
with surfaces; 2) emission of bioaerosols and particulates
from human breath, skin, and hair; and 3) resuspension of
indoor dust containing human-emitted microbiomes (Mea-
dow et al., 2015). Previous studies have shown that
occupants affect MoBE through desquamation and physi-
cal contacts with indoor surfaces (Lax et al., 2014; Adams
et al., 2015a; Wood et al., 2015) as the primary pathways.
Both the frequency (Flores et al., 2013) and the nature of
human contact (e.g. with skin, or with shoes on floor or
carpet, or release of gut-associated microbiomes in wash-
rooms) (Flores et al., 2011; Kembel et al., 2014; Meadow
et al., 2014b; Mukherjee et al., 2014; Gibbons et al., 2015;
Wood et al., 2015) can affect the composition of
microbiomes in different indoor areas and on different
surfaces within a single BE. For instance, desk surfaces in
classroom are associated with indicator taxa related to
Streptococcus species that are more commonly found in
human skin and oral samples. Walls are found to be
associated with indicator taxa from airborne bacterial
assemblages such as Sphingomonas and Alicyclobacillus

species, while floors are more likely to harbor non-human
environmental bacterial populations (Meadow et al.,
2014b). Revealed by longitudinal analysis, surfaces in

Fig. 2 Author keyword co-occurrence patterns in MoBE literature. Each circle represents a keyword. The size of the circle is defined as

the occurrence frequency of the keyword measured in terms of publications. The distance between the circles is an indication of the

number of co-occurrences – the shorter the distance between two keywords, the stronger the relationship is.
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public areas (e.g. fitness centers, airplanes, public transit,
etc.) with more frequent contacts exhibit greater temporal
variations in their microbial communities (Wood et al.,
2015), as compared with a private BE (e.g. residential
unit). In addition, occupant movements may cause re-
suspension of settled dust particles (Hospodsky et al.,
2012; Qian et al., 2012; Adams et al., 2015a; Yamamoto
et al., 2015), and introduce exogenous microbial popula-
tions from outdoor environments (Fujimura et al., 2010;
Heydenreich et al., 2012; Adams et al., 2015b; Barberán
et al., 2015), which can redistribute and reshape MoBE.
These findings reveal considerable variations in MoBE at
fine spatiotemporal resolutions, pointing to the need for
surveying MoBE at much finer resolutions than those of
individual rooms and seasons, which are typically lacking
in MoBE studies in the literature.
Given the significance of occupants in shaping MoBE, it

is fundamentally important to incorporate occupant
behaviors and activities into the analysis of MoBE. Up
till now, few studies have attempted to link occupants to
MoBE, which is likely due to the lack of technologies
suitable for the monitoring and characterization of
occupant movements.
Previous studies have further shown that the impacts of

occupants on MoBE are mediated by the design and
operation of the BE. For instance, architectural design
attributes influence occupant behaviors and activities such
as the contact and use patterns (Beans, 2016; Brown et al.,
2016), human interactions (Purcell, 1987; Dunn et al.,

2013), how and where occupant-associated microbiomes
are emitted and deposited (Kembel et al., 2014; Meadow
et al., 2014a), properties of building surface materials
(affecting the colonization of human-emitted micro-
biomes), and temperature (affecting occupant behaviors).
Next, a detailed review of how the design and operation
attributes of BE would influence MoBE is presented.

4 Impacts of BE attributes on MoBE

The built environment is a reservoir of diverse micro-
organisms and provides an environment for microbial
colonization, succession, and transmission. The attributes
of BE design and operation have a direct influence on the
MoBE (Fig. 4). Further, these attributes indirectly affect
MoBE via impacts on occupant behaviors and activities.
For instance, the building layout directly affects the
movements and activities of occupants, which subse-
quently influences how occupant-associated microbiomes
are dispersed in the BE (Hathway et al., 2011). The choice
of design will also influence sunlight exposure, which
could play roles in the inactivation of microorganisms
(Couret et al., 2013). Ventilation (e.g., the exchange with
outdoor air) may also have impact on indoor microbiomes
in both diversity and abundance. The direction of airflow
will dictate the distribution of aerosols and particulates
which are the carriers of microorganisms. Temperature and
moisture represent two interrelated attributes in the built

Fig. 3 Impacts of occupancy on MoBE.

Fig. 4 Impacts of BE attributes on MoBE.
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environment as temperature differences are typically
linked to humidity gradients. Controlling moisture and
temperature in the BE is believed to be important to
suppress the growth of molds, which are significant
constituents of MoBE. More importantly, the coupled
influence of moisture and building material properties (e.g.
surface roughness and pH of material), together with
human contact and activities, will significantly influence
microbial growth. Often neglected is the contribution of
plumbing systems to MoBE, as bacteria such as Legionella
can be transported from the water in plumbing systems to
the air, and subsequently transmitted further via the
ventilation systems.

4.1 Functional characteristics of BE

The functionalities of BE have been found to directly
impact the composition of MoBE. Previous studies
analyzed bacterial communities in dust samples collected
from 155 BE locations to reveal how BE design attributes
impact the MoBE (Kembel et al., 2012; Kembel et al.,
2014). It was found that bacterial communities in
restrooms were dramatically different from those in other
rooms. Further, the set of bacterial taxa found in spaces
with high occupancy and high degree of connectedness to
other spaces exhibit significant differences from those
found in spaces with low occupancy and low degree of
connectedness. Another study examined microbiome data
acquired from various built environments with different
functionalities, including apartment buildings, food pro-
cessing facilities, hospitals, residential kitchens, art
museums, and university buildings (Adams et al.,
2015a). The analysis identified variations in microbial
communities among different building types, which
supports the hypothesis that the function of BE would
impact the indoor microbial communities.
Despite the numerous studies on MoBE, it remains

unclear how the functions of BE would impact MoBE.
This ambiguity may stem from two aspects. First, the
functional characteristics of BE likely impact the MoBE
through many interrelated processes. The functionality of a
particular BE would typically dictate various design
attributes of the BE, including the choices of sunlight
admission, ventilation pattern, building materials, and
heating, ventilation, and air conditioning (HVAC) systems.
These choices collectively would influence the environ-
mental conditions (e.g. temperature, humidity, lighting,
and airflow) critical for the colonization, succession, and
also transmission of the MoBE. Second, the functional
characteristics of BE would likely also impact occupant
activities (e.g. specific user groups, occupant density, and
movement) (Zifferblatt, 1972). Given the significance of
occupants and building characteristics in shaping MoBE, it
is important to study the building, occupant, and micro-
biome as an integrated system to identify processes

involved in the development of MoBE. In the following
sections, we will review the scientific literature focusing on
the linkages between design and operational attributes and
MoBE.

4.2 Building material

All building materials may be subject to microbial
colonization (Warscheid and Braams, 2000; Cutler and
Viles, 2010; Jurado et al., 2014; Coutinho et al., 2015;
Dedesko and Siegel, 2015; Guerra et al., 2019; Hu et al.,
2019). Studies have been conducted to identify the
microorganisms readily present on building materials in
the BE. One group of microbial populations most
frequently identified in building materials are those
belonging to Penicillium (Andersson et al., 1997; Tuomi
et al., 2000; Doll, 2002; Hyvärinen et al., 2002; Rintala et
al., 2002; Andersen et al., 2011; Verdier et al., 2014).
Aspergillus species are often found on ceramic-type
materials as well as surfaces of paint and glue (Hyvärinen
et al., 2002; Andersen et al., 2011). Gypsum-type materials
may facilitate the development of Stachybotrys, another
indication of the selectivity of microbial colonization on
building materials (Pasanen et al., 1992; Andersson et al.,
1997; Hyvärinen et al., 2002; Andersen et al., 2011).
As a result, the susceptibility of different building

materials to microbial colonization has been evaluated.
Among bio-based construction materials, chipboard was
found to be the most susceptible to mold growth and wood
the least (Stefanowski et al., 2017), while plant aggregates
would make earth-based materials more sensitive to fungal
growth (Laborel-Préneron et al., 2018; Simons et al.,
2019). Compared with cement-stabilized earth blocks,
bricks as wall materials were shown to be more susceptible
to fungal growth (Udawattha et al., 2018). Some studies
suggest that high levels of copper in pipe materials inhibit
Legionella survival and growth in indoor plumbing
systems (van der Kooij et al., 2005; Proctor et al., 2017),
while others found increased persistence of Legionella in
biofilms formed on copper plumbing materials (Buse et al.,
2014). A significant portion of indoor surfaces, including
textiles, have incorporated metal nanoparticles to discou-
rage fungal and bacterial growth (Chen et al., 2018; da
Silva et al., 2019). Recently, the green wall and green roof
concepts have also been introduced into buildings. The
plants may introduce source microorganisms, moisture,
and nutrition that support microbial growth. It is known
that indoor plants can contribute substantially to the
microbial abundance and diversity in the BE (Mahnert et
al., 2015). It is thus important that new materials being
continuously developed for applications in the BE need to
be evaluated for their impact on MoBE as part of the
product evaluation process.
The properties of the materials, coupled with lighting,

heating, cooling, humidity and ventilation as well as the
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occupants and their activities, can considerably affect
MoBE. Building material properties may contribute to the
microbial colonization via two ways. First, the ingredients
of the building materials can provide potential substrates
and nutrients for the colonized microbiomes (Lugauskas
et al., 2003; Vacher et al., 2010). For instance, because
cellulose-based materials can be metabolized by a number
of microbial populations (Gutarowska, 2010; Hoang et al.,
2010), they are more susceptible to microbial colonization
and growth than inorganic materials such as gypsum,
mortar, and concrete. Addition of carbon sources (e.g.
carboxylmethyl cellulose) or emulsion paint is known to
provide potential substrates for microbial growth (Ayerst,
1969; Grant et al., 1989). Second, most building materials,
such as wallpaper glue, paint, grease, paper, textile, and
wood products, are characterized with high porosity and
surface roughness. The rough and porous surface may
facilitate the adherence of dust and organic compounds
resulting from the activities in the buildings. In addition,
porous material may also retain sufficient moisture (Hoang
et al., 2010). As a result, rough and porous building
materials could facilitate microbial growth due to increased
levels of organics and moisture (Lax et al., 2019).
However, it is suggested that microorganisms retained by
porous materials may be immobilized, making it less likely
for these microorganisms to subsequently interact with the
BE (Abrishami et al., 1994; Ak et al., 1994). Therefore, the
influence of porous materials on MoBE needs further
investigation.

4.3 Heating, ventilation, and air conditioning (HVAC)

4.3.1 Temperature

Indoor air temperature has been shown to have impacts on
the abundance of indoor microbial community. However,
the relationship between temperature and MoBE is unclear
as some studies found positive correlations as greater
abundance of indoor microbiomes was associated with
higher temperature (Ponsoni and Raddi, 2010; Frankel et
al., 2012; Kembel et al., 2012) while other studies
observed inverse correlations (Frankel et al., 2012;
Dannemiller et al., 2016). The potential explanation to
the conflicting findings is twofold. First, most BE are
maintained at a temperature range between 60- and 80-
degrees Fahrenheit for human comfort. Although different
types of microbial populations have different temperature
ranges for growth, many microorganisms grow well in this
indoor temperature range (Tang, 2009). As a result, the
temperature alone in the BE may not be considered as a
factor to explain the variations in MoBE. Second,
temperature may impact other parameters in BE such as
moisture, as well as occupant behaviors and activities,
which exert indirect impacts on microbial colonization and

transmission. These indirect impacts made it very difficult
to quantify the impact of temperature on MoBE.

4.3.2 Moisture

Moisture significantly influences the survival (Jump et al.,
2007; Tang, 2009; Zhao et al., 2012; Hoeksma et al.,
2015), activity (Dannemiller et al., 2017; Hegarty et al.,
2018), and composition of the MoBE (Pessi et al., 2002;
Kembel et al., 2012; Dannemiller et al., 2016). The
moisture in BE may come from a variety of sources
including indoor water vapor content, weather events,
plumbing problems, and leaks from building envelopes
and roof systems. Temperature gradients are a less obvious
source of moisture, which is often overlooked and ignored.
However, at locations where relatively warm and moist air
is in contact with relatively cold surfaces, water condensate
may occur on building surfaces (Hänninen, 2011), which
might occur frequently in air-conditioned buildings.
Moisture in the air and on the surface may impact the

MoBE in different ways. Relative humidity is often used to
measure moisture saturation in the air. Low relative
humidity will increase the possibility of aerosolization of
microorganisms on indoor surfaces and the resuspension
into air due to occupant movements (Frankel et al., 2014;
Hyytiäinen et al., 2018; Wu et al., 2018). Low relative
humidity will also increase the potential for the aerosols to
stay aloft longer and travel farther (Wolkoff, 2018). On the
other hand, high relative humidity is conducive to
microbial survival and activity on surfaces (Jump et al.,
2007; Tang, 2009; Zhao et al., 2012; Hoeksma et al.,
2015), and facilitates the direct contact transfer of
microorganisms from fomite to occupants (Lopez et al.,
2013). Microenvironments within surfaces, e.g., high
relative humidity in the carpet, can create niches for
microbial growth and further influence microbial transfer
from surfaces (Dannemiller et al., 2017). In this sense,
localized relative humidity in a building needs to be
effectively controlled to reduce the dispersal and transmis-
sion of microorganisms in the BE (Wolkoff, 2018).
Moisture at the material surface is assessed as

equilibrium relative humidity (ERH). When the ERH
reaches certain thresholds, the surface of building materials
could become the target of microbial growth. For instance,
it is more conducive for microbial growth when the ERH is
greater than 70% for wooden materials, 85% for gypsum-
board, and around 90-95% for cementitious and concrete
materials (Riva et al., 2014; Adams and Lymperopoulou,
2018). High ERH will facilitate the germination and
proliferation of mold on building materials (Pasanen et al.,
1992; Kembel et al., 2012; Green, 2014; Lau and
Chamberlain, 2016; Dade-Robertson et al., 2017). The
surface relative humidity is seldom the same as that of the
air since the temperature of surface is usually not the same

Shuai Li et al. Building-occupant-microbiome interactions in the built environment 7



as that of the air. Therefore, efforts to control the indoor air
relative humidity alone will not likely guarantee optimal
control of mold growth on surfaces (Tsongas and Riordan,
2016).

4.3.3 Ventilation

Ventilation affects indoor temperature, humidity, airflow
rates, and carbon dioxide levels which could influence the
compositions of MoBE and may select for the survival of
specific microbial taxa (Kembel et al., 2012; Kembel et al.,
2014; Leung et al., 2014; Kettleson et al., 2015). The most
direct impact of ventilation on MoBE is to facilitate or
impede outdoor microbiomes from entering the BE. This
argument is supported by studies showing microbial
communities in mechanically ventilated rooms exhibit
significant differences from those with natural ventilation
(Kembel et al., 2012; Adams et al., 2013; Adams et al.,
2014; Meadow et al., 2014a). For example, differences in
microbial community composition were apparent between
dust samples collected from a mixed-use building with half
of the offices using natural ventilation and those of the
other half using a conventional mechanical system
(Brągoszewska et al., 2018). Compared with mechanically
ventilated rooms, naturally ventilated rooms had indoor
microbiomes more similar to those of the outdoor
environment (Kembel et al., 2012; Meadow et al.,
2014a), because microbes from the outdoors are more
likely to enter the naturally ventilated rooms (Adams et al.,
2013; Robertson et al., 2013; Meadow et al., 2014a).
In contrast, mechanical ventilation usually uses filters to

prevent some of the outdoor microbes and particulates
from entering the BE. Conventional air filters are effective
in removing particles less than 0.1 mm in diameter via
diffusion and particles larger than 1 mm in diameter with
impaction, which makes it effective against bacterial and
fungi (Hospodsky et al., 2015) but less effective against
some viruses such as influenza due to their size ranges
(Lindsley et al., 2010). It has been shown that appropriate
ventilation with sufficient air exchanges and/or directed air
flow can effectively reduce the overall concentrations of
airborne microbial pathogens (Memarzadeh, 2013), thus
reducing disease transmission risks (Chartier and Pessoa-
Silva, 2009; Hobday and Dancer, 2013). However,
inappropriate ventilation, such as high ventilation rates
with high turbulence, can retain particulates and associated
microbial populations in the air, thus may negatively
impact health (Carlton et al., 2019).
Natural ventilation introduces extra outdoor air to the

BE and is proven to mitigate the sick building syndrome
(Seppanen and Fisk, 2002). This is likely due to the
introduction of more diverse indoor bacterial communities
into BE, which has shown positive health effects (Kembel
et al., 2012). However, natural ventilation also introduces
undesirable contaminants such as allergens, which is a

challenge to the broader application of natural ventilation,
particularly in BE with vulnerable occupants (Kovesi et al.,
2009).

4.4 Sunlight

The antiseptic effect of sunlight was discovered in the late
1800s (Downing and Blunt, 1878; Bazzoni, 1914). Such an
effect has been particularly studied in healthcare facilities
(Nightingale, 1863; Kundsin, 1988; Medeiros et al., 2015).
Studies have also been conducted to illustrate how sunlight
(full-spectrum) and light of specific spectrum affect mono-
culture microorganisms as well as complex microbial
communities. It was found that the survival and activity of
bacterial or fungal monocultures were negatively affected
by exposure to sunlight (Fonseca and Tavares, 2011;
Hobday and Dancer, 2013; Hessling et al., 2017),
ultraviolet light (Kundsin, 1988; Besaratinia et al., 2011;
Goldman and Travisano, 2011; Dai et al., 2012; Oppezzo,
2012; Takada et al., 2017), and light of blue or red
wavelengths (Ondrusch and Kreft, 2011; Deng et al., 2012;
Lins de Sousa et al., 2015; Maclean et al., 2016).
The effect of light on microbial communities including

those in house dust or on human skin was also reported in
the literature (Patra et al., 2016; Prescott et al., 2017;
Fahimipour et al., 2018). Visible or UV light can reduce
the number of live bacteria and lead to less human-
associated bacterial communities in the BE (Fahimipour et
al., 2018). Similarly, increased illumination in hospital
rooms was found to reduce human-associated taxa in
indoor surface bacterial communities (Hartmann et al.,
2004). In particular, sunlight/UV was found to be effective
in the inactivation of viruses (Sandhu and Singh, 2009;
Tang, 2009; Hobday and Dancer, 2013). Compared with
viruses, bacteria may be more resistant to sunlight/UV
exposure (Goldman and Travisano, 2011).
Given the disinfection effect of sunlight, it could be

expected that areas of BE with greater sunlight exposure
would have lower microbial activity, which is a desirable
outcome when microbial control is a priority. BE design
and operation can take advantage of the disinfection
capacity of sunlight by strategically enhancing sunlight
exposure in areas with greater risks of microbial
contamination and transmission, such as conference
rooms and bathrooms. The effectiveness of the strategy
to exploit sunlight for the control of MoBE, however,
needs to be further validated in field studies.

4.5 Premise plumbing systems

Premise plumbing systems include the portions of the
potable water distribution system in the building beyond
the connection to the water mains. A front line of human
exposure, premise plumbing, is also an ideal ecological
niche for opportunistic pathogens such as Legionella,
Mycobacterium, and Pseudomonas. As a result, bacterial
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levels in the premise plumbing systems were found to be
orders of magnitude higher than in the water main (NRC,
2006).
Colonization of opportunistic pathogens was reported in

various locations in premise plumbing systems including
cold and hot water reservoirs (Falkinham et al., 2008), tap
and shower (Feazel et al., 2009; Perkins et al., 2009), eye
wash stations (Paszko-Kolva et al., 1998), and water filters
(Falkinham, 2010). The presence of microbial colonization
in premise plumbing systems are also documented in
hospital buildings (Thomas et al., 2006; Rivera et al., 2007;
Arvand et al., 2011; Brown-Elliott et al., 2011) and hotels
(Borella et al., 2005; Mouchtouri et al., 2007; Bonetta et
al., 2010). The additional growth time during overnight
water stagnation, which is characteristic of premise
plumbing, was found to significantly increase the abun-
dance of Legionella, Mycobacteria, and other bacterial
populations in premise plumbing (Wang et al., 2012). The
microbial populations in premise plumbing systems can
spread across the building through drains (Kotay et al.,
2017) and aerosolized water droplets generated at faucets
and showerheads (Kline et al., 2004; Falkinham et al.,
2008; Thomson et al., 2013). Once entering the BE,
pathogens such as Legionella pneumophila can persist in
building ventilation systems and infect building occupants
(Yu and Stout, 2000; Borella et al., 2004).
The colonization and growth of opportunistic pathogens

in premise plumbing systems are also affected by water
treatment in the building. Point-of-use filtration, albeit
being relatively costly and require maintenance (Marchesi
et al., 2011), was found to be very effective in reducing L.

pneumophila andM. avium concentrations in filtered water
(Sheffer et al., 2005; Marchesi et al., 2011; Williams et al.,
2011). However, filters were found to be a potential source
of microbial growth after saturation (Falkinham, 2010).
Other features of the premise plumbing were also found to
influence microbial colonization. For example, the pre-
sence of Legionellawas found to be less prevalent in newly
constructed buildings (Mathys et al., 2008). Electronic
faucets prevent the touching of the contaminated taps and
therefore are often considered less susceptible to microbial
growth compared with the manual faucets. However, it was
found that the electronic faucets were more commonly
contaminated with Legionella species (Sydnor et al.,
2012), P. aeruginosa (Yapicioglu et al., 2012), and other
bacteria in hospitals. Evidently, much remains to be
learned how MoBE is linked to the premise plumbing
systems.

4.6 Cleaning and disinfection

Cleaning and disinfection practices are routinely per-
formed with reducing occupants’ exposure to harmful
microorganisms in BE as one of the primary goals. These

practices include removal of airborne microbes through
ventilation and filtration, and inactivation of microbes in
indoor air and on surfaces through the application of UV
irradiation and chemical disinfectants.
UV irradiation has been shown as an effective

technology for the inactivation of microbes in the BE.
The mechanism of UV disinfection is attributed to the
damage of UV irradiation to the DNA of living organisms
and render them unable to replicate, thus noninfectious.
Typically, UV disinfection of indoor air is conducted by
irradiation of the upper-level of a room and taking
advantage of rapid vertical mixing of air for complete
disinfection of the air in that environment (Brickner et al.,
2003). To prevent accidental exposure to UV by
occupants, the UV lamps need to be specially louvered
for in-room use (Sliney, 2013). In addition to the exposure
risk to radiation, UV with wavelength below 242 nm
generates ozone which also imposes exposure risks to
occupants, requiring UV application to follow established
guidelines (ASHRAE, 2019).
UV irradiation is also effective in the inactivation of

microorganisms on indoor surfaces to achieve compre-
hensive disinfection of the BE, which is practiced mostly
in healthcare and laboratory settings. The effectiveness of
UV disinfection has been demonstrated by significant
reductions in healthcare-associated infections (HAIs) when
UV irradiation was added to the standard cleaning regimen
in hospitals (Levin et al., 2013; Miller et al., 2015;
Nagaraja et al., 2015; Weber et al., 2016; Anderson et al.,
2017). UV irradiation has also been applied on cooling
coils to reduce microbial growth and endotoxin production
in the ventilation system (Menzies et al., 2003), again
supporting its effectiveness in microbial control in the BE.
Chemical disinfectants are also effective in inactivating

microbial populations on indoor surfaces. It should be
noted that the cleaning/disinfecting chemicals could be
potential sources of volatile organic compounds (VOCs)
and secondary aerosols in the indoor air (Nazaroff and
Weschler, 2004). These aerosolized chemical disinfectants
may present acute exposure risks to indoor occupants.
Another potential issue with the use of chemical
disinfectants is that the very presence of antimicrobial
chemicals increases the risk of producing resistance strains
(Aiello and Larson, 2003), which is an emerging public
health concern. Moreover, due to the lack of selectivity in
inactivating microbes, common disinfection practices
would indiscriminately kill beneficial microorganisms,
which demands the development of disinfection strategies
that specifically target harmful microbial populations.
With the ongoing pandemic of COVID-19, the deploy-

ment of chemical disinfectant and UV irradiation has
increased dramatically in various BE. It is important to
investigate the impacts of intensified disinfection on
MoBE and subsequent effects on the health of occupants.
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5 Discussion

There are tremendous opportunities in the fledging
research area of MoBE that will benefit disciplines
including public health and building engineering in
particular. In this section, we discuss the challenges and
possible solutions to in-depth understanding of the
complex interactions between the built environment,
occupants, and microbiomes.
BE, occupants, and MoBE constitute a system of

ecosystems with extensive interactions that impact one
another. Previous studies have demonstrated that a
significant portion of MoBE originates from the occupants.
The quantity and composition of occupant-associated
microorganisms are dictated to a large extent by character-
istics of occupant behaviors, which are greatly influenced
by BE attributes including layout, function, and indoor
environmental conditions. In addition to occupant beha-
vior, BE attributes further influence the survival and
dynamics of the MoBE, which subsequently determine the
occupants’ exposure to the MoBE. These interactions are
evidently manifested in the transmission of SARS-CoV-2.
In BE, SARS-CoV-2 is derived exclusively from occu-
pants. Thus, the concentration of SARS-VoV-2 in BE is
closely linked to occupant behaviors, such as facemask-
wearing, hand-washing, and social distancing (Prather et
al., 2020). Accordingly, these behavioral patterns could be
influenced by BE attributes including indoor temperatures
conducive to mask wearing, availability of handwashing
facilities, and adequate occupant capacity (West et al.,
2020). BE attributes, particularly ventilation and disinfec-
tion practices, further influence the viability and concen-
tration of SARS-CoV-2, and subsequently the exposure
risks of occupants (Allen and Marr, 2020). The ongoing
COVID-19 pandemic highlights the significance of inter-
actions between BE, occupants, and MoBE.
Despite the progress made in characterizing MoBE,

significant gaps are identified in this review, including: 1)
The need to extend MoBE studies to more developing
countries in order to be representative of the potential
diversity in MoBE related to socioeconomic disparities; 2)
The need to characterize MoBE with linkages to building
attributes in order to elucidate the mechanisms driving
MoBE; 3) The need to characterize MoBE at a finer
spatiotemporal resolution to capture the dynamics of
MoBE, particularly under the influence of occupant
behaviors; and 4) The need to determine the impacts of
occupant behaviors onMoBE. These knowledge gaps stem
from three major technical challenges: 1) lack of effective
methods to monitor and model the built environment and
occupant behaviors at fine resolutions to enable quantita-
tive, sensitive, and reproducible experimental design and
data analysis; 2) lack of efficient tools to monitor the
spatiotemporal patterns of indoor microbiomes that are
present in spatially and functionally distributed compo-

nents of the built environments and occupants; and 3) lack
of approaches to integrating data of the built environment,
occupants, and microbiomes to identify transmission and
exposure pathways. Monitoring the built environment and
occupant activities is a prerequisite for understanding their
influence on MoBE, which is critical for identifying
transmission modes and exposure pathways of specific
pathogens in the BE. Fine-resolution representations of the
built environment and occupant behaviors are required for
quantitative, sensitive, and reproducible modeling of
MoBE, given its spatiotemporal dynamics at fine resolu-
tions. Previous studies have fallen short of closing these
knowledge gaps largely because of these technical
challenges. Therefore, as a critical first step, efforts should
be devoted to developing capabilities for monitoring the
built environment at sufficient resolutions so that under-
standing of fine-resolution processes that structure micro-
biome dynamics is possible.
The MoBE is an inherently transdisciplinary field at the

nexus of building science, environmental microbiology,
public health, material sciences, sensors, and data science,
just to name a few. Given the multidimensional nature of
data for MoBE characterization, we call for the develop-
ment and application of the following approaches to
address research challenges in this field: 1) data-driven
approaches to monitor the built environment and occu-
pants by integrating advanced techniques such as building
information modeling and internet-of-things (IoT) based
sensing; 2) modeling-informed approaches for spatiotem-
poral sampling and characterization of MoBE at optimized
resolutions; and 3) approaches integrating transport
modeling with metagenomics and metatranscriptomics
profiling to predict microbial dynamics, metabolic activ-
ities, and transmission pathways. The integration of new
tools for sensing, modeling, and monitoring will provide
unprecedented data at fine resolutions to gain new insights
by: 1) guiding sampling for meaningful data collection; 2)
identifying linkages between the built environment
attributes, occupant behaviors, and MoBE characteristics;
and 3) linking the dynamics of the built environment,
occupants, and microbiomes to transmission and exposure
pathways. Future efforts are needed to advance MoBE
research from basic characterization (e.g. what micro-
organisms are there) toward modeling and prediction (e.g.
how built environment attributes and occupant activities
contribute to the dynamics of specific microbial popula-
tions, and how it may reciprocally affect the built
environment and occupants).
In today’s society, the communities and cities are

increasingly connected with the built environment and
natural environment tightly coupled, making it necessary
to study the microbiomes, environments, and human
interactions at a broader scale to gain new knowledge
and insights to promote the health of the society as a whole.
This pertains to an interesting and important question: how
do activities at the community- and city-scales impact

10 Front. Environ. Sci. Eng. 2021, 15(4): 65



MoBE, and how does MoBE influence the inhabitants
ranging from small scales (individual people) to large
scales (communities and cities). Findings at these scales
will have greater significance beyond individual built
environments as most public health concerns are better
addressed at the community scale and beyond. There were
attempts to investigate MoBE at larger scales. In one study
(Robertson et al., 2013), a baseline assessment was
conducted for the microbiomes in the New York subway
system. Results from this study could lead to potentially
important applications, including infectious disease sur-
veillance, bioterrorism threat mitigation, and community-
scale public health management. However, it remains a
challenge to the application of high-dimensional micro-
biome data integrated with community behavioral infor-
mation such as mobility as well as environment monitoring
data.
Based on the review of current literature, we suggest

developing the ability to predict the dynamics of MoBE to
serve the needs of engineering practitioners, city planners,
and public health professionals. Previous studies have
identified potential correlations between the MoBE and
attributes of the built environment (e.g. geographic
location, design, occupancy, ventilation rate and type),
with various levels of uncertainties and inconsistency
notwithstanding. It remains very challenging, if not
impossible, to predict MoBE profiles in even small-scale
buildings with due accuracy in real-time. It would be an
ambitious, yet beneficial, call to develop capabilities to
predict MoBE dynamics aided with emerging technologies
of real-time sensing and data analytics, which will have
great significance in the understanding and control of
microbial transmission pathways in the built environment,
an urgent issue of current public health concern.

6 Conclusions

Humans spend most of their time in the built environment
with a vast diversity of microorganisms. Activities of the
occupants and attributes of the built environment will
impact the colonization, succession, and transmission of
these microorganisms, which will in turn influence the
built environment and human health. This review sum-
marizes our current understanding of the complex interac-
tions among the built environment, human activities, and
microbiomes of the built environment, with an emphasis
on how the built environment coupled with human
activities impact the microorganisms. This review high-
lights the importance of advancing our understanding of
the interrelationships among microorganisms, the built
environment, and its occupants. Further, we call for the
development and application of transdisciplinary
approaches for the sensing and monitoring of building-
occupant-microbiome interactions at sufficiently fine
spatiotemporal resolutions to enable capacity development

for the modeling and prediction of MoBE. These
capabilities will support the goal toward developing
healthy built environments that are both sustainable and
resilient to detrimental microorganisms, particularly infec-
tious pathogens. Future efforts are also needed to expand
MoBE research from individual rooms and buildings to the
scales of communities and cities, which will advance our
understanding of the microbiome-human-environment
ecosystem at a scale more relevant for the development
of sustainable, healthy, and resilient communities as an
ultimate goal.
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