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Understanding cachexia as a cancer metabolism syndrome
PE Porporato

Metabolic reprogramming occurs in tumors to foster cancer cell proliferation, survival and metastasis, but as well at a systemic level

affecting the whole organism, eventually leading to cancer cachexia. Indeed, as cancer cells rely on external sources of nitrogen and

carbon skeleton to grow, systemic metabolic deregulation promoting tissue wasting and metabolites mobilization ultimately

supports tumor growth. Cachectic patients experience a wide range of symptoms affecting several organ functions such as muscle,

liver, brain, immune system and heart, collectively decreasing patients’ quality of life and worsening their prognosis. Moreover,

cachexia is estimated to be the direct cause of at least 20% of cancer deaths. The main aspect of cachexia syndrome is the

unstoppable skeletal muscle and fat storage wasting, even with an adequate caloric intake, resulting in nutrient mobilization – both

directly as lipid and amino acids and indirectly as glucose derived from the exploitation of liver gluconeogenesis – that reaches the

tumor through the bloodstream. From a metabolic standpoint, cachectic host develops a wide range of dysfunctions, from

increased insulin and IGF-1 resistance to induction of mitochondrial uncoupling proteins and fat tissue browning resulting in an

increased energy expenditure and heat generation, even at rest. For a long time, cachexia has been merely considered an

epiphenomenon of end-stage tumors. However, in specific tumor types, such as pancreatic cancers, it is now clear that patients

present markers of tissue wasting at a stage in which tumor is not yet clinically detectable, and that host amino acid supply is

required for tumor growth. Indeed, tumor cells actively promote tissue wasting by secreting specific factors such as parathyroid

hormone-related protein and micro RNAs. Understanding the molecular and metabolic mediators of cachexia will not only advance

therapeutic approaches against cancer, but also improve patients’ quality of life.
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INTRODUCTION

Cachexia is a life-threatening condition associated with several
pathologies.1 It is particularly relevant in cancer patients, where it
occurs in up to 80% of cancers. Cachexia is a marker of
unfavorable prognosis, it affects the majority of patients with
advanced cancer2 and it represents the direct cause of at least
20% of cancer-associated deaths.1

As it affects multiple organs, cachexia is an extremely complex
disease, which severity is difficult to assess objectively. Indeed,
only recently a method for staging cachexia extent has been
proposed and validated.3

Typical symptoms of cachexia are massive loss of total
body mass, anorexia, general inflammation and pronounced
muscle-wasting resulting in a drastic decrease of quality of life.4

Furthermore, as broad muscular wasting also involves chest,
diaphragm and cardiac muscle, it is not surprising that the majority
of cancer deaths are related to respiratory5 or cardiac failure.6

Aside from being a direct cause of cancer death, cachexia also
limits the therapeutic options as cachectic patients are normally
less tolerant to radio- and chemotherapy because of general
weakness and discomfort.7 Moreover, cachectic patients present a
reduced response to therapy.8

Despite one of the main feature of cachexia being anorexia, the
mode of tissue wasting is completely different from the one
induced by starvation.9 Of note, treating anorexia through
parenteral nutrition does not reverse cachexia, indicating that the
decreased calories intake is not the primary cause of the disease.9

Unlike starvation, which primarily affects fat tissue, skeletal
muscle is the major target of wasting in cachectic patients,
suggesting a different signaling pathway targeting muscle loss.10

However, even though the main tissue affected by cachexia is the
skeletal muscle, cachexia cannot be reduced to a muscle-wasting
syndrome. Indeed, several other organs such as liver, heart, fat
tissue and brain are affected, making cachexia a true multi-organ
syndrome.11

To provide a clear definition of the molecular and metabolic
determinants of tissue wasting, it is vital to apply a systemic
approach in defining the contribution of each single organ to the
cachectic process and to understand the role of tumor in this
process and the interplay between the two compartments.
Indeed, although cachexia is a metabolic disorder characterized

by tissue wasting, resistance to anabolic signals and an overall
catabolic state, cancers, on the other side are highly proliferating
and energy-demanding tissues.12 Consequently, the metabolic
alterations present in cachectic patients results in a negative
energy balance and into the release of nutrients in the blood-
stream, further supporting tumor growth.11

Therefore, it is important to investigate the interplay between
these two compartments and to understand how cancers
promote this pathologic state to foster its own progression.

Immune system

Inflammation is a double-edged sword in cancer. Aside from
the natural role of immune system in controlling tumor growth,
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ultimate cancer cells hijack the immune system to produce
specific cytokines promoting tumor growth, survival and
progression.13 Chronic inflammation is also a major driver of
cachexia (Table 1), as it affects the function of several tissues
such as skeletal muscle, fat, brain and liver.14 Indeed, several pro-
inflammatory cytokines promote cachexia: tumor necrosis factor
alpha (TNFα), interleukin-6 and -1 (IL-6/IL-1) and interferon
gamma.15

TNFα, initially named cachectin,16 is probably the most
characterized cytokine in cachexia as it promotes anorexia17 and
skeletal muscle wasting mainly through the NF-kB pathway.18

TNFα blockade (etanercept) provided promising results in
improving cachexia-associated fatigue in a small cohort of cancer
patients.19 However, recent trials using neutralizing antibodies
against TNFα showed no benefit, suggesting that targeting TNFα
alone is not sufficient to prevent cachexia.20

TNFα can also synergize with interferon gamma21 and IL-122 in
promoting muscle wasting. Despite that IL-1 itself promotes
anorexia23 using IL-1 receptor antagonist was not sufficient to
impair cachexia progression in a rat model.24 Nevertheless, human
polymorphisms in IL-1B gene, resulting in augmented levels of
IL-1β, were associated with a negative prognostic value,25

indicating the involvement of IL-1 pro-inflammatory cytokines in
the pathogenesis of cachexia. A study in cancer patients identified
increased circulating levels of cytokines (IL-1α, IL-6 and TNFα),
suggesting the presence of a robust network of cytokines
collectively promoting cachexia.15 IL-6 can directly drive cachexia
in specific murine models26 and acute phase protein in liver and
skeletal muscle by STAT3 activation.27 Moreover, IL-6 circulating
levels correlate with cachexia development and poor prognosis in
prostate cancer patients.28 IL-6 can be produced not only by the
immune system but also directly by the tumor,29 further
highlighting the direct involvement of tumor cells in driving
cachexia. Other members of the IL-6 family such as ciliary
neurotrophic factor and leukemia inhibitory factor have also been
associated with cachexia development.30,31 The upregulation of
pro-inflammatory cytokines co-occurs with decreased expression
of the cytokines hampering inflammation, such as IL-4 -10 and
-12.32 Coherently, several treatments controlling excessive inflam-
mation provided beneficial effects on cachexia progression.32–35

Skeletal muscle wasting

Skeletal muscle represents one of the major compartments of the
human body, whose function is necessary for a variety of
biological processes, from movement to respiration. A tight
balance between protein synthesis and degradation is required
to maintain muscle homeostasis36 while a decrease in synthesis or
an excessive degradation results in wasting.36 The complex
hormonal network of anabolic and catabolic factors normally
regulating this balance36,37 is heavily disrupted during tumor
progression.

Indeed, it has been reported that during cachexia, both cancer
patients and mouse models, experience a decrease in the
circulating levels of the anabolic factor insulin-like growth
factor-1 (IGF-1) and the development of insulin resistance.37–43

In parallel with the defective activity of anabolic factors, the
production of factors promoting catabolism is augmented both in
cachectic mouse models and patients, that is: angiotensin II,44,45

IL-6,26,46 myostatin,47,48 activin A,49 interferon gamma and
TNFα.15,21 Blockade of activin receptor IIB (ActRIIB), the receptor
for several transforming growth factor beta family ligands known
to promote atrophy (as activin A and myostatin), was sufficient to
reverse cachexia and prevent death in several cancer cachexia
mouse models, providing the first formal proof of the direct
impact of cachexia on cancer death.50 Transforming growth factor
beta mechanism of action in promoting cachexia has been
elucidated in a recent report. The work from Waning et al.51

showed that, in several mouse models of bone metastasis,
increased transforming growth factor beta signaling (released
during osteolysis caused by bone metastasis) promotes skeletal
muscle oxidation of the calcium channel RyR1 (ryanodine receptor
and calcium release channel), ultimately leading to leaky channels
and inefficient muscle activity. Clinical relevance of this
finding derives from the fact that also patients with bone
metastasis present the same channel oxidation, and that drugs
restoring calcium channel functionality prevented cancer-related
muscle weakness. Another factor affecting skeletal muscle and
upregulated during atrophy is TRAF6 (TNFα receptor adapter
protein), which is also overexpressed in muscle from gastric cancer
patients.52,53 Its inhibition has been shown to prevent skeletal
muscle wasting induced by cachexia in experimental models.53

Insulin resistance has been recently modeled in a tumor model
of drosophila. In this animal model, insulin signaling was disrupted
by the expression of ImpL2, an insulin growth factor binding
protein that inhibits both insulin and IGF-1 signaling.54,55 ImpL2
was produced directly by different tumor types, promoting
peripheral organs insulin resistance and therefore systemic
tissue wasting,54,56 a phenomenon likely present also in cancer
patients.57 Interestingly, in the drosophila model, insulin/IGF-1
signaling was upregulated in cancer cells, thus allowing to benefit
of the systemic hyperglycemia.55 Further studies will be required
understand the relevance of this mechanism in patients.
At the cellular level, three main degradation pathways have

been described in skeletal muscle to account for protein
degradation (Table 2), that is, ubiquitin-mediated proteasome
degradation (UPR), autophagy and calcium-activated protease
calpains.36,58,59

During tumor cachexia, skeletal muscle specifically upregulates
muscle specific UPR system,60 in particular by promoting
ubiquitin-ligase MurF1 and Atrogin-1 expression.4,61 In a rat
model of cachexia, induced by the Yoshida ascites hepatoma,
UPR upregulation was evident following tumor growth, as shown

Table 1. Cytokines mainly associated with the pathogenesis of cachexia, evidence derived from human studies is italicized

Pro-inflammatory cytokines

TNFα Promotes tissue proteolysis and NF-kB activation Han et al.18

Promotes anorexia and fatigue in cancer patients Jakubowski et al.17

IL-1 Promotes anorexia Uehara et al.23

Genetic polymorphisms resulting in increased IL-1β
levels are marker of poor prognosis

Graziano et al.25

IL-6 Increased circulating levels are poor prognosis markers Kuroda et al.28 Mantovani et al.46

It can be produced directly by the tumor and trigger
cachexia

Baltgalvis et al.26

Increased fat tissue browning Petruzzelli et al.120

IFNγ Synergize with TNFα in promoting muscle wasting Acharyya et al.21

Abbreviations: IFNγ, interferon gamma; IL-1, interleukin-1; IL-6, interleukin-6; TNFα, tumor necrosis factor alpha.
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by Atrogin-1 messenger RNA60 and increased protein
ubiquitylation.60,62 The expression of this ubiquitin ligase has
been shown to be mainly regulated by the transcription factor
FoxO3a (Forkhead Box (Fox) O).63 Another transcription factor
involved in UPR upregulation is NF-κB, which has been shown to
stimulate Murf1 expression following Lewis lung carcinoma (LLC)
tumor inoculation and muscle wasting in mice.64 NF-κB inhibition
with sulfasalazine (in combination with MAPK and proteasome
inhibitors) prevented cachexia in a murine model of lung cancer.65

Despite the large body of evidence supporting UPR as a major
driver of muscle atrophy in murine models, limited evidence are
present for this mechanism in human cancer cachexia.52,66

Besides UPR, there is a growing interest in the role of autophagy
in mediating skeletal muscle wasting.67–69 Indeed, autophagy has
been suggested to be upregulated during cancer cachexia in
patients. In a small cohort, lung cancer patients presented
increased levels of autophagy mediators BNIP3 (messenger RNA)
and LC3B (protein), as well as of the transcription factor promoting
autophagy FOXO1.70 Similarly, in another study performed on
esophageal cancer patients versus weight-stable non-cancerous
control patients, autophagy was identified as the main promoter
of skeletal muscle proteolysis.71 Eventually, in a group of
92 gastrointestinal cancer patients expression of GABARAPL1
(an interactor of lysosomal vesicles and autophagy inducer72) was
increased compared with healthy controls.73

Calpain proteases have been proposed to initiate the degrada-
tive process during cachexia,74 however, limited information
concerning their role in muscle wasting is available.60

Adult skeletal muscle normally regenerates after injury through
activation and differentiation of a resident population of stem cells
called satellite cells. However, the behavior of these cells is
deregulated in cachexia, both in murine cancer models and in
patients.75 NF-κB induces the activation and expansion of the
satellite cell pool, but these cells are unable to complete
differentiation, thus further worsening the wasting process.75

Also, specific tumor-derived micro RNA promoting myoblast
and skeletal muscle death have been recently identified in
microvesicles,76 indicating a direct action of tumor on skeletal
muscle. Further studies will be instrumental in defining the
specific impact of such structures in mediating the cross-talk
between tumor and skeletal muscle.
Cachectic muscle features an impaired mitochondrial metabo-

lism associated with ineffective ATP generation,77,78 dysfunction of
the electron transport chain functionality,79 lipid alterations in the
mitochondrial fraction78 and increased expression of mitochon-
drial uncoupling proteins (UCPs).80–82 UCPs promote proton leak
across the inner mitochondrial membrane, therefore, reducing the
proton gradient. UCP-1 expression has been shown to disperse

proton gradient with concurrent heat generation, while UCP2 and
3 expressions has been proposed as a cellular mean to prevent
excessive oxidative stress by inhibiting OXPHOS.83,84

Accordingly, cachectic skeletal muscles and in vitro model
of cachexia (C2C12-derived myotubes treated with LLC-condi-
tioned medium) present sign of excessive oxidative stress,79,85

responsible for the worsening wasting process, mainly by
promoting protein oxidation by reactive oxygen species,86

ultimately contributing to muscle weakness.51 Mitochondrial
dysfunction occurring in the skeletal muscle has been associated
with alteration in the lipid content of the mitochondrial fraction,
most likely affecting mitochondrial functionality by altering
membrane fluidity.78

Whether these alterations in UCP levels are actively causing
wasting or are an attempt to prevent it, the resulting increase in
proton leak might be responsible for the energetic inefficiency
typical of this condition; therefore contributing to the overall
increase in the resting energy expenditure (REE) normally evident
in cachectic patients.87 Intriguingly, it has been suggested by
in vitro experiments that following TNFα treatment, skeletal
muscle might promote a futile cycle linked to the co-activation
of phosphofructokinase-1 and fructose-1,6-bisphosphatase,
resulting in ATP consumption,88 further promoting REE.

Cardiac muscle

The heart is an important target of cachexia. Cardiac alterations
are typical in cancer patients11 and ultimately results in heart
failure and arrhythmia, which are two of the concurring causes of
death during cachexia.6 Similarly to skeletal muscle, cardiac
wasting involves the activation of protein turnover mediated by
the UPR system.89 Indeed, the heart weight and functionality has
been reported to decrease in a murine model of colon cancer90

developing chronic heart failure. As in skeletal muscle, NF-κB
inhibition has been shown to ameliorate cardiac atrophy and
functionality in a mouse model of Colon-26-driven cancer
cachexia,91 suggesting novel therapeutic approaches for this
severe cause of cancer-cachexia death.
Chronic heart failure has been previously associated with the

increase of REE,92 providing another reason for the increase of
energy expenditure in cachectic patients. This increase might be
at least in part directly related to an increased metabolism of
cardiac tissue, as ex vivo hearts from tumor-bearing rats present an
increased oxidative rate.93

Liver wasting

One of the main functions of the liver is to act as a biological
factory. Indeed, it produces the majority of compound required by

Table 2. Molecular mechanisms driving skeletal muscle atrophy during cachexia, evidence derived from human studies are italicized

Skeletal muscle wasting

UPR Upregulation of the ubiquitin-proteasome pathway in cancer model Baracos et al.60

Proteasome and NF-kB inhibitors prevent experimental cancer cachexia Chacon-Cabrera et al.65

UPR activation is required for muscle atrophy Bodine et al.59

Authophagy It is induced in the skeletal muscle of cancer patients Op den Kamp et al.70 Tardif et al.71

Boyer-Guittaut et al.72

Promotes muscle wasting during cachexia Penna et al.68

ActRIIB Decoy receptor reverses muscle wasting Zhou et al.50

Cachectic patients present increased circulating levels of ActRIIB ligand, activin Loumaye et al.49

Myostatin (ActRIIB ligand) knock-out prevents experimental cachexia Gallot et al.48

Lipid wasting
Lipolysis Adipose Triglyceride Lipase inhibition prevents muscle wasting in experimental

cachexia.
Das and Hoefler117

Cachectic cancer patients present increased lipolytic activity

Abbreviations: ActRIIB, activin receptor IIB; UPR, ubiquitin-mediated proteasome degradation.

Metabolism of cachexia

PE Porporato

3

Oncogenesis (2016), 1 – 10



the organisms, including glucose, amino acids, fatty acids,
cholesterol and hormones regulating several complex functions,
such as hepcidin (iron homeostasis), IGF-1 (mass growth),
angiotensin (blood pressure) and several coagulation cascade
factors. Furthermore, the liver is an organ characterized by
high-metabolic rate, substantially contributing to REE.94

Albeit neglected (compared with muscle and fat), liver mass
substantially increases during cachexia progression,94,95 strongly
suggesting the involvement of this organ in cancer cachexia.
There is limited evidence concerning the role of liver metabolism
on cachexia development. However, liver mass increase in
colorectal cancer patients has been shown to correlate with
increased energy expenditure,94 increased expression of UCPs.80

Furthermore, inefficient oxidative phosphorylation, primarily
related to an increased mitochondrial cardiolipin accumulation,96

has been identified ex vivo in liver hepatocytes from a cachectic
rat model of peritoneal carcinoma,97 indicating a direct
involvement of liver tissue in cachexia.
During tumor growth, liver tissue is actively co-opted to

perform high-rate gluconeogenesis, using the lactate derived
from tumor glycolysis.98,99 This oncological version of the Cori
Cycle has been reported by tracing experiments with 14C-labeled
glucose in metastatic cancer patients in the 70s.98,100

This pathway is extremely energy-demanding since, per each
glucose molecule produced, 6 ATP are consumed. The resulting
glucose is mostly scavenged by the highly glycolytic tumors; this
results in a net negative balance further worsening the higher
metabolic rate typical of cancer patients.101,102

Another typical feature of hepatic dysfunction associated with
cachexia is the onset of steatosis, present in both patient and
murine model.103,104 In fact, it has been shown that tumor-bearing
patients or mice injected with the Colon-26 (C26) model are
characterized by a rapid decrease in circulating very low-density
lipoprotein responsible for the mobilization of lipid in the
bloodstream.105 From a molecular standpoint, this downregula-
tion has been directly associated with the increased expression of
TSC22D4, a transcription factor directly induced by transforming
growth factor beta. This inhibits very low-density lipoprotein
secretion, lipogenesis and eventually leads to the accumulation of
lipids in the liver, which ultimately might promote liver
gluconeogenesis.106

Although liver contributes to cachexia by increasing energy
expenditure through gluconeogenesis and reducing very low-
density lipoprotein circulation, it participates as well to the
worsening of inflammation by secreting acute phase proteins and
reducing albumin secretion, a process mostly driven by IL-6 and
TNFα.107,108 This eventually results in muscular protein breakdown
and adipocytes lipolysis.27

Cancer patients exhibit decreased albumin production, in all
likelihood mediated by TNFα, as TNFα treatment per se is sufficient
to inhibit albumin production in vivo (mice and rabbits),
or in isolated hepatocytes in vitro.109,110 However, a different
mechanism has been proposed in pancreatic cancer,
where hypoalbuminemia is not associated with decreased
synthesis,111 but with increased uptake through KRAS-dependent
macropinocytosis to sustain energy maintenance.112,113

Altogether, these data indicate that liver directly contributes to
cachexia by promoting hypermetabolism and increased energy
expenditure. However, further studies are required to evaluate its
relative contribution to the cachectic process and to define better
the metabolic interplay between tumor and liver.

Lipid wasting and browning

Albeit not as penetrant as skeletal muscle wasting, adipose tissue
depletion has been identified as one of the symptoms of
cachexia.114,115 Indeed, cachectic patients manifest high levels
of circulating free fatty acids, glycerol and triacylglycerol.116,117

This is linked to the increased circulation of several factors
promoting lipid mobilization, such as the adipokine Zn-alpha
2-glycoprotein/lipid-mobilizing factor (ZAG/LMF), IL-1, IL-6 and
TNFα.15,16,32

In specific mouse models of cachexia (LLC lung cancer and B16
melanoma), lipid wasting precedes skeletal muscle loss.115 Indeed,
preventing triglyceride degradation and lipolysis in mice lacking
key lipolytic enzymes (for example, adipose triglyceride lipase and
hormone-sensitive lipase) ultimately averts skeletal muscle loss,
underlining a close link between these two different tissues.115

Interestingly, also cachectic cancer patients present increased
triglyceride hydrolase activity.117 In addition, the fatty acid
mobilization-promoting adipokine ZAG promotes also skeletal
muscle protein synthesis and fatty acid oxidation, suggesting that
increased level of Zn-alpha 2-glycoprotein during tissue wasting
acts as a salvage pathway.99,118

An interesting feature of cancer cachexia is the progressive
switch of fat tissue type, from white (white adipose tissue)
to brown (brown adipose tissue), which derives its name
from the darker color associated with the enrichment in
mitochondria.119,120 These mitochondria present high levels of
the UCP-1, which directly promotes thermogenesis by uncoupling
the electrochemical gradient from ATP generation.121 Browning
strongly contributes to the increased energy expenditure com-
mon in cachectic patients.119 Pro-inflammatory factors either
derived from the host immune system or the tumor, contribute to
this switch.119,120 In LLC tumor-bearing mice, several tumor-
derived cytokines correlate with the induction of tissue browning
and, therefore, with increased energy expenditure.119 In particular,
cachectic lipid wasting occurs mostly in tumors actively secreting
parathyroid hormone-related protein.119 This hormone is
augmented as well in several cancer patients and has been
previously associated with hypercalcemia, a common metabolic
abnormality in many cancer types.122 Collectively, fat tissue
wasting can be interpreted as a critical turning point in the
cachectic process, as it further contributes to the propagation of
cachexia by stimulating skeletal muscle wasting.115 As it is also
emerging that tumors require fatty acid oxidation,123 it will be
important to assess the impact of lipolysis on tumor progression.

Brain and food intake

Decreased in appetite and alterations in taste perception are
common features in cancer patients.11,124 In particular, cancer
anorexia is a characteristic of end-stage patients contributing to
the worsening of cachexia. Although this is in part related to
the development of depressive disorders associated with the
psychological implications of having cancer,8 it is also bound to
the alterations in the complex hormonal network regulating
appetite.10 A pivotal player in cachexia development is the
hypothalamus, which regulates both food intake and body energy
expenditure.125 Several factors regulates food intake, including the
vagal stimulation induced by gastric distension bound to food
intake126,127 and hormones. Hormones produced peripherally
either promote food intake (orexigenic, like ghrelin), or inhibit it
(anorexigenic, such as leptin, insulin, cholecystokinin, peptide YY
and glucagon-like peptide 1/GLP1).128 At central level in the
hypothalamus, peripheral signals regulates the axis promoting
food intake such as the Neuropeptide Y (NPY) and Agouti-related
protein (AgRP) or the anorexigenic one, such as pro-
opiomelanocortin (POMC) precursor related to the production of
melanocyte-stimulating hormone α-MSH.129 Despite the periph-
eral signals triggering food intake are maintained in some
cachectic conditions, it has been observed a decreased respon-
siveness of the hypothalamus.130 This is the case for ghrelin,
whose levels are normally increased in cachectic patients, but
without food intake promotion,42 a phenomenon named ‘ghrelin
resistance’.42,131
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In addition, in cancer it has been reported an increased
resistance to the hormones promoting food intake, such as
Neuropeptide Y and Agouti-related protein.132,133

On the contrary, an increased activation of pro-anorexigenic
factors derived by hypothalamic melanocortin system has been
shown.134,135

Tumor-associated inflammation is involved in this process
(or these processes) as several pro-inflammatory cytokines such
as TNFα, interferon gamma, IL-1 and IL-6, directly promote these
alterations136 and, coherently, anti-inflammatory drugs such as
cyclooxygenase inhibitors ameliorates cancer anorexia.137,138

In addition, TNFα has also been associated to the stimulation of
bitterness perception,139 thus further inhibiting the willingness of
food assumption.
Altogether these cytokines are responsible for the so-called

‘sickness behavior’, a common disease state typical of many
chronic disease and proposed as an evolutionary response
involved in fighting infections by depleting iron and nutrients
required for bacterial growth.140

The direct involvement of tumor-derived factors in promoting
anorexia has been proposed.141,142 Coherently, the bioactive lipid
sphingosine-1-phosphate, which is involved in cancer progression
and is produced by several tumors,143 has been recently shown
to promote energy expenditure and anorexia.135 Increased
engagement of sphingosine-1-phosphate-receptor on hypo-
thalamic neurons promotes increased temperature and oxygen
consumption, while decreasing food intake.135

In fact, hypothalamus controls a wide range of biological
activities, including energy expenditure regulation and glucose
homeostasis.144 Coherently, during cachexia hypothalamic activity
specifically mediates increased energy expenditure,135,145 it will be

important, therefore, to define the role of hypothalamus in
regulating glucose homeostasis.
Appetite improvement have been achieved in cancer

patients with the progesterone analog megestrol acetate
(by an unclear mechanism)146 and by the ghrelin analog

anamorelin,41 thus providing novel therapeutic avenues in the
treatment of such complication.

Pancreas

The identification of decreased glucose tolerance in cancer

patients, dating back to 1919, identified glucose metabolism as
the first metabolic abnormality in cancer.147 Although insulin
resistance is a strong risk factor for cancer development,148,149

tumor progression can promote insulin resistance by itself.

Indeed, it has been shown that several cancer patients present
insulin resistance150,151 that progressively worsen during cachexia
development.10 Furthermore, the degree of glucose tolerance

positively correlates with mortality risk.152

Decreased insulin sensitivity during tumor progression has also

been reported in drosophila,54,55 and in mice,39 where Colon-26
tumor inoculation was sufficient to induce insulin resistance
before cachexia onset,39 while in Walker 256 tumor-bearing rats

Figure 1. The simplified scheme represents the major organs commonly affected during cachexia progression and how they fuel tumor
growth. In brief, tumor tissue and the co-opted immune system secrete specific factors, thus promoting skeletal muscle wasting and lipolysis.
Pro-inflammatory cytokines contribute to develop anorexia and insulin resistance, ultimately worsening skeletal muscle wasting.
Gastrointestinal tract tumors and bone metastasis can promote further cachexia by causing endotoxemia and transforming growth factor
beta release, respectively. (Adapted from Servier Medical Art, www.servier.com).
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isolated Langerhans islet were more resistant to glucose
challenge, resulting in decreased insulin secretion.153

One of the factors identified for the induction of insulin
resistance is TNF-α, which directly impairs insulin signaling and
IRS-1 activation.154

Insulin has several metabolic activities that can affect tumor
progression.155,156 The increase in insulin level, as it happens in
the onset of insulin resistance, per se promotes directly tumor
growth by acting as growth factors. Coherently, several tumors
overexpress the insulin receptor and IGF-1 receptor.157,158

However, insulin resistance can also promote tumor growth
indirectly by modulating host metabolism in at least two
independent manners. On one side, as insulin is an anabolic
factor that normally blocks protein breakdown and promotes
protein synthesis;159,160 insulin resistance (and similarly
IGF-1-resistance) might promote muscle wasting, hence, amino
acid mobilization into the circulation, potentially fueling cancer.
On the other, insulin signaling impairment also promotes liver
gluconeogenesis,161 further increasing REE, tissue wasting and
ultimately fueling cancer aerobic glycolysis.
The role of insulin signaling in preventing cachexia is further

stressed by experimental data showing that mice treated with
insulin sensitizers (rosiglitazone)39,162 and patients treated with
insulin ameliorate cachexia symptoms.163

Not only insulin secretion is affected by tumor progression, but
also glucagon levels are increased.164 The increased production of
glucagon in the alpha islet of pancreas during cancer progression
further promotes liver gluconeogenesis as reported in different
tumor models, both in humans and in animal models.164–166

Albeit there is no clear mechanism behind the induction of this
hormone by the tumor, normalizing its levels has been suggested
to impair cachexia progression.166

Gastrointestinal tract

Gut functionality contributes to cachexia. This is particularly
relevant in gastrointestinal tumors, as proven in a mouse model of
colon cancer (transgenic APC+/min strain), where gut barrier was
disrupted along with tumor growth, resulting in increased
systemic inflammation and endotoxemia.167,168

Other than colon cancers, a broader impact of gut on cachexia
is bound to gut microbiota.169 The human body is in symbiosis
with the gut microbiota, which identify the portion of micro-
organism residing in the intestinal tract outnumbering human
cells by a 10-fold factor.170 Alteration of the gut flora due to
undernutrition and chemotherapy ultimately affects specific
metabolite availability and absorption,169,171 which in turn affects
tumor growth and cachexia.172,173 The gastrointestinal tract,
and mainly the stomach, is also the source of the orexigenic
peptide ghrelin, which is strongly increased during cachexia.42

As ghrelin exerts several other activities, ranging from increasing
adiposity,174 reducing REE175 and impairing muscle atrophy,176

it is possible that its expression is induced as a compensatory
mechanism to buffer cachexia. Owing to the pleiotropic effects of
ghrelin (partly shared with its unacylated form through an
unknown receptor176–178), the use of ghrelin analog, Anamorelin,
has a strong therapeutic potential. Indeed, early clinical trials are
suggesting beneficial effect of Anamorelin in improving both
appetite and skeletal muscle mass.41,179

Cachexia: a cancer target or an innocent bystander?

As cachexia associates with several pathological conditions, such
as chronic inflammation, cardiac disease and AIDS,37 cancer
cachexia has always been regarded as an epiphenomenon of
tumor progression,6 and even its role on death promotion has
only been formally proven recently.50

However, mounting evidence supports the notion that cachexia
is not only a severe complication of tumor growth, but results

from the systemic metabolic reprogramming of the host to grow
and progress180 (Figure 1).
In fact, tumor can promote cachexia by secreting tissue-wasting

factors10,76,87,119,120 and by promoting dysfunction in specific
organs, such as liver,105 gut, immune system, brain and pancreas.
Interesting data concerning the active interplay between tumor

and cachexia derive from the study of pancreatic ductal
adenocarcinoma, where cachexia development occurs in almost
90% of the cases.1 In this tumor type, increased amino acid levels
are an early marker of disease occurrence181 in patients, years
before pancreatic ductal adenocarcinoma diagnosis. Coherently,
in a K-RAS-driven transgenic model of pancreatic cancer the
increase in circulating amino acid was present before the actual
tumor was detectable.181 This effect on the host, even at early
phase of tumor growth, when no evidence of discomfort is
present, indicates the importance of actively understanding the
interplay between tumor and the host on a systemic level, with a
particular focus toward the metabolic dependencies of growing
tumors. Further studies will be required to evaluate if this
phenomenon is specific to pancreatic ductal adenocarcinoma or
if it is a feature of different tumor types.
As tumor is a highly energy-demanding tissue, energy and

metabolic intermediates are required to sustain proliferation
and cell-death resistance,182 it is not surprising, therefore, that
tumor cells promote metabolic reprogramming not only
cell-autonomously, but of the whole organism.
Although the study of cancer metabolism has been mostly

focused toward the definition of aerobic glycolysis, several other
metabolic pathways are emerging as important for tumor
development. Because of the inefficient perfusion typical of
cancers183 along with the avidity of cancer cells for glucose,184

other carbon sources are required for tumor growth.185

For instance, several studies indicate that specific metabolite
uptake is required for tumor growth and progression
in some cases, such as lipids,186,187 branched amino acids,188

glutamine,189,190 serine191 or even entire proteins by
macropinocytosis.112,113 By actively scavenging different nutrients
from the bloodstream, cancer cells manage severe nutrient
deprivation.113 Altogether, tumor cells have a metabolic
advantage from the induction of systemic tissue wasting,
prompting to reconsider cachexia as a part of the metabolic
program in tumor development. A further indication for this
mechanism derives from the work of Luo et al.192 who identified a
metabolic cross-talk occurring in colorectal cancers between
tumor and skeletal muscle. To aim this, colon cancer cells release
high-motility group box 1 (HMGB1), which contributes to the
metabolic reprogramming of skeletal muscle through RAGE
(Receptor for Advanced Glycation End-products), inducing autop-
hagy and release of free amino acids in the plasma. This results in
the transfer of carbon skeleton from the muscle to the tumor as
demonstrated by 13C-glutamine tracing.192 Considering that
high-motility group box 1 circulating levels correlate with the
severity in different cancer types,193–195 it will be important to
explore this cross-talk in different tumor types.
Cancer cachexia it is not merely a complication of tumor

progression, as cancer cells induce and exploit systemic functions.
It would be reductive to consider cachexia as solely caused by
tumor metabolism acting as ‘energy sink’ as initially proposed,1,196

as evidences by the fact that tumor mass hardly correspond to the
severity of cachexia.10,105 Indeed, it is a syndrome induced also by
several other noxious factor, from chronic infections to cardiac or
respiratory failure.1

CONCLUDING REMARKS

As cancer cachexia is being progressively defined, also from a
molecular standpoint, it will be important to discriminate between
the alterations actually promoting tumor progression and the one

Metabolism of cachexia

PE Porporato

6

Oncogenesis (2016), 1 – 10



which are simple off-targets of the abnormal levels of factors
presents during tumor growth. Understanding the effects of
tumor on the entire organism and identify the signaling pathways
involved will allow more effective cancer therapies and, ultimately,
a better quality of life for patients.
Although several molecular mechanisms driving cachexia have

been identified by using murine models, it will be vital to define
the real impact of such processes in human patients. Moreover,
relatively few murine models are used to generate cachexia (the
vast majority being LLC in C57BL/6, and Colon-26 in Balb/c, tumor
cells injection), while the use of transgenic mice is generally
restricted to C57BL/6 APC+/min.26 The use of different strains and
different cancer types will be essential to model the variety of the
cachectic processes occurring in cancer patients, especially
considering that cachexia has different penetrance according to
the associated cancer type.10

Further efforts will be required to define the pathogenesis of
cachexia in patients at early stages (that is, the pre-cachectic
stage197), where systemic alterations are more likely to be
reversible. As cancer cachexia affects different tissue at the same
time, it will also be pivotal to devise therapeutic strategies with
multiple targets.

ABBREVIATIONS

IGF-1, insulin-like growth factor-1; IL-, interleukin-; LLC, lewis lung
carcinoma; REE, resting energy expenditure; TNFα, tumor
necrosis factor alpha; UCPs, uncoupling proteins; UPR, Ubiquitin
proteasome degradation.
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