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[1] Lack of data is one of the main limitations for hydrological modeling. However, it is
often used as a justification for over simplifying, poorly performing models. If we want to
enhance our understanding of hydrological systems, it is important to fully exploit the
information contained in the available data, and to learn from model deficiencies. In this
paper, we propose a methodology where we systematically update the model structure,
progressively incorporating new hypotheses of catchment behavior. We apply this
methodology to the Alzette river basin in Luxembourg, showing how stepwise model
improvement helps to identify the behavior of this catchment. We show that the
most significant improvement of the evolving model structure is associated to the
characterization of antecedent wetness. This is improved accounting for interception,
which affects vertical storage distribution, and accounting for rainfall spatial
heterogeneity, which influences storage variations in the horizontal dimension. Overall,
our results suggested that, due to the damping effect of the basin, the description
of fast catchment response benefits more from spatially distributed information
than that of slow catchment response.
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1. Introduction

[2] The main challenge of hydrological modeling is to
express the response of a catchment in terms of its state
variables and characteristics. This calls for a solution of the
‘‘closure’’ problem, which requires specifying the condi-
tions that allow the closure of the undetermined system of
balance equations [Reggiani et al., 2000]. A major obstacle
to this challenge is the lack of appropriate measuring
techniques, which hampers the identification of the mech-
anisms underlying the rainfall-runoff transformation [Beven,
2006]. To circumvent this problem, internal catchment
behavior has to be inferred by other means.
[3] One approach is to build a model of the catchment

and to identify it with the natural system. This approach
considers the model as a ‘‘virtual laboratory’’ [Weiler and
McDonnell, 2004] which is used to perform experiments in
a controlled environment. This approach has been widely
used in hydrology to illuminate aspects of catchment
behavior that are difficult to measure and that are poorly
understood, such as the sensitivity of catchment response
to soil properties [e.g., Herbst et al., 2006], land cover
change [e.g., Eckhardt et al., 2003], and rainfall input [e.g.,
Schuurmans and Bierkens, 2007; Arnaud et al., 2002].
While the advantage of this approach is that everything
about the model is known and controllable, what limits its
reliability is the unconditioned identification of the model

with the natural system, which implicitly disregards the role
of conceptual model errors.
[4] An alternative approach is to infer internal catchment

behavior using real data. Clearly, the use of real data should
place more confidence in the outcome of a study. However,
more often than not, the only measured variable available to test
model assumptions is catchment discharge. Several authors
indicated that in this case the essential features of catchment
behavior can be reliably estimated with only a handful of
parameters [Beven, 1989; Jakeman and Hornberger, 1993;
Hsu et al., 1995; Young and Parkinson, 2002]. Under such a
complexity constraint it is difficult to explore the internal
catchment behavior beyond very simplistic descriptions,
and support models that retain enough empirical realism
to be useful in addressing complex environmental problems
[Vachè and McDonnell, 2006]. Indeed, most studies com-
paring complex versus simpler models [Perrin et al., 2001;
Carpenter et al., 2001; Refsgaard and Knudsen, 1996;
Michaud and Sorooshian, 1994] including those related to
the Distributed Model Inter-comparison Project [Reed et al.,
2004] could not detect significant differences in perfor-
mance between different types of models.
[5] Most of these studies, however, evaluated model

performance with respect to discharge data alone based on
a single statistical summary. This implies a loss of infor-
mation which affects both the level of complexity that a
model can support without incurring in identifiability prob-
lems [Wagener et al., 2003], and the assessment of relative
merits of individual models in an inter-comparison study.
[6] In the absence of direct measurements of individual

processes, we propose a methodology to better explore
internal catchment behavior based on a combination be-
tween the ‘‘top-down’’ approach to model development, and
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a multiobjective approach to model evaluation. The top-
down approach, initially introduced by Klemes [1983] and
recently reformulated by Sivapalan et al. [2003], is based
on a deductive philosophy which traces back the ‘‘causes’’
that are implicit in the overall ‘‘effect’’ produced by a
system. In hydrological modeling, this approach would start
from a simple structure which is progressively expanded
based on its shortcomings in reproducing overall catchment
behavior [e.g., Jothityangkoon et al., 2001]. We use this
approach in the process of ‘‘fingering down into the
(smaller-scale) processes from above (i.e., catchment
scale)’’ [Sivapalan et al., 2003]. The multiobjective ap-
proach to model evaluation [Gupta et al., 1998] is based on
the consideration that a single measure of performance does
not fully exploit the information contained in the data, and
establishes that model performance should be evaluated
with respect to several indicators. We use this approach
not only to evaluate single models, but also to compare the
performance of competing models [Fenicia et al., 2007].
The combination of the two approaches provides a powerful
tool to guide model improvement, and to evaluate different
hypotheses on catchment behavior.
[7] We apply this methodology to the Alzette catchment

in Luxembourg, where we test different model concepts first
in a lumped and then in a distributed mode. In line with the
top-down approach, we use successful model modifications
to learn new aspects about the actual catchment behavior.

[8] One aspect of our results relates to the importance of
the interception process. This process, while accounting for
an important component of the water balance, is often
neglected in model applications [Savenije, 2004]. With
respect to discharge simulation, some authors found that
the introduction of interception in a model structure im-
proved model performance [e.g., Zhang and Savenije,
2005], others experienced deterioration of model perfor-
mance [Lindström et al., 1997].
[9] A second important aspect relates to the question of

whether spatial heterogeneity of rainfall has an impact on
catchment discharge, and for which combination of pro-
cesses. While virtual experiments [e.g., Arnaud et al., 2002]
suggest that the catchment is sensitive to the spatial hetero-
geneity of rainfall, studies which employed real data [e.g.,
Obled et al., 1994] support an opposite conclusion.
[10] The results of this work, as well as our consider-

ations on the potential benefit of distributed information in
catchment modeling, will be further analyzed in the dis-
cussion section of the paper.

2. Study Site and Data Description

[11] The study site is the Alzette river basin upstream of
the Ettelbrück streamgauge. The catchment is mostly located
in the Grand Duchy of Luxembourg and covers an area of
about 1090 km2 (Figure 1). The lithology is complex and

Figure 1. Location of the Alzette catchment in Luxembourg, raingauges location, and catchment
subdivision in 8 Thiessen polygons.
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heterogeneous. The northern part is dominated by an imper-
vious schist formation, the central part is characterized by
marls, highly responsive to rainfall, and the southern part by
sandstone and limestone, which constitute the main infiltra-
tion zone and the main groundwater reservoir of the basin.
Land cover is composed of forest (34%), agriculture (23%),
pasture (31%) and urban areas (12%).
[12] The catchment is instrumented with several recording

raingauges. For this study, we selected 8 raingauges based on
the available length of record (Figure 1). Rainfall and
discharge data have been calculated at an hourly time step,
while the daily potential evaporation (including all forms of
evaporation) has been determined by the Hamon equation
[Hamon, 1961] with data measured at Findel (Luxembourg
airport). The daily potential evaporation has been disaggre-
gated into hourly values using a sine curve distribution
between the hours of sunlight. In total, five years of data
were available for model evaluation, from September 2000
to August 2005. The last three years have been used for
calibration and the first two for validation, as hydrograph
peaks are somewhat larger in the calibration period.
[13] Within the catchment area, several plot scale experi-

ments have been carried out to investigate small-scale
catchment processes and their eventual link to larger scale
catchment behavior. Of interest to this study are canopy
interception measurements executed on a 0.06 ha experi-
mental plot located in a central location within the basin
(Huewelerbach catchment), at 380 m altitude. The plot is
equipped with more than 80 pluviometers spaced at about a
three-meter distance. Measurements were available for one
hydrological year (2003–2004) and showed that the annual
canopy interception rate is about 13% of the total incident
precipitation. Beech litter interception was measured with a
special forest floor interception device at ground level filled
with forest litter [Gerrits et al., 2007; De Groen and
Savenije, 2006]. The box is equipped with weight sensors
that allow continuous measurement of moisture storage.
Preliminary results showed that litter interception (during
the month of November) amounts to about 35% of the
throughfall, indicating that the total annual evaporation from
interception (by canopy and forest floor) is more than 43%.
[14] Interception data were not used directly for model

evaluation, both because the forest floor interception data
extend over a too short a period of time, and for the

difficulty of up-scaling the data to the entire basin. How-
ever, they were used as an indication of the order of
magnitude of the interception process under the given
climate and vegetation conditions.

3. Model Description

[15] We started modeling the catchment with a basic
structure, based on the Flex model described by Fenicia
et al. [2006]. The model is of the lumped conceptual type
and is composed of several interconnected boxes represent-
ing key zones of catchment response. The basic version,
which we named FlexB, is characterized by three reservoirs:
the unsaturated soil reservoir (UR), the fast reacting reser-
voir (FR) and the slow reacting reservoir (SR) (Figure 2).
Rainfall input is first averaged with the Thiessen polygon
method and then routed through the model. The model does
not include a separate description of interception, hence
rainfall (R) equals effective rainfall (Re) which reaches UR.
Infiltration into the soil (Ru) is evaluated based on a rainfall
excess model that uses a distribution function of soil
moisture storage capacity over the catchment (equations (1)
and (2)).

Cr ¼
1

1þ exp
�Su=Sfcþ1=2

b

� � ð1Þ

Ru ¼ 1� Crð Þ � Re ð2Þ

[16] The coefficient of runoff Cr is a function of the
storage in UR, Su, and depends on the parameters Sfc,
representing the maximum storage of UR, and a shape
parameter b. When Su is filled to capacity, excess rainfall
is routed to FR. The part of rainfall that does not infiltrate
either reaches SR through preferential recharge (Rs) or is
routed as runoff (Rf) to FR (equations (3) and (4)).

Rs ¼ Re � Ruð Þ � D ð3Þ

Rf ¼ Re � Ru � Rs ð4Þ

Figure 2. Schematic diagram of the FlexB model structure.
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[17] Percolation is linearly related to the relative soil
moisture content Su/Sfc with a maximum value of Pmax

(equation (5)).

Ps ¼ Pmax Su=Sfc
� �

ð5Þ

[18] As there is no interception, transpiration from veg-
etation and evaporation from interception are combined into
a lumped evaporation term. This is often done in modeling,
although conceptually it is considered an erroneous opera-
tion [Savenije, 2004]. In this approach, the actual total
evaporation EUR depends linearly on the relative soil mois-
ture content until this ratio exceeds the threshold Lp, after
which it equals the potential evaporation Ep (equation (6)).

EUR ¼ Ep �min 1;
Su

Sfc

1

Lp

� �
ð6Þ

[19] The fluxes entering FR and SR are lagged through
triangular transfer functions of linearly increasing weights
(Figure 2) that are defined by the parameters Nlagf and Nlags,
which determine the number of time steps in the transfor-
mation routine. The fast and slow discharges Qf and Qs are
calculated through a linear relation between storage and
discharge (equations (7) and (8)).

Qf ¼ Sf =Kf ð7Þ

Qs ¼ Ss=Ks ð8Þ

[20] In total the model has nine parameters: a shape
parameter for runoff generation b (�), the maximum UR
storage Sfc (mm), the runoff partitioning coefficient D (�),
the maximum percolation rate Pmax (mm/h), the threshold
for potential evaporation Lp (�), the lag times of the transfer
functions Nlagf (h) and Nlags (h), and the timescales of FR
and SR: Kf (h) and Ks (h).

4. Model Evaluation

[21] The issue of model evaluation has triggered a stim-
ulating discussion in literature [Wagener et al., 2003]. From
the large variety of existing methods for model evaluation,
we adopted the multiobjective optimization approach pro-
posed by Gupta et al. [1998]. This approach evaluates a
model simultaneously by a number of objective functions.
The objective functions are defined so as to assess the
model performance with respect to different aspects of the
system’s behavior, with lower values indicating better
performance. The trade-off between the different perfor-
mance indicators is visualized by the Pareto-optimal front,
which identifies the maximum performance that can be
achieved by the model, given the available data. Improve-
ments in performance can therefore be easily tracked by a
shift of the Pareto optimal front toward the origin of the
objective function space [Fenicia et al., 2007].
[22] The selection of performance measures can be based

on different considerations, including knowledge of the
errors involved in the modeling process, or, as in this case,
arbitrary judgment related to the purpose of modeling
[Gupta et al., 1998]. The performance measures selected

for this study are the Nash and Sutcliffe coefficient CNS and
the correlation coefficient R. These functions increase with
model performance, having a maximum value of one.
Because optimization generally deals with a minimization
procedure, the functions are subtracted from one, as shown
in equations (9) and (10), yielding the objective functions
FNS and FCC.

FNS ¼ 1� CNS ¼

Pn
i¼1

Qo;i � Qs;i

� �2
Pn
i¼1

Qo;i � Qo

� �2 ð9Þ

FCC ¼ 1� R ¼ 1�

Pn
i¼1

Qs;i � Qs

� �
Qo;i � Qo

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Qs;i � Qs

� �2 Pn
i¼1

Qo;i � Qo

� �2s ð10Þ

[23] Where n is the number of observations, i accounts for
the time steps, and Q is discharge. The subscripts s and o
indicate the simulated and observed values, while the over-
bar indicates an average value over the period of observa-
tion. FNS has been chosen mostly for the purpose of
communication, as it is a performance measure that is
commonly used in modeling. This function is largely influ-
enced by peak flow prediction errors due to the use of
squared residuals. FCC has been selected to complement
FNS with a relatively uncorrelated performance criterion.
This function reaches a minimum value of zero when for all
i: (Qs,i � Qs) = a(Qo,i � Qo), with a as a positive constant. It
therefore indicates the agreement between the dynamics of
the two hydrographs, disregarding the difference in their
absolute values. In this case, it is useful to assess the time-
shift between observed and simulated time series and serves
the purpose of evaluating whether the timing is well captured
by the model. The evaluation of this aspect is directly related
to some of the modeling objectives (see section 5.2).
[24] As a sampling algorithm to estimate the Pareto-

optimal front, the MOSCEM-UA (Multi Objective Shuffled
Complex Evolution University of Arizona) algorithm [Vrugt
et al., 2003a] has been used. The algorithm requires the
selection of a number of parameters: the maximum number
of iterations (set at 20000), the number of complexes (set at
10), and the number of random samples that is used to
initialize each complex (1000). Parameter bounds have been
chosen based on the results obtained with a preliminary run
of the MOSCEM-UA on a very large parameter space.
[25] Calibration results for the FlexB model structure are

summarized in Figure 3. The figure shows the Pareto-
optimal front associated to the FlexB model, and of other
models that will be introduced further down. The Pareto-
optimal front shows the trade-off between the selected
modeling objectives. Each point on the front may not be
considered better than any other point on the same front,
since moving from one point to another corresponds to an
improvement in one objective function and a deterioration
in the other. Moreover, it is not possible to find points
outside the front that assume better (lower) values for both
objective functions. Therefore the Pareto-optimal front
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marks the best performance that can be reached with a
model with respect to the selected modeling objectives.
[26] The hydrograph generated by the FlexB Pareto-optimal

model with best FNS value is represented in Figure 4. This
model is characterized by a CNS of 0.87, which is a
relatively high value. Despite that the performance of the
FlexB model is relatively good, we investigated several
modifications to this model structure to check whether they
resulted in significant performance improvement. From this
analysis, in line with the top-down approach, we tried to
gain new insights into catchment behavior.

5. Proposed Modifications

5.1. Lumped Mode

[27] We tested a number of possible model improve-
ments, first in a lumped, and subsequently in a distributed
mode. In the lumped mode, we evaluated the effect of
alternative model adjustments to account for threshold

processes in runoff production. In the FlexB model, the
rainfall that produces fast runoff (routed to FR) depends
merely on the value of Cr. Hence we tested the effect of
three alternative hypotheses: (1) Cr is zero if UR is below a
certain threshold URt (mm). Should this happen, all rainfall
infiltrates into UR. This hypothesis was implemented in the
FlexURt model structure. (2) Cr is zero if rainfall (R) is
below a threshold Rt (mm/h). This hypothesis was imple-
mented in the FlexRt model structure. (3) We included an
interception reservoir (IR) (Figure 5). The rainfall reaching
IR fills the storage until the threshold Imax (mm) is reached.
The amount that exceeds this threshold determines the
effective rainfall Re, which is subsequently routed through
the same model as in FlexB. During periods of no rain,
water evaporates from IR at a rate EIR equal to the potential
evaporation Ep. EUR, now to be regarded as transpiration
from vegetation, is independent from the evaporation from
interception EIR, and is represented by equation (6), where
Lp now represents the threshold for potential transpiration.
We called this model FlexI.
[28] All these model modifications involved the introduc-

tion of one extra parameter. The models were evaluated
with the multiobjective approach described above. The
results of the proposed model modifications are represented
in Figure 3. If the model modification resulted in improved
performance, the associated Pareto-optimal front would
shift toward the origin of the axes. Despite that all proposed
hypotheses are plausible, only the FlexI model structure
resulted in improved performance. The calibration routine
set the optimal values of the parameters URt and Rt to zero.
Hence the hypotheses represented by the FlexURt and FlexRt
model structures were not confirmed by the data, while the
hypothesis contained in the FlexI model structure helped to
better explain catchment dynamics. In line with the top-
down approach, this suggests that the interception process is
in this case an important mechanism affecting catchment
response. We note that both FlexB and FlexI can reproduce a
correct water balance. In FlexI, evaporation from intercep-
tion EIR was compensated by a reduction in transpiration
EUR, as the calibrated values of LP were larger for FlexI than

Figure 3. Model performance in the objective space.
Pareto-optimal fronts of the FlexB, FlexURt, FlexRt, and
FlexI model structures.

Figure 4. Hydrograph simulation (on a subset of the calibration record) of the FlexB, FlexI, FlexId, and
FlexId,URd Pareto-optimal models with best FNS.
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for FlexB. Table 1 summarizes the contribution to the water
balance of the output fluxes from FlexB, FlexI, and of other
models that will be introduced further down. It can be
observed that IR evaporates about 30% of the total rainfall
volume.
[29] The hydrograph of the FlexI model with the best FNS

value is represented in Figure 4. It is possible to observe
that while the simulation of peaks is similar to the one of
FlexB, the simulation of low flows is improved. The FlexB
model produces secondary peaks during low flows that are
not observed in reality, while the FlexI model is closer to
observations. Apparently, the rainfall generating these small
peaks in FlexB is in reality intercepted or added to the soil
moisture (see Figure 4). While all proposed model mod-
ifications could in principle take this into account, the
introduction of an interception store could act selectively
on this aspect, without deteriorating model performance in
other hydrograph regimes. In section 8.2 we will provide a
more extended discussion on role of the interception
process.

5.2. Distributed Mode

[30] While the previous model versions used average
rainfall collected over the catchment, we subsequently
tested whether accounting for the spatial heterogeneity of
the rainfall could improve model results. We subdivided the
catchment in nT Thiessen polygons (Figure 1), to be
regarded as model units, and subsequently stepwise intro-
duced a distributed description of model components, start-
ing with the interception reservoir, followed by the soil
moisture reservoir and other system components. In doing
so, we kept the rainfall for each Thiessen polygon as
observed, without averaging. In this way the dynamics of
the observed rainfall was maintained.

[31] The first modification consisted of considering for
each of the nT model units an interception reservoir (IR) of
equal size. While in the other model versions rainfall was
first averaged and subsequently routed through the model,
in this case an individual, but equally sized, interception
reservoir was assigned to each unit (Figure 5). The outputs
of the different interception reservoirs are combined and
weighted according to the area of each unit. Subsequently,
the routing of the effective rainfall through the model
proceeds as in the FlexI model, in a lumped manner. The
different interception reservoirs have the same maximum
threshold Imax and are characterized by the same evapora-
tion rate EIR. Therefore this model does not require more
parameters than the FlexI model. However, at any time, each
interception reservoir can have a different storage, depend-
ing on the associated rainfall history. We called this model
structure FlexId.
[32] Subsequently, we distributed also the unsaturated

reservoir (UR). Similarly, the distribution concerns only
the reservoir internal states, and not the parameters. Output
fluxes from UR are averaged and further processed in a
lumped mode. We called this model structure FlexId,URd.
[33] While the previous structures did not use any infor-

mation on the specific location of the individual raingauges,
the subsequent model structures make use of this informa-
tion. Through the digital elevation model of the study area,
we calculated the average drainage distance to the outlet
L (km) of each model unit, and we assumed a non linear
relation between this distance and the lag time associated to
the fast and slow reacting reservoirs:

Nlagf ;j ¼ Tf
Lj

Lmax

� �df

ð11Þ

Nlags;j ¼ Ts
Lj

Lmax

� �ds

ð12Þ

[34] Where j (1, . . ., nT) indicates amodel element,Lmax (km)
is the maximum of L1, . . ., nT, and Tf (h), df (�), Ts (h), and
ds (�) are the parameters characterizing Nlagf and Nlags,
previously defined. The model structures that involve the
distribution of lag times associated to FR, and to FR plus SR
required one additional parameter each. These models were
named FlexId,URd,LFd and FlexId,URd,LFd,LSd respectively.
[35] Distribution of the internal states of FR and SR was

not considered because this would not bring any improve-
ment. In fact, a set of linear reservoirs in parallel charac-
terized by the same timescale would behave like a single
linear reservoir. As we tried to maintain a low model

Figure 5. Schematic diagram of the interception compo-
nent. The FlexI model implements a lumped interception
reservoir, the FlexId model accounts for distributed inter-
ception according to the raingauge location.

Table 1. Contribution to the Total Water Balance of the Output

Fluxes of the FlexB, FlexI, FlexId, and FlexId,URd Pareto-optimal

Models With Best FNS

FlexB FlexI FlexId FlexId,URd

EIR - 31% 29% 27%
EUR 61% 35% 35% 37%
Qf 17% 14% 15% 13%
Qs 22% 20% 21% 23%
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complexity in terms of the parameter used, we did not
attempt to distribute model parameters (besides internal
states) for different catchment elements. While it is in
principle possible to account for the heterogeneity of
catchment characteristics in a conceptual and parsimonious
way [Refsgaard and Storm, 1996], there is not much
guidance on how to deal with this problem. Addressing
this aspect would require an analysis that goes beyond the
scope of this paper.
[36] The performance of the models in response to

distributed rainfall input is represented in Figure 6. From
the figure, it is possible to see that the Pareto-optimal front
shifts progressively toward the origin of the axes, showing
which model structural modifications help to better capture
catchment dynamics. FlexId performs better than FlexI,
indicating that interception, which is a threshold process,
is particularly sensitive not just to rainfall volumes, but also
to specific rainfall patterns. FlexId,URd performs better than
FlexId, which shows that the non-linear partitioning of
effective rainfall into infiltration and fast runoff is also
strongly affected by rainfall patterns. FlexId,URd,LFd per-
forms only slightly better than FlexId,URd. Apart from model
structural errors, this may also indicate that the time to peak
of the catchment does not depend much on the area where
the rainfall is concentrated. This may be due to the shape of
the catchment, which is not particularly elongated, or
because in the study area the dominant direction of moving
rainstorms is orientated perpendicularly to the direction of
the main river, or because other factors, such as for instance
lithology, may be more important than the distance of the
rainfall event from the catchment outlet. FlexId,URd,LFd,LSd
performs like FlexId,URd,LFd, indicating that the distribution
of lag times associated to slow flow does not result in any
improvement. An explanation for this can be that slow
processes, which are characterized by a large stock to flux
ratio, are much less sensitive to rainfall spatial heterogeneity
than fast processes. This point, as well as our considerations
on the tradeoff between model complexity and model
performance, will be further analyzed in the discussion
section of the paper.

[37] Figure 4 shows the hydrographs of FlexId and
FlexId,URd corresponding to the Pareto-optimal models with
best FNS. The hydrograph of subsequent structures are not
reported as they do not introduce significant improvements,
both with respect to objective functions, and in terms of
visual inspection. It is possible to notice that while the
introduction of an interception reservoir in lumped mode
did not produce any improvement on hydrograph peaks, the
introduction of distributed interception and the subsequent
implementation of distributed soil moisture result in an
improvement of peak runoff. This shows that the response
of the catchment also during peaks is particularly sensitive
to a correct description of the antecedent moisture condi-
tion, which depends on the spatial distribution of rainfall
and interception.

6. Model Validation

[38] In order to check if the modifications introduced did
not lead to an over-parameterization of the model structure,
model performance was evaluated for a two years validation
period (September 2000–August 2002). Model validation
was performed by running the models FlexB, FlexI, FlexId,
and FlexId,URd with the parameter values of the respective
Pareto-optimal fronts, using the time series of the validation
period as input. Successive model structures were not
considered, as they as they did not lead to significant
improvements.
[39] The results are shown in Figure 7. We can see that

the stepwise model improvement is confirmed by the
validation, in the sense that the clusters of points
corresponding to the different structures are progressively
shifting toward the origin of the axes. This indicates that the
structural modifications do not add unnecessary degrees of
freedom to the model.
[40] Interestingly, the points computed for the validation

period do not preserve the arc shape that is displayed during
calibration (Figure 7). This is due to the presence of errors
both in the model and in the data. Estimating these errors is
a difficult task. However, the fact that an optimal model for
the calibration period is not optimal during the validation
period is a clear indication of their presence. In validation,

Figure 6. Model performance in the objective space.
Pareto-optimal fronts of the FlexB, FlexI, FlexId, FlexId,URd,
FlexId,URd,LFd, and FlexId,URd,LFd,LSd model structures.

Figure 7. Performance of the FlexB, FlexI, FlexId, and
FlexId,URd models in validation mode.
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FlexI did not perform better than FlexB in terms of CNS. This
may also be an effect of errors. The other models display
better performance in both objective functions.
[41] While the effect of errors may put into question the

role of optimization in hydrology, we still think that this
approach is a powerful tool to evaluate model performance
and compare different types of models. In the absence of
information about the nature of the errors, it makes in fact
sense to rely on data, and try to develop models that can
closely reproduce them.
[42] With respect to the estimation of plausible parameter

values, optimization may not be a good approach. Concen-
trating the selection of parameter values on the optimal
models only may be too restrictive. Because of the presence
of errors, in fact, a wider range of parameters may poten-
tially be as good in representing the system. For this reason,
the sensitivity analysis presented in the next section is not
restricted to the Pareto-optimal models, but includes a larger
number of potentially good models.

7. Sensitivity Analysis

[43] Sensitivity analysis deals with the question to what
extent model outputs are affected by model parameters.
Parameters with poor sensitivity cannot be well identified
within the parameter space, and this is clearly a problem in
hydrological modeling. If a model parameter cannot be
identified, it means that there is little confidence in the
model’s correspondence with reality [Kleissen et al., 1990].
A way to deal with this problem is to reduce model com-
plexity to a level that can still be supported by the data [e.g.,
Young and Parkinson, 2002]. The main disadvantage of this
approach is the risk of oversimplified conceptualization of
the processes, which may not be useful for the purpose of
modeling. An alternative approach is to find new (orthogo-
nal) constraints [Freer et al., 2004; Vaché and McDonnell,
2006], either through new measurements, or, as shown here,
through an improved use of the available information.
[44] Many approaches exist that deal with the problem of

estimating parameter sensitivity [Tang et al., 2007]. In this
paper, we adopted the approach described by Freer et al.
[2004]. The approach is based on the RSA (Regional
Sensitivity Analysis) of Spear and Hornberger [1980],
which also forms the base of GLUE (Generalised Likelihood
Uncertainty Estimation, Beven and Binley, 1992). Freer et
al. [2004] applied this analysis in a multiobjective mode.
[45] Traditionally, the RSA is based on random sampling

of the parameter space. This method however, is not
efficient as it requires a large number of runs to cover all
portions of the parameter space. Hence more efficient
sampling strategies have been recommended [Tang et al.,
2007]. In this case, the sensitivity analysis was performed
exploiting the same parameter sets generated by the
MOSCEM-UA algorithm. The MOSCEM–UA algorithm
integrates random sampling and Markov-Chain sampling,
which allows a more efficient exploration of the parameter
space in the region of the optima.
[46] The choice of objective functions can largely affect

the outcomes of a sensitivity analysis. Most sensitivity
analyses are based on the selection of a single statistical
summary. This however, can underestimate the information
content of the data, and consequently the influence of model
parameters on model outcomes. Similar to the advantage of

using multiobjective optimization, a multiobjective sensi-
tivity analysis helps to better understand the role of model
parameters on simulation. For consistence with the optimi-
zation procedure, we used the same (arbitrary) choice of
objective functions selected for model optimization.
[47] The sensitivity analysis was performed on the

FlexId,URd model, which we consider the final outcome of
the model development process. Subsequent model modifi-
cations were discarded, as they did not result in significant
improvements. In order to evaluate the constraints that the
two objective functions put on model parameters, the anal-
ysis was performed stepwise. In a first step, parameter
sensitivity was evaluated with respect to FNS only and was
expressed determining the parameter samples that corre-
spond to objective function values that are lower than the
specified threshold FNS,T. Subsequently, parameter samples
were further constrained by discarding the parameter sets
with values of FCC that exceeded the threshold FCC,T. FNS,T

and FCC,T were arbitrarily specified at 0.15 (corresponding
to a CNS of 0.85) and 0.04 respectively. These values were
selected in order to include the whole Pareto-optimal front
and also sub-optimal models that are close to the Pareto-
optimal frontier (Figure 6).
[48] The specification of a threshold value to separate

between adequately and poorly performing models is at the
heart of the RSA and of the GLUE approach [Beven and
Binley, 1992]. This element of the analysis is based on the
consideration that the position of optimal models in the
parameter space is strongly dependent on errors in the data
and in the model structure. Hence releasing the criterion of
optimality in favor of a concept of ‘‘equifinality’’ [Beven,
1993] provides a better picture of the possible combinations
that are equally well representative of catchment behavior.
The results of the analysis are typically represented through
scatterplots which are visually interpreted. Figure 8 displays
parameter sensitivity with respect to FNS only (grey dots),
and to FNS and FCC simultaneously (black dots). Interest-
ingly, the constraint on FCC further reduces the sensitivity
ranges for almost all parameters. The interception threshold
Imax demonstrates poor sensitivity with respect to FNS only,
while it is further constrained when both objectives are used.
The range of sensitivity of this parameter (from 1 to 4 mm)
corresponds to an interception rate of up to 30% of the total
rainfall, which is consistent with literature values [Link et al.,
2004] and observations in the catchment. The experiments
performed in the study area showed a somewhat larger
estimate of interception (see section 2). However, these
measurements were executed on a land use type (beach
forest) which is characterized by larger interception rates
than the rest of the catchment. Moreover, due to the disparity
of scales, the measurements are difficult to generalize to the
whole catchment. Nlags shows no sensitivity at all with
respect to both objective functions, showing that the pro-
cesses related to this parameter may represent an unrealistic
hypothesis, or that they cannot be assessed through the given
combination of data and objective functions.

8. Discussion

8.1. On the ‘‘Art’’ of Modeling

[49] The main objective of hydrological modeling is to
explain the variability of catchment response in terms of the
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factors that may influence it. These factors include temporal
and spatial variability of storage distribution, physical
characteristics of the catchment, and forcing input. The
relations that link the state variables to catchment response
are often non-linear, hysteretic and scale-dependent, and
their determination form one of the major problems that
hydrological science is facing today [Beven, 2006].
[50] The effects of individual controls on catchment

behavior have been mostly studied through virtual experi-
ments [Weiler and McDonnell, 2004], which demonstrated
that catchment response is sensitive to input variability,
storage distribution, and catchment characteristics. However,
in real cases, the evidence that catchment response can be
easily parameterized using just a handful of parameters
[Beven, 1989; Jakeman and Hornberger, 1993; Hsu et al.,
1995; Young and Parkinson, 2002] is already a demonstra-
tion that catchment behavior appears to follow simple laws
[Sivapalan et al., 2003; Dooge, 2005] depending of few
controls.
[51] This contradiction is difficult to be solved with the

current availability of observation techniques, which pre-
vents us to shed light on the behavior of internal catchment
processes. However, a possible way forward is to make
better use of the data available, extracting in a more efficient
way the information that it contains.
[52] In this study we identify a possibility to better

explore internal catchment behavior in a combination be-
tween the top-down approach [Sivapalan et al., 2003] and a
multiobjective approach to model evaluation [Gupta et al.,
1998]. We show that the combination of these approaches
forms a powerful tool to zoom-in from catchment to process

scale, and to test the effect of different hypotheses on
catchment behavior.
[53] We demonstrate that increasingmodel complexity does

not necessarily improve model performance (section 5.1).
On the other hand, we also show that an improvement of
model performance can be obtained just by improved use of
the available information, without increasing the number
of parameters (section 5.2). Hence it is not the number of
model parameters that determines the model ability of
reproducing catchment response. Instead, it is the role
of these parameters, the processes they represent, and their
impact on catchment response.
[54] This shows that modeling is both and Art and a

Science. The science lies in the use of fundamental scien-
tific principles and the formality of analysis; the art accounts
for professional experience, insight, creativity and intuition.
The latter is particularly important in developing a percep-
tual and conceptual model that captures the main processes
at play, while maintaining minimum levels of complexity.
As Wagener et al. [2003] points out ‘‘The modeler’s task is
to draw an inference from the type of failure that has
occurred with respect to the hypothesis underlying the
specific model component in order to develop an improved
version’’. This inference is what we call the art of modeling.

8.2. On Interception as a ‘‘Dominant Process’’

[55] Several studies underline the importance of intercep-
tion as one of the key processes affecting the water balance.
Vegetation intercepts a significant part of the rainfall, and in
humid and temperate climates the amount of water that
returns to the atmosphere as a result of canopy interception
is estimated to vary between 10 and 50 percent of the annual

Figure 8. Scatterplots showing parameter sensitivity of the FlexId,URd model structure to the selected
objective functions (lower values of FNS indicate better performance).
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rainfall [Link et al., 2004, and references within]. If also
forest floor interception is taken into account, the amount of
intercepted rainfall can be much larger [Gerrits et al., 2007].
[56] Notwithstanding the important role of interception in

the hydrological cycle, this process is often disregarded in
hydrological models. Among them: the HBV model as
described by Bergström [1995], the REW model [Reggiani
and Rientjes, 2005], the Topkapi model [Liu and Todini,
2002], and the HYMOD model [Vrugt et al., 2003b]. These
models combine evaporation from interception and transpi-
ration from vegetation into an ‘‘evapotranspiration’’ term.
Savenije [2004] argues that this is a conceptual mistake, as
interception has different dynamics from transpiration. The
timescale of interception is short, as this process ends
generally within a period of one day after rainfall [De
Groen and Savenije, 2006], while transpiration has a much
longer timescale due to the larger storage to flux ratio
involved. The energy balance into the ground is in fact
much smaller than on the surface, where due to air turbu-
lence rapid rates of evaporation occur.
[57] Among the reasons for neglecting this process there

certainly is the need to keep the model as simple as possible,
so as to reduce the number of calibration parameters.
Incorporating complexity into a model determines parame-
ter identification problems and does not necessarily result in
increased model performance [e.g., Beven, 2002]. Hence
there is a need to focus on the ‘‘dominant processes’’ that
mostly affect catchment response [Grayson and Blöschl,
2000].
[58] In some cases the implementation of interception has

been related to water balance considerations [Wagener et al.,
2004]. However, hydrological models can easily produce a
correct water balance compensating for structural errors by
parameter readjustment [Andréassian et al., 2004]. This is
also shown by our work, where the introduction of evapo-
ration from interception was compensated by a reduction of
the transpiration flux. The effect of interception on the
efficiency of discharge simulation is controversial. Some
authors found that the introduction of an interception
component in a model structure improved model perfor-
mance [Zhang and Savenije, 2005], others experienced
deterioration of model performance [Lindström et al.,
1997]. In both works, model performance has been assessed
through CNS only.
[59] In this study, we tested several threshold mechanisms

for the production of runoff, and we demonstrated that the
inclusion of the interception process improves model per-
formance significantly. Hence in this case, interception,
besides being conceptually important, is also a ‘‘dominant
process’’ that affects catchment response. We note that in
the model the interception component separates from the
precipitation the effective part that contributes to soil
moisture storage or runoff production. Hence while in the
literature interception is often defined as a process whereby
precipitation is intercepted by vegetation and subsequently
evaporated before reaching the ground, in the present case, a
more appropriate definition for this case is the one given by
Savenije [2004] which considers interception as all the
water that is intercepted by the wetted surface (including
canopy, understorey, bare soil, litter, roads and build-up
areas) and subsequently returned to the atmosphere during
or shortly after a rainfall event.

[60] We link the improvement to a better description of
antecedent wetness conditions. In the absence of an inter-
ception process, all rainfall is stored in the catchment or
produces runoff. However, in reality, the infiltration and
runoff production are threshold processes, which are highly
sensitive to the wetness of soil surface and of the first
centimeters of the soil. A more accurate representation of
the storage in the soil and its spatial distribution, therefore,
yields a better description of catchment response under
variable wetness conditions.
[61] The divergence of opinions between this and other

studies may be due to climatic conditions. In very wet or
energy constrained conditions, a split between transpiration
and interception may not improve model performance,
while in drier conditions the effect of this process on the
hydrograph will be more evident. Also, the importance of
specific processes is strongly dependent on model evalua-
tion criteria. In this case we built two performance measures
to describe model agreement with observations (the Nash-
Sutcliffe criterion and the correlation coefficient) and we
showed that their combined use helps to better constrain
parameter values. The use of additional orthogonal infor-
mation to test model assumptions, such as, for instance,
isotope concentration [Vaché and McDonnell, 2006], may
shed more light on the relative importance of the intercep-
tion process.

8.3. On the Effect of Rainfall Spatial Distribution
on Catchment Discharge

[62] Spatial rainfall patterns can be highly heterogeneous.
In general, short duration high intensity rainfall, typically
generated by convective thunderstorms, has a very low
spatial correlation, whereas the spatial correlation of long
duration rainfall is larger. Whether or not spatial heteroge-
neity of rainfall has an impact on catchment discharge and
for what reason, is a problem that has been often addressed
in hydrology and that is still poorly understood. The
question has been explored directly or indirectly in relation
to several issues: the comparison of lumped versus distrib-
uted models, the eventual benefit of high density raingauge
networks, the advantage of radar derived rainfall data at
high spatial resolution, and the improved understanding of
catchment internal processes.
[63] While the use of a model that mimics catchment

behavior appears to be unavoidable, and is common to all
studies addressing this question, the main difference lies
in the use of fictitious versus real data. The majority of
the works are ‘‘virtual experiments’’ [Schuurmans and
Bierkens, 2007; Arnaud et al., 2002; Koren et al., 1999;
Winchell et al., 1998; Finnerty et al., 1997; Krajewski et al.,
1991; Milly and Eagleson, 1988; Beven and Hornberger,
1982; Wilson et al., 1979] and their results seem to support
the conclusion that catchment response is sensitive to spatial
rainfall heterogeneity, depending on different processes and
scales.
[64] There is much less work that addressed this question

using real data, comparing model results with real observa-
tions. Interestingly, the majority of these studies seems to
point into the opposite direction. While a correct estimate of
rainfall volume has a significant effect on model predictions
[Andréassian et al., 2001; Sun et al., 2000; Obled et al.,
1994] an accurate description of the rainfall spatial pattern
does not always appear to be necessary to explain catchment
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behavior. Most studies comparing distributed versus lumped
models [Carpenter et al., 2001; Perrin et al., 2001;
Refsgaard and Knudsen, 1996; Michaud and Sorooshian,
1994] including those related to the Distributed Model
Inter-comparison Project [Reed et al., 2004] could not
detect significant differences in model performance. Obled
et al. [1994] conclude that distributed rainfall estimates do
not improve discharge predictions, hypothesizing that ‘‘the
catchment has such a damping capacity that it does not
require this type of information’’. Smith et al. [2004]
support the hypothesis that only catchments with marked
rainfall variability and little filtering effect will benefit from
distributed rainfall information.
[65] Our results show that the spatial distribution of

rainfall is relevant to explain catchment dynamics. Most
importantly, the largest improvements in model perfor-
mance are obtained without increasing the number of
parameters. Hence the improvement is not an attributable
of increased model complexity. The interception and unsat-
urated soil model compartments, which are characterized by
a non-linear threshold-like behavior, are particularly sensi-
tive to rainfall spatial distribution. Interestingly, information
on the spatial distribution of individual raingauges (intro-
duced by assuming a distribution of lag times associated to
raingauge location) did not produce significant improve-
ments. Apart from model structural errors, this may indicate
that, in this catchment, spatial heterogeneity of rainfall does
not have a strong impact on peak timing.
[66] In contrast to previous work analyzing this problem

using real data, our outcome clearly shows that catchment
response is sensitive to spatial heterogeneity of rainfall. One
reason that may explain this difference could lie in the
different set of hypotheses underlying alternative model
structures. Another explanation could be that previous
studies analyzed this problem on smaller catchment areas,
where the spatial heterogeneity of rainfall is less evident. In
general, the effect of rainfall spatial heterogeneity in mod-
eling catchment behavior is clearly linked to model assump-
tions, catchment characteristics (e.g., catchment area and
shape), climate, raingauge location and density. The effect
of these controls needs further investigation in future
research.

8.4. On the Utility of Distributed Information
for Catchment Modeling

[67] While several authors indicated that the catchment
acts as a low-pass filter attenuating the variability of the
input signal [e.g., Smith et al., 2004; Andréassian et al.,
2001; Obled et al., 1994], we think that such damping effect
is also related to the timescale of the processes affecting the
rainfall-runoff transformation. Relatively fast processes, that
is, those determining the fast response of the catchment to
rainfall, demonstrate a higher sensitivity to the space-
temporal variability of the input signal than relatively slow
processes, such as those determining catchment response
during dry weather periods. Our results show that substan-
tial model improvement can be obtained through the distri-
bution of interception, saturated soil, and to a minor extent
the lag time of the fast reacting reservoir. All of these
aspects contribute to the fast response of the catchment to
rainfall. Interception is a process characterized by time-
scales in the order of several hours, and it is the first shackle
in the chain of subsequent processes that determine catch-

ment response. The storage level in soil determines the
proportion of effective rainfall which contributes to fast
catchment response. No improvement at all is registered on
the lag time distribution associated to slow processes.
[68] This result relates to the debate on the relative merits

of distributed versus lumped models. As mentioned before,
there is little agreement on whether distributed information
helps to improve model predictions. In this respect, we think
that the modeling of fast processes, like those related to
surface or near-surface runoff, benefits more from distrib-
uted information than the modeling of slow processes, such
as those related to groundwater flow. For fast processes, the
variability of the forcing data is not reduced by the filtering
effect of the catchment and is reflected in the variability of
catchment response. For slow processes, the variability of
the input variables is likely to be filtered out significantly by
the averaging effect of the basin, so that long duration
rainfall with a low spatial variability can be used, as is often
the case, for groundwater related processes.

9. Conclusions

[69] In order to better understand internal catchment
behavior, without the shortcomings of ‘‘virtual experi-
ments’’, we adopted an approach that extracts information
from real data in a more efficient way than is traditionally
done. Our methodology is based on a combination of the
‘‘top-down’’ approach to model development, which is a
framework for understanding catchment behavior based on
data interpretation, and a ‘‘multiobjective’’ approach to
model evaluation, which is based on the consideration that
multiple measures of performance are needed to properly
extract information from the data.
[70] The modeling started with a basic model structure

applied to the Alzette catchment in Luxembourg. Subse-
quently, further refinements of model conceptualization
were introduced and evaluated, initially in a lumped and
then in a spatially distributed mode. We determined that
model performance is particularly sensitive to the descrip-
tion of the state of wetness of the catchment. This may seem
trivial, but we showed that the improved wetness strongly
depends on the process of interception and on the distribu-
tion of model internal states in conjunction with distributed
rainfall input. These results are of interest to ongoing
discussions on which there is little consensus to date. In
fact, the interception process, although accounting for an
important component of the water balance, is often
neglected in modeling application, particularly in relation
to hydrograph simulation. Regarding the spatial heteroge-
neity of rainfall, while theoretical studies with artificial data
show that it may have a considerable impact on catchment
discharge, most applications using real data support an
opposite conclusion.
[71] Our results contribute to the debate on the relative

merits of lumped versus distributed models, showing that
fast catchment response benefits more from distributed
modeling than slow catchment response. Processes depend-
ing on a large stock to flux ratio (e.g., groundwater flow,
transpiration, percolation) do not require information on the
spatial distribution of rainfall, whereas fast processes, such
as interception and surface runoff do. This is due to the
damping effect of the basin, which filters the space-temporal
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variability of the input signal and is larger for slow
processes than for fast processes.
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