
Understanding Change-proneness in OO Software through Visualization

James M. Bieman Anneliese A. Andrews Helen J. Yang
Computer Science Department School of EE and CS Computer Science Department

Colorado State University Washington State University Colorado State University
Fort Collins, CO 80523 Pullman, WA 99164 Fort Collins, CO 80523

bieman@cs.colostate.edu aandrews@eecs.wsu.edu yangh@cs.colostate.edu

Abstract

During software evolution, adaptive, and corrective
maintenance are common reasons for changes. Often such
changes cluster around key components. It is therefore im-
portant to analyze the frequency of changes to individual
classes, but, more importantly, to also identify and show re-
lated changes in multiple classes. Frequent changes in clus-
ters of classes may be due to their importance, due to the un-
derlying architecture or due to chronic problems. Knowing
where those change-prone clusters are can help focus at-
tention, identify targets for re-engineering and thus provide
product-based information to steer maintenance processes.
This paper describes a method to identify and visualize
classes and class interactions that are the most change-
prone. The method was applied to a commercial embed-
ded, real-time software system. It is object-oriented soft-
ware that was developed using design patterns.

1. Introduction

During software evolution series of changes are made to
software. Changes can be due to a variety of reasons such
as enhancements, adaptation, perfective maintenance or fix-
ing defects. Some parts of the software may be more prone
to changes than others. Knowing which classes are change-
prone can be very helpful; change-proneness may indicate
specific underlying quality issues. If a maintenance process
can identify what parts of the software are change-prone
then specific remedial actions can be taken. Thus, knowing
where most changes are made over time can identify key
change-prone classes, key change-prone interactions, and
the evolution process can focus attention on them. Underly-
ing reasons explaining why a class is change-prone can vary
widely. There may be specific quality problems due to code
decay (if changes are due to defect repair), the underlying
architecture may have problems (again, if changes are due

to defect repair) or encourage changes in certain classes (to
add functionality or adaptations). Regardless, it is useful
to know what these key classes and interactions are so that
they get proper attention. Actions may range from stepped
up quality assurance efforts to refactoring depending on the
underlying cause for change-proneness.

While changes in individual classes can be counted, this
does not reveal important aspects of code changes. Changes
in response to a single defect report or change request may
be local to a class and involve changes in only that single
class, or may involve a whole collection of classes. The lat-
ter arguably may be more difficult to understand, take more
effort to implement and to implement correctly. In addi-
tion, collections of classes that experience frequent changes
together should be made visible, since they are prime tar-
gets for stepped up comprehension and possibly improve-
ment efforts. We thus are not only interested in identifying
and making visible classes that see the most lines of code
changed, but, more importantly, identifying and visualizing
classes that experience frequent changes together. That is,
showing changes in these classes that are related. We call
this change-coupling between classes.

In addition, it is important to analyze whether change-
prone clusters of classes represent design structures and
change-related interactions represent logical design interac-
tions or not. Patterns are examples of clusters of classes that
represent design structures (although not the only ones). A
prior study of a commercial software development project
by Bieman et al. [3] found that classes that play roles in
design patterns were more, rather than less change prone.
However, this analysis only counted number of changes in
classes, but did not analyze whether changes in clusters
of classes were related to the same change request, i. e.
whether classes were change-coupled. Such an analysis can
provide further understanding of the nature of the changes
and how developers interact with a system. In this case
study, we analyze the data from the prior study, a sizeable
C++ system built using patterns, examining ways to visu-

bieman
To Appear in Proc. Int. Workshop on Program Comprehension (IWPC 2003), 2003.



alize and analyze the changes. The research questions we
investigate are:

1. Is there a way to identify and visualize the most
change-prone collections of classes in an object-
oriented system?

2. Can change-proneness distinguish between local
change-proneness and change-proneness due to
change interactions of classes?

3. Do individual changes made in response to one
“change request” affect only classes that are linked in
the logical design of a system, or are there implicit
connections between system elements that are not part
of any design representation?

4. How do we make this information visible?

Section 2 gives background on existing work related to
visualing software system evolution and fault-prone and
change-prone behavior. Section 3 defines our analysis
method. Section 4 describes a case study that applies this
method to analyze an industrial software system containing
patterns. Section 5 draws conclusions and points out limi-
tations of our study.

2. Background

Others have studied the process of evolution and devel-
oped ways to visualize changing systems. Holt and Pak [7]
developed a graphical tool to visualize design changes in
successive versions. They use colors to indicate “hotter” or
more recent changes. The system can identify changes in
the explicit structural coupling between components. They
found that low-level or module-level changes are more fre-
quent than changes in the architecture.

Some prior work examines the growth of systems over
time, without addressing the connections between compo-
nents. Gall et al. [5] tracked changes in number and size of
system components at various levels of abstraction — sys-
tem, subsystem, module, and program-levels. Plots of the
percentage of components that are changed and the growth
rate of components indicate change-prone entities, which
are candidates for re-design. Lehman et al. [10] also track
the size and number of modules over time, and look for un-
usual trends.

Burd and Munro [4] examine the evolution of data clus-
tering, which is the grouping of functionality with associ-
ated data. This work tracks design changes based on com-
mon data interactions and the calling structure in COBOL
programs. In the systems studies, there was a growth in the
number of functional units along with a growth in common
coupling between functional units due to interactions with
the same data.

The evolution of object-oriented software has also been
studied. Mattsson and Bosch [11] apply the methods used
by Gall et al. [5] in a case study of an object-oriented
system. One objective is to identify the stable portion of
a system, which can serve as a reusable framework. The
other objective is to identify the most change-prone parts,
which are candidates for restructuring. Like Mattsson and
Bosch [11], they do not study connections between compo-
nents. This work treats classes as the lowest level system
components, and does not address either the internal char-
acteristics of classes or the roles that a class may play in the
design at a higher level of abstraction.

Antoniol et al. [1] recover designs from code and com-
pare evolving designs in terms of a similarity measure.
They identify links between components in different ver-
sions in terms of their similarity. We also recover designs
from code. However, our focus is on the specific design
roles of individual classes, or their architectural context,
and both the explicit and implicit links between classes. Our
aim is to see how the design structure of a system can affect
the change-proneness of individual classes.

Much of the prior work on change-proneness is geared
towards identifying fault-prone components (i. e. changes
are due to defect repair). It is important to know which
software components are stable versus those which repeat-
edly need corrective maintenance because of decay. Decay-
ing components become worse as they evolve over releases.
Software may decay after adding new functionality with in-
creasing complexity, and due to poor documentation of the
system. Over time decay can become very costly. There-
fore it is necessary to track the evolution of systems and to
analyze causes for decay.

Ash et al. [2] provide mechanisms to track fault-prone
components across releases. Schneidewind [14] and Khosh-
goftaar et al. [9] provide methods to predict whether a com-
ponent will be fault-prone. Ohlsson et al. [12, 13] and von
Mayrhauser et al. [16] combine prediction of fault-prone
components with analysis of decay indicators. They also
describe a method to identify both fault-prone components
and fault-prone component relationships [13, 16]. Compo-
nents are defined through physical architecture (i. e. based
on clustering of files in directories). Components are ranked
based on the number of defects in which a component plays
a role. The ranks and changes in ranks are used to classify
components as green, yellow and red (GYR) over a series
of releases. Ohlsson et al. [12, 13] also analyzed correc-
tive maintenance (change) measures via Principal Compo-
nents Analysis (PCA) [8]. This helps to track changes in
the components over successive releases. Box plots are also
used to visualize the corrective maintenance measures and
to identify how they differ between releases between fault-
prone and non fault-prone components. Von Mayrhauser et
al. [15, 16] take these measures of fault-proneness to deter-



mine a fault-architecture.

In this paper, like Mattsson and Bosch [11], we are in-
terested not in components, but in classes and clusters of
classes (both patterns and non-patterns) and how change-
prone they are both locally and as change-coupled clus-
ters. We examine class change proneness in part because
the definition of class boundaries are unambiguous, in con-
trast to the notion of “components”, which depend upon
varying definitions. Also, we can identify classes directly
from source code and do not depend upon design docu-
mentation which is often not available. Depending on the
cause for the change, our analysis might result in identify-
ing fault-prone classes and fault-prone interactions between
classes. We adapt the measures for fault-proneness from
von Mayrhauser et al. [15, 16] so that they can be applied
to change-proneness of classes and class clusters, and their
change-prone interactions. Similar to von Mayrhauser et
al. [15, 16], we build a change architecture diagram of the
most change-prone classes (rather than a fault architecture
diagram).

The prior study by Bieman et al. [3] examined 39 ver-
sions of an evolving industrial object-oriented software sys-
tem that evolved over a three year period to see if there is
a relationship between patterns, other design attributes, and
the number of changes. They found a strong relationship be-
tween class size and the number of changes — larger classes
were changed more frequently. They also found two unex-
pected relationships: (1) classes that participate in design
patterns are not less change-prone — these pattern classes
are among the most change-prone in the system, and (2)
classes that are reused the most through inheritance tend to
be more change-prone. These unexpected results held up
after accounting for class size, which had the strongest rela-
tionship with changes. Figure 1 shows the difference in the
distribution of changes per operation for classes that played
roles in patterns from the classes that were not part of a
pattern. The Mann-Whitney test confirmed with a signif-
icance of 0.0003 that, in the case study data, classes that
play roles in patterns are more change-prone, as measured
by changes per operation. However, this analysis did not
address change-coupling between classes, it only measured
individual changes in classes and disregarded any relation-
ships between changes.

In this paper, we examine the same case study data fo-
cusing on the classes that are the most change-prone, dis-
tinguishing between local changes and change coupling be-
tween classes. First we identify the most change-prone
classes, and then construct a change architecture, which in-
cludes only the most change-prone classes. We also exam-
ine the prevalence of classes that play roles in design pat-
terns among the change-prone classes.

3. Approach

The study involves analyses of both the implementa-
tion structure of the case study software system and change
logs. The analysis of the implementation structure provides
a characterization of the individual classes in the system,
and identifies the design patterns. The change logs provide
the information needed to develop a change-architecture for
the system; they identify individual changes and all classes
that were changed for each reported change.

The analysis method consists of five steps:

1. Collect class-level implementation metrics of the sys-
tem under study. We measure class size, and the prop-
erties of a class’s relationships to the rest of the system.

2. Identify design patterns in the system. We identi-
fied only intentional design patterns, design patterns
that developers use in a deliberate purposeful manner.
These patterns should be documented, and they should
have an effect on the number of changes, since adapt-
ability is the primary reason for using patterns — the
indirection inherent in design patterns should reduce
the number of changes to existing classes.

3. Identify the changes in each class, and determine
whether a change is local to a class or involves mul-
tiple classes. We use counts of these categories of
changes to generate values of three change-proneness
measures: local change-proneness (LCP), pair change
coupling (PCC), and the sum of pair coupling (SPC).
The measures are defined for a single change report
and then aggregated for all change reports.

4. Identify the change-prone classes. A class is consid-
ered to be change-prone if each of the change-prone
measures falls above a threshold. We determine the
thresholds through a simple outlier analysis of the dis-
tribution of measured values.

5. Develop a change-architecture diagram for the change-
prone classes. When changes are solely due to defects,
this the same as the fault-architecture diagram in von
Mayrhauser et al. [15, 16].

3.1. Class-level Measures

Assorted class-level metrics indicate internal properties
of a class and relationships between classes. Two metrics
are measures of class size:

� Total number of attributes (Tatt): includes both in-
stance variables (non-static member data) and class
variables (static member data).



Figure 1. Box plots of the distribution of change density as measured by Changes per Operation for
classes that play roles in patterns (PP = 1) versus classes that do not participate in patterns (NPP =
0). Figure is from a prior report [3].

� Total number of operations (Toper): includes both
instance methods (non-static member functions) and
class methods (static member functions).

Five metrics indicate properties of a class’s relationship
with other classes, either a property of an inheritance re-
lationship or visibility through the C++ friends construct:

� Number of friends methods (Friends).

� Number of methods that are overridden (MO).

� Depth of inheritance (DOI): indicates a class’s level
in a class hierarchy. A base class — a class with no
superclasses — has a DOI of zero.

� Number of direct child classes (DCC): a count of the
number of immediate subclasses.

� Number of descendents (Desc): a count of all classes
that are derived from the class either directly or indi-
rectly.

Various tools can produce these measures. We used the To-
gether tool and its metamodel, a product of TogetherSoft
Corp.

3.2. Finding Patterns

We examine program source code, class diagrams gener-
ated by Together from code, and documentation to find the
patterns using the following procedure:

1. Search for pattern names in the documentation of the
system.

2. Identify the context of the classes identified in step 1
by analyzing the class diagrams. Once we find the

classes whose documentation specifies something re-
lating to a pattern name/role, we can look at the class
diagrams to identify all the classes required to consti-
tute a pattern. We look for the links and interactions
between classes that implement the pattern.

3. Verify that the candidate pattern is really a pattern in-
stance. We examine the pattern implementation to look
for lower level details.

4. Verify the purpose of the pattern. We examine each
group of classes that represent a pattern candidate to
confirm that the classes and relations have the same
purpose as described by an authoritative pattern refer-
ence. We use the Gamma et al. [6] book as the author-
itative reference for this study.

This process will only identify patterns that are docu-
mented by using well-known pattern names. We will miss
undocumented patterns, and patterns that were used unin-
tentionally. However, to have an effect on ease of adapta-
tion, the developer responsible for making a change must
know about the pattern. These patterns should be doc-
umented, and they should have an effect on the number
of changes, since adaptability is a primary reason for us-
ing patterns — the indirection inherent in design patterns
should reduce the number of changes to existing classes.
Changes should be limited to adding new subclasses or
other new classes that were not part of the original pattern.

3.3. Change-proneness Measures

Local change-proneness (LCP). A change report asso-
ciated with changes in a single class adds one point to the
local change-proneness measure LCPi. Thus

LCPi
� ci



where ci is the number of change reports that involve only
class i. The local change-proneness measure is analogous to
the defect cohesion measure of von Mayrhauser et al. [15,
16].

Pair change coupling (PCC). Pair change coupling is as-
sociated with class pairs. Two or more classes are pair-
coupled if they are involved in the same change report. For
any n classes C1 to Cn changed in the same change report,
the pair coupling measure PCCi � j (i

�� j) for each pair of
classes PCCi and PCC j is increased by one. For n classes in
a change report, there will be n � n � 1 ��� 2 such pairs.

Sum of pair coupling (SPC). A class may be involved in
many pair couplings. To account for many couplings, we
compute the sum of all pair-couplings for each class. The
sum of pair coupling of class C is calculated as follows:

SPCC
� n

∑
i 	 1

PCCC �Ci C
�� Ci

where n is the number of classes other than C and PCCC �Ci

is the pair coupling between C and Ci.

3.4. Determining Threshold for change-proneness

We use a strategy similar to those used to set thresh-
olds that identify fault-prone components. Various authors
have used a variety of approaches to set this threshold. Von
Mayrhauser et al. [13, 15, 16] use defect cohesion mea-
sures for components and defect coupling measures be-
tween components to assess how fault-prone components
and component relationships are. If the objective is to con-
centrate on the most problematic parts of the software archi-
tecture, these measures are used with thresholds to identify

� the most fault prone components only (setting a thresh-
old based on the defect cohesion measure);

� the most fault prone component relationships (setting
a threshold based on the defect coupling measure).

Von Mayrhauser et al. [15] consider a component fault-
prone in a release if it is among the top 25% in terms of de-
fect reports written against the component. In general, one
would set the threshold based on available resources, qual-
ity, and objectives of the analysis (most problematic versus
all components that have problems). The 25% threshold
provided a manageable number of problematic components
for further analysis. Similarly, a threshold may distinguish
between component relationships that are fault-prone and
those that are not. The threshold was set to an order of mag-
nitude less than (or 10% of) the maximum value for the de-
fect coupling measure. Setting the threshold is a subjective

decision and depends on the objectives of the investigation
and the number of fault relationships.

Here we use a different approach to determine the thresh-
old. Rather than treating a component as a collection of
files, we treat a class as a component. Box plots can depict
the distribution for each change-proneness measure to iden-
tify outliers. The “box” represents the central 50% of the
values. The outliers are the values that lie outside the box at
a distance from the box boundary of more than 1.5 times the
size of the box. This simple outlier analysis is used here for
determining the threshold for change-proneness. We also
adjust the criteria of outliers to consider obvious gaps in the
distribution of values.

3.5. Diagrams of change-prone classes

Two diagram types can characterize the architecture,
both logical and physical, of the change-prone classes. The
diagrams depict only the change-prone classes and their re-
lationships. The first diagram, a change-prone class dia-
gram is a standard UML class diagram. However, it only
includes the change-prone classes and their design relation-
ships.

The second diagram, a change architecture diagram,
shows how classes are linked via changes in the same
change report. A change architecture diagram depicts all
of the change-prone classes as rectangles, as in UML. The
LCP and SPC values are shown inside the rectangles. Each
pair of classes that have a PCC value that is greater than
zero are linked; the link is annotated with the PCC value.

The two diagrams allow us to compare the connections
inherent in the system design, as shown in the class dia-
gram, with the connections implied by changes.

4. Case Study and Analysis

The study is conducted on a commercial object-oriented
system implemented in C++. The system is a key part of
an embedded real-time storage management system. This
development project took place while the organization was
in the process of adopting object-oriented methods. The
system was developed with the support of a version control
system over a period of several years. Experienced object-
oriented developers developed the system; they also made
use of object-oriented design patterns. The version control
system allowed us to obtain multiple versions of the sys-
tem and collect data on the transformations between 39 ver-
sions. Our focus has been the transformations between two
specific versions of the system: version A, which is the first
stable version of the system, and version B, which is the
final version in our data set.

Version A consists of 199 classes and approximately
24,000 lines of source code. Version B has 227 classes with



approximately 32,000 lines of code. Of the 199 classes in
Version A, 191 also appear in Version B. The 191 classes
that appear in both Version A and Version B and all of the
transformations between the versions are the focus of this
study. We extracted the class diagrams of versions A and B
from the code and used the diagrams for pattern identifica-
tion as well as metrics collection. The size and relationship
measures were generated only for the classes in version A,
since we are trying to identify the properties of the earlier
version that can predict the number of changes that will later
be applied.

We count the number of changes to each class that occur
in the transitions from version A to version B, through 37
intermediate versions. This count is a tally of the number
of changes that are logged on the version control system for
each class during the 39 version transitions. Changes can
be corrective, adaptive, perfective, or preventive. As is the
case with many industrial systems, the system under study
had no maintenance history other than the comments in the
code, the version control logs, and the recollection of the
few system developers that we could find. Our analysis of
different classes of changes did not show any differences
between the change type. We used two key criteria to group
changes to individual classes as elements of one change:
matching comments documenting the changes, and match-
ing check-in time stamps — check-ins within one minute of
each other.

Version A of the system contained 18 classes that play
roles in 16 pattern instances of four pattern types — Single-
ton, Factory method, Proxy and Iterator patterns.

Fig. 2 shows the distribution in the change-proneness
values for each measurement as box plots. Most of the val-
ues for each of the three change-proneness measures are
quite low — the boxes stay very close to the origin. This
means that at least 75% of the measurements were at or
very close to zero.

Change-prone classes are identified through box plot
outlier analysis as those with LCP values above 10% of the
highest LCP value — 36 out of 191 classes, in class pairs
with above 50% of the highest PCC values — 29 out of 924
class pairs, and SPC values above 12% of the highest SPC
values — 29 out of 191 classes. The SPC threshold was set
at a gap in the outliers. Seventeen classes are beyond the
threshold for all three criteria; these are the change-prone
classes. This data clearly shows that there are clusters of
classes whose changes are related, i. e. are change-coupled.

Observe that the outliers for the SPC measure have much
higher values than for PCC. That is because several classes
are members of many coupled pairs with few changes in-
volving each pair.

Fig. 3 depicts the change-prone class diagram. It uses a
UML-like notation to show the relationships between the
change-prone classes. Of the change-prone classes, five

classes play roles in design patterns. Three are Singleton
classes, one is an Iterator class, and one plays a role in a
Proxy pattern. Thus, five of the seventeen change-prone
classes or 29% are pattern classes, while in all of system
version A there are 18 pattern classes out of 191 classes or
9%. Another comparison is that the 5 change-prone pattern
classes represent 28% of the pattern classes, while the 12
change-prone non-pattern classes represent 7% of the non-
pattern classes. Pattern classes are clearly overrepresented
in the set of change-prone classes.

One of our research questions was how to make these
change-prone classes, class clusters, and their change rela-
tionships visible. We do this through (1) definition of the
three change-proneness measures, (2) setting an appropri-
ate threshoold (through boxplot analysis) to identify the re-
lationships that should be visualized, and (3) graphing the
remaining change-prone class clusters and the magnitude
of change-relationships in a change-architecture diagram.
Fig. 4 shows the change architecture diagram. Except for
class C1, the change-prone classes form a connected graph.
That is, classes C1 through C17 are linked by chains of pair
couplings. Class C1 is not pair coupled with any of the other
change-prone classes; it meets the change-prone threshold
for PCC and SPC through many pair couplings with classes
that are not change-prone. Four of the five change-prone
pattern classes are linked directly through pair couplings.
Class C7 is directly linked to nine of the other change-prone
classes.

To answer our third research question, we compare the
links in the change architecture shown in Fig. 4 with the log-
ical structure of the implementation shown in Fig. 3. One
observation is that the links in the two figures do not match.
Several classes, for example C6 and C11, are linked in the
change architecture (Fig. 4), but not in the class diagram
(Fig. 3). C17, one of the pattern classes, is linked in the
change architecture diagram to three other pattern classes
— C8, C15, and C16, but C17 is not linked to these classes
in the class diagram. These sets of classes may have been
changed in response to a non-functional requirement, such
as performance. Such a change might not be reflected in the
design.

The class-level properties of the change-prone classes
differ from those of the classes that are not change-prone.
Table 1 gives the measurements for the change-prone
classes, while Table 2 are the measurements for the remain-
ing ones. First, the change-prone classes are changed far
more often than the non change prone ones. The mean to-
tal number of changes (Tchanges) for change-prone classes
is more than ten times higher than for non-change prone
classes, and the median Tchanges is 18 times higher. The
change prone classes tend to be larger — they have more
attributes and operations. Neither group makes much use of
C++ friends. There seems to be little difference in the num-



Figure 2. Box plot showing the distribution of change-proneness measures: local change-proneness
(LCP), pair change-coupling (PCC), and sum of pair coupling (SPC).

ber of methods overridden (MO) for the two groups. The
median depth of inheritance (DOI) is two for the change-
prone group and one for the non-change prone group. The
median values for the number of direct child classes (DCC)
and descendents (DCC) are zero for both groups. However,
the means are higher for the change-prone classes, espe-
cially for DCC. However, the comparatively high value of
the mean for change-prone descendants (Desc) can be due
to one or two change-prone classes with many descendents
in the small sample.

5. Conclusions

In this paper, we addressed four research questions. The
first was about identification and visualization of change-
prone collections of classes in an object-oriented system.
The second had to do with distinguishing local change-
proneness from change-prone clusters of classes. We
showed how to quantify the degree to which classes are
change-prone both locally and in their interactions with oth-
ers. We applied this method to a sizeable case study. For
this case study, we found in response to research question 3
that change interactions between classes do not necessarily
mimic functional interactions in the design of the system.
This can have a variety of reasons. One example would be
improvements of qualitative factors like performance. Per-
formance improvements may trigger simultaneous changes
in classes that otherwise do not interact with each other.

In response to research question four we visualized lo-

cal versus cluster change-proneness through the change-
architecture diagram and compared it to the design dia-
gram. We also distiguished between change-prone clusters
of classes involved in patterns and those which are not. Our
visualization was simple and straightforward and driven by
the change measures we identified. Future work in this area
includes the use of color, overlays of change-architecture
versus logical architecture, representation of other measures
(e. g. size of box representing size of class). While there are
a large number of potential enhancements, the key objective
for us was to keep the representation sparse and uncluttered,
and to emphasize the answer to the question: which clusters
of classes are frequently involved in related changes?

Acknowledgements

This work is partially supported by U.S. National Sci-
ence Foundation grant CCR-0098202, and by a grant from
the Colorado Advanced Software Institute (CASI). CASI is
sponsored in part by the Colorado Commission on Higher
Education (CCHE), an agency of the State of Colorado.
Storage Technology Corporation provided software, tools,
and computer resources for this study.

References

[1] G. Antoniol, G. Canfora, G. Casazza, and A. De
Lucia. Maintaining traceability links during object-



C1

C2

C3

C4

C5

C6

C7

C8 C9

C10

C11

C12

C13

C14

C15

C16

C17

0..1

0..1

0..1

0..1

Figure 3. Class diagram showing links between change-prone classes in the case study system. One
directional use dependencies are excluded to provide a more readable figure. Class boxes that play
a role in a design pattern are shaded.

Table 1. Class-level measurements in version A for change-prone classes.
N = 17

change-prone Mean Std.Dev. Sum Min Max Median
Tchanges 20.82 10.27 354 10 50 18

Tattr 6.71 4.73 114 0 17 6
Toper 37.71 24.77 641 8 97 32

Friends 0.35 0.49 6 0 1 0
MO 2.82 2.63 48 0 8 3
DOI 2.00 1.62 34 0 4 2
DCC 0.82 1.33 14 0 4 0
Desc 2.47 4.06 42 0 10 0

Table 2. Class-level measurements in version A for non change-prone classes
N = 174 not

change-prone Mean Std.Dev. Sum Min Max Median
Tchanges 1.91 3.22 332 0 20 1

Tattr 2.15 4.67 374 0 42 0
Toper 8.43 9.64 1466 1 77 5

Friends 0.10 0.61 17 0 7 0
MO 1.93 2.55 336 0 21 2
DOI 0.88 0.67 153 0 4 1
DCC 0.76 5.37 133 0 61 0
Desc 0.86 5.82 149 0 67 0



C3

C4

C5

C7

C9

C10

C11

C15

LCP=9

SPC=76
LCP=5

LCP=11

LCP=10

C6

LCP=8

SPC=89
LCP=25

C8

C1

C2

LCP = 9

LCP=16
LCP=5

LCP=6

LCP=4 C12

LCP=4

C13

LCP=16

C14

LCP=4

LCP=9

C16

LCP=4

LCP=10

C17

5

5

5

5

5
5

7

6

6

6

66
7

10

6

107

5

5

65

7

6

56
7

SPC=59

SPC = 78

SPC=85

SPC=74

SPC=89

SPC=87

SPC=61

SPC=72

SPC=54

SPC=88

SPC=95

SPC=67

SPC=72

SPC=74

SPC=104

Figure 4. Change architecture of change-prone classes in the case study system. Numbers along
each link indicate the number of pair change couplings (PCC). Class boxes are annotated with the
measurements of the sum of pair coupling (SPC) and local change-proneness (LCP). Class boxes
that play a role in a design pattern are shaded.

oriented software evolution. Software Practice and
Experience, 31:331-355, 2001.

[2] D. Ash, J. Alderete, P.W. Oman, and B. Lowther. Us-
ing software models to track code health. Proc. Int.
Conf. on Software Maintenance (ICSM’94), pp.154–
160,1994.

[3] J. Bieman, D. Jain, and H. Yang. Design patterns,
design structure, and program changes: an industrial
case study. Proc. Int. Conf. on Software Maintenance
(ICSM 2001)., pp. 580-589, 2001.

[4] E. Burd and M. Munro. Investigating component-
based maintenance and the effect of software evolu-
tion: A reengineering approach using data cluster-
ing. Proc. Int. Conf. on Software Maintenance(ICSM
1998), pp. 199–207, 1998.

[5] H. Gall, M. Jazayeri, R. Klosch, and G. Trausmuth.
Software evolution observations based on product re-
lease history. Proc. Int. Conf. Software Maintenance
(ICSM 1997), pp. 160–166, 1997.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley, Reading, MA, 1995.

[7] R. Holt and J.K. Pak. Gase: Visualizing software
evolution-in-the-large. Proc. Working Conference on
Reverse Engineering, pp. 163–167, 1996.

[8] S. K. Kachigan, Statistical Analysis – An Interdisci-
plinary Introduction to Univariate and Multivariate
Methods, Radius Press, 1986.

[9] T. Khoshgoftaar and R. Szabo, Improving code churn
predictions during the system test and maintenance
phases. Proc. Int. Conf. on Software Maintenance
(ICSM 1994), pp. 58–66.

[10] M. Lehman, D. Perry and J. Ramil. Implications of
evolution metrics on software maintenance. Proc. Int.
Conf. on Software Maintenance (ICSM 1998), pp.
208–217, 1998.

[11] M. Mattsson and J. Bosch. Observations on the evo-
lution of an industrial OO framework. Proc. Int. Conf.
on Software Maintenance (ICSM 1999), pp. 139–145,
1999.

[12] M. Ohlsson and C. Wohlin, Identification of green,
yellow and red legacy components/ Procs. Interna-
tional Conference on Software Maintenance (ICSM
1998), pp.6–15, 1998.



[13] M. Ohlsson, A. von Mayrhauser, B. McGuire, and
C. Wohlin. Code decay analysis of legacy software
through successive releases. Proc. IEEE Aerospace
Conf., Track 7.401, March 1999.

[14] N.F. Schneidewind. Software Metrics Model for Qual-
ity Control. Proc. Int. Software Metrics Symp. (Met-
rics 1997), pp.127–136, 1997.

[15] A. von Mayrhauser, J. Wang, M. Ohlsson, and C.
Wohlin. Deriving a fault architecture from defect his-
tory. Int. Symp. on Software Reliability Engineering
(ISSRE 1999), pp. 295–303, 1999.

[16] A. von Mayrhauser, M. Ohlsson, and C. Wohlin, De-
riving fault architectures from defect history. Jour-
nal of Software Maintenance, Research and Practice,
12:287–304, 2000.


