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Understanding Character Recognition using Visual

Explanations Derived from the Human Visual

System and Deep Networks
Chetan Ralekar, Shubham Choudhary, Tapan Kumar Gandhi*, Santanu Chaudhury

Abstract—Human observers engage in selective information
uptake when classifying visual patterns. The same is true of deep
neural networks, which currently constitute the best performing
artificial vision systems. Our goal is to examine the congruence,
or lack thereof, in the information-gathering strategies of the
two systems. We have operationalized our investigation as a
character recognition task. We have used eye-tracking to assay
the spatial distribution of information hotspots for humans via
fixation maps and an activation mapping technique for obtaining
analogous distributions for deep networks through visualization
maps. Qualitative comparison between visualization maps and
fixation maps reveals an interesting correlate of congruence. The
deep learning model considered similar regions in character,
which humans have fixated in the case of correctly classified
characters. On the other hand, when the focused regions are
different for humans and deep nets, the characters are typically
misclassified by the latter. Hence, we propose to use the visual
fixation maps obtained from the eye-tracking experiment as a
supervisory input to align the model’s focus on relevant character
regions. We find that such supervision improves the model’s
performance significantly and does not require any additional
parameters. This approach has the potential to find applications
in diverse domains such as medical analysis and surveillance in
which explainability helps to determine system fidelity.

Index Terms—Eye-tracking, Character Recognition, Explain-
able architecture, Perception, Visual attention

I. INTRODUCTION

WRITING symbols and characters are culture-specific,

which involves arbitrary mapping between the visual

shape and character identity [1]. Each writer has a distinct

way of writing every character. Moreover, sophisticated design

tools allow font designers to write a single character with a

variety of artistic shapes and structures. As a result, we can

find a single character with different visual representations

having subtle variations in its structure or shape. For instance,

a Latin character ‘A’ can have many artistic variations in its

shapes.

Given such wide variability in a single character’s visual

appearance, correct identification depends on the information

selection uptake from different character regions. In such

scenarios, the visual system must be tuned to identify fine-

grained details for visually similar characters [1] (such as F
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and E) and rely on coarser details in graphically dis-similar

characters (like A and I ). Our sophisticated vision system uses

such strategic information selection and processing, which

enables us to discern discriminating and critical character

regions. Using these key character regions, humans may easily

recognize any deformed, artistic or handwritten characters.

‘Whether deep neural networks (DNNs) which constitute

the leading artificial vision system, use similar information-

gathering strategy?’ This is one of the interesting questions to

be answered.

The posed question can be addressed through deep inves-

tigations into the internal functioning of the DNNs. DNNs

involve hierarchical non-linear mapping between the input

and the output [2]. Because of this mapping, the input-output

relationship characterized by a DNN is highly complex, often

including a large number of parameters, thereby making the

exact functioning of the DNNs challenging to understand.

To get some insights about DNNs, explainable techniques

[3]–[7] attempt to provide human-understandable reasoning

for the classifier’s decision. Among these techniques, the

visualization methods such as class activation mappings [8],

and its variants [9], [10] generate a heat map highlighting

the key image regions that influence the model’s decision.

Such class activation mapping techniques are based on the

intuition that the model observes some key pixels or regions

of the image (those which provide high activations) while

training. The model uses those regions to make a decision in

favor of a particular class. Through visual inspection of these

regions, humans can understand ‘where the model focuses

during classification’. These techniques can be useful while

analyzing incorrectly classified samples, which can provide

an opportunity to improve the model performance.

The above discussions emphasize the role key character

regions play in the decisions made by humans and model in

favor of a particular class. Such regions explaining the decision

can be termed as ‘explanations’. After getting the explanations

from both humans and models, it is worth exploring ‘whether

the discriminating regions for humans and model are the same?

If the key regions identified by the model are different than

that of humans, is there a chance that the model misclassifies

that particular sample? If so, can we improve the performance

of the model using human explanations?’ Let us try to shed

some light on these exciting questions by utilizing the insights

provided through explanations given by the deep network

model and humans.

This paper is divided VI sections. Section I introduces the
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topic and section II highlights the related works. The details

about the computational and human experimentation are given

in section III. Section IV presents the experimental results

which are followed by the discussions and future extensions

in subsequent section. Concluding remarks are given in section

VI.

II. RELATED WORKS

In order to build trust in using deep learning architectures,

researchers started working towards finding the proper reason-

ing or explanations for the network’s (model’s) decision. The

earlier efforts [3]–[6] attempt to understand network by doing

sophisticated modifications such as occluding some regions or

varying pixel intensities in the input image and then analyzing

the response of the model. However, it becomes difficulty to

do all possible modifications in the input data to understand

the network completely. In order to find out which pixels

contribute to the correct or wrong classification for each image

separately, Sebastian Bach et al. [7] have proposed a technique

called Layer-Wise Relevance Propagation. In this method, the

classification output is decomposed into sum of feature and

pixel relevance score. For better visualization, a heat map is

generated based on these relevance scores.

Other promising way of generating explanations is by

highlighting the regions in the input image attended by the

network while taking a decision, in favour of a particular

class. Recently, the concept of class activation maps (CAM)

[8] have succeeded in localizing the discriminating images

regions even when it has been trained for the task of classifi-

cation. However, generation of CAM requires global average

pooling layer to generate the maps which in turn demands

architectural changes. To address this issue, gradient weighted

class activation maps i.e. Grad-CAM [9] is proposed. Grad-

CAM [9] and its variants [10] are applicable to wide variety of

CNN family without any architectural modifications. All these

techniques are trying to demonstrate why does the model’s

decision favour a particular class.

The state-of-the-art visualization techniques [4], [7]–[10]

have made it possible to generate an explanation for classifier

decision. Based on these maps, one can easily infer ‘why a

particular sample (character) is misclassified?’ However, these

explanations are not compared with the explanations given

by humans for the same task. Furthermore, these visualiza-

tion techniques are only limited to generation of heat maps

indicating image regions responsible for model’s decision.

Based on our knowledge, the use of these explanations for

performance improvement of the model has been hardly at-

tempted. Therefore, this paper not only proposes a modified

visualization technique but also uses these explanations to

design an attention mechanism for improving the model’s

performance.

III. EXPERIMENTAL DETAILS

We aim to get visual explanations from humans and DNNs.

We will be discussing the experimental details regarding the

same in this section.

A. Eye-tracking experiments

Eyes are windows to perception and cognition which con-

veys wealth of information [11]. The eye movements can be

considered to provide a valid measure of the spatial distri-

bution of attention on account of the tight coupling between

attention and eye movements in natural viewing tasks [12],

[13]. Hence, eye-tracking has been used in various applications

[14]–[18]. We are using eye-tracking methodology to unlock

the mechanism of character recognition.

1) Stimulus Preparation: Devanagari script is used to write

many official languages in India, and this script has a complex

composition of its constituents symbols (i.e. curves, oriented

edges) [19]. We have chosen 12 characters from this script,

formulating a twelve-class classification problem. Graphical

structure [20] , frequency of occurrence [19], and structural

compositions [21] are used as the selection criteria for these

12 classes of characters. We have used 1080 characters spread

over 12 Devanagari character classes for the eye-tracking

experiments. Besides, we have also created a dataset of 850

Latin (English) characters equally distributed in 10 classes.

These ten classes are comprised of the first 10 characters from

English (i.e. A, B, C, D, E, F, G, H, I, J). Both datasets are

created by manually segmenting the characters from each word

image downloaded from the internet and simple characters

written with commonly used font styles. As a result, these

datasets contain characters with various artistic variations in

their structure and shapes and some characters in standard

fonts such as Nirmala, Kokila for Devanagari, and Times

New Roman, Aerial, etc., for Latin characters. We are having

ground truth annotation associated with every character. All

the characters are centered, resized to 400x400 pixels, and pre-

processed to have the same background. The resultant samples

can be seen in Fig. 1(a) and Fig. 1(b).

2) Experimental protocol: An eye-tracking experiment was

conducted separately for Devanagari and Latin (English)

characters. The characters from the respective datasets were

randomly divided into different sets and were shown to 32

(17 males, 15 females) participants having normal or corrected

to normal vision. The participants were graduate students of

the Indian Institute of Technology, Delhi, with a mean age

of 25 ± 2.5 years, who could read Latin and Devanagari

characters. All the participants were healthy and not suffering

from any neurological disorders. Each character from the ran-

domly chosen character set was presented to randomly chosen

participants. Each character was presented on the screen of the

Tobii T120 eye-tracker Fig. 1(c) having a sampling frequency

of 120 Hz. The distance between participant and eye-tracker

was maintained around 60-70 cm. The participant was then

asked to identify the character. It was a free-viewing task

wherein participants could observe the stimulus image without

any time restrictions. The stimulus remained on the screen

till we got the response. Each trial consisted of a fixation

screen followed by a stimulus (i.e. character) image. Each

character image presentation was interleaved by the fixation

cross at the extreme left of the screen presented for 1 second.

The stimulus presentation sequence can be seen in Fig. 1(d).

The participant was expected to focus on the fixation-cross
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Fig. 1. Randomly selected sample as a representative for each class of (a) Devanagari character and (b) Latin Character, (c) Participant sitting in front of the
eye-tracker, (d) Stimulus presentation sequence.

whenever it appeared on the screen. The location of fixation

cross on extreme left avoids the issue of center bias [22]. The

participants were supposed to respond by pressing the key and

also read aloud the character identified so that experimenter

could verify whether the response was correct or incorrect. To

maintain a good quality of the eye-tracking data, the whole

experiment was divided into 3 phases wherein each phase

was preceded by a 9-point calibration process. Each phase

comprised of around 250 trials. The participants took around

30 min to finish the experiment.

B. Eye-tracking data processing

Eye-fixations are extracted from raw eye-gazes using

Velocity-threshold (I-VT) algorithm [23]. There was variabil-

ity in recognition time among the participants. Some partici-

pants identified the character in less time, and some took more

time to recognize it. This had resulted in variation in fixation

duration. To counterbalance this effect, we had normalized

the fixation duration using total time taken to recognize

the particular character by each participant. These fixations

corresponding to correct identification by several participants

along with their normalized duration were combined and

used to create the corresponding fixation map. Although the

calibration step ensures minimized offset between estimated

and actual gaze, there is an inherent error of around 1◦ in the

eye-tracker. This error is counter balanced by convolving a

Gaussian mask over the collected fixations. We have used the

method by O’Connel et. al. [24] to generate the fixation maps

using equation 1. The map is visualized as a heat map, and

we name it as a fixation map.

F ′(x, y) =
1

Nf∑

f=1

tf

Nf∑

f=1

tf exp

(
−(xf − x)2 − (yf − y)2

σ2

)

(1)

where, (xf , yf ) are the fixation coordinates, Nf is the num-

ber of fixations and tf is corresponding normalized fixation

duration, σ = 1◦.

C. Experiments using computational model

1) Dataset: The character set used for the eye-tracking

experiment is augmented by using shear (0.2), rotation (±40◦),

vertical and horizontal flip to create a dataset consisting of

10800 and 8500 samples for Devanagari and Latin characters

equally divided into 12 and 10 classes respectively. Out of

those samples, 80% samples are used for training, and 20%

are used for testing the model.

2) Model Selection: The CNNs are the best feature extrac-

tor, and we are aiming to extract the best possible features.

Therefore, we designed the model using only convolutional

layers. The model consists of 6 convolutional layers as shown

in Fig.2 followed by a single dense i.e., fully-connected layer

acting as a linear classifier, and this forms our baseline model.

The baseline model is inspired by AlexNet [25] because

it is suggested to provide the most brain-plausible object

representations to humans and monkeys [25]–[27]. Moreover,

AlexNet has been used as a model of human vision in several

studies [28]. We have used a similar architecture as that of

AlexNet [25] with slight modification. We have added extra

convolutional layers in our model and replaced all dense

layers in AlexNet with a single dense layer at the output.

We have used batch-normalization [29] and dropout [30] with

probability (p = 0.2) for all the convolutional layers. All the

character images are resized to 224 x 224 before feeding it to

the model.

IV. RESULTS

A. Eye-fixations explain character recognition in humans

It is worth noticing that humans do not process the visual

scene at once. When humans observe an image or a scene,

they tend to scan the image in several glimpses. With each

spatial glance, new information is collected and iteratively

processed [31], and the image is subsequently recognized.

Such selective glimpses can be utilized to comment on the

strategy used by humans for recognition. In the case of charac-

ter recognition, the eye-gazes can help us get the key character

regions responsible for character recognition. Moreover, the

eye-glimpses i.e. eye-gazes, give an idea about moment-to-

moment information processing [32] that governs the ob-
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Fig. 2. Baseline model with C1, C2...C6 : the convolutional layers, L : the linearizeation (i.e. vectorization) of the map to 1D; FC : the fully-connected
layer.

server’s decision. Therefore, we have decided to collect eye-

movement data for a recognition task hoping that capturing

the eye-movement may enable us to understand the reasoning

behind character identification. In other words, we can get

some idea about ‘how a character is classified? which are the

character regions that govern human’s decision in favor of a

character class?’ We have designed and performed a simple

recognition task wherein a participant is asked to identify a

character displayed on the screen of an eye-tracker. In the

course of recognition, the participants will direct their eye-

gaze towards the information, which is of interest to them

[33]. These eye-gazes consist of quick, rapid eye-movements

categorized as saccades and typically focused or sustained

pauses of eyes called as fixations [32]. During fixation, the

eyes are relatively stable at a particular location over a certain

period [32], and the brain processes visual information present

at that location. On the other hand, the information processing

is suppressed during saccade [32].

In an eye-tracking methodology, it is assumed that the

attention of the decision maker is focused at the point of

fixation [12]. The spatial distribution of such eye-fixations

is an excellent indirect measure of the distribution of visual

attention [34]. Several studies [14], [35]–[37] has established

the importance of fixations in information processing. Hence,

we have created the heat maps using eye-fixation information

and named these maps as ‘fixation maps’. These maps allow

us to know which part in the character image has influenced

the participant’s decision. It can be observed from Fig.3(iii),

when a participant gives maximum attention to some spe-

cific regions of the character, he/she recognizes the character

correctly. These particular regions might be contributing to

the character identity and can be considered as key-character

regions. On the contrary, when the participant cannot find

the key regions and focuses on the artistic elements attached

to the character or other character regions, the character

is misclassified. For instance, participant’s focus on extra-

element, elongated part in character G as shown in Fig.3(ii)

results in it’s mis-classification. The selective attention on

different character regions decides the participant’s response in

favor of the correct or incorrect class. Therefore, we may say

that the spatial distribution of information hotspots inferred

from fixation maps can explain the character recognition by

Fig. 3. Fixations on different character regions reveal character identity.
(i) Input character image, (ii) Fixation map for unrecognized character, (iii)
Fixation map for correctly classified characters.

humans to some extent.

B. Generating explanations for model’s decision

To compare the information used by humans and model

for recognizing a character, we need a map that is analogous

to the fixation map. Generating the visualization maps for

the classifier might help to comment on information selec-

tion uptake by the model. Among the various techniques of

visualizing the model’s decision [3]–[8], the gradient weighted

class activation mapping (Grad-CAM) [9] is one of the most

widely used methods for understanding the model’s decision.

Grad-CAM provides a way to see which particular parts of the

input image influenced the model’s decision for a specifically

assigned class label. This process gives some insight into the

decision-making process of the model. Grad-CAM [9] utilizes

convolutional layers to generate maps because convolutional

layers act as feature detectors. For instance, in an image

classification task, the various layers of convolutional neural

networks (CNNs) behave like the object detectors, even when

there is no supervision on the object’s location provided [38].

However, such ability to locate features is lost when we

use fully-connected layers for classification [8]. It implies

that convolutional layers play a crucial role in generating

the explanations of any CNNs. Because we are interested

in getting discriminating character regions through model’s

explanations, we have selected a model that uses convolutional

layers followed by a single dense layer as our baseline model.
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C. Visualization maps using Grad-CAM

Given a CNN with a single dense layer as shown in Fig. 2,

the algorithm of Grad-CAM [9] starts with finding the gradient

of the most dominant unit with respect to (w.r.t.) output

activation map of the preceding convolution layer. Hence, we

first compute the gradients of the score for the class c, yc

w.r.t. output activation maps A
k of the penultimate activation

layer (layer before the softmax) i.e. ∂yc

∂Ak
ij

. These gradients that

are flowing backward are globally averaged pooled to obtain

the neuron importance weight αc
k. This factor αc

k captures the

importance of feature map k for a target (predicted) class

c. The visualization maps are obtained as a weighted linear

combination of forward activation maps, with αc
k acting as

the weight corresponding to the forward activation map Ak,

followed by a ReLU. The process can be visualized from Fig.

4(a)

If Y
c
ij denote the ijth pixel for the activation map gen-

erated using the conventional Grad-CAM approach [9], then

mathematically,

Y
c
ij = ReLU

(
∑

k

αc
kA

k
ij

)

(2)

where,

αc
k =

1

N

∑

i

∑

j

∂yc

∂Ak
ij

(3)

Here, N is the normalization factor representing the number

of pixels in the activation map Ak. From equation 2, ReLU,

applied to the linear combination of feature maps with the

neuronal weights, preserves the features which have positive

influence on the class of interest. When we average the

gradients, we may get a positive or negative value for the

neuronal importance weight α.

Typically, ∂yc

∂Ak
ij

represents how the output score yc is

affected upon changing the value of the activation unit Ak
ij .

A positive value of ∂yc

∂Ak
ij

denotes that the output score yc

increases when the value of the activation unit Ak
ij increases

(stronger activation). This implies that the unit Ak
ij can capture

certain features which the model relies upon in identifying

class ‘c’. However, in the traditional Grad-CAM [9] approach,

as the importance weight, αc
k, is calculated by performing a

global averaging operation on the output score-activation unit

gradients, ∂yc

∂Ak
ij

, instead of focusing on an individual unit AK
ij ,

we are now looking at the entire activation map Ak as a whole.

Hence, in the event when a particular neuron importance

weight αc
k is negative, the entire activation map Ak is assigned

a negative value, weighted by |αc
k| with the strongest activation

Ak
ij having the most negative value. This results in the loss

of activation units that show a positive association with the

output score. Furthermore, as each activation map Ak is now

scaled throughout positively or negatively by αc
k, the weighted

combination of
∑

k

αc
kA

k has a greater chance of being

negative. This weighted combination, when passed through

the ReLU unit, as described in equation 2, results in zero

value class activation map being generated for the given class.

Consequently, this results in inability to generate the activation

maps for few samples as shown in Fig. 4(a). To overcome this

limitation, we propose a slight modification in the Grad-CAM

[9] which will be discussed in the next section.

D. Proposed Method of Visualization - Modified Grad-CAM

In order to focus on the contributions of individual activa-

tion units towards a particular class, we propose a modified

approach for generating the class activation map by making the

use of the Hadamard product i.e. element-wise multiplication

of gradient tensors with the respective feature maps. We call

this method as modified Grad-CAM. This method avoids the

possibility of zero activation maps and boosts the individual

pixels’ importance having a positive influence in favor of a

particular class.

Suppose X
c
ij denote the ijth pixel for the one generated

using proposed approach. Then, mathematically,

X
c
ij = ReLU

[
∑

k

(

∂yc

∂Ak
ij

·Ak
ij

)]

(4)

Our model consists of only convolution layers followed by a

linear classifier consisting of a dense layer as shown in Fig.

2. Consider the case for output activation map, Ak

yc = (Wck)
T
A

k + bc =⇒
∂yc

∂Ak
ij

= wck
ij , (5)

where, yc denotes the output logit for class c, W
ck is

the weights connecting output logit for class c to the input

activation map A
k and bc is the bias term. Therefore, from

equation 5, we see that the gradient values i.e., ∂yc

∂Ak
ij

, are equal

to the weights connecting the softmax layer i.e. final layer and

the activation maps of the penultimate layer.

The weights in the final (dense) layer, W =
{
W

ck
}
, ∀ c ∈

{# of classes} & k ∈ {# of feature maps in penultimate layer}
are initialized from the uniform distribution as shown Fig.

5(a). From the experimentation, we have observed that these

weights can be closely approximated by a normal distribution

with mean µ = sample mean and variance σ2 (say) as shown

in Fig. 5(b), once the network is trained. So, if X
c
ij denotes

the ijth pixel for the generated class activation map using

the Hadamard product and Y
c
ij denote the ijth pixel for the

one generated using the conventional Grad-CAM approach [9],

then assuming the weights to be independent and identically

distributed (I.I.D.), one can write:

X
c
ij =

∑

k

wck
ij A

k
ij ∼ N










µ
∑

k

Ak
ij

︸ ︷︷ ︸

µ1

, σ2
∑

k

(Ak
ij)

2

︸ ︷︷ ︸

σ2

1










(6)

Y
c
ij =

∑

k




∑

l,m

wck
lm



Ak
ij ∼ N










n2µ
∑

k

Ak
ij

︸ ︷︷ ︸

n2µ1

, n2σ2
∑

k

(Ak
ij)

2

︸ ︷︷ ︸

n2σ2

1










(7)
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Fig. 4. Generation of class activation maps (visualization maps) by (a) Conventional Grad-CAM [9] and (b) Our method. The samples where Grad-CAM
fails and our method generate the maps are highlighted by dotted yellow squares.

Here Ak ∈ R
n×n. Thus, we have Xc

ij ∼ N
(
µ1, σ

2

1

)
and

Y c
ij ∼ N

(
n2µ1, n

2σ2

1

)

Pr
(
X

c
ij > 0

)
= Pr

(
X

c
ij − µ1

σ1

>
−µ1

σ1

)

(8)

Pr
(
Y

c
ij > 0

)
= Pr

(

Y
c
ij − n2µ1

nσ1

>
−nµ1

σ1

)

(9)

In such a case, if µ < 0 (as shown in Fig. 5(b)) then we

can conclude that,

Pr
(
X

c
ij > 0

)
> Pr

(
Y

c
ij > 0

)
(10)

Consequently, the classical Grad-CAM approach defined in

equation 2 is more likely to generate activation maps with

’zero’ activations (because of ReLU) as compared to proposed

approach as per equation 4. Assuming the weights to be I.I.D

and normally distributed, we have proven that the probability

of generating visualization maps for Modified Grad-CAM is

more than classical Grad-CAM [9]. Through experimentation,

we have found that the weights initialized from the uniform

distribution shown in Fig. 5(a) are transformed to have distri-

bution with mean µ = −1.7e−3, and it can be approximated by

Gaussian distribution. This corroborates that our assumption

of Gaussianity.

Fig. 5. (a) Initial weight distribution, (b) Distribution of weights after training

E. Comparing the visual explanations by humans and model

Both fixation maps by humans and visualization maps by

model generate the human-understandable explanations for

their respective decisions, and hence we call these maps

‘visual explanations’. The qualitative comparison between

the visualization maps and fixation maps has revealed an

interesting correlate. The samples that model and humans

correctly classify have shared similar informative regions. In

other words, both humans and model have focused on similar

regions while making a decision in favor of a correct class. On

the contrary, there is a mismatch between the focused regions

for samples misclassified by the model. We hypothesize that

when the model can not find discriminating character regions

and relies on other character regions (like artistic elements at-
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tached to the essential character structure) for learning features

for classification, the character gets misclassified. In other

words, the misguided focus on the different character regions

other than discriminating regions results in misclassificaton

of that sample by the model. Assuming that human fixation

captures discriminating character regions in character image,

it is interesting to check ‘whether the model’s performance

improve if we shift the model’s focus on regions fixated by

humans? Will the misclassified samples be correctly classified

by such reorientation of focus?’ To answer these questions,

we decide to re-align the model’s focus to that of humans via

an attention mechanism.

F. Visual Explanations Guided Attention Model (VEGAM)

In this attention model, we aim to make model focus on the

similar regions as fixated by humans. We can achieve this by

minimizing the mean square error (MSE) between the model-

generated heat maps of explanations (visualization map) and

the heat map of visual fixation (fixation map). The hope of

improving the model performance by minimizing the error

between two maps motivates us to use the fixation maps to

supervise the model. The entire training process is formulated

as an optimization problem with two losses viz. classification

loss (i.e. cross-entropy (CE) loss) and the mean squared error

(MSE) loss. Here, we have a single model with two different

training strategies. For simplicity, we name the the model

which is trained with images as inputs and CE as loss function

as our baseline model; the model that uses fixation map as

an additional supervisory input which is trained with CE and

MSE loss, is named as ‘Visual Explanations Guided Attention

Model (VEGAM)’. The schematic of the proposed model is

shown in Fig. 6 (a).

1) Training the model: We have used the character images

as input and cross-entropy (CE) loss function for training our

baseline model. In VEGAM, we have used mean squared

error(MSE) and CE as losses for training the model. Therefore,

we are referring to these models as two separate models. The

visualization maps are resized to that of visual fixation maps

using bilinear interpolation, which we use to calculate MSE.

The net loss for ‘VEGAM’ is the sum of CE and MSE loss

which are weighted by some hyper-parameter. We have used

Adam optimizer with learning rate 0.001 for training and batch

size is 64. We have used the regularization techniques (such as

batch-normalization [29] and dropout [30]) and early stopping

to avoid the problem of over-fitting. The implementation

and the experimentation of the network is carried out using

PyTorch.

From equation 5, it is evident that the gradients of the

maximum logit (predicted output) w.r.t. activation maps of the

penultimate layer are nothing but the weights connecting the

last linear layer. As a result, these randomly initialized weights

can be used to generate the visualization maps during training

for the first epoch. Such visualization maps are compared with

fixation maps via MSE. Initial visualization maps generated

from random weights may not be as good in indicating the

highly discriminating regions compared to the maps for a

fully-trained model. However, in subsequent training epochs,

TABLE I
RECOGNITION PERFORMANCE ON TESTING SAMPLES OF DEVANAGARI

AND LATIN DATASET

Network Description Devanagari Dataset Latin Dataset

Baseline Model 80.0% 78.0%
VEGAM 82.67% 81.20%

the weights will be updated which will highlight the impor-

tant image regions. Generating the visualization maps during

training allows us to train the model to focus on the same

regions as that of humans and optimize both CE and MSE

losses simultaneously.

G. Model evaluation

We have used classification accuracy as the metric to

compare the performance of the two models. It denotes the

proportion of correctly classified samples from the total num-

ber of samples. In addition, we have compared predictions

of the two models using McNemar test. We have used the

confidence towards the actual label for model comparison.

This confidence is nothing but the output of the softmax layer

(i.e. probability) corresponding to the true class label.

H. Aligning model’s focus improves performance

To verify whether the VEGAM model has shifted it’s

focus towards the similar regions focused by humans, we

have generated the visualization maps for the baseline model

and proposed the attention model. Fig. 6 (b) (ii) shows that

the baseline model fails to focus on the relevant character

for extracting features, because of which it misclassifies the

character. Using the proposed attention model (VEGAM), we

can observe the change in regions used for feature extraction

as shown in Fig. 6 (iv). When we train the model to shift it’s

focus on regions elicited by fixation maps, the misclassified

samples get correctly classified. Using this approach, we have

observed an improvement in the model’s performance by ∼ 2

to 3% for both Devanagari and English (Latin) characters over

their respective baseline counterparts as shown in table I and

this performance improvement is statistically significant. We

observe that both humans and the model focus on similar char-

acter regions for the samples that are correctly classified by the

baseline model and humans. To understand the consequences

of proposed supervision by fixation maps on such samples, we

have calculated the probability score corresponding to the true

class label for the character image. We can also term this as

confidence towards the true class label. This score is shown in

Fig. 7(A) and Fig. 7(B) for every character. It is evident from

the results that the use of the proposed attention mechanism

increases the confidence for the actual class label. Thus, we

can conclude that human eye-fixations are helping the model

perform better by focusing on the informative regions.

V. DISCUSSIONS

Character recognition has been a topic of interest in the

pattern recognition community for few decades. Intensive

research has been carried out for building an intelligent
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Fig. 6. (a) Proposed attention model, VEGAM uses CE and MSE loss for training the model. ‘A’ is the forward activation maps of the last convolution layer
(i.e. C6) and ‘G’ is the gradients of class score w.r.t. A. ‘W’ represents the weights connecting the last layer and activation maps which are also equal to the
gradients ‘G’. (b) (i) Input image, (ii) The baseline model misclassifies the sample, and it’s focus is encircled yellow. The confidence corresponding to the
true class is 0.06. (iii) Visual fixation map. (iv) Proposed model ‘VEGAM’ shifts the focus to regions fixated by humans, and it results in correct classification
of that sample with increased confidence (i.e. 0.700) corresponding to the true class.

recognition model by extracting the best possible features. As

a result, we have witnessed the transition from the selection

of carefully engineered, handcrafted features [39]–[41] to

automatic feature extraction using deep neural networks [42],

[43] for developing character recognition models. In the case

of character recognition, the fundamental question is ‘how is

a character recognized?’ If we can understand the process of

character recognition by DNNs and humans, we can build a

better recognition model.

Investigation of visual processing may help in unlocking the

process of recognition. In humans, visual information process-

ing starts from V1 and ends at the inferior temporal (IT) cortex

where the recognition of a particular category happens [44],

[45]. The actual algorithms used for information processing

can be decoded by monitoring the activity of thousands of

interconnected neurons simultaneously [46]. However, it might

be challenging to precisely acquire information about neuronal

activity with non-invasive brain investigation techniques like

EEG, fMRI, and MEG. On similar lines, understanding inter-

nal functioning in DNNs seems difficult due to the involvement

of highly complex non-linear mapping between input and

output [2]. Ultimately, the process of character recognition

remains an open problem.

Character perception is defined as the way in which we

construct the characters from visual features or regions [47].

These visual features determine the recognition of that char-

acter. Recently, it has been shown that humans rely sig-

nificantly on specific visual features, whereas most of the

machine vision algorithms do not consider such dependence

on specific regions for recognition [48]. The results from our

eye-tracking experiments suggest such reliance on specific

character regions for it’s recognition. The selective focus on

different character regions inferred from fixation maps governs

the observer’s decision. When humans focus on the diagnostic

character regions, the character is getting correctly recognized.

Similar to humans, DNNs seem to rely on specific character

regions which can be inferred from visualization maps. Our

visualization method highlights the important character regions

considered by the model for making a decision in favor of a

class.

The qualitative comparison between fixation maps and

visualization maps demonstrates an interesting correlate of

congruence for correctly classified samples. Both humans and

the model consider similar character regions in case of the cor-

rectly classified samples. We can say that when the information

uptake by the model is from similar regions as that of humans,

the corresponding character is correctly classified. Although

we can not explicitly comment on the internal functioning of

the model or the human brain, the similarity in the highlighted

regions for correctly classified samples may signify that the

model is able to capture important character regions as that

of humans. However, when it fails to do so, the sample gets

misclassified. This argument is backed by the results showing

improvement in model performance and a substantial increase

in the true class confidence when we make the model shift

it’s focus to human fixated regions. Such alignment of focus

is achieved in our proposed model ‘VEGAM’ where we have

used fixation maps as the supervisory input.

Although there is a significant increase in the recognition

performance of ‘VEGAM’, the main objective of this paper is

to consider the importance of understanding the underlying

process of recognition. Nowadays, DNNs are approaching

human-level performance in recognition, and various other

computer vision tasks through network engineering wherein
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Fig. 7. (i) Input image, (ii) Fixation map, (iii) Visualization maps generated for baseline model, (iv) Visualization maps generated for the proposed model.
The numbers below the images indicate the confidence corresponding to actual class-label. (A) Samples misclassified by baseline model are getting correctly
classified by our proposed model, (B) Samples correctly classified by baseline model remain correctly classified with an increase in confidence corresponding
to the true class label

the factors such as depth, width, and cardinality of the model

are varied [49]. In addition to network engineering, attention

mechanisms are also incorporated in the models [49]–[53]. In

most of the cases, these methods requires additional param-

eters and hyper-parameters to be tuned for the best possible

performance. The proposed model ‘VEGAM’ does not require

additional parameters and has considered visual attention.

The visual attention derived from eye-fixations has been

used in some studies [52], [53]. However, these models hardly

consider the explanability. As we are more interested in

generating the explanations for a classifier’s decision and using

those explanations for better recognition, we have chosen an

architecture comprising convolutional layers followed by a

linear classifier. Perhaps, use of a non-linear classifier may

result in better recognition performance. Hence, in the future,

we will try to explore the possibility of using non-linear

classifier while developing attention model based on the visual

explanations provided by humans and the model.

VI. CONCLUSIONS

In this paper, we have observed that humans and DNNs rely

on selective information uptake while classifying a character.

This information selection strategy can be understood by

visualizing the important, informative character regions that

ultimately govern the decision of humans and DNNs. Our

results demonstrate that the proposed method of generating

explanations for DNN is better compared to conventional

Grad-CAM visualization. Our approach of deriving visual

explanations from eye-fixation and visualization maps draws

an interesting parallel between the processes undertaken to

recognize character by humans and DNNs. Eye-fixation maps

reveal that humans focus on the highly diagnostic and dis-

criminating character regions. When used as a supervisory

input, such eye-fixation maps has the potential of making

artificial systems of character recognition more accurate. The

experimental results from this research attest that superior

machine vision performance can be achieved when augmented

with cues from cognitive experiments. One way to bridge the

gap between machine and human intelligence is to design

the artificial systems using cues derived from their natural

counterpart, such as through cognitive experiments on human

participants. This, henceforth, motivates a need for substantial

efforts in exploring various aspects of the human brain and

develop the systems based on the findings.
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