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Understanding complex 

biogeographic responses to 

climate change
Rui Seabra1,2, David S. Wethey3, António M. Santos2 & Fernando P. Lima1

Predicting the extent and direction of species’ range shifts is a major priority for scientists and 

resource managers. Seminal studies have fostered the notion that biological systems responding to 

climate change-impacted variables (e.g., temperature, precipitation) should exhibit poleward range 

shifts but shifts contrary to that expectation have been frequently reported. Understanding whether 

those shifts are indeed contrary to climate change predictions involves understanding the most 

basic mechanisms determining the distribution of species. We assessed the patterns of ecologically 

relevant temperature metrics (e.g., daily range, min, max) along the European Atlantic coast. 

Temperature metrics have contrasting geographical patterns and latitude or the grand mean are poor 

predictors for many of them. Our data suggest that unless the appropriate metrics are analysed, 

the impact of climate change in even a single metric of a single stressor may lead to range shifts in 

directions that would otherwise be classified as “contrary to prediction”.

Changes in the distributional ranges of species are among the expected outcomes of climate change1. 
Several comprehensive studies report a broad prevalence of range shi�s at poleward or upper range 
boundaries consistent with climate change predictions2–7. Still, shi�s contrary to that expectation have 
been frequently reported8–11. Range shi�s contrary to predictions may occur because organisms are 
responding to a di�erent variable (related or unrelated to climate change), or because the predicted 
direction was wrongly established to begin with. In fact, by identifying appropriate controlling 
stressors, and re�ning how the predicted direction of change is established, recent analyses have shown 
that species may be tracking climate change even when distribution ranges are shi�ing in otherwise 
unexpected directions12–14. Making sense of shi�s contrary to predictions is important as it may impact 
the con�dence level of climate change attribution, and therefore in�uence public opinion and policy.

It is well recognized that the mean is a metric that oversimpli�es much of the complexity of stress-
ors15–18, and speci�c aspects of some stressors (e.g., minimum water temperature during winter) have 
been identi�ed as playing key roles in determining biogeographic patterns19,20. However, since environ-
mental data at the appropriate temporal and spatial scales are o�en lacking, the patterns of many aspects 
of stressors remain largely uncharacterized with appropriate detail. To �ll this void, general perception 
seems to hold that whatever spatial gradient is detected in the mean must be re�ected to a large extent 
by all other metrics, especially for cases where the mean neatly �ts preconceived assumptions. �ere is, 
however, no statistical ground supporting that view, and we argue that this misunderstanding may lead 
to improper estimation of what exactly is the predicted direction of range shi�s of a particular species as 
a response to changes in the patterns of a single stressor. �is e�ect should be especially noticeable for 
systems following Liebig’s law of the minimum to some extent, which emphasizes the role of the scarcest 
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resource (or, in this case, the least favourable bioclimatic variable) in determining habitat suitability at 
a given location and time.

Using temperature extremes as an example, the present study aims at characterising the contrasting 
patterns encapsulated within a single stressor, as well as showing that climate change-induced alterations 
of aspects of that stressor can potentially lead to otherwise non-intuitive range shi�s.

Results and Discussion
We used a dataset comprised of 90 individual 4-year-long temperature time series (six microhabitats on 
15 shores from 37 °N to 55 °N latitude, Fig.  1a) to evaluate to what extent the patterns of ecologically 
relevant metrics of a stressor are indeed captured by that stressor’s mean. Extreme temperature is a 
major stressor in most ecosystems, and especially in the rocky intertidal16, where animals and plants 
a few centimetres apart can be experiencing dramatic di�erences in body temperature21,22. �e overall 
mean temperature, which is o�en used as a reference for estimating species distributions17, was shown 
to match latitude surprisingly well (R =  0.98, Fig.  1b), thus reinforcing the idea of a relatively smooth, 
continuous gradient from warmer to colder temperatures with increasing latitudes along the European 
Atlantic coastline. However, with the exception of ‘winter mean’ and ‘winter 95th percentile’ (Fig.  1h,i, 
blue lines), all other metrics (‘summer mean’, ‘summer 95th percentile’, and winter and summer ‘7 day 
mean’, ‘daily range’, ‘microhabitat range’, ‘minimum’, ‘5th percentile’ and ‘maximum’) exhibited patterns 
deviating substantially from that of the grand mean. �ese di�erences highlight the key role played 

Figure 1. Patterns of temperature metrics across the European Atlantic intertidal ecosystem. (a) 

Locations surveyed. Geographic pattern of metrics: (b) grand mean, (c) 7 day mean, (d) daily range, (e) 

microhabitat range, (f) minimum, (g) 5th percentile, (h) mean, (i) 95th percentile, (j) maximum. Black line 

(b) is grand mean, calculated using all data from each shore. Red and blue lines (c–j) calculated using the 

warmest and coldest 30 days of each year (7 days for (c)), per shore. �e shaded area is the pattern expected 

if each metric was perfectly correlated with latitude. Points in shaded area are “cooler than expected given 

latitude”, and points outside shaded area are “hotter than expected”. Correlation coe�cients between each 

metric and latitude are depicted in the top right corner of each panel (blue for cold and red for warm 

periods). Map created in R35 using Global Self-consistent, Hierarchical, High-resolution Geography Database 

(GSHHG) coastline data.
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by climatic, geomorphologic and oceanographic factors at the local level, and more importantly, show 
that such factors can change skewness or kurtosis of the distribution of temperatures (or even causing 
multimodality) without a�ecting the mean. For example, seasonality, which is strongest within the Bay 
of Biscay — shores H and I — appears not to drive the grand mean for these shores too far away from 
the expected value given their latitude, but results in remarkably high summer temperatures (in fact the 
highest recorded in the study area; Fig. 1i,j, red lines) and equally remarkably low temperatures during 
winter (again, the lowest within the study area; Fig.  1f,g, blue lines). In another example, upwelling, 
which is typically stronger around shores F and L during summer23, can be seen driving ‘summer daily 
range’ and ‘summer microhabitat range’ (Fig. 1d,e, red lines), likely due to the co-occurrence of low water 
temperatures and high air temperatures. Again, this e�ect does not result in any important deviation 
of the grand mean from the latitudinal pattern for these shores, and would be largely missed if data at 
the appropriate spatial scale had not been collected. Additionally, the combination of regional factors 
and local context can result in surprising temperature distributions, such as seen at shore N. At this 
shore, all metrics were found to be lower or equal to the expected value based on latitude. However, the 
grand mean does not re�ect the magnitude of this di�erence, especially considering that shore N is the 
coldest in the study area for some of the metrics calculated. �e many patterns encapsulated within the 
distribution of values of a single stressor clearly indicates that the grand mean may largely misrepresent 
many other ecologically relevant aspects of that stressor. �is is in accordance with previous studies21,24 
and reinforces the notion that a-priori knowledge of the physiological requirements of a species and a 
detailed characterisation of the thermal extremes at the study area are fundamental to ascertain the real 
stress landscape imposed on organisms.

Furthermore, using a theoretical example we show that complex biogeographic responses to climate 
change can be interpreted by using the appropriate metrics (Fig. 2). We assume that the distribution of a 
theoretical species is determined by a group of relevant metrics (in this case the thermal extremes meas-
ured as ‘winter minimum’ and ‘summer 5th percentile’) and follows Liebig’s law of the minimum (i.e., 
at each location density is dependent on the least favourable relevant metric). In the simplest form, the 
distribution pattern will be determined by the least favourable of a number of relevant metrics (Fig. 2a, 
light orange area). If climate change results in a favourable monotonic change of all metrics (Fig.  2b), 
the extent of suitable locations increases and a range expansion can be expected — the “general percep-
tion” poleward scenario. However, studies have highlighted that climate change not only can result in 
increased mean, minimum and maximum temperatures but also in increased variability — and that the 
exact signature of climate change varies regionally18,25–27. In this case, if at least one metric becomes less 
favourable due to the increased variability, the whole distribution can be adversely a�ected, and an equa-
torward range contraction may occur (Fig. 2c). Using the metrics computed in this study it is possible 
to further expand the example. If the distribution of a species was found to be dependent on the inter-
play between extremes like ‘winter minimum’ and ‘summer 5th percentile’ the initial distribution pattern 
should include a gap at shore H, and a polar range limit at shore B (Fig. 2d). If both ‘winter minimum’ 
and ‘summer 5th percentile’ become warmer, a poleward range expansion can be expected (Fig. 2e), but 
if ‘summer 5th percentile’ becomes warmer while ‘winter minimum’ becomes colder, the harshness of 
winter conditions prevail over the favourable summers and a equatorward range contraction should 
occur (Fig. 2f). Interestingly, in a few locations suitability would actually increase because the limiting 
factor was ‘summer 5th percentile’ and not ‘winter minimum’ (shores L and N, Fig. 2h), highlighting the 
consequences of di�erent mechanisms limiting species’ densities across di�erent locations28. �e crucial 
point is that if �eld surveys were to reveal an equatorward range contraction for this species, this range 
shi� would not be contrary to predictions, as general perception would suggest. Instead, it would be 
consistent with the predicted direction of change for this biological system’s response to climate change, 
thus representing positive evidence towards the establishment of a link to climate change.

In addition, it is conceivable that some organisms’ physiological requirements may include more 
complex interactions of aspects of a stressor than those depicted here29,30. For example, a mobile organ-
ism will be able to explore the various microhabitats available within a site for thermoregulation. If that 
organisms’ physiology is found to be negatively impacted by ‘summer maximum’, it is likely that the 
appropriate metric to study will instead be the di�erence between ‘summer maximum’ and ‘summer 
microhabitat range’, as very high temperatures can be avoided if cooler microhabitats are available. �ese 
complex interactions between aspects of a stressor can generate new stress landscape patterns that do not 
match that of the grand mean, ‘summer maximum’ or ‘summer microhabitat range’, further increasing 
the likelihood of erroneous expectations about the extent and direction of range shi�s in face of climate 
change if the stress landscape is not properly characterized. �e �ndings presented in this study reinforce 
the notion that using the appropriate metrics of a stressor and identifying the appropriate stressor13 can 
provide decisive insights towards the detection, interpretation and prediction of complex distribution 
patterns, spatial and temporal variations of mechanisms controlling species distributions and the direc-
tion of range shi�s. In addition, the conceptual framework here outlined emphasizes the paramount 
importance of coupling the collection of environmental data at the appropriate scales with a detailed 
characterization of species’ physiological requirements (see Ashcro� et al.31 or Greenberg et al.32 for 
analogous approaches using modelled data). Although focused on the thermal regimes of the European 
Atlantic intertidal ecosystem, the concepts here outlined can be extended to other geographical regions, 
ecosystems, and stressors. Taken with necessary caution (see, for example, the cautionary advice by 
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Austin33 regarding assumptions of linear response to temperature), these results suggest that some of the 
cases where species have been shown to be shi�ing in directions contrary to expectations, the predicted 
direction of change may have been wrongly established.

Methods
Microhabitat temperature. Intertidal microhabitat temperatures were recorded at 15 exposed to 
moderately exposed shores along the European Atlantic coast, spanning nearly 20° of latitude, from 
Southwest Scotland to South Portugal (Fig.  1a, A – South Cairn, B – Emlagh, C – Holyhead, D – 
Annascaul, E – Wembury, F – Landunvez, G – Batz-sur-Mer, H – Royan, I – Biarritz, J – Prellezo, K – La 
Caridad, L – Cabo Touriñan, M – Moledo, N – São Lourenço, O – Evaristo). Data were acquired using 
robolimpets (autonomous temperature sensing/logging devices mimicking the visual aspect and temper-
ature trajectories of real limpets, see Lima and Wethey34 for details). Loggers were deployed following 
Seabra et al.22. Temperatures were sampled from 6 distinct combinations of height above the low water 
mark (low, mid and high shore) and exposure to sun (shaded and sun-exposed), thus covering most of 
the spectrum of microhabitats occupied by intertidal species. Data were collected continuously between 
the summers of 2010 and 2014, at a sampling rate of 60 minutes and a resolution of 0.5 °C. For each 
microhabitat, logged temperatures were averaged whenever data from multiple sensors were available. 
All data manipulation and analyses were done using R 3.1.235.

Data analysis. A total of 17 ecologically relevant temperature metrics were computed for each shore. 
Metrics were computed per year and then averaged over the four years of data available. Metrics computed 

Figure 2. Climate change can generate complex biogeographic responses. Conceptual framework (a–c) 

and example built using real temperature data (d–f) illustrating the mechanism through which climate 

change may induce complex biogeographic responses. Black dots show the abundance of a hypothetical 

species in each location (A–O, see Fig. 1a), which results from the interplay of ‘winter minimum’ (blue 

areas) and ‘summer 5th percentile’ (dark orange areas). Light orange results from the overlap between 

blue and orange areas and shows the outcome of the Liebig’s law of the minimum. (a,d) show the initial 

conditions, (b,e) result from the monotonic increase of both winter minimum and summer 5th percentile 

(scenario of increased mean), and (c,f) from increase of one aspect of temperature and decrease of the other 

(scenario of increased variability but stable mean).



www.nature.com/scientificreports/

5Scientific RepoRts | 5:12930 | DOi: 10.1038/srep12930

include the mean using all available data for each shore (grand mean), the mean temperature during the 
hottest/coldest seven days of each year (‘mean 7d’), and the mean daily range of temperatures (‘daily 
range’), mean daily range of all microhabitats’ maximum temperatures (i.e., microhabitat range, or ‘micro 
range’), minimum, 5th percentile, mean, 95th percentile and maximum during the hottest/coldest 30 days 
of each year. For easier terminology, metrics computed during the hottest periods were pre�xed “sum-
mer”, and metrics computed during the coldest periods were pre�xed “winter” (e.g., ‘summer minimum’, 
‘winter mean 7d’, etc.). �e correlation coe�cient between each metric and latitude was also calculated.

Direction of range shifts. An example is presented to illustrate how range shi�s driven by climate 
change can occur both towards the poles or the equator. We modelled the relative abundance (from 
0 – absent, to 1 – highest abundance) of a theoretical species under two climate change scenarios. We 
modelled an equatorial species which is intolerant of cold stress and tolerant of heat stress. Abundance 
was determined as the lowest value of either ‘winter minimum’ or ‘summer 5th percentile’ at each shore 
(following Liebig’s law of the minimum). To allow the comparison of both metrics (which are not equiv-
alent in absolute terms) we normalised each metric to vary from 0 to 1, re�ecting the range observed 
within the study region. Zero abundance occurred at shores where at least one of the metrics had a value 
of zero, meaning that either ‘winter minimum’ or ‘summer 5th percentile’, or both, prevented the species 
from existing. Both metrics were used without any change for the initial conditions. �e �rst climate 
change scenario considers climate change as a monotonic increase of both aspects of temperature, and 
the abundance pattern was computed using “hot” versions of both ‘winter minimum’ and ‘summer 5th 
percentile’ (resulting in increased habitat suitability). �e second scenario considers climate change as 
an increase of variability in which some metrics may actually become colder. In this case the abundance 
pattern was computed using the “cold” version of ‘winter minimum’ and the “hot” version ‘summer 5th 
percentile’. �e initial range limit was identi�ed as the most poleward shore with abundance greater than 
zero. �e location of the range limit was re-evaluated for both climate change scenarios to determine the 
direction of change (poleward or equatorward).
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