
Understanding Complex Network Attack

Graphs through Clustered Adjacency Matrices

Steven Noel and Sushil Jajodia

Center for Secure Information Systems, George Mason University

{snoel, jajodia}@gmu.edu

Abstract

We apply adjacency matrix clustering to network

attack graphs for attack correlation, prediction, and

hypothesizing. We self-multiply the clustered adjacency

matrices to show attacker reachability across the network

for a given number of attack steps, culminating in

transitive closure for attack prediction over all possible

number of steps. This reachability analysis provides a

concise summary of the impact of network configuration

changes on the attack graph. Using our framework, we

also place intrusion alarms in the context of vulnerability-

based attack graphs, so that false alarms become

apparent and missed detections can be inferred. We

introduce a graphical technique that shows multiple-step

attacks by matching rows and columns of the clustered

adjacency matrix. This allows attack impact/responses to

be identified and prioritized according to the number of

attack steps to victim machines, and allows attack origins

to be determined. Our techniques have quadratic

complexity in the size of the attack graph.

1. Introduction

The utility of organizing combinations of network

attacks as graphs is well established. Traditionally, such

attack graphs have been formed manually by security red

teams (penetration testers). But significant progress has

been made recently in generating attack graphs

automatically, based on models of network security

conditions and attacker exploits, created from network

scans, vulnerability databases, etc. By representing

dependencies among attacker exploits rather than

explicitly enumerating attack states, exponential graph

complexity can be avoided.

In the current state of practice, it is thus possible to

efficiently compute attack graphs for realistic networks.

But the resulting graphs can still pose serious challenges

for human comprehension. This is compounded by the

fact that attack graphs are usually communicated by literal

drawings of graph vertices and edges. While graph

drawing has been studied extensively, the problem is ill-

posed in the sense that many possibilities exist for what

constitutes a good graph drawing. Also, finding optimal

placement of graph vertices according to many of the

desired criteria is NP-complete. For the relatively dense

attack graphs often found in practice (e.g., within a trusted

internal network), graph drawing techniques are largely

ineffective, producing overly cluttered drawings for

graphs of larger than moderate size.

In this paper, we introduce techniques to help make

complex attack graphs more understandable, and apply

these techniques to the correlation, prediction, and

hypothesis of attacks. Our approach reveals graph

regularities, making important features such as

bottlenecks and densely-connected subgraphs apparent.

We extend an existing graph-clustering technique to show

multi-step reachability across the network, the impact of

network configuration changes, and the analysis of

intrusion alarms within the context of network

vulnerabilities.

Rather than relying on literal drawings of attack

graphs, we visualize the corresponding attack graph

adjacency matrix. The adjacency matrix represents each

graph edge with a single matrix element, as opposed to a

drawn line. Graph vertices, rather than being drawn

explicitly, are implicitly represented as matrix rows and

columns. The adjacency matrix avoids the typical edge

clutter of drawn graphs, not only for very large graphs,

but also for smaller ones.

The adjacency matrix is a concise graph

representation, but alone it can be insufficient. That is,

without the proper ordering of matrix rows and columns,

the underlying attack graph structure is not necessarily

apparent. We therefore apply an information-theoretic

clustering technique [1] that reorders the adjacency matrix

so that blocks of similarly-connected attack graph

elements emerge. The clustering technique is fully

automatic, parameter-free, and scales linearly with graph

size.

Elements of the attack graph adjacency matrix

represent all one-step attacks. We extend this by

computing higher powers of the adjacency matrix, to

represent multiple-step attacks. That is, the adjacency

matrix of power k shows all attacker reachability within k

steps of the attack. Further, we combine multiple

adjacency matrix powers into a single matrix that shows

the minimum number of attack steps between each pair of

attack graph elements. Alternatively, we summarize

reachability over all number of steps, e.g., transitive

closure. For these multi-step adjacency matrices, we

retain the reordering induced by clustering, so that

patterns in the attack graph structure are still apparent.

The general approach of clustering attack graph

adjacency matrices (and raising them to higher powers)

provides a framework for correlating, predicting, and

hypothesizing about network attacks. The approach

applies to general attack graphs, regardless of what the

particular graph vertices and edges represent. For

example, such attack graphs could have been formed from

models of network vulnerability, or from causal

relationships among intrusion detection events. Attack

graph vertices could also represent aggregated sub-

graphs, such as aggregation by machines and exploits

between them. Overall, the techniques we describe have

quadratic complexity in the size of the attack graph, for

scalability to larger networks.

We apply our general approach to a vulnerability-

based attack graph, in which the graph vertices (network

security conditions and attacker exploits) have been

aggregated to machines and exploits between them. This

makes the patterns of attack clear, especially in

comparison to the corresponding literally drawn graph.

We show how this representation can provide a concise

summary of changes in the attack graph resulting from

changes in the network configuration, e.g., for what-if

analysis of planned network changes or impact of real

network changes.

We also place intrusion alarms in the context of a

vulnerability-based multi-step attack graph reachability

matrix. In this way, false alarms become apparent when

they occur for pairs of machines not reachable by the

attacker, based on the network configuration. Also, one

can infer missed detections from alarms between

machines that require multiple attack steps before

compromise can occur.

We introduce a graphical technique for predicting

attack steps (forward and backward) on the adjacency

matrix. Here, we project to the main diagonal of the

matrix to match rows and columns between each attack

step. This technique allows one to step forward from an

attack, so that the impact of an attack can be determined

and candidate attack responses can be identified. Using

this technique with the multi-step reachability matrix

allows candidate attack responses to be prioritized

according to the number of steps required to reach victim

machines. Alternatively, one can step backward from an

attack to predict its origin.

In the next section, we review related work in this

area. In Section 2, we describe our general approach for

clustered attack graph adjacency matrices, including

raising them to higher powers for multi-step reachability.

Section 4 applies our approach in a number of ways for

network attack protection, detection, and response. In

Section 5, we summarize our work and draw conclusions.

2. Related Work

Recent advances in automatic attack graph generation

[2][3][4][5][6][7][8][9] have made it possible to

efficiently compute attack graphs for realistic networks.

These approaches avoid the state explosion problem by

representing dependencies among state transitions (i.e.,

attacker exploits), rather than explicitly enumerating

states. The resulting exploit dependency graphs have

quadratic rather than exponential complexity, and still

contain the same information (implicitly) as explicitly

enumerated state graphs.

Still, when attack graphs are generated for realistic

networks, using comprehensive sets of modeled attacker

exploits, the resulting attack graphs can be very large.

Previous approaches generally use graph drawing

algorithms [10], in which vertices and edges between

them are drawn according to particular aesthetic criteria.

While large graphs have been successfully drawn, these

have generally been relatively sparsely connected. But

network attack graphs can be both large and exhibit very

dense connectivity. For example, for only 200 machines,

with each machine having 4 vulnerable services, within a

trusted internal network with unrestricted connectivity,

the resulting fully-connected attack graph has (4x200)
2
 =

640,000 edges.

An approach has been proposed for managing attack

graph complexity through hierarchical aggregation [4],

based on the formalism of clustered graphs [11]. The idea

is to collapse subsets of the attack graph into single

aggregate vertices, and allow interactive de-aggregation.

A disadvantage of this approach is that lower-level details

of the attack graph are hidden until they are de-

aggregated, and the process of interactive de-aggregation

is potentially tedious. In contrast, in our approach, all

graph details are visible in a single view.

Also, a critical abstraction for the hierarchical

aggregation approach is the protection domain, i.e., a

fully-connected subgraph (clique) of the attack graph. To

avoid the expensive clique detection operation, this

approach requires prior knowledge of which sets of

machines form protection domains, and in practice this

knowledge may not be available. In our approach,

protection domains (or even approximation of them) are

formed automatically, without prior knowledge.

Our approach applies information-theoretic clustering

to the attack graph adjacency matrix [1]. This clustering

rearranges rows and columns of the adjacency matrix to

form homogeneous groups. In this way, patterns of

common connectivity within the attack graph are clear,

and groups (attack graph subsets) can be considered as

single units. This clustering technique is fully automatic,

is free of parameters, and scales linearly with graph size.

There have been approaches that view network traffic

in the form of a matrix [12][13], where rows and columns

might be subnets, IP addresses, ports, etc. But these

approaches do not employ clustering to find

homogeneous groups within the visualized matrices as we

do. Also, they generally consider attack events

independently of one another, as opposed to looking at

sequences of events. In particular, they include none of

the multi-step analyses in our approach, e.g., raising

matrices to higher powers for multi-step reachability,

tracing multiple attack steps by projecting to the main

matrix diagonal, or predicting attack origin and impact.

The multi-step reachability matrix in our approach

corresponds to the attack graph exploit distances in [3],

although those distances are computed through graph

traversal as opposed to our matrix multiplication.

However, in the previous approach, exploit distances are

not clustered or visualized; rather, they are used to

correlate intrusion detection alarms. While the previous

approach considers multiple steps to handle missing alerts

and build attack scenarios, it does not predict attack origin

and intent as in our approach.

3. General Approach

In this section, we describe our general approach for

applying adjacency matrices to network attack graphs.

Sub-Section 3.1 describes how adjacency matrices can be

created for various types of attack graphs. In Sub-

Section 3.2, we describe a matrix clustering algorithm that

finds homogenous groups in the attack graph adjacency

matrix. Sub-Section 3.3 then describes how the (possibly

clustered) attack graph adjacency matrix can be

transformed to represent multi-step attacks. Sub-

Section 3.4 then describes how detected intrusions can be

placed in the context of attack graph reachability matrices

for predicting attack origin and impact.

3.1 Attack Graph Adjacency Matrix

Our approach begins with the creation of a network

attack graph, through some means, based on some

representation of network attacks. There are really no

particular restrictions on the exact form of the attack

graph for our approach to apply. For example, the graph

could be based on hypothetical attacker exploits generated

from knowledge of vulnerabilities, network connectivity,

etc., as in [2][6][7][8]. Or, the graph could be constructed

from causal relationships among intrusion detection

system alarms, as in [5][9]. We can also handle intrusion

alarms placed within the context of vulnerability-based

attack graphs, as was done (implicitly) in [3].

It was pointed out in [3] that attack graphs can be

created with specified starting and goal points (to

constrain the graph to regions of interest), or with starting

and goal points unspecified (e.g., for intrusion alarm

correlation). In [4], it was pointed out that there are dual

attack graph representations in which either network

security conditions or attacker exploits could be the graph

vertices, with the other being the graph edges. Also in

[4], subgraphs of the attack graph were aggregated to

single vertices. Our approach handles all of these

situations.

Consider a simple example in where there is a set of

network machines having no connectivity limitations

among them, so that the attack graph is fully connected.

For such a set of 200 machines, with just one vulnerable

network service on each machine (vertex), there are 200
2

= 40,000 exploits (edges) that must be displayed. If such

a graph were drawn with lines for edges, it would not be

apparent from the resulting mass of lines that this indeed

represents a fully connected attack graph. We therefore

employ an adjacency matrix visualization, in which each

attack graph edge is represented by a matrix element

rather than by a drawn line. In our example of 200 fully

connected machines each having one vulnerable service,

the attack graph adjacency matrix would simply be a 200-

square matrix of all ones.

Formally, for n vertices in the attack graph, the

adjacency matrix A is an n × n matrix where element ai,j

of A indicates the presence of an edge from vertex i to

vertex j. In attack graphs, it is possible that there are

multiple edges between a pair of vertices (mathematically,

a multigraph), such as multiple conditions between a pair

of exploits or multiple exploits between a pair of

machines. In such cases, we can either record the actual

number of edges, or simply record the presence (0, 1) of

at least one edge. The adjacency matrix records only the

presence of an edge, and not its semantics, which can be

considered in follow-on analysis.

As a data structure, an alternative to adjacency

matrices are adjacency lists. For each vertex in the graph,

the adjacency list keeps all other vertices to which it has

an edge. Thus, adjacency lists use no space to record

edges that are not present. There are tradeoffs (in both

space and time) between adjacency matrices and lists,

depending on graph sparseness and the particular

operations required. Our implementation uses Matlab

sparse matrices (adjacency lists) for internal

computations, reserving the adjacency matrix

representation for visual displays.

3.2 Adjacency Matrix Clustering

The rows and columns of an adjacency matrix could

be placed in any order, without affecting the structure of

the attack graph the matrix represents. But orderings that

capture regularities in graph structure are clearly

desirable. In particular, we seek orderings that tend to

cluster graph vertices (adjacency matrix rows and

columns) by common edges (non-zero matrix elements).

This would allow us to treat such clusters of common

edges as a single unit as we analyze the attack graph

(adjacency matrix). In some cases, there might be

network attributes that allow us to order adjacency matrix

rows and columns into clusters of common attack graph

edges. For example, we might sort machine vertices

according to IP address, so that machines in the same

subnet appear in consecutive rows and columns of the

adjacency matrix. Unrestricted connectivity within each

subnet might then cause fully-connected (all ones) blocks

of elements on the main diagonal.

But in general, we cannot rely on a priori ordering of

rows and columns to place the adjacency matrix into

meaningful clusters. We therefore apply a particular

matrix clustering algorithm [1] that is designed to form

homogeneous rectangular blocks of matrix elements (row

and column intersections). Here, homogeneity means that

within a block, there is a similar pattern of attack graph

edges (adjacency matrix elements). This clustering

algorithm requires no user intervention, has no parameters

that need tuning, and scales linearly with problem size.

This algorithm finds the number of row and column

clusters, along with the assignment of rows and columns

to those clusters, such that the clusters form regions of

high and low densities. Numbers of clusters and cluster

assignments provide an information-theoretic measure of

cluster optimality. This is based on ideas from data

compression, including the Minimum Description Length

principle [14], in which regularity in the data can be used

to compress it (describe it in fewer symbols). Intuitively,

one can say that the more we compress the data, the better

we understand it, in the sense that we have better captured

its regularities.

3.3 Multi-Step Reachability

The adjacency matrix shows the presence of each

edge in a network attack graph. Taken directly, the

adjacency matrix shows every possible single-step attack.

In other words, the adjacency matrix shows attacker

reachability within one attack step. As we describe later,

one can navigate the adjacency matrix by iteratively

matching rows and columns to follow multiple attack

steps. But as an alternative, we raise the adjacency matrix

to higher powers, which shows multi-step attacker

reachability at a glance.

For a square (n × n) adjacency matrix A and a

positive integer p, then A
p
 is A raised to the power p, i.e.,

A multiplied by itself p – 1 times. Here, matrix

multiplication is in the usual sense, i.e., an element of A
2

is

 � ⋅=�
�
��

�
�

k
kj

a
ik

a
ij

A2 . (1)

The matching of rows and columns in matrix

multiplication corresponds to matching steps of an attack

graph, and the summation counts the numbers of

matching steps. Thus, each element of A
2
 gives the

number of 2-step attacks between the corresponding pair

(row and column) of attack graph vertices. Similarly, A
3

gives all 3-step attacks, A
4
 gives all 4-step attacks, etc.

In our matrix multiplication, if we calculate the

Boolean product rather than the simple product, the

resulting A
p
 simply tells us whether there is at least one p-

step attack from one vertex to another, rather than the

actual number of such paths. Thus, the Boolean sum

 132 −
∨∨∨∨

nAAAA � (2)

tells us, for each pair of vertices, whether the attacker can

reach one attack graph vertex to another over all possible

numbers of steps. This Boolean sum is known as the

transitive closure of A. The classical Floyd-Warshall

algorithm computes transitive closure in O(n
3
), although

there are improved algorithms, e.g., [15], that come closer

to O(n
2
). Frequently in practice, elements of A

p

monotonically increase as p increases. In such cases, we

can distinguish the minimum number of steps required to

reach each pair of attack graph vertices by computing the

multi-step reachability matrix

 132 −
++++

nAAAA � , (3)

where the matrix multiplication is Boolean and the

summation is simply arithmetic. Since elements of A
p

increase monotonically from zero to one (under Boolean

matrix multiplication), the elements of the reachability

matrix in Equation (3) give the minimum number of steps

required to reach one attack graph vertex to another.

A fundamental property of attack graphs is how well

connected the various graph vertices (exploits, machines,

etc.) are. For example, attack graphs that have few or

weak (large multi-step only) connections are easier to

defend against, and those with more and stronger

connections are more difficult to defend against.

Knowing the numbers and depths of attacks (e.g., through

higher powers of the adjacency matrix) helps us

understand large-scale tendencies across the network.

Individual vertices’ roles within the attack graph are also

described by their numbers and depths of attacks to other

vertices. For example, vertices (e.g., machines) with many

attack paths through them might bear closer scrutiny. Or,

critical vertices could be identified as “bottlenecks” in the

attack graph.

3.4 Attack Prediction

In our approach, one can place detected intrusions

within the context of vulnerability-based attack graphs.

We first compute a vulnerability-based attack graph from

knowledge of the network configuration, attacker

exploits, etc. We then form the adjacency matrix A for

the attack graph, perform clustering on A, and compute

either the transitive closure of A or the multi-step

reachability matrix in Equation (3). Then, when an

intrusion alarm is generated, if we can associate it with an

edge (e.g., exploit) in the attack graph, we can thus

associate it with the corresponding element of any of the

following:

1. The adjacency matrix A (for single-step

reachability)

2. The multi-step reachability matrix in

Equation (3) (for multi-step reachability)

3. The transitive closure of A (for all-step

reachability)

From this, we can immediately categorize alerts

based on the numbers of associated attack steps. For

example, if an alarm occurs within a zero-valued region

of the transitive closure, we might conclude it is a false

alarm, i.e., we know it is not possible according to the

attack graph. Or, if an alarm occurs within a single-step

region of the reachability matrix, we know that it is

indeed one of the single-step attacks in the attack graph.

Somewhere in between, if an alarm occurs in a p-step

region, we know the attack graph predicts that it takes a

minimum of p steps to achieve such an attack.

By associating intrusion alarms with a reachability

graph, we can also predict the origin and impact of

attacks. That is, once we place intrusion alarm on one of

the vulnerability-based reachability graphs, we can

navigate the graph to do attack prediction. The idea is to

project to the main diagonal of the graph, in which row

and column indices are equal. Vertical projection (along

a column) leads to attack step(s) in the forward direction.

That is, when one projects along a column to the main

diagonal, the resulting row gives the possible steps

forward in the attack. We can predict attack origin and

impact either (1) one step away, (2) multiple steps away

with the number of steps distinguished, or (3) over all

steps combined. Here are those 3 possibilities:

1. When using the adjacency matrix A, non-

zero elements along the projected row

show all possible single steps forward.

Projection also can be done iteratively, to

follow step-by-step (one at a time) in the

attack.

2. When using the multi-step reachability

matrix in Equation (3), the projected row

shows the minimum number of

subsequent steps needed to reach another

vertex. One can also iteratively project,

either choosing single-step elements only,

or “skipping” steps by choosing multi-step

elements.

3. When using the transitive closure, the

projected row shows whether a particular

vertex can be subsequently reached in any

number of steps. Here, iterative

projection is not necessary, since

transitive closure shows reachability

From the preceding discussion, we see that projection

along a column of a reachability matrix predicts the

impact (possible steps forward) of an attack.

Correspondingly, we can project along a row (as opposed

to a column) of such a matrix to predict attack origin

(possible steps backward). In this case, when one projects

along a row to the main diagonal, the resulting column

gives the possible steps backward in the attack. As

before, we can predict attack origin using either (1) the

adjacency matrix, (2) the multi-step reachability matrix,

or (3) the transitive closure. Just as for forward

projection, this gives either (1) single-step reachability,

(2) multi-step reachability, or (3) all-step reachability, but

this time in a backward direction for predicting attack

origin.

4. Applications

In this section, we apply our general approach to a

number of different network security situations. Sub-

Section 4.1 shows the application of clustered adjacency

and reachability matrices to a vulnerability-based attack

graph. In Sub-Section 4.2, we show how reachability

matrices give a concise summary of attack graph changes

driven by changes to the network configuration. Sub-

Section 4.4 shows how our approach can help categorize

intrusion alarms and predict attack origin and impact.

4.1 Vulnerability-Based Attack Graphs

Figure 1 shows an example drawn attack graph, in

which low-level security conditions have been aggregated

to machine vertices, and exploits have been aggregated

for pairs of machines. This attack graph was generated

from a network model created from Nessus [16]

vulnerability scans. Despite the fact that this attack graph

has been aggregated to the level of machines, the drawn

graph is still cluttered with edges and is hard to follow.

Some clustering is apparent in this drawing, but the exact

nature of the clusters, such as their boundaries and cross-

cluster relationships, is not readily apparent.

Figure 2 shows the same attack graph as Figure 1,

this time represented as an adjacency matrix. In the

matrix, rows represent exploits from a particular machine,

and columns represent exploits to a particular machine.

The presence at least one exploit between a pair of

machines is indicated by black matrix element, and the

absence is indicated by white. Here, there is no a priori

way of ordering the matrix rows and columns to form

meaningful clusters. That is, from the given ordering, the

underlying structure of the attack graph is obscured.

Figure 1: Example drawn attack graph.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Figure 2: Unclustered adjacency matrix for
attack graph in Figure 1.

In Figure 3, we have clustered the attack graph

adjacency matrix in Figure 2. The underlying structure of

the attack graph is now clear. The clustering algorithm

has identified 9 clusters (rectangular blocks) of

homogeneous graph edges. The 3 blocks on the main

diagonal (blocks A1,1, A2,2, and A3,3) are solid black,

indicating full attack graph connectivity within each

block. That is, within one of these main-diagonal blocks,

every machine can attack every other machine (through at

least one exploit). Thus in the terminology of [4], these

blocks constitute protection domains, which have been

detected automatically by the clustering algorithm. Block

A2,3 of the clustered adjacency matrix shows exploits

launched from the 2
nd

 to 3
rd

 protection domains (from

block A2,2 to A3,3). Similarly, block A3,1 shows exploits

from the 3
rd

 to 1
st
 protection domains (from block A3,3 to

A1,1). Note that Figure 3 shows how matrix rows and

columns were reordered by the clustering algorithm, i.e.,

rows and columns are labeled with their original indices.

In practice, we might use more meaningful labels, such as

IP addresses.

Figure 4 shows the square of the clustered attack

graph adjacency matrix in Figure 3. Here we have used

the arithmetic product (as opposed to the Boolean

product). This shows not only whether there exists at

least one 2-step attack from one machine to another, but

also the actual count of all possible 2-step attacks. For

example, we see that within the 2
nd

 protection domain

(block A2,2), there are 20 possible 2-step attacks between

each pair of machines, corresponding to the 20 machines

in that protection domain. We see corresponding

numbers of 2-step attacks within the other 2 protection

domains (blocks A1,1 and A3,3). There are relatively fewer

2-step attacks across protection domains (blocks A2,3 and

A3,1).

Figure 5 shows successive powers (A
2
, A

3
, and A

4
) of

the clustered adjacency matrix, this time employing

Boolean matrix multiplication. This shows attacker

reachability between each pair of machines, within 2, 3,

and 4 steps, respectively. We see that within 4 steps,

machines in the 2
nd

 block can successfully attack all

machines (i.e., all columns) in the network. Also within 4

steps, machines in the 1
st
 block can be successfully

attacked from all machines (i.e., from all rows) in the

network.

3

7
10

11

12

14

15

17

18

28
34

39

43

44
1

6

13

19
20

21

22

23
24

25

26

27
29

30

31

32
33

35

38

41
2

4

5

8
9

16

36

37
40

42

3 7 1
0

1
1

1
2

1
4

1
5

1
7

1
8

2
8

3
4

3
9

4
3

4
4

1 6 1
3

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
9

3
0

3
1

3
2

3
3

3
5

3
8

4
1

2 4 5 8 9 1
6

3
6

3
7

4
0

4
2

3

7
10

11

12

14

15

17

18

28
34

39

43

44
1

6

13

19
20

21

22

23
24

25

26

27
29

30

31

32
33

35

38

41
2

4

5

8
9

16

36

37
40

42

3 7 1
0

1
1

1
2

1
4

1
5

1
7

1
8

2
8

3
4

3
9

4
3

4
4

1 6 1
3

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
9

3
0

3
1

3
2

3
3

3
5

3
8

4
1

2 4 5 8 9 1
6

3
6

3
7

4
0

4
2

Figure 3: Clustered adjacency matrix for attack
graph in Figure 1.

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Figure 4: Clustered adjacency matrix for attack
graph in Figure 1, raised to 2

nd
 power for 2-step

attacks.

In Figure 6, we have combined the reachability

matrices in Figure 5 (and the adjacency matrix in Figure

3) into a single matrix, as defined by Equation (3). All

the information in the separate per-step reachability

matrices can now be seen together. This multi-step

reachability matrix is used again in Section 4.4 for attack

origin and impact prediction.

A2 A3 A4A2 A3 A4

Figure 5: Reachability for 2, 3, and 4 steps for attack graph in Figure 1.

∞

1

2

3

4

M
in

im
u
m

 n
u
m

b
er

 o
f

at
ta

ck
 s

te
p
s

∞

1

2

3

4

∞

1

2

3

4

M
in

im
u
m

 n
u
m

b
er

 o
f

at
ta

ck
 s

te
p
s

Figure 6: Multi-step reachability for attack graph
in Figure 1.

4.2 Reachability for Attack Graph Changes

Figure 7 shows an attack graph adjacency matrix for

a network of 730 machines. While we do not show it, the

corresponding drawn attack graph would be exceedingly

cluttered and difficult to understand. Again, we have

aggregated low-level security conditions to machines and

sets of exploits between them, so that rows and columns

are machines, and non-zero entries mean at least one

exploit between a pair of machines. Here, a priori

ordering of machines (rows and columns) is sufficient, so

that we do not apply matrix clustering. In the figure,

black indicates the attack graph for a baseline network

configuration, before any network configuration changes.

Orange then indicates new attack graph edges, resulting

from changes to the network configuration. In this case,

the vertical orange lines (columns) indicate vulnerable

web servers that have been added to the network, with a

policy that all machines in the network can connect to

these vulnerable servers.

Figure 8 shows the resulting transitive closure (all-

step reachability) for the baseline (black) and changed

(black+orange) network. Here we see that before

deployment of the web servers (black), attacks are only

possible within the main diagonal blocks, from block A2,2

to blocks A3,3 and A4,4, and from block A3,3 to block A4,4.

But after deployment of the web server (black+orange),

machines in block A1,1 can reach all machines in the

network, and all machines in the network can reach the

machines in blocks A2,2, A3,3, A4,4, and A5,5. That is, only

machines in block A1,1 are safe from attacks outside their

block.

100 200 300 400 500 600 700

100

200

300

400

500

600

700

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Figure 7: Attack graph adjacency matrix for
baseline (black) and changed (orange) network.

100 200 300 400 500 600 700

100

200

300

400

500

600

700

100 200 300 400 500 600 700

100

200

300

400

500

600

700

Figure 8: Transitive closure for Figure 7, for
baseline (black) and changed (black+orange)

network.

4.3 Prediction of Attack Origin and Impact

Figure 9 shows the multi-step vulnerability-based

reachability matrix from Figure 6, but this time with

intrusion alarms associated with elements of the matrix.

Thus, knowing attack reachability across the network, we

can categorize and correlate detected intrusions in terms

of it. In Figure 9, an intrusion alarm (in yellow) occurs

between a pair of machines that are known to be

unreachable from one to the other. In this case, we might

consider it to be a false alarm. Similarly, an intrusion

alarm (in purple) occurs between a pair of machines,

which, according to the attack graph, should require at

least 4 attack steps to reach from one to the other. If we

were to rely on traditional attack graph drawings, we

would need to trace many edges before coming to this

conclusion.

There are 2 other intrusion alarms in Figure 9 that

according to the attack graph, are each possible one-step

attacks. In fact, if we project (along a column) from

Alarm 1 to the main diagonal, we find Alarm 2 on the

projected row, indicating that according to the attack

graph, Alarm 2 follows immediately after Alarm 1. In

this case, we correlate the two alarms based on the

likelihood that they are part of a coordinated attack.

Figure 10 shows another intrusion alarm associated

with the multi-step reachability matrix from Figure 6.

This time, we project to the main diagonal in each

direction, i.e., along columns and rows, to explore

forward and backward steps from this alarm. In this way,

we can predict the origin of the attack (from the backward

direction) and the impact of the attack (from the forward

direction). Projecting along the row to the main diagonal,

we reach a column that has non-zero entries only within

the 2
nd

 main-diagonal block (block A2,2). In fact, these

non-zero entries are all of unity value, indicating that

these are all one-step attacks. In other words, only an

attack from one of the machines in block A2,2 could have

led to the detected intrusion, and that could have

happened within one attack step.

In Figure 10, when we project the detected intrusion

to the main diagonal along its column, the row of

intersection shows all possible forward steps from the

detected event. In this case, we see that machines in the

2
nd

 block cannot be reached by the attacker, since block

A3,2 is zero-valued. For this reason, no attack response is

necessary for defending machines in these columns.

However, because block A3,1 shows reachability within 2

to 3 steps, measures might be taken to defend machines in

these columns, although not at the highest priority. The

highest priority should be for machines in the columns of

block A3,3, because those machines are all reachable from

the detected event within a single step.

∞

1

2

3

4

N
u
m

b
er

 o
f

at
ta

ck
 s

te
p

s

No known paths
(likely false alarm)

4 missing

steps

Alarm 1

Alarm 2

∞

1

2

3

4

N
u
m

b
er

 o
f

at
ta

ck
 s

te
p

s

No known paths
(likely false alarm)

4 missing

steps

Alarm 1

Alarm 2

∞

1

2

3

4

N
u
m

b
er

 o
f

at
ta

ck
 s

te
p

s

∞

1

2

3

4

N
u
m

b
er

 o
f

at
ta

ck
 s

te
p

s

No known paths
(likely false alarm)

4 missing

steps

Alarm 1

Alarm 2

Figure 9: Categorizing and correlating intrusion alarms via attack graph reachability.

∞

1

2

3

4

N
u
m

b
er

 o
f

at
ta

ck
 s

te
p

s
Alarm

Not reachable

(LOW priority)

Reachable

In one step
(HIGH priority)

Reachable

in 2-3 steps
(MEDIUM priority)

Forward

Steps

B
a
c
k
w

a
rd

S
te

p
s

O
ri

g
in

 o
f

a
tt

a
c
k

∞

1

2

3

4

N
u
m

b
er

 o
f

at
ta

ck
 s

te
p

s
Alarm

Not reachable

(LOW priority)

Reachable

In one step
(HIGH priority)

Reachable

in 2-3 steps
(MEDIUM priority)

Forward

Steps

B
a
c
k
w

a
rd

S
te

p
s

O
ri

g
in

 o
f

a
tt

a
c
k

∞

1

2

3

4

N
u
m

b
er

 o
f

at
ta

ck
 s

te
p

s

∞

1

2

3

4

N
u
m

b
er

 o
f

at
ta

ck
 s

te
p

s
Alarm

Not reachable

(LOW priority)

Reachable

In one step
(HIGH priority)

Reachable

in 2-3 steps
(MEDIUM priority)

Forward

Steps

B
a
c
k
w

a
rd

S
te

p
s

O
ri

g
in

 o
f

a
tt

a
c
k

Figure 10: Predicting attack origin and impact.

5. Summary and Conclusions

This paper shows how clustered adjacency matrices

reveal the underlying regularities in network attack

graphs. Our approach is particularly attractive because it

avoids the edge clutter usually associated with literal

drawings of attack graphs. The adjacency matrix is

concise, representing each graph edge with a single

matrix element. Our approach places no particular

restrictions on the form of the attack graph. It therefore

applies to attack graphs based on network vulnerabilities,

detected intrusions, or combinations thereof, and well as

attack graphs with aggregated vertices, e.g., aggregated

by network machine. Our approach has low-order

polynomial complexity overall, for scalability to larger

networks.

The information-theoretic clustering algorithm we

apply reorders rows and columns of the adjacency matrix

so that rectangular blocks of similarly-connected attack

graph elements emerge. This clustering algorithm is fully

automatic, parameter-free, and scales linearly with

problem size. We further transform the attack graph

adjacency matrix by raising it to higher powers, to

represent multiple attack steps. We can thus show

attacker reachability across the network within any

number of attack steps. We combine these per-step

reachability matrices into a single matrix that shows the

minimum number of steps between any pair of vertices in

the attack graph. We also summarize reachability over all

number of steps via transitive closure.

Through our general approach, we are able to

correlate, predict, and hypothesize about network attacks.

For example, we can provide a concise summary of

changes in an attack graph resulting from changes in the

network configuration. We can place intrusion alarms in

the context of the vulnerability-based attack graph for

categorizing alarms. We can step forward from an attack,

to predict its impact and prioritize defensive responses

according to the number of steps required to reach victim

machines. We can also step backward from an attack, to

predict its origin.

6. Acknowledgements

This work was partially supported by the Air Force

Research Laboratory Rome under grant F30602-00-2-

0512 and by the Army Research Office under grants

DAAD19-03-1-0257 and W911NF-05-1-0374.

7. References

[1] D. Chakrabarti, S. Papadimitriou, D. Modha, C. Faloutsos,

“Fully Automatic Cross-Associations,” in Proceedings of the

10th ACM International Conference on Knowledge Discovery &

Data Mining, Seattle, Washington, August 2004.

[2] S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis of

Network Attack Vulnerability,” in Managing Cyber Threats:

Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A.

Lazarevic (eds.), Kluwer Academic Publisher, 2005.

[3] S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion

Events and Building Attack Scenarios through Attack Graph

Distances,” in Proceedings of the 20th Annual Computer

Security Applications Conference, Tucson, Arizona, December

2004.

[4] S. Noel, S. Jajodia, “Managing Attack Graph Complexity

through Visual Hierarchical Aggregation,” in Proceedings of the

ACM CCS Workshop on Visualization and Data Mining for

Computer Security, Fairfax, VA, October 2004.

[5] P. Ning, D. Xu, C. Healey, R. St. Amant, “Building Attack

Scenarios through Integration of Complementary Alert

Correlation Methods,” in Proceedings of the 11th Annual

Network and Distributed System Security Symposium, February

2004.

[6] S. Noel, S. Jajodia, B. O’Berry, M. Jacobs, “Efficient

Minimum-Cost Network Hardening via Exploit Dependency

Graphs,” Proceedings of the 19th Annual Computer Security

Applications Conference, Las Vegas, Nevada, December 2003.

[7] R. Ritchey, B. O’Berry, S. Noel, “Representing TCP/IP

Connectivity for Topological Analysis of Network Security,” in

Proceedings of the 18th Annual Computer Security Applications

Conference, Las Vegas, Nevada, December 2002.

[8] P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, Graph-

Based Network Vulnerability Analysis,” in Proceedings of the

9th ACM Conference on Computer and Communications

Security, Washington, DC, November 2002.

[9] F. Cuppens, A. Miege, “Alert Correlation in a Cooperative

Intrusion Detection Framework,” in Proceedings of the 2002

IEEE Symposium on Security and Privacy, May 2002.

[10] G. Di Battista, P. Eades, R. Tamassia, I. Tollis, Graph

Drawing: Algorithms for the Visualization of Graphs, Prentice

Hall, 1999.

[11] P. Eades, Q.-W. Feng, “Multilevel Visualization of

Clustered Graphs,” in Proceedings of the Symposium on Graph

Drawing, September 1996.

[12] K. Lakkaraju, W. Yurcik, A. Lee, “NVisionIP: NetFlow

Visualizations of System State for Security Situational

Awareness,” in Proceedings of the CCS Workshop on

Visualization and Data Mining for Computer Security, Fairfax,

VA, October 2004.

[13] J. McPherson, K.–L. Ma, P. Krystosek, T. Bartoletti, M.

Christensen, “PortVis: A Tool for Port-Based Detection of

Security Events,” in Proceedings of the CCS Workshop on

Visualization and Data Mining for Computer Security, Fairfax,

VA, October 2004.

[14] P. Grünwald, “A Tutorial Introduction to the Minimum

Description Length Principle,” in Advances in Minimum

Description Length: Theory and Applications, P. Grünwald, I.

Myung, M. Pitt (eds.), MIT Press, 2005.

[15] E. Nuutila, Efficient Transitive Closure Computation in

Large Digraphs, Ph.D. dissertation, Acta Polytechnica

Scandinavica, Helsinki, 1995.

[16] Nessus open source vulnerability scanner project, web

page, http://www.nessus.org/, last accessed May 2005.

