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Abstract 
 

We apply adjacency matrix clustering to network 

attack graphs for attack correlation, prediction, and 

hypothesizing.  We self-multiply the clustered adjacency 

matrices to show attacker reachability across the network 

for a given number of attack steps, culminating in 

transitive closure for attack prediction over all possible 

number of steps.  This reachability analysis provides a 

concise summary of the impact of network configuration 

changes on the attack graph.  Using our framework, we 

also place intrusion alarms in the context of vulnerability-

based attack graphs, so that false alarms become 

apparent and missed detections can be inferred.  We 

introduce a graphical technique that shows multiple-step 

attacks by matching rows and columns of the clustered 

adjacency matrix.  This allows attack impact/responses to 

be identified and prioritized according to the number of 

attack steps to victim machines, and allows attack origins 

to be determined.  Our techniques have quadratic 

complexity in the size of the attack graph. 

1. Introduction 

The utility of organizing combinations of network 

attacks as graphs is well established.  Traditionally, such 

attack graphs have been formed manually by security red 

teams (penetration testers).  But significant progress has 

been made recently in generating attack graphs 

automatically, based on models of network security 

conditions and attacker exploits, created from network 

scans, vulnerability databases, etc.  By representing 

dependencies among attacker exploits rather than 

explicitly enumerating attack states, exponential graph 

complexity can be avoided. 

In the current state of practice, it is thus possible to 

efficiently compute attack graphs for realistic networks.  

But the resulting graphs can still pose serious challenges 

for human comprehension.  This is compounded by the 

fact that attack graphs are usually communicated by literal 

drawings of graph vertices and edges.  While graph 

drawing has been studied extensively, the problem is ill-

posed in the sense that many possibilities exist for what 

constitutes a good graph drawing.  Also, finding optimal 

placement of graph vertices according to many of the 

desired criteria is NP-complete.  For the relatively dense 

attack graphs often found in practice (e.g., within a trusted 

internal network), graph drawing techniques are largely 

ineffective, producing overly cluttered drawings for 

graphs of larger than moderate size. 

In this paper, we introduce techniques to help make 

complex attack graphs more understandable, and apply 

these techniques to the correlation, prediction, and 

hypothesis of attacks.  Our approach reveals graph 

regularities, making important features such as 

bottlenecks and densely-connected subgraphs apparent.  

We extend an existing graph-clustering technique to show 

multi-step reachability across the network, the impact of 

network configuration changes, and the analysis of 

intrusion alarms within the context of network 

vulnerabilities. 

Rather than relying on literal drawings of attack 

graphs, we visualize the corresponding attack graph 

adjacency matrix.  The adjacency matrix represents each 

graph edge with a single matrix element, as opposed to a 

drawn line.  Graph vertices, rather than being drawn 

explicitly, are implicitly represented as matrix rows and 

columns.  The adjacency matrix avoids the typical edge 

clutter of drawn graphs, not only for very large graphs, 

but also for smaller ones. 

The adjacency matrix is a concise graph 

representation, but alone it can be insufficient.  That is, 

without the proper ordering of matrix rows and columns, 

the underlying attack graph structure is not necessarily 

apparent.  We therefore apply an information-theoretic 

clustering technique [1] that reorders the adjacency matrix 

so that blocks of similarly-connected attack graph 

elements emerge.  The clustering technique is fully 

automatic, parameter-free, and scales linearly with graph 

size. 

Elements of the attack graph adjacency matrix 

represent all one-step attacks.  We extend this by 

computing higher powers of the adjacency matrix, to 

represent multiple-step attacks.  That is, the adjacency 

matrix of power k shows all attacker reachability within k 

steps of the attack.  Further, we combine multiple 

adjacency matrix powers into a single matrix that shows 

the minimum number of attack steps between each pair of 

attack graph elements.  Alternatively, we summarize 

reachability over all number of steps, e.g., transitive 

closure.  For these multi-step adjacency matrices, we 



retain the reordering induced by clustering, so that 

patterns in the attack graph structure are still apparent. 

The general approach of clustering attack graph 

adjacency matrices (and raising them to higher powers) 

provides a framework for correlating, predicting, and 

hypothesizing about network attacks.  The approach 

applies to general attack graphs, regardless of what the 

particular graph vertices and edges represent.  For 

example, such attack graphs could have been formed from 

models of network vulnerability, or from causal 

relationships among intrusion detection events.  Attack 

graph vertices could also represent aggregated sub-

graphs, such as aggregation by machines and exploits 

between them.  Overall, the techniques we describe have 

quadratic complexity in the size of the attack graph, for 

scalability to larger networks. 

We apply our general approach to a vulnerability-

based attack graph, in which the graph vertices (network 

security conditions and attacker exploits) have been 

aggregated to machines and exploits between them.  This 

makes the patterns of attack clear, especially in 

comparison to the corresponding literally drawn graph.  

We show how this representation can provide a concise 

summary of changes in the attack graph resulting from 

changes in the network configuration, e.g., for what-if 

analysis of planned network changes or impact of real 

network changes. 

We also place intrusion alarms in the context of a 

vulnerability-based multi-step attack graph reachability 

matrix.  In this way, false alarms become apparent when 

they occur for pairs of machines not reachable by the 

attacker, based on the network configuration.  Also, one 

can infer missed detections from alarms between 

machines that require multiple attack steps before 

compromise can occur. 

We introduce a graphical technique for predicting 

attack steps (forward and backward) on the adjacency 

matrix.  Here, we project to the main diagonal of the 

matrix to match rows and columns between each attack 

step.  This technique allows one to step forward from an 

attack, so that the impact of an attack can be determined 

and candidate attack responses can be identified.  Using 

this technique with the multi-step reachability matrix 

allows candidate attack responses to be prioritized 

according to the number of steps required to reach victim 

machines.  Alternatively, one can step backward from an 

attack to predict its origin. 

In the next section, we review related work in this 

area.  In Section 2, we describe our general approach for 

clustered attack graph adjacency matrices, including 

raising them to higher powers for multi-step reachability.  

Section 4 applies our approach in a number of ways for 

network attack protection, detection, and response.  In 

Section 5, we summarize our work and draw conclusions. 

2. Related Work 

Recent advances in automatic attack graph generation 

[2][3][4][5][6][7][8][9] have made it possible to 

efficiently compute attack graphs for realistic networks.  

These approaches avoid the state explosion problem by 

representing dependencies among state transitions (i.e., 

attacker exploits), rather than explicitly enumerating 

states.  The resulting exploit dependency graphs have 

quadratic rather than exponential complexity, and still 

contain the same information (implicitly) as explicitly 

enumerated state graphs. 

Still, when attack graphs are generated for realistic 

networks, using comprehensive sets of modeled attacker 

exploits, the resulting attack graphs can be very large.  

Previous approaches generally use graph drawing 

algorithms [10], in which vertices and edges between 

them are drawn according to particular aesthetic criteria.  

While large graphs have been successfully drawn, these 

have generally been relatively sparsely connected.  But 

network attack graphs can be both large and exhibit very 

dense connectivity.  For example, for only 200 machines, 

with each machine having 4 vulnerable services, within a 

trusted internal network with unrestricted connectivity, 

the resulting fully-connected attack graph has (4x200)
2
 = 

640,000 edges. 

An approach has been proposed for managing attack 

graph complexity through hierarchical aggregation [4], 

based on the formalism of clustered graphs [11].  The idea 

is to collapse subsets of the attack graph into single 

aggregate vertices, and allow interactive de-aggregation.  

A disadvantage of this approach is that lower-level details 

of the attack graph are hidden until they are de-

aggregated, and the process of interactive de-aggregation 

is potentially tedious.  In contrast, in our approach, all 

graph details are visible in a single view. 

Also, a critical abstraction for the hierarchical 

aggregation approach is the protection domain, i.e., a 

fully-connected subgraph (clique) of the attack graph.  To 

avoid the expensive clique detection operation, this 

approach requires prior knowledge of which sets of 

machines form protection domains, and in practice this 

knowledge may not be available.  In our approach, 

protection domains (or even approximation of them) are 

formed automatically, without prior knowledge. 

Our approach applies information-theoretic clustering 

to the attack graph adjacency matrix [1].  This clustering 

rearranges rows and columns of the adjacency matrix to 

form homogeneous groups.  In this way, patterns of 

common connectivity within the attack graph are clear, 

and groups (attack graph subsets) can be considered as 

single units.  This clustering technique is fully automatic, 

is free of parameters, and scales linearly with graph size. 

There have been approaches that view network traffic 

in the form of a matrix [12][13], where rows and columns 



might be subnets, IP addresses, ports, etc.  But these 

approaches do not employ clustering to find 

homogeneous groups within the visualized matrices as we 

do.  Also, they generally consider attack events 

independently of one another, as opposed to looking at 

sequences of events.  In particular, they include none of 

the multi-step analyses in our approach, e.g., raising 

matrices to higher powers for multi-step reachability, 

tracing multiple attack steps by projecting to the main 

matrix diagonal, or predicting attack origin and impact. 

The multi-step reachability matrix in our approach 

corresponds to the attack graph exploit distances in [3], 

although those distances are computed through graph 

traversal as opposed to our matrix multiplication.  

However, in the previous approach, exploit distances are 

not clustered or visualized; rather, they are used to 

correlate intrusion detection alarms.  While the previous 

approach considers multiple steps to handle missing alerts 

and build attack scenarios, it does not predict attack origin 

and intent as in our approach. 

3. General Approach 

In this section, we describe our general approach for 

applying adjacency matrices to network attack graphs.  

Sub-Section 3.1 describes how adjacency matrices can be 

created for various types of attack graphs.  In Sub-

Section 3.2, we describe a matrix clustering algorithm that 

finds homogenous groups in the attack graph adjacency 

matrix.  Sub-Section 3.3 then describes how the (possibly 

clustered) attack graph adjacency matrix can be 

transformed to represent multi-step attacks.  Sub-

Section 3.4 then describes how detected intrusions can be 

placed in the context of attack graph reachability matrices 

for predicting attack origin and impact. 

3.1 Attack Graph Adjacency Matrix 

Our approach begins with the creation of a network 

attack graph, through some means, based on some 

representation of network attacks.  There are really no 

particular restrictions on the exact form of the attack 

graph for our approach to apply.  For example, the graph 

could be based on hypothetical attacker exploits generated 

from knowledge of vulnerabilities, network connectivity, 

etc., as in [2][6][7][8].  Or, the graph could be constructed 

from causal relationships among intrusion detection 

system alarms, as in [5][9].  We can also handle intrusion 

alarms placed within the context of vulnerability-based 

attack graphs, as was done (implicitly) in [3]. 

It was pointed out in [3] that attack graphs can be 

created with specified starting and goal points (to 

constrain the graph to regions of interest), or with starting 

and goal points unspecified (e.g., for intrusion alarm 

correlation).  In [4], it was pointed out that there are dual 

attack graph representations in which either network 

security conditions or attacker exploits could be the graph 

vertices, with the other being the graph edges.  Also in 

[4], subgraphs of the attack graph were aggregated to 

single vertices.  Our approach handles all of these 

situations. 

Consider a simple example in where there is a set of 

network machines having no connectivity limitations 

among them, so that the attack graph is fully connected.  

For such a set of 200 machines, with just one vulnerable 

network service on each machine (vertex), there are 200
2
 

= 40,000 exploits (edges) that must be displayed.  If such 

a graph were drawn with lines for edges, it would not be 

apparent from the resulting mass of lines that this indeed 

represents a fully connected attack graph.  We therefore 

employ an adjacency matrix visualization, in which each 

attack graph edge is represented by a matrix element 

rather than by a drawn line.  In our example of 200 fully 

connected machines each having one vulnerable service, 

the attack graph adjacency matrix would simply be a 200-

square matrix of all ones. 

Formally, for n vertices in the attack graph, the 

adjacency matrix A is an n × n matrix where element ai,j 

of A indicates the presence of an edge from vertex i to 

vertex j.  In attack graphs, it is possible that there are 

multiple edges between a pair of vertices (mathematically, 

a multigraph), such as multiple conditions between a pair 

of exploits or multiple exploits between a pair of 

machines.  In such cases, we can either record the actual 

number of edges, or simply record the presence (0, 1) of 

at least one edge.  The adjacency matrix records only the 

presence of an edge, and not its semantics, which can be 

considered in follow-on analysis. 

As a data structure, an alternative to adjacency 

matrices are adjacency lists.  For each vertex in the graph, 

the adjacency list keeps all other vertices to which it has 

an edge.  Thus, adjacency lists use no space to record 

edges that are not present.  There are tradeoffs (in both 

space and time) between adjacency matrices and lists, 

depending on graph sparseness and the particular 

operations required.  Our implementation uses Matlab 

sparse matrices (adjacency lists) for internal 

computations, reserving the adjacency matrix 

representation for visual displays. 

3.2 Adjacency Matrix Clustering 

The rows and columns of an adjacency matrix could 

be placed in any order, without affecting the structure of 

the attack graph the matrix represents.  But orderings that 

capture regularities in graph structure are clearly 

desirable.  In particular, we seek orderings that tend to 

cluster graph vertices (adjacency matrix rows and 

columns) by common edges (non-zero matrix elements).  

This would allow us to treat such clusters of common 



edges as a single unit as we analyze the attack graph 

(adjacency matrix).  In some cases, there might be 

network attributes that allow us to order adjacency matrix 

rows and columns into clusters of common attack graph 

edges.  For example, we might sort machine vertices 

according to IP address, so that machines in the same 

subnet appear in consecutive rows and columns of the 

adjacency matrix.   Unrestricted connectivity within each 

subnet might then cause fully-connected (all ones) blocks 

of elements on the main diagonal. 

But in general, we cannot rely on a priori ordering of 

rows and columns to place the adjacency matrix into 

meaningful clusters.  We therefore apply a particular 

matrix clustering algorithm [1] that is designed to form 

homogeneous rectangular blocks of matrix elements (row 

and column intersections).  Here, homogeneity means that 

within a block, there is a similar pattern of attack graph 

edges (adjacency matrix elements).  This clustering 

algorithm requires no user intervention, has no parameters 

that need tuning, and scales linearly with problem size. 

This algorithm finds the number of row and column 

clusters, along with the assignment of rows and columns 

to those clusters, such that the clusters form regions of 

high and low densities.  Numbers of clusters and cluster 

assignments provide an information-theoretic measure of 

cluster optimality.  This is based on ideas from data 

compression, including the Minimum Description Length 

principle [14], in which regularity in the data can be used 

to compress it (describe it in fewer symbols).  Intuitively, 

one can say that the more we compress the data, the better 

we understand it, in the sense that we have better captured 

its regularities. 

3.3 Multi-Step Reachability 

The adjacency matrix shows the presence of each 

edge in a network attack graph.  Taken directly, the 

adjacency matrix shows every possible single-step attack.  

In other words, the adjacency matrix shows attacker 

reachability within one attack step.  As we describe later, 

one can navigate the adjacency matrix by iteratively 

matching rows and columns to follow multiple attack 

steps.  But as an alternative, we raise the adjacency matrix 

to higher powers, which shows multi-step attacker 

reachability at a glance. 

For a square (n × n) adjacency matrix A and a 

positive integer p, then A
p
 is A raised to the power p, i.e., 

A multiplied by itself p – 1 times.  Here, matrix 

multiplication is in the usual sense, i.e., an element of A
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is 
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The matching of rows and columns in matrix 

multiplication corresponds to matching steps of an attack 

graph, and the summation counts the numbers of 

matching steps.  Thus, each element of A
2
 gives the 

number of 2-step attacks between the corresponding pair 

(row and column) of attack graph vertices.  Similarly, A
3
 

gives all 3-step attacks, A
4
 gives all 4-step attacks, etc. 

In our matrix multiplication, if we calculate the 

Boolean product rather than the simple product, the 

resulting A
p
 simply tells us whether there is at least one p-

step attack from one vertex to another, rather than the 

actual number of such paths.  Thus, the Boolean sum 

 132 −
∨∨∨∨

nAAAA �  (2) 

tells us, for each pair of vertices, whether the attacker can 

reach one attack graph vertex to another over all possible 

numbers of steps.  This Boolean sum is known as the 

transitive closure of A.  The classical Floyd-Warshall 

algorithm computes transitive closure in O(n
3
), although 

there are improved algorithms, e.g., [15], that come closer 

to O(n
2
).  Frequently in practice, elements of A

p
 

monotonically increase as p increases.  In such cases, we 

can distinguish the minimum number of steps required to 

reach each pair of attack graph vertices by computing the 

multi-step reachability matrix 

 132 −
++++

nAAAA � , (3) 

where the matrix multiplication is Boolean and the 

summation is simply arithmetic.  Since elements of A
p
 

increase monotonically from zero to one (under Boolean 

matrix multiplication), the elements of the reachability 

matrix in Equation (3) give the minimum number of steps 

required to reach one attack graph vertex to another. 

A fundamental property of attack graphs is how well 

connected the various graph vertices (exploits, machines, 

etc.) are.  For example, attack graphs that have few or 

weak (large multi-step only) connections are easier to 

defend against, and those with more and stronger 

connections are more difficult to defend against.  

Knowing the numbers and depths of attacks (e.g., through 

higher powers of the adjacency matrix) helps us 

understand large-scale tendencies across the network.  

Individual vertices’ roles within the attack graph are also 

described by their numbers and depths of attacks to other 

vertices. For example, vertices (e.g., machines) with many 

attack paths through them might bear closer scrutiny.  Or, 

critical vertices could be identified as “bottlenecks” in the 

attack graph. 

3.4 Attack Prediction 

In our approach, one can place detected intrusions 

within the context of vulnerability-based attack graphs.  

We first compute a vulnerability-based attack graph from 

knowledge of the network configuration, attacker 

exploits, etc.  We then form the adjacency matrix A for 

the attack graph, perform clustering on A, and compute 



either the transitive closure of A or the multi-step 

reachability matrix in Equation (3).  Then, when an 

intrusion alarm is generated, if we can associate it with an 

edge (e.g., exploit) in the attack graph, we can thus 

associate it with the corresponding element of any of the 

following: 

1. The adjacency matrix A (for single-step 

reachability) 

2. The multi-step reachability matrix in 

Equation (3) (for multi-step reachability) 

3. The transitive closure of A (for all-step 

reachability) 

From this, we can immediately categorize alerts 

based on the numbers of associated attack steps.  For 

example, if an alarm occurs within a zero-valued region 

of the transitive closure, we might conclude it is a false 

alarm, i.e., we know it is not possible according to the 

attack graph.  Or, if an alarm occurs within a single-step 

region of the reachability matrix, we know that it is 

indeed one of the single-step attacks in the attack graph.  

Somewhere in between, if an alarm occurs in a p-step 

region, we know the attack graph predicts that it takes a 

minimum of p steps to achieve such an attack. 

By associating intrusion alarms with a reachability 

graph, we can also predict the origin and impact of 

attacks.  That is, once we place intrusion alarm on one of 

the vulnerability-based reachability graphs, we can 

navigate the graph to do attack prediction.  The idea is to 

project to the main diagonal of the graph, in which row 

and column indices are equal.  Vertical projection (along 

a column) leads to attack step(s) in the forward direction.  

That is, when one projects along a column to the main 

diagonal, the resulting row gives the possible steps 

forward in the attack.  We can predict attack origin and 

impact either (1) one step away, (2) multiple steps away 

with the number of steps distinguished, or (3) over all 

steps combined.  Here are those 3 possibilities: 

1. When using the adjacency matrix A, non-

zero elements along the projected row 

show all possible single steps forward.  

Projection also can be done iteratively, to 

follow step-by-step (one at a time) in the 

attack. 

2. When using the multi-step reachability 

matrix in Equation (3), the projected row 

shows the minimum number of 

subsequent steps needed to reach another 

vertex.  One can also iteratively project, 

either choosing single-step elements only, 

or “skipping” steps by choosing multi-step 

elements. 

3. When using the transitive closure, the 

projected row shows whether a particular 

vertex can be subsequently reached in any 

number of steps.  Here, iterative 

projection is not necessary, since 

transitive closure shows reachability  

From the preceding discussion, we see that projection 

along a column of a reachability matrix predicts the 

impact (possible steps forward) of an attack.  

Correspondingly, we can project along a row (as opposed 

to a column) of such a matrix to predict attack origin 

(possible steps backward).  In this case, when one projects 

along a row to the main diagonal, the resulting column 

gives the possible steps backward in the attack.  As 

before, we can predict attack origin using either (1) the 

adjacency matrix, (2) the multi-step reachability matrix, 

or (3) the transitive closure.  Just as for forward 

projection, this gives either (1) single-step reachability, 

(2) multi-step reachability, or (3) all-step reachability, but 

this time in a backward direction for predicting attack 

origin. 

4. Applications 

In this section, we apply our general approach to a 

number of different network security situations.  Sub-

Section 4.1 shows the application of clustered adjacency 

and reachability matrices to a vulnerability-based attack 

graph.  In Sub-Section 4.2, we show how reachability 

matrices give a concise summary of attack graph changes 

driven by changes to the network configuration.  Sub-

Section 4.4 shows how our approach can help categorize 

intrusion alarms and predict attack origin and impact. 

4.1 Vulnerability-Based Attack Graphs 

Figure 1 shows an example drawn attack graph, in 

which low-level security conditions have been aggregated 

to machine vertices, and exploits have been aggregated 

for pairs of machines.  This attack graph was generated 

from a network model created from Nessus [16] 

vulnerability scans.  Despite the fact that this attack graph 

has been aggregated to the level of machines, the drawn 

graph is still cluttered with edges and is hard to follow.  

Some clustering is apparent in this drawing, but the exact 

nature of the clusters, such as their boundaries and cross-

cluster relationships, is not readily apparent. 

Figure 2 shows the same attack graph as Figure 1, 

this time represented as an adjacency matrix.  In the 

matrix, rows represent exploits from a particular machine, 

and columns represent exploits to a particular machine.  

The presence at least one exploit between a pair of 

machines is indicated by black matrix element, and the 

absence is indicated by white.  Here, there is no a priori 

way of ordering the matrix rows and columns to form 

meaningful clusters.  That is, from the given ordering, the 

underlying structure of the attack graph is obscured. 



 

Figure 1:  Example drawn attack graph. 
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Figure 2:  Unclustered adjacency matrix for 
attack graph in Figure 1. 

In Figure 3, we have clustered the attack graph 

adjacency matrix in Figure 2.  The underlying structure of 

the attack graph is now clear.  The clustering algorithm 

has identified 9 clusters (rectangular blocks) of 

homogeneous graph edges.  The 3 blocks on the main 

diagonal (blocks A1,1, A2,2, and A3,3) are solid black, 

indicating full attack graph connectivity within each 

block.  That is, within one of these main-diagonal blocks, 

every machine can attack every other machine (through at 

least one exploit).  Thus in the terminology of [4], these 

blocks constitute protection domains, which have been 

detected automatically by the clustering algorithm.  Block 

A2,3 of the clustered adjacency matrix shows exploits 

launched from the 2
nd

 to 3
rd

 protection domains (from 

block A2,2 to A3,3).  Similarly, block A3,1 shows exploits 

from the 3
rd

 to 1
st
 protection domains (from block A3,3 to 

A1,1).  Note that Figure 3 shows how matrix rows and 

columns were reordered by the clustering algorithm, i.e., 

rows and columns are labeled with their original indices.  

In practice, we might use more meaningful labels, such as 

IP addresses. 

Figure 4 shows the square of the clustered attack 

graph adjacency matrix in Figure 3.  Here we have used 

the arithmetic product (as opposed to the Boolean 

product).  This shows not only whether there exists at 

least one 2-step attack from one machine to another, but 

also the actual count of all possible 2-step attacks.  For 

example, we see that within the 2
nd

 protection domain 

(block A2,2), there are 20 possible 2-step attacks between 

each pair of machines, corresponding to the 20 machines 

in that protection domain.  We see corresponding 

numbers of 2-step attacks within the other 2 protection 

domains (blocks A1,1 and A3,3).  There are relatively fewer 

2-step attacks across protection domains (blocks A2,3 and 

A3,1). 

Figure 5 shows successive powers (A
2
, A

3
, and A

4
) of 

the clustered adjacency matrix, this time employing 



Boolean matrix multiplication.  This shows attacker 

reachability between each pair of machines, within 2, 3, 

and 4 steps, respectively.  We see that within 4 steps, 

machines in the 2
nd

 block can successfully attack all 

machines (i.e., all columns) in the network.  Also within 4 

steps, machines in the 1
st
 block can be successfully 

attacked from all machines (i.e., from all rows) in the 

network. 
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Figure 3:  Clustered adjacency matrix for attack 
graph in Figure 1. 
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Figure 4:  Clustered adjacency matrix for attack 
graph in Figure 1, raised to 2

nd
 power for 2-step 

attacks. 

In Figure 6, we have combined the reachability 

matrices in Figure 5 (and the adjacency matrix in Figure 

3) into a single matrix, as defined by Equation (3).  All 

the information in the separate per-step reachability 

matrices can now be seen together.  This multi-step 

reachability matrix is used again in Section 4.4 for attack 

origin and impact prediction. 

A2 A3 A4A2 A3 A4
 

Figure 5:  Reachability for 2, 3, and 4 steps for attack graph in Figure 1. 
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Figure 6:  Multi-step reachability for attack graph 
in Figure 1. 

 

4.2 Reachability for Attack Graph Changes 

Figure 7 shows an attack graph adjacency matrix for 

a network of 730 machines.  While we do not show it, the 

corresponding drawn attack graph would be exceedingly 

cluttered and difficult to understand.  Again, we have 

aggregated low-level security conditions to machines and 

sets of exploits between them, so that rows and columns 

are machines, and non-zero entries mean at least one 

exploit between a pair of machines.  Here, a priori 

ordering of machines (rows and columns) is sufficient, so 

that we do not apply matrix clustering.  In the figure, 

black indicates the attack graph for a baseline network 



configuration, before any network configuration changes.  

Orange then indicates new attack graph edges, resulting 

from changes to the network configuration.  In this case, 

the vertical orange lines (columns) indicate vulnerable 

web servers that have been added to the network, with a 

policy that all machines in the network can connect to 

these vulnerable servers. 

Figure 8 shows the resulting transitive closure (all-

step reachability) for the baseline (black) and changed 

(black+orange) network.  Here we see that before 

deployment of the web servers (black), attacks are only 

possible within the main diagonal blocks, from block A2,2 

to blocks A3,3 and A4,4, and from block A3,3 to block A4,4.  

But after deployment of the web server (black+orange), 

machines in block A1,1 can reach all machines in the 

network, and all machines in the network can reach the 

machines in blocks A2,2, A3,3, A4,4, and A5,5.  That is, only 

machines in block A1,1 are safe from attacks outside their 

block. 
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Figure 7:  Attack graph adjacency matrix for 
baseline (black) and changed (orange) network. 
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Figure 8:  Transitive closure for Figure 7, for 
baseline (black) and changed (black+orange) 

network. 

 

4.3 Prediction of Attack Origin and Impact  

Figure 9 shows the multi-step vulnerability-based 

reachability matrix from Figure 6, but this time with 

intrusion alarms associated with elements of the matrix.  

Thus, knowing attack reachability across the network, we 

can categorize and correlate detected intrusions in terms 

of it.  In Figure 9, an intrusion alarm (in yellow) occurs 

between a pair of machines that are known to be 

unreachable from one to the other.  In this case, we might 

consider it to be a false alarm.  Similarly, an intrusion 

alarm (in purple) occurs between a pair of machines, 

which, according to the attack graph, should require at 

least 4 attack steps to reach from one to the other.  If we 

were to rely on traditional attack graph drawings, we 

would need to trace many edges before coming to this 

conclusion. 

There are 2 other intrusion alarms in Figure 9 that 

according to the attack graph, are each possible one-step 

attacks.  In fact, if we project (along a column) from 

Alarm 1 to the main diagonal, we find Alarm 2 on the 

projected row, indicating that according to the attack 

graph, Alarm 2 follows immediately after Alarm 1.  In 

this case, we correlate the two alarms based on the 

likelihood that they are part of a coordinated attack. 

Figure 10 shows another intrusion alarm associated 

with the multi-step reachability matrix from Figure 6.  

This time, we project to the main diagonal in each 

direction, i.e., along columns and rows, to explore 

forward and backward steps from this alarm.  In this way, 

we can predict the origin of the attack (from the backward 

direction) and the impact of the attack (from the forward 

direction).  Projecting along the row to the main diagonal, 

we reach a column that has non-zero entries only within 

the 2
nd

 main-diagonal block (block A2,2).  In fact, these 

non-zero entries are all of unity value, indicating that 

these are all one-step attacks.  In other words, only an 

attack from one of the machines in block A2,2 could have 

led to the detected intrusion, and that could have 

happened within one attack step. 

In Figure 10, when we project the detected intrusion 

to the main diagonal along its column, the row of 

intersection shows all possible forward steps from the 

detected event.  In this case, we see that machines in the 

2
nd

 block cannot be reached by the attacker, since block 

A3,2 is zero-valued.  For this reason, no attack response is 

necessary for defending machines in these columns.  

However, because block A3,1 shows reachability within 2 

to 3 steps, measures might be taken to defend machines in 

these columns, although not at the highest priority.  The 

highest priority should be for machines in the columns of 

block A3,3, because those machines are all reachable from 

the detected event within a single step. 
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Figure 9:  Categorizing and correlating intrusion alarms via attack graph reachability.
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Figure 10:  Predicting attack origin and impact. 

5. Summary and Conclusions 

This paper shows how clustered adjacency matrices 

reveal the underlying regularities in network attack 

graphs.  Our approach is particularly attractive because it 

avoids the edge clutter usually associated with literal 

drawings of attack graphs.  The adjacency matrix is 

concise, representing each graph edge with a single 

matrix element.  Our approach places no particular 



restrictions on the form of the attack graph.  It therefore 

applies to attack graphs based on network vulnerabilities, 

detected intrusions, or combinations thereof, and well as 

attack graphs with aggregated vertices, e.g., aggregated 

by network machine.  Our approach has low-order 

polynomial complexity overall, for scalability to larger 

networks. 

The information-theoretic clustering algorithm we 

apply reorders rows and columns of the adjacency matrix 

so that rectangular blocks of similarly-connected attack 

graph elements emerge.  This clustering algorithm is fully 

automatic, parameter-free, and scales linearly with 

problem size.  We further transform the attack graph 

adjacency matrix by raising it to higher powers, to 

represent multiple attack steps.  We can thus show 

attacker reachability across the network within any 

number of attack steps.  We combine these per-step 

reachability matrices into a single matrix that shows the 

minimum number of steps between any pair of vertices in 

the attack graph.  We also summarize reachability over all 

number of steps via transitive closure. 

Through our general approach, we are able to 

correlate, predict, and hypothesize about network attacks.  

For example, we can provide a concise summary of 

changes in an attack graph resulting from changes in the 

network configuration.  We can place intrusion alarms in 

the context of the vulnerability-based attack graph for 

categorizing alarms.  We can step forward from an attack, 

to predict its impact and prioritize defensive responses 

according to the number of steps required to reach victim 

machines.  We can also step backward from an attack, to 

predict its origin. 
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