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Abstract Declarative approaches to business process mod-

eling are regarded as well suited for highly volatile envi-

ronments, as they enable a high degree of flexibility. How-

ever, problems in understanding and maintaining declara-

tive process models often impede their adoption. Likewise,

little research has been conducted into the understanding

of declarative process models. This paper takes a first step

Communicated by Dr. Selmin Nurcan.

This research is supported by Austrian Science Fund (FWF):

P23699-N23 and the BIT fellowship program, by Spanish Ministerio

de Ciencia e Innovación (TIN2009-13714) and the European Regional

Development Fund (ERDF/FEDER).

C. Haisjackl (B) · S. Zugal · J. Pinggera · B. Weber

University of Innsbruck, Innsbruck, Austria

e-mail: cornelia.haisjackl@uibk.ac.at

S. Zugal

e-mail: stefan.zugal@uibk.ac.at

J. Pinggera

e-mail: jakob.pinggera@uibk.ac.at

B. Weber

e-mail: barbara.weber@uibk.ac.at

I. Barba

University of Seville, Seville, Spain

e-mail: irenebr@us.es

P. Soffer · I. Hadar

University of Haifa, Haifa, Israel

e-mail: spnina@is.haifa.ac.il

I. Hadar

e-mail: hadari@is.haifa.ac.il

M. Reichert

University of Ulm, Ulm, Germany

e-mail: manfred.reichert@uni-ulm.de

toward addressing this fundamental question and reports

on an empirical investigation consisting of an exploratory

study and a follow-up study focusing on the system analysts’

sense-making of declarative process models that are speci-

fied in Declare. For this purpose, we distributed real-world

Declare models to the participating subjects and asked them

to describe the illustrated process and to perform a series

of sense-making tasks. The results of our studies indicate

that two main strategies for reading Declare models exist:

either considering the execution order of the activities in

the process model, or orienting by the layout of the process

model. In addition, the results indicate that single constraints

can be handled well by most subjects, while combinations of

constraints pose significant challenges. Moreover, the study

revealed that aspects that are similar in both imperative and

declarative process modeling languages at a graphical level,

while having different semantics, cause considerable trou-

bles. This research not only helps guiding the future devel-

opment of tools for supporting system analysts, but also gives

advice on the design of declarative process modeling nota-

tions and points out typical pitfalls to teachers and educators

of future systems analysts.

Keywords Declarative process models ·

Empirical research · Understandability

1 Introduction

In the context of analyzing and designing information sys-

tems, the positive influence of conceptual modeling on under-

standing and communication has been documented [42]. For

example, business process models (process models for short)

have been employed in the context of process-aware infor-

mation systems, service-oriented architectures, and Web ser-
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vices [54]. Recently, declarative approaches, and specifi-

cally Declare [47], have received increasing attention due

to their flexibility with respect to modeling and execution

of processes [52]. While imperative process models specify

exactly how things must be done, declarative models focus

on the logic that governs the interplay of process actions by

describing activities that may be performed as well as con-

straints prohibiting undesired behavior.

Problem statement Existing research has addressed techni-

cal issues of declarative process models, such as formaliza-

tion of semantics [24], maintainability [63], verification [47],

and execution [5]. Understandability concerns of declarative

models (i.e., the ability to correctly explain the model, and

solve problems related to the model), on the contrary, have

only been considered to a limited extent. In particular, it has

been argued that understandability may be hampered by the

lack of computational offloading [66] and the existence of

hidden dependencies [67]. Put differently, it remains unclear

whether the full potential of declarative modeling can be

exploited or whether understandability issues impede upon

their successful adoption.

Contribution In this paper, we approach these issues by

investigating the sense-making of declarative process mod-

els specified in Declare in two studies: an exploratory study

focusing on the comprehension of Declare models, and a

follow-up study designed to confirm and extend the find-

ings of the exploratory study. In both studies, subjects were

asked to voice their thoughts while performing the tasks, i.e.,

we applied think-aloud [16] to gain insights into the reason-

ing processes. The results of the exploratory study suggest

an iterative and sequential way of reading Declare models.

This is surprising, as Declare models are designed to convey

circumstantial information. Further, the exploratory study

identified challenges when system analysts were required to

combine several constraints, i.e., when hidden dependencies

between constraints existed. Additionally, the exploratory

study investigated how hierarchy in declarative process mod-

els affects their understandability. Interestingly, we did not

observe differences regarding the strategies applied by sub-

jects when confronted with hierarchical process models.

In the follow-up study, we aim at confirming and extend-

ing the findings of the exploratory study by investigating

the observed difficulties regarding hidden dependencies, the

combination of constraints, and existence constraints. In

addition, we examine strategies for understanding declarative

models. Since the sense-making of hierarchical Declare mod-

els was already addressed in [68] and no additional strategies

for understanding could be observed in hierarchical models,

we did not pursue the sense-making of hierarchical mod-

els in the follow-up study. In the follow-up study, iterative

and sequential reading of Declare models could not be con-

firmed as a single prevailing strategy for making sense of

declarative models, but two distinct strategies could be iden-

tified (that coincided in the exploratory study due to the

used material). Further, the follow-up study confirmed the

challenges observed in the exploratory study like the com-

bination of constraints, hidden dependencies, and pairs of

constraints. Existence constraints, in turn, caused relatively

little difficulties when asked in isolation. In addition, our

study showed that process modeling knowledge on imper-

ative process modeling languages cannot simply be trans-

ferred to declarative process modeling. Moreover, the follow-

up study revealed that aspects that appear to be similar in

imperative and declarative process modeling languages at a

graphical level, while having different meaning, caused con-

siderable difficulties.

The exploratory study is part of a larger investigation on

declarative process models [68]. While [68] focused on quan-

titative results, the exploratory study contained in this paper

and presented in [22] describes solely qualitative data. This

paper extends the work from [22] with a follow-up study

based on the findings of the exploratory study. Therefore,

the contribution of this paper is twofold. First, we intend

to verify the findings of the exploratory study. Second, we

strive for deepening our knowledge regarding the understand-

ing of declarative process models by covering additional

research questions that were raised in the exploratory study.

In this way, this paper constitutes another building block

toward a more comprehensive understanding of the declara-

tive process modeling paradigm. In the long run, we aim at

guiding the development of tools for supporting system ana-

lysts, as well as pointing out typical pitfalls to teachers and

educators of systems analysts. In addition, our research has

implications for the design of declarative process modeling

notations.

The remainder of the paper is structured as follows. Sec-

tion 2 gives background information. The exploratory study

is described in Sect. 3, whereas the follow-up study is

described in Sect. 4. Related work is presented in Sect. 5,

and finally, Sect. 6 concludes the paper.

2 Backgrounds

In this section, we present background information on declar-

ative models in general, traces for declarative models, and

hierarchy in the context of declarative models. We discuss

potential understandability problems of declarative models,

i.e., hidden dependencies. Finally, we present the concept of

mental effort as an additional measure for understanding.

2.1 Declarative process models

Declarative approaches have received increasing interest, as

they suggest a fundamentally different way of modeling busi-
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Table 1 Definition of

constraints

Group Constraint Definition

Existence exactly(a,n) Activity a must occur exactly n times

existence(a,n) a must occur at least n times

max(a,n) a must occur at most n times

init(a) a must be the first executed activity in every trace

last(a) a must be the last executed activity in every trace

Relation precedence(a,b) activity b must be preceded by activity a (not necessarily directly)

response(a,b) If a is executed, b must be executed afterward (not necessarily

directly afterward)

succession(a,b) Combines precedence(a,b) and response(a,b)

chain_response(a,b) If a is executed, b is executed directly afterward

coexistence(a,b) If a is executed, b must be executed and vice versa

Negation neg_response(a,b) If a is executed, b must not be executed afterward

neg_coexistence(a,b) a and b cannot co-occur in any trace

ness processes [47]. Instead of describing how a process must

be executed, declarative models focus on the logic that gov-

erns the interplay of process actions. For this purpose, declar-

ative process models specify activities that may be performed

as well as constraints prohibiting undesired behavior. Con-

straints may be divided into existence, relation, and negation

constraints [1]. Existence constraints specify how often an

activity must be executed for one particular process instance.

In turn, relation constraints restrict the ordering of activi-

ties by imposing corresponding restrictions. Finally, negation

constraints define negative relationships between activities.

Table 1 shows examples for each category; an overview of

all constraints can be found in [1].

2.2 Traces for declarative process models

A trace is defined as a completed process instance [52]. It

can have two different states. If it satisfies all constraints of

the model, it is denoted as valid (also referred to as satisfied).

If the trace violates constraints in the model, it is considered

as invalid (also referred to as violated). A minimal trace is

defined as a valid trace with a minimum number of activities.

Put differently, a trace is minimal if there exists no other valid

trace that contains less activities. A sub-trace, in turn, can be

in three different states:

– Valid: The sub-trace satisfies all constraints of the process

model.

– Temporarily violated: The sub-trace does not satisfy all

constraints of the process model, but there is an affix or

suffix that could be added to the sub-trace such that all

constraints are satisfied.

– Invalid: The sub-trace violates constraints in the process

model, and no affix or suffix can be added to the sub-trace

to satisfy all constraints.

An example of a Declare model S is depicted in Fig. 1 [47].1

The model consists of six distinct activities A, B, C, D,

E, and F. In addition, it comprises three constraints. The

neg_coexistence constraint (i.e., C1) forbids that A and B

co-occur in the same trace. In turn, the response constraint

(i.e., C2) requires that every execution of C must be fol-

lowed by one of F before the process instance may com-

plete. Finally, the exactly constraint (i.e., C3) states that F

must be executed exactly once per process instance. The

traces σ1 = 〈A,A,D,E,A,F〉, σ2 = 〈B,C,F,E,B〉, and

σ3 = 〈B,E,F〉 satisfy all constraints (C1–C3), i.e., σ1, σ2,

and σ3 are valid traces. Traces σ4 to σ6 are invalid: σ4 =

〈A,F,C,E,A〉 violates C2, σ5 = 〈B,D,F,C,F〉 violates C3,

and σ6 = 〈A,D,B,F,E〉 violates C1. Trace σ7 = 〈F〉 is the

minimal trace since there exists no other valid trace compris-

ing a lower number of activities. Finally, trace σ8 = 〈D,A,C〉

corresponds to a temporarily violated sub-trace, as C1 and

C2 are not satisfied, but the suffix 〈F〉 could be added such

that the sub-trace becomes a valid trace.

2.3 Hierarchy in declarative process models

Using modularization to hierarchically structure information

has been identified as a viable approach to deal with com-

plexity for decades [46]. In the context of declarative process

models, hierarchy can be established using sub-processes,

which are referenced via complex activities. When execut-

ing such a complex activity, the referred process model, i.e.,

the sub-process, is instantiated (see [68] for details). Simi-

lar to the notion of hierarchy in, e.g., BPMN, the life cycle

events of an instance of a complex activity and the respec-

tive process instance are coupled. For example, when start-

ing a complex activity, the respective process instance is set

1 Declare was formerly known as ConDec, see: http://www.win.tue.nl/

declare/2011/11/declare-renaming/.
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Fig. 1 Example of a

declarative process model,

adapted from [52]

Process Model PMB

A C D

Process Model PMM

(a) 

X Activity X

X Y

Activity  X must be 

executed before activity Y 

can be executed

X Complex activity X

B

+

+

A

(b) 

C

D

Legend

Fig. 2 Example of a process model with and without hierarchy. a Hier-

archical process model. b Corresponding flat process model

to state started. Similarly, the complex activity instance is

set to state completed when the referred process instance is

completed. Please note that thereby constraints referring to a

complex activity do not directly influence the activities within

the process, the complex activity is referring to. Rather, con-

straints influence the life cycle of the process instance, which

in turn impacts the activities contained therein. To illustrate

this notion of hierarchy, consider process model P MM shown

in Fig. 2a. It contains activity A, which is connected by a

precedence constraint to complex activity B. Complex activ-

ity B, in turn, refers to sub-process P MB containing activi-

ties C and D, without any constraints. When translating this

model into a flat process model, one might use the following

reasoning: In P MM , no constraint restricts the execution of

A; however, the execution of C and D must be preceded by

an execution of A (C and D can only be executed within

complex activity B, which in turn requires activity A to be

executed before). Hence, to describe this behavior without

the use of hierarchy, the process model shown in Fig. 2b may

be used. Please note that even though Fig. 2a, b are seman-

tically equivalent, they differ in the number of activities and

constraints.

2.4 Hidden dependencies

Concerning the understanding of declarative process models,

it has been hypothesized that the combination of constraints

poses a considerable challenge [39,47,67]; especially, inter-

actions that are not easily recognizable, i.e., hidden depen-

dencies [20], are assumed to constitute a significant challenge

in reading and thus understanding declarative process mod-

els. Consider, for instance, the combination of existence con-

straints and response constraints as shown in Fig. 1. The com-

bination of the exactly constraint (i.e., C3) and the response

constraint (i.e., C2) adds an implicit constraint that prohibits

the execution of C after F. In particular, C2 requires C to be

followed by F, but at the same time C3 prescribes that Fmust

be executed exactly once. In other words, if C was executed

after F, another execution of F is required in order to satisfy

C2; however, this is prohibited by C3. Since this interaction

is not explicitly visible, it is not sufficient that the system ana-

lyst relies solely on the information displayed explicitly in

the process model. Instead, the system analyst must carefully

examine the process model for the presence of such hidden

dependencies.

2.5 Mental effort

In this work, we investigate the sense-making of declarative

process models. Hence, characteristics of the human cogni-

tive system are of interest as well. In the following, we discuss

working memory, which is essential for effective functioning

of the cognitive system. Working memory is responsible for

maintaining and manipulating a limited amount of informa-

tion for goal-directed behavior, such as the interpretation of

a declarative process model (cf. [4]). As opposed to working

memory, long-term memory represents a theoretically unlim-

ited information store that contains the complete knowledge

base of a person (e.g., knowledge about facts, events, rules,

and procedures). Working memory strongly interacts with
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Process 1

Flat

Process 2

Hierarchical

Process 3

Flat

Process 4

Hierarchical

Process 1

Hierarchical

Process 2

Flat

Process 3

Hierarchical

Process 4

Flat

Demographics,

Introduction

Demographics,

Introduction

Group 1

n/2 Participants

Group 2

n/2 Participants

Discussion

Discussion

Fig. 3 Design of the exploratory study

long-term memory. For understanding a declarative process

model, for instance, knowledge about the modeling nota-

tion is necessary. In this context, working memory is the

work place where information is integrated, manipulated, and

related. Therefore, working memory can be conceptualized

as the activated part of long-term memory [61]. In [37], the

capacity of working memory is stated with 7 ± 2 chunks.

More recent works have reported an even smaller capacity

of 3–5 items [15]. The amount of working memory currently

used is thereby referred to as mental effort [44]. Research

indicates that a high mental effort increases the probability

of errors, especially when the working memory capacity is

exceeded [60]. In the context of conceptual models, mental

effort is of interest as it appears to be connected to perfor-

mance, e.g., properly answering questions about a model.

Similarly, Moody [40] argues that higher mental effort is in

general associated with lower understanding of models.

Measuring mental effort Various techniques exist for assess-

ing mental effort, including pupillometry, i.e., measuring the

diameter of the eyes’ pupils, heart rate variability, and rating

scales [44]; especially, rating scales, i.e., self-rating mental

effort, have been shown to reliably measure mental effort and

is thus widely adopted [44]. Furthermore, this kind of mea-

surement can be easily applied, e.g., by using 7-point rat-

ing scales. For instance, in [33], mental effort was assessed

using a 7-point rating scale, ranging from (1) very easy to (7)

very hard for the question “How difficult was it for you to

learn about lightning from the presentation you just saw?” In

the context of conceptual modeling, it was argued that men-

tal effort should be considered as an additional measure of

understanding together with accuracy and duration [2,65].

For instance, in contrast to accuracy, subtle differences can

presumably be observed [65]. In particular, for cases where

mental effort is well within the working memory’s limits and

thus does not provoke a significant number of errors, still a

difference in mental effort can be observed [65].

3 Empirical investigation part 1: exploratory study

Since there has been no considerable research on under-

standability issues of declarative process models, and hence

no theories exist, we can base our investigation on and we

address the topic in an exploratory manner using a qualita-

tive research approach [6]. In particular, we use the think-

aloud method, i.e., we ask participating subjects to voice

their thoughts, allowing for a detailed analysis of their rea-

soning process [16]. Then, we turn to grounded theory [13],

an analysis approach for identifying recurring aspects and

grouping them to categories. These categories are validated

and refined throughout the analysis process.

3.1 Defining and planning the exploratory study

3.1.1 Research question

Goal of this study was to investigate how system analysts

make sense of declarative process models. In particular, we

are interested in common strategies and typical pitfalls occur-

ring during this sense-making process. The research question

RQ0 can be stated as follows:

Research question RQ0 What are common strategies and

typical pitfalls that can be observed when system analysts

make sense of declarative process models?

3.1.2 Subjects

In order to ensure that obtained results are not influenced

by unfamiliarity with declarative process modeling, subjects

need to be sufficiently trained. Even though we do not require

experts, subjects should have at least a moderate understand-

ing of declarative processes’ principles. For information on

the actual subjects, see Sect. 3.2.1.

3.1.3 Objects

The models used in the study originate from a case study [21]

and describe real-world business processes. From a set of 24

process models collected in this case study, 4 models were

chosen as basic objects for the exploratory study. This was

accomplished in a way ensuring that the numbers of activi-

ties and constraints vary. To make the models amenable for

this study, they underwent the following procedure. First,

the models were translated to English (the case study was

conducted in German) since all exercises were done in Eng-

lish. Second, since the models collected during the modeling

sessions had not gone through quality assessment, they were

scanned for errors and corrected accordingly. Third, since we

were interested in how different structures of the process rep-

resentation would influence the process models’ understand-
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ability, we created a second variant of each process describing

the same process, but making use of sub-processes. Conse-

quently, we have two variants of each process model: a flat

and a hierarchical one. The characteristics of the process

models P1 to P4 are described in [22].

3.1.4 Design

Figure 3 shows the overall design of the exploratory study:

first, subjects are randomly assigned to two groups of simi-

lar size. Regardless of the group assignment, demographical

data are collected and subjects obtain introductory assign-

ments. To support subjects in their task, cheat sheets briefly

summarizing the constraints’ semantics are provided, which

can be used throughout the study. Introductory tasks allow

subjects to familiarize themselves with the type of tasks to

be performed—potential problems can therefore be resolved

at this early stage without influencing actual data collection.

After this familiarization phase, subjects are confronted with

the actual tasks. Each subject works on two flat process mod-

els and two hierarchical ones. Group 1 starts with the flat rep-

resentation of process model 1, while Group 2 works on the

hierarchical representation of the same model. Subjects are

confronted with hierarchical and flat models in an alternat-

ing manner. For each model, the subject is asked to “explain

roughly what the process describes.” The study is concluded

by a discussion with the subject to help reflecting on the study

and providing us with feedback.

3.1.5 Instrumentation

For each model, subjects received separate paper sheets

showing the models, allowing them to use a pencil for high-

lighting or taking notes. No written answers were required,

only free talking. Audio- and video recording was used as

it has proven being useful for resolving unclear situations in

think-aloud protocols [63].

3.2 Performing the exploratory study

3.2.1 Execution

The study was conducted in July 2012 in two locations. First,

seven subjects participated at the University of Ulm, followed

by two additional sessions at the University of Innsbruck, i.e.,

a total of nine subjects participated. Even though we have a

small sample size, we want to mention that—as described

in Sect. 3.4—the sample size is not unusual for this kind

of empirical investigation due to the substantial effort to be

invested per subject (e.g., transcribing video data and quali-

tative analysis). According to the qualitative theoretical sam-

pling principles [59], our subjects represent an appropriate

sample, as all of the subjects were familiar with Declare (cf.

Sect. 3.2.2), and differ in other aspects, such as university

and location. Additionally, to ensure that subjects were suffi-

ciently familiar with declarative process modeling, they were

provided with training material. Each session was organized

as follows: first, the subject was welcomed and instructed

to speak thoughts out loudly. To allow subjects to concen-

trate on their tasks, the sessions were performed in a “paper-

workflow” manner, i.e., one supervisor was seated left to the

subject and a second supervisor to the right. The sheets con-

taining the study’s material were then passed from the left

to the subject. As soon as the subject finished the task, the

material was passed to the supervisor on the right.2 Mean-

while, the subject’s actions were audio- and video recorded

to gather any uttered thoughts.

3.2.2 Data validation

In each session, only a single subject participated, allowing

us to ensure that the study setup was obeyed. In addition,

we screened whether subjects fitted the targeted profile, i.e.,

whether they were familiar with process modeling in general

and Declare [47]. We asked questions regarding familiarity

on process modeling, Declare, and domain knowledge; note

that the latter might significantly influence performance [29].

We conclude that they had a profound background in process

modeling (the least experienced subject had 2.5 years of mod-

eling experience) and were moderately familiar with Declare

(see [22] for details). Finally, we assessed the subjects’

professional background: all subjects indicated an academic

background, i.e., they were either Ph.D. students or postdocs.

3.2.3 Data analysis

Our research focuses on sense-making of declarative process

models. On one hand, we investigated strategies applied

by subjects in understanding process models, and on the

other, we explored typical phenomena and pitfalls in this

process. For this purpose, data analysis comprised the fol-

lowing stages.

1. Transcribing the verbal utterances

2. Creating graphs describing the order in which subjects

mention activities

3. Analyzing transcripts using grounded theory.

In (2), for each model, we created a graph representing

the order activities were mentioned by the subjects. For this

purpose, we utilized the transcripts created in (1), but also

video recordings to identify when subjects visited an activity

without talking about it. In (3), we applied grounded theory to

2 The exploratory study’s material can be downloaded from http://bpm.

q-e.at/experiment/HierarchyDeclarative.
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the transcripts in order to explore and understand phenomena

appearing when subjects make sense of Declare models. As

a starting point, transcripts were inspected in order to mark

aspects that caused confusion and were misinterpreted or

left out. In a second iteration, we revisited the marked areas

and searched for new aspects. This process of open coding

analysis was repeated until no new aspects could be found.

Afterward, we performed axial coding, i.e., we repeatedly

grouped aspects to form high-level categories. We counted

the number of identified markings per category.

3.3 Findings of the exploratory study

Based on the findings of our data analysis, we identified dif-

ferent ways how declarative models are read and interpreted

answering research question RQ0. For further details and

examples, please take a look at [22].

3.3.1 Reading declarative business process models

When analyzing graphs and transcripts, we observed that

subjects consistently adopted similar strategies when read-

ing declarative models. Regardless of whether sub-processes

were present or not, they described the process in the order

activities that were supposedly executed, i.e., they tried to

describe the process in a sequential way. Hence, as a first

step, subjects skimmed over the process model to find an

entry point where they could start with describing the (main)

process. A declarative process model, however, does not nec-

essarily have a unique entry point, apparently causing confu-

sion. The subjects used two different solutions for this kind

of situation. Either they looked for a last constraint, or they

assumed the upper left corner of the model to be its entry

point. After having identified an entry point, subjects tried to

figure out in which order activities are to be executed.

This routine was iterative, i.e., if parts of a model were not

connected, subjects applied the same strategy for each com-

ponent, i.e., they started again at the upper left corner of these

components. We observed this behavior independent of the

respective process model or subject. Finally, subjects indi-

cated where the process supposedly ends. When there was

no last constraint, subjects stopped describing the process

model after having mentioned all activities of all compo-

nents. If a model contained sub-processes, subjects preferred

talking first about the main process in the above-specified

way before describing the sub-processes. When reading sub-

processes, the subjects used the same routine as for the main

process, except two subjects. One of them described all and

the second subject one out of four sub-processes completely

backwards, i.e., following the semantics of precedence con-

straints, instead of describing them sequentially.

3.3.2 Single building blocks

Flat declarative process models In general, when subjects

made sense of a model, they named activities and their con-

nections. Sometimes, it happened that subjects missed single

or small groups of activities. In summary, 27 out of 294 activ-

ities were missed in flat process models. When describing a

model sequentially, subjects named activities explicitly and

most of the connections, i.e., the constraints, implicitly. How-

ever, most subjects did not mention existence constraints.

This behavior could not be found for any other constraint.

For 12 out of 18 models (9 subjects described two flat mod-

els), subjects left out 34 of 78 existence constraints in flat

models.

Hierarchical declarative process models Regarding hierar-

chical process models, subjects tended to miss less activities.

In summary, 5 out of 331 activities were missed in hierar-

chical process models. Concerning the existence constraints

in hierarchical process models, for 11 out of 18 models (9

subjects described two hierarchical process models), one or

more existence constraints were not mentioned. 52 out of 117

existence constraints were ignored in hierarchical process

models.

Flat and hierarchical declarative process models As far as

the interpretation of constraints is concerned, subjects had

relatively little problems irrespective of whether the mod-

els were flat or hierarchical. 12 different constraint types

were used in the experimental material. To accomplish their

task, subjects had cheat sheets available and could look up

constraints they did not know. Except for the precedence

constraint, which caused considerable difficulties, subjects

faced no notable problems. Four out of nine subjects used

the precedence constraint in a wrong way. The definition of

this constraint (cf. Sect. 2) is that “B may only be executed,

if A has been executed before.” The subjects used it the other

way round, i.e., “So if we perform [A], then [B] should be

performed afterward….”

3.3.3 Combination of constraints

Constraints between two activities P1 contained two and P4

five situations where two constraints link two activities. In

6 out of these 7 cases, the direction of the constraint arrows

is directly opposed to each other. For example, one needs to

get offers for interior of an apartment before buying them

(precedence constraint). After the interior is bought, it is not

reasonable to get new offers (negation response). The sub-

jects had no troubles to understand these situations. However,

in the first process model, there is a case where a precedence

constraint and a chained response constraint link the two
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activities “write test” and “run tests.” Both arrows are point-

ing to the second activity. The precedence constraint ensures

that before the first execution of “run tests,” “write test” must

be executed at least once, i.e., it is not possible to run a test

before it was written. The chained response constraint tells

us that “If A has been executed, B must be executed imme-

diately afterward,” meaning that after the test was written, it

must be run directly afterward; 4 out of 9 subjects had trou-

bles with the precedence constraint. Two of them claimed

that it is redundant, two even thought it is wrong. The other

5 subjects ignored the precedence constraint.

Hidden dependencies All process models contain hidden

dependencies (cf. Sect. 2). Since these interactions are not

explicitly visible, it is not sufficient that the system analyst

only relies on the information displayed explicitly, but must

carefully examine the process model for these hidden depen-

dencies as well. Our results show that the subjects mostly

ignored hidden dependencies, i.e., only in 8 out of 36 cases

(4 models per subject, 9 subjects), a hidden dependency was

mentioned or found.

3.4 Exploratory study: discussion

3.4.1 Reading declarative process models

Subjects preferred describing process models in an iterative

and sequential way. The sequential way of describing mod-

els is surprising, as it is known that declarative process mod-

els rather convey circumstantial information (overall condi-

tions that produce an outcome) than sequential information

(how the outcome is achieved) [17]. In other words, in an

imperative model, sequences are made explicit, e.g., through

sequence flows. In a declarative process model, however,

such information might not be available at all. As subjects

tend to talk about declarative models in a sequential manner,

it appears as if they prefer this kind of information. Interest-

ingly, similar observations could be made in a case study on

declarative process modeling [63]. Therein, sequential infor-

mation, such as “A before B” or “then C,” was preferred for

communication.

3.4.2 Single building blocks

Regarding the interpretation of single building blocks, sub-

jects mentioned activities and constraints when trying to

understand the model. Overall, they had relatively little prob-

lems with the interpretation of single building blocks. Excep-

tions seem to be precedence and existence constraints. As a

possible explanation, these constraints are too simple and

are thus not mentioned at all; further, cheat sheets are not

used (cf. dual-process theory [28] describing the interplay

of implicit unconscious and explicit controlled processes).

Another explanation is that subjects were biased by previous

knowledge about imperative models. Regarding the prece-

dence constraint, it nearly looks like the arrow used in imper-

ative process modeling notations.

3.4.3 Combining constraints

The interplay of constraints seems to pose a challenge, espe-

cially in the context of hidden dependencies. One explana-

tion could be that subjects simply forgot looking for them,

as reading declarative models can quickly become too com-

plex for humans to deal with [47]. As mentioned earlier, in 8

out of 36 cases, subjects found a hidden dependency. In 5 of

these 8 cases, they were found in the second process model,

which has the smallest number of activities, constraints, and

constraint types. This indicates that, if a model is not too com-

plex, subjects will be able to find hidden dependencies. Given

this finding, it seems plausible that the automated interpre-

tation of constraints can lead to significant improvements

regarding the understandability of declarative process mod-

els [63].

3.4.4 Differences between flat and hierarchical process

models

Subjects did not distinguish between flat and hierarchical

process models when reading the models. They used the

same description strategy for components and sub-processes.

Interestingly, subjects left out more activities in flat than in

hierarchical process models (cf. Sect. 3.3.2). A reason for this

phenomenon could be abstraction [64], i.e., hierarchy allows

aggregating model information by hiding the internals of a

sub-process using a complex activity, thereby information

can be easier perceived. All other aspects we found could be

observed in flat and hierarchical models equally. However, it

cannot be excluded that for declarative process, models with

more complex sub-processes behavior might change.

3.4.5 Limitations

This study has to be viewed in light of several limitations.

First, the number of subjects in the study is relatively low

(9 subjects), hampering result generalization. Nevertheless,

it is noteworthy that the sample size is not unusual for this

kind of empirical investigation due to the substantial effort to

be invested per subject [14,43]. Second, even though models

used in this study vary in the number of activities, num-

ber of constraints, and existence of sub-processes, it remains

unclear whether results are applicable to declarative process

models in general, e.g., more complex models. In addition,

it is unclear whether the results would be the same if mod-

els with a different layout would be used. Third, all par-

ticipating subjects indicated academic background, limit-
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ing result generalization. However, subjects indicated pro-

found background in business process management. Hence,

we argue that they can be interpreted as proxies for profes-

sionals. Lastly, note that this study focuses exclusively on

Declare models, and further studies are needed to establish

whether the same conclusions would apply to other declara-

tive process modeling languages.

4 Empirical investigation part 2: follow-up study

In the exploratory study described in Sect. 3, we have

taken a rather broad perspective on the sense-making of

Declare models. Particularly, we observed our subjects in

an exploratory manner. The goal of the follow-up study

described in this section was to take up the findings from the

exploratory study for a more systematic and directed inves-

tigation of the identified issues. In particular, we will test our

assumption that system analysts tend to show a sequential

way of reading Declare models. We will deepen our analysis

of potential pitfalls, i.e., problems that potentially occur when

interpreting these models. We also consider the influence of

knowledge on the understanding of declarative models and

take subjective factors into account by asking system analysts

for improvements of declarative modeling.

4.1 Defining and planning the follow-up study

In this study, we deepen our investigation by shifting the

focus in two ways. First, we have found that system ana-

lysts were able to make use of modularization in Declare

models, i.e., properly interpreted sub-processes. At the same

time, we have observed that system analysts tend to apply

different reading strategies when reading a Declare model.

Therefore, we have shifted our focus toward the investiga-

tion of reading strategies and did not make use of modu-

larization anymore, but applied different layout variants to

Declare models. Second, since this study is rather of confir-

matory than of exploratory nature, we also take quantitative

data into account by asking research questions regarding the

pitfalls we found in the exploratory study. In the following,

we introduce the research questions and describe subjects,

objects, design, and instrumentation of the follow-up study.

4.1.1 Research questions

The research questions are directly derived from the find-

ings of the exploratory study. In particular, research ques-

tion RQ1 investigates how system analysts read declara-

tive process models. In turn, research questions RQ2.1 to

RQ2.4 examine challenges and difficulties system analysts

face when interpreting declarative process models. Finally,

research questions RQ3.1 to RQ3.3 focus on measures for

improving the understanding of declarative process models.

Regarding research question RQ1, in the exploratory study,

we observed that process models were described in the order

in which activities are supposedly executed. However, in the

exploratory study, we laid out models from top left to bottom

right, and it is known that the top left is a common start-

ing place for problem-solving tasks [19]. Thus, we could not

exclude that this behavior had been triggered by the layout of

the process models. Therefore, in research questions RQ1,

we want to clarify whether these reading strategies are indeed

inherent to declarative process models or rather caused by

specific layouts.

Research question RQ1 Which strategies are adopted by sys-

tem analysts when making sense of declarative process mod-

els?

In the exploratory study, we have analyzed the way in

which system analysts make sense of declarative process

models in a rather broad manner, i.e., how system ana-

lysts describe the process model. As it is known that the

interpretation of constraints can cause considerable diffi-

culties (cf. [47,67]), we extend our investigation by tak-

ing into account situations where several constraints need

to be combined. In particular, we investigate challenges that

occur when performing basic interpretation tasks, such as the

naming of minimal traces, valid traces, or invalid traces (cf.

Sect. 2.2):

Research question RQ2.1 What are the challenges system

analysts are facing when performing basic model interpreta-

tion tasks, such as determining minimal traces, valid traces,

and invalid traces?

In the exploratory study, we observed potential pitfalls of

declarative process models caused whenever two activities

were connected by a pair of constraints. In the follow-up

study, we investigate this previously identified issue in more

detail, as postulated in the following research question:

Research question RQ2.2 What are the challenges that arise

when system analysts have to deal with pairs of constraints

between two activities?

In the exploratory study, we found that system analysts

rarely mentioned hidden dependencies. However, it is unclear

whether system analysts refrained from mentioning them

because they consider them to be trivial or whether they were

unaware of them. As it has been claimed in several theoreti-

cal works that hidden dependencies negatively influence the

understandability of declarative process models [39,67], it

appears likely that system analysts were not aware of the

hidden dependencies. Thus, we deepen the investigation of

hidden dependencies in research question RQ2.3 as follows:

Research question RQ2.3 What are the challenges that arise

when system analysts have to deal with hidden dependen-

cies?

Finally, we have found that existence constraints were

largely neglected. In Sect. 3.4, we have speculated that this
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could be traced back to the fact that existence constraints are

particularly easy to understand and are therefore not explic-

itly mentioned. The goal of research question RQ2.4 was to

investigate this claim.

Research question RQ2.4 Do challenges arise when system

analysts have to deal with existence constraints? If yes, how

do system analysts deal with these challenges?

So far, we have focused on aspects that might negatively

influence the understanding of declarative models. In the fol-

lowing, we turn toward a more positive perspective and look

into factors connected to a better understanding of declara-

tive models. In particular, it has been shown that for imper-

ative models, education and experience play a central role

regarding understanding [54]. In this vein, in research ques-

tion RQ3.1, we investigate whether similar effects can be

observed for declarative models.

Research question RQ3.1 Are modeling experience and edu-

cation connected to a lower error rate in interpreting declar-

ative process models?

With respect to improving understandability of declara-

tive process models, the interpretation of constraints appears

to play a central role [47,67]. In this sense, the concept of

mental effort was associated with lower error rates [65]. To

investigate this claim, the link between mental effort and cor-

rect answers is examined in research question RQ3.2:

Research question RQ3.2 Is there a relationship between the

number of correctly answered questions and the mental effort

spent?

Up to now, research questions focusing on improving

understandability were motivated by previous research. In

research question RQ3.3, we take a broader perspective and

ask for particularly challenging modeling constructs as well

as personal suggestions for improving the understandability

of declarative process models.

Research question RQ3.3 Which modeling constructs are

perceived particularly challenging and where do system ana-

lysts see a potential for improving the understandability of

declarative process models?

4.1.2 Subjects

As in the exploratory study, we require sufficiently trained

subjects. Again, even though we do not require experts, sub-

jects should have at least a moderate understanding of the

principles of declarative processes. For information on the

actual subjects, see Sect. 4.2.1.

4.1.3 Objects

From the set of 4 models used in the exploratory study, 2

flat versions were chosen as basic objects for the follow-up

study, i.e., P1 and P3. The models were adapted to the needs

of this study, resulting in P5 and P6. The models from the

exploratory study were adapted as detailed in the following.

First, constraints and components were added or changed to

make the models amenable for this study (e.g., as P3 did

not contain a pair of constraints, we added one in P6). Sec-

ond, since we were interested in the influence of differences

regarding the models’ layout on the models’ understandabil-

ity, we created a second variant of each model describing

the exact same process, but with a horizontally and vertically

mirrored layout. The two variants for P5 are illustrated in

Fig. 4. Consequently, we have two variants of each model: a

normal and a mirrored one.

The models vary regarding the number of activities

(between 12 and 24 activities), number of constraints

(between 18 and 25 constraints), and degree of intercon-

nectivity of constraints, i.e., models consist of three to six

components. The models are based on two different domains

describing bug fixing in a software company and a worker’s

duties at an electronic company. Similar to the exploratory

study, the process models contain constraints of all three

types, i.e., existence, relation, and negation constraints.3

4.1.4 Design

The study is designed to prevent potential influencing effects.

Specifically, we try to avoid any effects caused by the specific

process models, as well any learning or fatigue effects, which

could lead to biased results. For this, we alternate the order

of models and the different layout variants, as illustrated in

Fig. 5a. During the study, each subject receives one normal

and one mirrored model. Further, we divide the subjects into

four groups; each group receives one of the four possible

combinations of process models, layouts, and the order in

which they are presented to the subjects. The study is con-

cluded by a discussion with the subject to help reflecting on

the study and providing us with feedback. For each process

model, a series of questions is asked (cf. Fig. 5b) as detailed

subsequently.

Describe process model First, the subjects are asked to

describe the process model roughly. This allows the familiar-

ization with the process model. The graph analysis is based

on the answers to this question.

Specific questions We ask the subjects three questions

regarding traces in declarative process models: name a min-

imal trace, two valid traces, and two invalid traces. The

answers to this question provide an immediate indication

whether the subject understood declarative process model-

ing. Further, a series of questions is designed based on the

3 The follow-up study’s material can be downloaded from: http://bpm.

q-e.at/experiment/MakingSenseDeclarative.
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Fig. 4 Normal and mirrored version of P5. a P5_normal , b P5_mirrored
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Fig. 5 Design of the follow-up study. a Overview, b questions per model, c tasks per question

findings of the exploratory study to investigate hidden depen-

dencies, pairs of constraints, and combinations of constraints.

To limit the influence of “badly formulated” questions, we

ask two questions for each category. Additionally, two ques-

tion on existence constraints are asked since existence con-

straints were mostly neglected during the exploratory study.

In order to gain a more detailed understanding of hidden

dependencies, we directly ask the subjects whether they iden-

tified any hidden dependencies, and ask them to name exam-

ples for hidden dependencies in the process model.

General questions We ask the subjects whether the model

is difficult to understand, what part is most challenging, and

if they have any suggestions to make the model easier to

read/understand.

For each of the questions, in turn, a three-step procedure

is followed, cf. Fig. 5c. First, the subject is asked to answer

the question. All questions could be answered by using only

information provided in the process models, i.e., the ques-

tions are schema-based comprehension tasks [29]. Likewise,

the process models are made available to the subjects while

answering the question, i.e., the tasks can be considered to

be read-to-do (cf. [9]). We use only closed questions, i.e.,

each question can be answered by selecting from the follow-

ing answers: True, False, and Do not Know. We award one

point for each correct answer and zero points for a wrong
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answer (including Do not Know). We deliberately allow for

the option Don’t Know, as otherwise subjects would be forced

to guess. Second, the subject is asked to assess the expended

mental effort. Third, the subject is asked to explain why cer-

tain mental effort was indicated.

4.1.5 Instrumentation

Like in the exploratory study, subjects receive separate paper

sheets showing the process models for each model, allowing

them to use a pencil for highlighting or taking notes as well

as juxtaposing the process models as desired. Again, audio-

and video recording are used.

4.2 Performing the follow-up study

4.2.1 Execution

The study was conducted in June and July 2013 at three

locations. First, one subject participated at the Universitat

Politècnica de València, followed by six session at the Uni-

versity of Seville and eleven sessions at the University of

Ulm, i.e., a total of 18 subjects participated. Again, we want

to mention that a small sample size is not unusual for this

kind of empirical investigation (cf., Sect. 4.4). Section 4.2.2

shows that the subjects represent an adequate sample as all

of the subjects were familiar with Declare, and differ in other

aspects, such as university and location (cf. [59]). Similar to

the exploratory study, the subjects were provided with train-

ing material. The follow-up study was organized the same

way as the exploratory one, with the difference in having

only one supervisor in the room handling the sessions in

a “paper-workflow” manner. To ensure that the think-aloud

sessions were executed in the same way at all places, super-

visors were trained in face-to-face meetings and got detailed

instructions.

4.2.2 Data validation

We screened subjects for prior knowledge on declarative

process modeling. Therefore, we had to omit two subjects due

to unfamiliarity with declarative process modeling. Unfortu-

nately, this resulted in unbalanced sizes for the four groups

(cf. Fig. 5). Group 1 consisted of 5 subjects, 4 subjects

remained in group 2, group 3 contained 4 subjects, and 3

subjects were assigned to group 4. The subjects from the

follow-up study all indicated an academic background were

either Ph.D. students, postdocs, or professors. We conclude

that they had a profound background in process modeling

(the least experienced subject had 3 years of modeling expe-

rience) and were moderately familiar with Declare. In con-

trary to the exploratory study, we differentiated the ques-

tions regarding process modeling by imperative and declara-

Table 2 Demographics of the follow-up study (8–12 based on 7-point

Likert scale)

Min Max Median

(1) Years of modeling experience 3 15 4.5

(2) Imperative models read last year 10 300 50

(3) Imperative models created last year 2 150 15

(4) Average number of activities 8 30 15

(5) Declarative models read last year 0 220 6

(6) Declarative models created last year 0 50 2

(7) Average number of activities 5 15 10

(8) Familiarity Declare 2 7 3.5

(9) Confidence understanding Declare 2 7 3.5

(10) Confidence creating Declare 2 7 4

(11) Familiarity software development 1 7 3.5

(12) Familiarity electronic companies 3 7 5.5

tive process modeling. Additionally, we asked questions with

respect to the subjects’ knowledge of modeling languages:

all subjects started learning process modeling with an imper-

ative modeling language. Only three subjects used a declara-

tive modeling language as their main process modeling lan-

guage. Demographics are presented in Table 2.

4.3 Findings of the follow-up study

In the previous section, we have discussed the design and

execution of the follow-up study. In the following, we use

the gathered data to investigate research questions RQ1 to

RQ3.3.

4.3.1 RQ1: Which strategies are adopted by system

analysts when making sense of declarative

process models?

To target this research question, we applied the same graph

analysis procedure based on think-aloud protocols as in the

exploratory study (cf., Sect. 3.2).

Normal declarative process models By analyzing graphs and

transcripts, we observed that subjects tended to read declar-

ative process models with a normal layout as described

in Sect. 3.3.1, i.e., we could replicate the findings of the

exploratory study. For example, Fig. 6 shows P5_normal and

a typical strategy to understand that model. The model con-

sists of three components. The first one contains activities

“receive bug report” and “search for bug in archive.” The

second component consists of the single activity “ask super-

visor for help.” The third component, in turn, comprises all

remaining activities. The dotted arrows display a typical way

in which subjects read the model to understand it.
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Fig. 6 P5_normal and a reading variant

As a first step, like in the exploratory study, subjects

skimmed over the process model to find an entry point where

they could start with describing the process: “The process

starts with receiving a bug report through the activity ‘receive

bug report,’ because of the init constraint.” In particular, all

16 subjects (100.0 %) started describing the process models

at an activity with the init constraint.

Afterward, 12 out of 16 subjects (75.0 %) working on

process models with the normal layout continued describ-

ing the model as stated in Sect. 3.3.1, i.e., after mention-

ing the entry point, they tried to figure out in which order

the activities are to be executed. In particular, this strat-

egy was observed 8 out of 9 times (88.9 %) for P5_normal

and 4 out of 7 (57.1 %) times for P6_normal . In addition,

we could observe that for P6_normal , some subjects seem

to prefer starting their analysis with components of low

complexity before continuing with more complex compo-

nents (3 out of 7, 42.9 %). Moreover, for P5_normal , one

subject had a strategy differentiating between unary con-

straints (e.g., existence constraints) and binary constraints

(e.g., relation and negation constraints). In particular, after

mentioning the init constraint, the subject analyzed all exis-

tence constraints, followed by all remaining binary con-

straints. When analyzing the binary constraints, the sub-

ject analyzed the model bottom-up following precedence

constraints constituting preconditions for activity execu-

tion.

In addition, we could observe that subjects working on

process models with normal layout described the model at

different granularity levels. The majority of subjects, i.e.,

9 out of 16 subjects (56.3 %), described the model at a

fine-grained level and mentioned most or all of the activi-

ties and also considered dependencies between constraints.

For P5_normal , this was the predominant strategy (7 out of

9 subjects, 77.8 %). Second, 5 out of 16 subjects (31.3 %)

read (parts of) the process models by building blocks, rather

describing roughly the goal of the components than reading

each activity label: (“This part describes relations with part-

ners or something like that…”). Interestingly, this strategy

only occurred for P6_normal (5 out of 7 subjects, 71.4 %).

Finally, 2 subjects described P5_normal only very roughly by

either only mentioning activity labels (1 subject) or by focus-

ing on the overall intention of the process model (1 subject),

i.e., “…the process seems to be a developing process in the

context of electronic devices.”

Mirrored declarative process models As normal laid out

models have a clear trend how subjects read them, we investi-

gated whether and how subjects are influenced by a changed

model layout. For example, Fig. 7 shows P6_mirrored . The

model consists of six components. The first one contains

activities “attend staff briefing” and “fetch job cards.” The

second component consists of the single activity “answer

questions of apprentices.” Three components comprise activ-
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Fig. 7 P6_mirrored and a reading variant

ities related to the typical workload of a worker of an elec-

tronic company. The last component contains the activities

“go to lunch” and “report return from lunch break.”

The graph analysis of P5_mirrored and P6_mirrored indi-

cates different strategies how subjects read these models (cf.

dotted arrows in Fig. 7 for an example of how a subject tried

to make sense of the process models). Most frequently (like

for the normal layout), subjects started their analysis with the

initial activity of the model (9 out of 16 subjects, 56.3 %). In

particular, this was a popular strategy for P5_mirrored (5 out of

7 subjects, 71.4 %). For P6_mirrored , only 4 out of 9 subjects

(44.4 %) started at the activity with the init constraint: “Ok,

we have an init activity here, so we start with ‘attend staff

briefing’.” Compared to the model with the normal layout,

this strategy was less frequently applied. We could observe

that it sometimes took subjects a while to identify the entry

point (1 subject for P5_mirrored ): (“Here there are around

10 or 11 activities. Mmm…There are some isolated activi-

ties, for example ‘ask supervisor for help’, this is completely

isolated. […] In fact there is one activity that has an init rela-

tion, hence, it has to be the first activity to be executed in

the complete process”). Having found the entry point, sub-

jects typically described the rest of the process as described

in Sect. 3.3.1, but in a mirrored manner (i.e., mentioning

the activities in the order they are presumably executed), as

depicted in Fig. 7. Overall, 6 out of 7 (85.7 %) subjects fol-

lowed this strategy for P5_mirrored . Moreover, 2 out of 9

subjects (22.2 %) used this strategy for P6_mirrored . One of

the 9 subjects (11.1 %) starting the analysis at the init con-

straint deviated from this pattern. After analyzing the init

constraint, the subject first looked at the small components

before analyzing the more complex ones. Within each com-

ponent, however, the subject tried to consider the execution

order of activities.

Another re-occurring strategy was to start the analysis in

the upper left corner, i.e., with activity “insert bug report into
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archive” in P5_mirrored and with “return from lunch break” in

P6_mirrored . For example, one subject uttered “I see at the top

of the model an activity that needs to be executed once…it’s

about lunch.” Afterward, the subjects continued the analysis

in a top-down manner (4 out of 16, 25.0 %; 1 out of 7 for

P5_mirrored , 14.3 %, and 3 out of 9 for P6_mirrored , 33.3 %).

For P6_mirrored 3 out of 9 subject (33.3 %), we could not

identify a systematic reading strategy; subjects seemed to

name activity labels in a random manner. Respective sub-

jects mainly tried to make sense of P6_mirrored and to come

to a conclusion regarding the overall intent of the process

by focusing by reading activity labels (mostly ignoring con-

straints) and by relying on the domain knowledge.

Again, we could observe that subjects described the model

at different granularity levels. Similar to the normal layout,

the majority of subjects, i.e., 10 out of 16 subjects (62.5 %),

described the mirrored process models at a fine-grained level

and mentioned most or all of the activities and constraints.

While for P5_mirrored , all subjects (7 out of 7, 100.0 %)

followed this strategy, only 2 out of 9 subjects (22.2 %)

described P6_mirrored at a fine-grained level. For P6_mirrored ,

2 subjects read the model by building blocks roughly describ-

ing the goal of the component, 5 subjects mostly focused in

their analysis on activity labels to determine the overall goal

of the process.

Discussion In the exploratory study, we found that subjects

tend to start reading the process model at the init constraint

and to sequentially go through the process model in the order

activities might get executed. Since the init constraints in the

models used in the exploratory study were in both cases in

the upper left corner of the model, we could not determine

whether the results of the exploratory study were due the

init constraint being an important factor or due to the fact

that people tend to start reading at the top [19]. To elimi-

nate the impact of the process model’s layout, we used two

model variants in the follow-up study, a normal layout (sim-

ilar to the exploratory study) and a mirrored version. We

expected that if the order of activities determines the reading

direction of subjects, that subjects start their analysis of the

mirrored models at the bottom of the model (with the init

constraint) and not in the upper left corner. If, however, the

prevalent reading direction in our culture (from left to right)

is the determining factor, the analysis of mirrored models

has to start in the upper left corner and not with the init con-

straint. Our results suggest that init constraints (9 out of 16 for

P5_mirrored and P6_mirrored , 56.3 %) seem to be more impor-

tant than the reading direction (4 out of 16 for P5_mirrored

and P6_mirrored , 25.0 %).

In addition, we could identify different strategies people

apply for analyzing a declarative process model once an entry

point has been found. For the models with normal layout,

the most common strategy in the exploratory study was to

analyze models top-down (considering at the same time the

execution order of activities). This could be replicated for the

models with the normal layout in the follow-up study. For

the mirrored process models, however, 8 out of 16 (50.0 %)

subjects analyzed process models bottom-up considering the

execution order of activities and 4 out of 16 (25.0 %) read

the model top-down in the typical reading direction. This

again suggests that starting with the init constraint was more

important to the subject than the prevalent reading direction

of our culture.

In terms of description granularity, we could observe con-

siderable differences between P5 and P6, irrespective of

the models’ layout. While for P5 the majority of subjects

described the model at a fine-grained level, i.e., at the level

of single activities (14 out of 16, 87.5 %), descriptions at the

level of building blocks were frequently used for P6 (7 out

of 16, 43.8 %). Another frequently used strategy for P6 was

the focus on activity labels (5 out of 16 subjects, 31.3 %). A

possible explanation for the differences between P5 and P6

might be the differences in the complexity of components

between P5 and P6. P5 only contains 3 components includ-

ing a rather complex one with 9 activities, 15 constraints,

and 7 different constraint types. P6, in turn, contains 6 com-

ponents (with at most 9 activities and 10 constraints, 4 dif-

ferent constraint types). The fact that P6 contains more, but

smaller components suggests that it was easier for subjects

to aggregate model information to building blocks, there-

fore applying this strategy more frequently. However, from

the data, we cannot conclude this with certainty making a

follow-up investigation necessary. Another open question to

be answered in a follow-up question is why labels are more

frequently used for P6.

4.3.2 RQ2.1: What are the challenges system analysts are

facing when performing basic model interpretation

tasks, such as determining minimal traces, valid

traces, and invalid traces?

As detailed previously, the subjects were asked to identify

2 invalid traces for each model, the minimal trace, and 2

valid traces. Since 16 subjects participated in the study and

each subject worked on two process models, 32 answers were

collected regarding the minimal trace (16 for each model).

Further, 64 for valid traces (32 for each model) and 64 invalid

traces (32 for each model) were collected. Figure 8 illustrates

the distribution of correct and incorrect answers for invalid

traces, minimal traces, and valid traces, respectively. Further,

Fig. 8 shows a categorization of the different types of errors

and their frequency.

Invalid traces Questions requiring the identification of invalid

traces were answered correctly to a large extent, i.e., 62 out of

64 questions (96.9 %) were answered correctly. This seems
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Fig. 8 Distribution of errors

when naming minimal, valid,

and invalid traces

reasonable since invalid traces can be constructed by violat-

ing a single constraint of the model. Both errors regarding

invalid traces were committed by the same subject. First, the

subject named the minimal trace and after that did not give

another invalid trace.

Minimal trace To identify the minimal trace, the subjects

had to find the initial activity, which was determined for both

models by init constraints, and check the effects of executing

this initial activity. For example, if the initial activity is part

of a response constraint, which was the case in both models,

the response constraint forces the execution of another activ-

ity. Additionally, activities with existence constraints must

be considered, which, in turn, might enforce the execution of

related activities. 5 out of 32 answers (15.6 %) were incor-

rect. 4 incorrect answers (12.5 %) are related to the violation

of existence constraints. For example, for P5, one subject

uttered “The minimal trace. . . ‘Receive bug report’, ‘search

for bug in archive’, minimal. . . Ok. That’s all,” forgetting

about the existence constraint on activity “try reproduction.”

Similarly, for P6, one subject uttered “we have to start with

‘attend staff briefing’ and just after that we have to ‘fetch job

cards’. This can be a minimal trace. . . the minimal trace can

be that,” forgetting about the existence constraint on activ-

ity “report return from lunch break.” A possible explanation

could be that either some subjects misunderstood existence

constraints. Alternatively, they might have overlooked exis-

tence constraints. One incorrect answer was given by a sub-

ject who confused a precedence with a response constraint,

which forced the execution of another activity. Specifically,

the subject included the activity “ask user” after the activity

“try reproduction” as part of the minimal trace of P5.

Valid traces The subjects were asked to identify two valid

traces apart from the minimal trace. Consequently, the sub-

jects are required to add additional activities to the minimal

trace. When adding these activities, the constraint have to be

examined to find potential consequences of adding activities,

e.g., response constraints. We observed the highest number

of incorrectly answered questions for this task. Specifically,

18 out of 64 (28.1 %) answers were incorrect. Additionally,

the minimal trace was given 3 times, even though we explic-

itly asked for different traces. Most errors, i.e., 8 out of 18

(12.5 % overall), are caused by subjects ignoring existence

constraints. We identified a fairly large overlap with errors

on minimal traces. 6 out of the 8 errors were committed by

the same subjects as for minimal traces. Further, for those

6 subjects, the same activity was missed in the valid traces.

This seems reasonable since most subjects took the minimal

trace and added some activities to form examples of valid
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traces. Therefore, subjects, who forgot certain activities in

the minimal trace, tended to forget the same activities when

naming examples of valid traces. For example, for P5, one

subject uttered “The first trace is going to be adding ask

supervisor to the minimal trace, I mean: ‘receive bug report’,

‘search for bug in archive’, and ‘ask supervisor’,” forget-

ting about the existence constraint on activity “try reproduc-

tion.” In a similar way, for P6, one subject uttered “ok. . .

again we start with ‘attend staff briefing’, ‘fetch job cards’,

and . . . and . . . we can execute for example ‘give duties

to apprentices’ and ‘control apprentices work’,” forgetting

about the existence constraint on activity “report return from

lunch break.” Several errors, i.e., 6 out of 18 (9.4 % overall),

were committed by subjects having problems with the com-

bination of constraints, all related to P5. For example, one

subject uttered “Other trace would be ‘receive bug report’,

‘search for bug in archive’, ‘try reproduction’, and ‘write a

test’,” forgetting to include activity “run test” as required by

the constraints between “write test” and “run test.” Further-

more, 2 incorrect answers were given in P6 due to subjects

having problems with hidden dependencies. For example,

one subject uttered “And another one (trace) can be ‘attend

staff briefing’, ‘fetch job cards’, ‘receive device from cus-

tomer’, ‘return device to customer’, ‘go to lunch’ and ‘report

return from lunch break’,” leaving out the activities “locate

defect on device” and “repair device.” Lastly, 2 answers were

incorrect in P6 due to misunderstanding constraints. Specifi-

cally, one subject uttered “One valid trace could be ‘fetch job

cards’, ‘attend staff briefing’, ‘answer questions of appren-

tices’, ‘go to lunch’ and ‘report return from lunch break’,”

which indicates that the subject misunderstood the chained

response constraint between activities “attend staff briefing”

and “fetch job cards,” i.e., the ordering of activities was not

correct.

Discussion In general, we observed only very limited diffi-

culties when subjects were asked to name invalid traces. This

is not surprising as invalid traces can be constructed by select-

ing a single constraint that can be violated. For instances, P6

contains the activity “fetch job cards” (cf. Fig. 7), which

has to be executed exactly once. An invalid trace can there-

fore be achieved by including this activity twice in the

trace. This finding seems reasonable when considering the

task with a cognitive background. Forming an invalid trace

can be achieved by utilizing a small portion of the process

model, occupying only limited space within working mem-

ory. Therefore, the task can be accomplished without over-

straining the working memory’s capacity [15,37], resulting

in a small number of errors [60]. We observed considerably

more difficulties when subjects were asked to name the min-

imal trace for the process model. This seems reasonable, as

a higher burden is put on the subject’s working memory, i.e.,

more elements need to be maintained in working memory to

identify the minimal trace. This problem is further amplified

when asking the subjects for valid traces apart from the min-

imal trace, i.e., even more elements need to be maintained

in working memory. Regarding the naming of minimal and

valid traces, the most common cause of error was related to

subjects ignoring the existence constraints. This number is

put into perspective for valid traces by the overlap of errors

between naming minimal traces and valid traces, i.e., sub-

jects who missed an activity in the minimal trace committed

the same error for valid traces. Keeping this in mind, it seems

that the combination of constraints becomes a more domi-

nant issue for forming valid traces. This seems reasonable,

as more elements need to be integrated in working memory

while remembering the consequences of including an addi-

tional activity in the trace, i.e., putting an additional burden

on the subject’s working memory.

4.3.3 RQ2.2: What are the challenges that arise when

system analysts have to deal with pairs of

constraints between activities?

To target this research question, we investigated how sub-

jects deal with pairs constraints between two activities while

making sense of a process model. In particular, two pairs

of constraints were introduced in P5 and one pair was intro-

duced in P6—in the following, we will describe how subjects

approached these situations.

First, we turn toward model P5, in which a pair of con-

straints between the activities “write tests” and “run test”

can be found (cf. Fig. 6). While the precedence constraint

ensures that it is not possible to run a test before it was writ-

ten, the chained response constraint requires a test to be run

directly after it was written. As discussed in RQ1, 2 out of

16 subjects (12.5 %) did not mention constraints on detail,

but rather focused on activity labels. The remaining 14 sub-

jects (87.5 %) looked at this pair of constraints in detail, and

thereof, 13 subjects (81.3 %) had no problems understand-

ing this pair of constraints, e.g., “regarding the activity ‘run

test’, before we are able to execute ‘run test’, we need to

write a test and just after finishing ‘write test’ we need to

execute ‘run test’.” Still, one subject (6.3 %) mentioned that

the precedence and chained response constraints should be

merged into a chained succession: “These 2 constraints are

not combined in a nice way. Because in one case there is a

precedence and in the other one there is a response. If we

want to take them in both ways, this would be a succession.

In fact, this would be a chained succession.” However, merg-

ing both constraints into a single-chained succession would

remove the possibility of executing the test whenever it is

needed, e.g., after executing activity “write code.” Hence,

we conclude that subjects did not reveal considerable prob-

lems with this pair of constraints.
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Second, we look into another pair of constraints in P5.

In particular, as shown in Fig. 6, between “run test” and

“write code,” a chained precedence constraint and a chained

response constraint exist. Hence, before code can be written,

the test must be run immediately (chained precedence), and

after writing code, the test must be run immediately (chained

response). Again, 14 out of 16 subjects (87.5 %) looked at this

pair of constraints in detail. 5 subjects (31.3 %) interpreted the

combination incorrectly. Particularly, 2 subjects claimed that

directly after “run test,” “write code” must be executed, i.e.,

confusing the chained precedence with a chained response

constraint: “And when ‘run test’ finishes, ‘write code’ has to

be executed.” 2 more subjects said that after “write code,”

“merge fix” has to be executed: “After writing code, this

fix must be merged and tested.” One subject interpreted the

constraints between “write code” and “run test” correctly,

but got confused to point where the subject argued that “they

can’t be executed.”. Hence, compared to the first situation of

paired constraints, more subjects experienced problems with

the pair of constraints.

Third, in P6, activities “determine errors” and “send

device back to production” are connected with a precedence

constraint and a chained response (cf. Fig. 7). Therefore, it is

not possible to send a device back to production before deter-

mining its errors and a device must be sent back to production

directly after its errors were determined. While describing P6,

6 out of 16 subjects (37.5 %) mentioned these two activities

(the other subjects described the model on a more abstract

level, cf. 4.3.1). Among these 6 subjects, only two explicitly

mentioned both constraints, i.e., the precedence and chained

response constraint. One of them understood the situation

after taking some time. The second one stated that these two

constraints should be combined to a chained succession: “in

fact I think it is the same case, they could be combined in

a chained succession.” Again, merging both constraints into

a single-chained succession would remove the possibility of

sending a device back to production whenever it is needed.

In short, only 10 subjects looked at constraints at all, 4 sub-

jects only mentioned one constraint, 1 subject understood

the combination correctly, and 1 subject showed problems.

However, this subject was the same who misinterpreted the

first pair of constraints in P5.

Discussion The findings obtained in RQ2.2 indicate that

pairs of constraints can cause considerable problems when

making sense of declarative process models. In particular,

for a pair of constraints in P5, error rates of 31.3 % could be

observed. However, for the remaining, two pairs—except for

2 misinterpretations of the same subject—were interpreted

correctly. Hence, we argue that pairs of constraints can pose

considerable problems, but the exact causes call for further

investigation.

4.3.4 RQ2.3: What are the challenges that arise when

system analysts have to deal with hidden

dependencies?

To investigate this research question, we asked subjects two

questions regarding hidden dependencies for model P5 and

model P6 (16 subjects, 2 questions per model, 2 models,

resulting in 64 answers). Figure 9 shows the distribution of

answers: Overall, subjects answered 50 out of 64 questions

correctly (78.1 %).

Regarding incorrect answers (14 out of 64), 12 (18.8 %)

answers were wrong because subjects did not look at the con-

nections between the activities of the model close enough,

i.e., overlooked a hidden dependency. For example, when

asked for process model P5 whether 〈“search for bug in

archive,” “ask user”〉 is a valid sub-trace, several sub-

jects overlooked the hidden dependency between activities

“receive bug report” and “search for bug in archive” (cf.

Fig. 6). One subject uttered that “if we add some activities,

this sub-trace can be a valid trace[…] Adding ‘receive bug

report’ and ‘try reproduction’… this will be a valid sub-trace,

so I think it’s true.” However, adding the two mentioned

activities before the given sub-trace is not possible due to the

chained response constraint between activities “receive bug

report” and “search for bug in archive,” requiring that activity

“search for bug in archive” is executed directly after activity

“receive bug report.” In one case, the subject answered the

question incorrectly, because of confusing a precedence con-

straint with a chained response constraint. Thus, the problem

was not really caused through hidden dependencies, but a

lacking knowledge of constraint semantics. For one subject,

the error source could not be determined, since no reasoning

was provided.

Results indicate that hidden dependencies constitute a

considerable challenge for system analysts and are frequently

overlooked. However, it is unclear whether this is because

subjects not being aware of hidden dependencies or whether

this is because such dependencies can be easily overlooked.

Therefore, as summarized in Fig. 10, after questions regard-

ing the pitfalls of Declare models, we asked subjects whether

they could recognize any hidden dependency while describ-

ing the model and answering questions about it.

Overall, subjects reported from 52 alleged hidden depen-

dencies, of which 44 were indeed proper hidden dependen-

cies. Interestingly, only 4 subjects named only correct hid-

den dependencies. In addition, 6 subjects named at least

one correct hidden dependency. One subject, in turn, only

mentioned incorrect hidden dependencies. For example, one

subject pointed out correctly “another example for a hidden

dependency would be precedence constraints that result from

the init constraint and stretch across the whole model,” i.e.,

an init constraint implies a precedence relation to all other

activities. In several cases, our transcripts revealed that not
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Fig. 9 Distribution of answers

for questions regarding hidden

dependencies

Fig. 10 Distribution of answers

regarding hidden dependencies

all subjects really know what hidden dependencies are. In

particular, 8 incorrect hidden dependencies were mentioned,

seemingly because the subjects had problems to understand

difficult situations (“Every time I execute ‘try reproduction’

I have to execute this sort of loop… this is a hidden depen-

dency”). Moreover, 5 subjects did not mention any hidden

dependencies, either because they did not know what hidden

dependencies are (2 subjects) or because they did not look out

for hidden dependencies or could not find any (3 subjects).

For example, one subject stated that “until now I didn’t recog-

nize any hidden dependencies…I didn’t pay attention to this

aspect.”

Discussion The follow-up study showed that hidden depen-

dencies (like the combination of constraints) cause consider-

able difficulties to subjects. When asked questions regarding

two models including hidden dependencies, subjects only

answered 78.1 % of the questions correctly. Asked to iden-

tify hidden dependencies for P5 and P6, the percentage of

correct answers was even lower: only 4 out of 16 subjects

(25.0 %) were able to only name correct hidden dependen-

cies. Knowing that the identification of hidden dependencies

requires the extraction of implicit information, i.e., informa-

tion that needs to be computed in the human mind [56], it

seems plausible that the identification of hidden dependen-

cies is indeed a difficult task.

4.3.5 RQ2.4: Do challenges arise when system analysts

have to deal with existence constraints? If yes, how

do system analysts deal with these challenges?

As detailed previously, 2 questions per model were related to

the number executions of certain activities (i.e., each subject

answered 4 questions focusing on existence constraints). The

Fig. 11 Distribution of errors for questions on existence constraints

questions were designed to focus on two different aspects: (1)

questions of low complexity, which require simple reasoning

(i.e., the subjects only need to analyze one activity and the

corresponding existence constraint for answering the ques-

tion) and (2) questions of higher complexity, which require

a more complex reasoning process (i.e., the subjects need

to analyze several activities and constraints together with

potential hidden dependencies for answering the question).

Since 16 subjects participated in the study and 2 questions

were included in each aspect, i.e., low/high complexity, 32

answers were recorded for each aspect. Figure 11 illustrates

the percentage of their correct and incorrect answers together

with the distribution of errors.

For questions of low complexity, the subjects did not expe-

rience any difficulties understanding existence constraints

since all questions were answered correctly. This makes it

reasonable to assume that the errors subjects made when

naming minimal and valid traces (cf. Sect. 4.3.2) are rather

due to overlooked existence constraints than misunderstood

existence constraints. In contrast, when analyzing the results

of questions of medium complexity, several errors occurred

due to misunderstood constraints. Specifically, for P5, 2 sub-

jects thought that chained precedence(A,B) together with
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Table 3 Modeling experience

and education versus accuracy

and mental effort

∗ Significant at the 0.05 level
∗∗ Significant at the 0.01 level

Factor Declarative Imperative

Acc. M. eff. Acc. M. eff.

Years of modeling experience 0.414 −0.248 0.250 −0.049

Formal training last year 0.150 −0.068 −0.030 −0.130

Self-education last year 0.270 0.264 0.069 −0.023

Amount of analyzed models 0.756∗∗ −0.249 0.254 −0.158

Amount of created models 0.657∗∗ −0.351 0.208 0.082

Avg. activities per model 0.555∗ −0.528∗ −0.035 −0.384

Familiarity with paradigm 0.537∗ −0.518∗ 0.034 −0.170

Confidence in understanding 0.604∗ −0.566∗ −0.013 −0.196

Competence in modeling 0.393 −0.484 −0.225 −0.260

max(B,1) implies max(A,1), which is not the case. For exam-

ple, one subject uttered “It is possible that ‘test fix’ is exe-

cuted ten times in a process instance… chained precedence

[…] ‘test fix’ must be executed immediately before ‘com-

mit changes’ and ‘commit changes’ can be executed only

exactly once,… in this case I think it is false that it can be

executed ten times, because of that relationship between ‘test

fix’ and ‘commit changes’.” In a similar way, for P6, 1 sub-

ject thought that precedence(A,B) together with exactly(B,1)

implies exactly(A,1), which is not the case. For example, one

subject uttered “because the activity ‘report return from lunch

break’ can be executed only once, ‘go to lunch’ can also be

activated only once in a process instance.” The other sub-

ject committing an error for P6 confused the meaning of a

constraint.

Discussion When asking the subjects for existence con-

straints, we observed only a limited amount of difficulties;

especially, when asking for existence constraints that are not

related to other activities via combinations of constraints,

we did not observe a single error. When requiring more com-

plex reasoning for answering the question, we observed three

errors that can be attributed to difficulties with the com-

bination of constraints, i.e., the subjects derived an incor-

rect meaning from the constraint combination. Therefore,

we conclude that existence constraints cause only a limited

amount of difficulties. Further, when problems arise, they are

rather caused by combinations of constraints than the exis-

tence constraint itself.

4.3.6 RQ3.1: Are modeling experience and education

connected to a lower error rate in interpreting

declarative process models?

So far, we investigated problems associated with the sense-

making of declarative process models. Next, we turn toward

ways for supporting the sense-making of declarative process

models. Generally, education has a positive influence on the

understanding of imperative process models [35,54]. In this

sense, it appears likely that the same holds for declarative

process models and that the influence of education related

to declarative process modeling is beneficial for the under-

standing of declarative process models. However, it is not

clear whether also education related to imperative process

modeling helps in the sense-making of declarative process

models. To this end, we screened the education and experi-

ence regarding declarative and imperative process modeling

and correlated the results with accuracy and mental effort,

i.e., the understanding of the process models.

The results of this analysis can be found in Table 3. In par-

ticular, the first column lists factors regarding education or

experience, whereas columns two to five show Spearman’s

rho for accuracy and mental effort, thereby columns two and

three focus on education and experience regarding declar-

ative process modeling, while columns four and five focus

on education and experience regarding imperative modeling.

Apparently, a distinction between education and experience

regarding declarative and imperative modeling can be made.

More specifically, the amount of analyzed and created declar-

ative models correlates statically significant with accuracy,

i.e., the amount of correct answers. Furthermore, average

activities per declarative model, self-rated familiarity with

declarative modeling in general, and self-rated confidence in

understanding declarative models correlate statistically sig-

nificant with accuracy and mental effort. Contrariwise, none

of the factors of educational background regarding impera-

tive modeling shows a statistically significant influence on

accuracy or mental effort.

Having established that declarative background has an

influence on the amount of correct answers, the question

arises whether similar errors are conducted by persons with

different levels of declarative knowledge and experience.

To investigate this question, we used the following proce-

dure. First, we computed a declarative knowledge score for
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Table 4 Correct answers per group and question category

Category Lower declara-

tive knowledge

Higher declara-

tive knowledge

Traces 59 61

Paired constraints 19 27

Hidden dependencies 19 21

Existence constraints 31 30

each subject by aggregating variables that showed significant

correlations with error rates, i.e., amount of analyzed mod-

els, amount of created models, average activities per model,

familiarity with paradigm, and confidence in understanding

(cf. Table 3). To compensate for different levels of mea-

surement, e.g., amount of created models versus familiarity

with paradigm, we created rankings for each of the variables

according to the ranking method used in Spearman’s rank

correlation coefficient. Then, we summed up these rankings

for each background variable, denoted as declarative knowl-

edge score. Based upon this score, we divided our sample into

two groups, i.e., a group with 8 subjects showing a declar-

ative background knowledge below average and 8 subjects

showing a declarative background knowledge above average.

The results of this procedure are summarized in Table 4:

the columns show the groups with lower and higher declara-

tive background knowledge, whereas the rows list the inves-

tigated categories. The numbers suggest that similar num-

bers of correct answers, except for category paired con-

straints, were found. To test whether differences between cat-

egories exist, we conducted Mann–Whitney U test between

the group with lower declarative knowledge against the group

with higher declarative knowledge for all categories: traces

(U = 17.5, p = 0.111), paired constraints (U = 17.0, p =

0.067), hidden dependencies (U = 23.0, p = 0.289), and

existence constraints (U = 32.0, p = 1.000). Even though

none of these comparisons could be found to be statistically

significant at α of 0.05, the computed p values differ consid-

erably. In particular, virtually no difference could be found

for existence constraints (p = 1.000), whereas differences

approached the significance niveau for paired constraints

(p = 0.067) and traces (p = 0.111). In other words, it can be

assumed that existence constraints cause similar difficulties

for inexperienced and experienced subjects. However, paired

constraints and traces seem to be particularly more difficult

for less-experienced subjects and hidden dependencies range

between these categories. We would like to emphasize at this

point that these results do not suggest that there are no differ-

ences between less and more experienced subjects, but rather

the low sample size might be responsible for nonsignificant

differences. Nevertheless, even if the frequencies of some of

these difficulties would be proven different between expe-

rienced and inexperienced subjects in larger samples, our

finding that both populations encounter these difficulties, to

a certain extent, remains valid.

Discussion Considering these results, it seems essential that

system analysts that are introduced to declarative modeling

receive adequate training and that the influence of knowl-

edge from imperative modeling is rather limited. Likewise,

regarding the recent interest in modeling languages that com-

bine declarative and imperative modeling constructs [55],

appropriate training seems essential. This finding is partic-

ularly relevant, as it was found that within imperative mod-

eling languages—particularly EPC and BPMN—it does not

matter which modeling language is taught [51]. Against this

background, it seems that within the same modeling para-

digm, knowledge can be rather easily transferred. However,

in our data, no statistically significant correlations between

imperative modeling knowledge and the understanding of

declarative models could be found.

4.3.7 RQ3.2: Is there a relationship between the number

of correctly answered questions and the mental

effort spent?

Regarding RQ3.1, we investigated in how far human-related

factors, such as experience and education, are connected to

the understanding of declarative models. Further, RQ3.2 is

concerned with supporting the sense-making of declarative

models, in particular with the question how improvements

can be measured. In this vein and detailed in the follow-

ing, works investigating potential problems regarding the

understanding of declarative models referred to problems

closely connected to the capabilities of the human mind. For

instance, the combination of constraints [47], hidden depen-

dencies [39,67], and hard mental operations [67] was iden-

tified as potential problems. Therefore, it seems desirable

to have measures at hand that allows researchers to assess

in how far proposed concepts support the human mind in

interpreting declarative models. To this end, as described

in Sect. 2.5, the measurement of mental effort seems to be

promising, as it presumably allows assessing subtle changes

with respect to understandability [65]. However, currently,

it is not clear yet whether mental effort is indeed a useful

measure for the understandability of a declarative model. To

compensate this shortcoming, in the following, we investi-

gate the connection between mental effort and accuracy, i.e.,

the percentage of correct answers—an established measure

for understandability [2].

To this end, we computed the average mental effort and

accuracy for each question. As described in Sect. 4.1, we pre-

pared 2 models with 8 questions each, leading to a total of

16 questions. To visualize the results, we employed a scatter

plot, as shown in Fig. 12. The x axis represents the men-
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Fig. 12 Mental effort versus accuracy

tal effort, ranging from Extremely low mental effort (1) to

Extremely high mental effort (7). In turn, the y axis shows

the associated accuracy, ranging from 0 (all answers incor-

rect) to 1 (all questions correct). Furthermore, three observa-

tions can be made. First, the mental effort of most questions

is below Neither high nor low mental effort (4), i.e., sub-

jects perceived the questions to be rather easy. In fact, the

questions were ranked to have on average Low mental effort

(M = 2.71, SD = 0.71). Second, questions were mostly

answered correctly, i.e., 84.0 % of all answers were correct

(M = 0.84, SD = 0.15). Third, it appears that, in general,

higher mental effort is connected to lower accuracy. To cor-

roborate these observations, we computed Spearman’s rho,

confirming that mental effort and accuracy are negatively

correlated [rS(14) = −0.628, p = 0.009].

As opposed to this background, the adoption of men-

tal effort for measuring the understandability of a declara-

tive process models seems to be promising. To provide fur-

ther support for the usefulness of mental effort, we need to

refer to an earlier experiment, in which we investigated the

impact of test cases on the maintenance of declarative process

models [63], thereby we assessed mental effort, accuracy,

and confidence—typical measures regarding understandabil-

ity [2]. Even though a positive influence on mental effort and

confidence could be found, accuracy did not change. In the

discussion, we argued that nonsignificant differences could

be traced back to problems with the experimental design.

In fact, the replication of the study confirmed the positive

influence on mental effort and confidence, but also on accu-

racy [65]. Hence, we argue that the adoption of mental effort

provides a valuable additional perspective, allowing us to

assess in more detail which research directions seem most

promising.

4.3.8 RQ3.3: Which modeling constructs are perceived

particularly challenging and where do system

analysts see a potential for improving the

understandability of declarative process models?

The goal of RQ3.3 was to complement findings obtained so

far with opinions and suggestions from system analysts. In

particular, after all questions regarding the understandability

of the process model were answered, we additionally asked

the following questions for each model:

– Why do you think the model was (not) difficult to under-

stand?

– Do you have suggestions for making the model easier to

understand?

To analyze answers, we once more applied grounded the-

ory to identify and classify issues, which—according to the

subjects—influence the sense-making of declarative business

process models. The results for the question “Why you think

the model was (not) difficult to understand?” are summa-

rized in Table 5. All in all, we could find 9 factors that

subjects considered to be beneficial/harmful for the sense-

making of declarative process models. These factors, in turn,

were grouped into three categories, i.e., factors relating to

constraints, factors relating to the imperative background of

the subjects, and other factors. Considering category con-

straints, 16 subjects mentioned that the combination of con-

straints posed a considerable challenge for the sense-making.

For instance, one subject mentioned that “for me it is difficult

to understand the meaning… since we have several relations,

several constraints which relate the order of the activities.”

In addition, 4 subjects explicitly mentioned that they experi-

enced problems with hidden dependencies. Positively, 4 sub-

jects explained that components supported the sense-making.

Knowing that almost all subjects had problems with the com-

bination of constraints, this appears plausible as components

help to reduce the amount of activities connected by con-

Table 5 Why do you think the model was (not) difficult to understand?

Category Factor Subj. Infl.

Constraints Combination of constraints 16 −

Hidden dependencies 4 −

Components 4 +

Semantic of constraint 4 −

Imperative background Components 4 −

Cycle 4 −

Init 2 +

Flow 1 +

Other Layout 4 −
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straints. Interestingly, only 4 subjects mentioned that they

had problems with the semantic of single constraints: prece-

dence, response, succession, and all chained constraints were

mentioned. As all subjects indicated problems with the com-

bination of constraints, this clearly indicates problems are

rather caused by the combination of several constraints than

by the semantic of single constraints.

Regarding category imperative background, we could find

two negative and two positive influences. Interestingly, 4

subjects mentioned components as negative influence—even

though another 4 subjects deemed components as a positive

influence, as described before. Also, 4 subjects indicated con-

straints that appeared visually, but not necessarily semanti-

cally, as cycles, as problem. To understand these peculiar and

apparently contradicting findings, we would like to refer to

the theory of Mindshift Learning [3]. This theory postulates

that, when learning new modeling languages, concepts that

are similar, but still show subtle differences, are most difficult

to learn. In the context of imperative and declarative process

modeling languages, one particular problem is related to the

graph-based notation. Even though both paradigms typically

make use of graph-based notations, the semantics are usu-

ally different to a large extent. Regarding components, in

an imperative process model, related activities are usually

connected be sequence flows. In declarative process mod-

els, however, related activities do not necessarily need to

be connected by constraints. Likewise, cycles in imperative

process models are created through sequence flows. In declar-

ative process models, constraints do not necessarily convey

sequential information only; thus, activities that are visu-

ally connected as a cycle do not necessarily describe a cycle

semantic-wise. In light of the theory of Mindshift Learning,

these concepts are similar, but yet not the same and thus par-

ticularly difficult to understand. Hence, it appears plausible

that components and cycles were mentioned as factors nega-

tively influencing sense-making. Contrariwise, we also found

two factors that were perceived positively. First, 2 subjects

mentioned that the init constraint—which relates to a start

event in an imperative process model—is useful in the inter-

pretation. Likewise, 1 subject mentioned that it appreciated

when the order in which activities are to be executed matches

the layout. Finally, regarding category other, we would like

to mention that 4 subjects perceived the layout as a nega-

tive influence. However, this can be rather traced back to the

setup of the study, i.e., the usage of mirrored layout, than the

specificities of Declare models.

Finally, question “Do you have any suggestions to make

the model easier to read or understand?” gives insights into

what subjects proposed to make declarative process models

easier to understand. In particular, as summarized in Table 6,

four suggestions were identified. First and foremost, 16 sub-

jects urged that the combination of constraints needs to be

simplified. Further, 6 subjects proposed the development of

Table 6 Do you have suggestions for making the model easier to under-

stand?

Suggestion Subjects

Simplify combination of constraints 16

Make hidden dependencies explicit 6

Change layout (from left to right) 6

Use modularization 4

mechanisms that make hidden dependencies explicit. In addi-

tion, 6 subjects indicated that a layout that aligned activities

in their execution order from left to right would be beneficial.

Finally, 5 subjects proposed to make use of modularization

for improving the understandability of declarative process

models.

Unsurprisingly, suggestions for the improvement of declar-

ative process models are closely connected to respective

problems (cf. Table 5). In general, it can be observed that

the basic building blocks of declarative process models—

activities and constraints—are rather unproblematic. How-

ever, the combination of constraints and resulting hidden

dependencies, in turn, pose considerable challenges. In this

sense, for instance, approaches providing computer-based

support for the interpretation of constraints seem promis-

ing [67]. Also, regarding the design of declarative process

modeling languages, it seems advisable to refrain from using

modeling constructs that look visually similar to impera-

tive modeling constructs, but exhibit different semantics—

such modeling constructs are particularly difficult to learn,

as argued in the Mindshift Learning theory [3].

4.4 Limitations

The findings of this study have to be seen in light of sev-

eral limitations. First and foremost, due to the similar nature

of experimental design, limitations of the exploratory study

also apply to the follow-up study. This includes the relatively

low sample size (even though not unusual [14,43]). Further,

although the adopted declarative process models vary in the

number of activities, constraints, domain and layout, it is

not entirely clear whether the results can also be applied for

declarative process models in general. Likewise, all subjects

indicated academic background, further limiting the gener-

alization of results. Lastly, note that this study focuses exclu-

sively on Declare models and further studies are needed to

establish whether the same conclusions would apply to other

declarative process modeling languages.

5 Related work

In this work, we have empirically investigated the sense-

making of Declare models. Similarly, the connection between
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a declarative process model’s modularization and its under-

standing was empirically validated in [68]. However, as

opposed to this work, the focus was put on modularization

further than on the general understanding of a declarative

process model. More generally, the understandability of con-

ceptual models with hierarchy was investigated for a variety

of modeling languages, such as PROTOS [53], Hierarchical

ER Diagrams [40], and UML Diagrams [10] (see [64] for

an overview). Similarly, the understandability of conceptual

modeling languages was examined from different angles. For

instance, the understandability of Extended ER Diagrams and

the Nijssen Information Analysis Methodology was com-

pared in [31], whereas the understandability of imperative

process models was investigated in [54]. Efficient cognitive

search for UML Class Diagrams [58] and ER Diagrams as

well as Data Flow Diagrams was investigated in [26]. Even

though all these approaches considerably help to improve

the understanding of conceptual models, none of them takes

declarative process models into account.

In a similar vein, guidelines for creating imperative mod-

els, all easier comprehensible, were proposed. For instance,

the Guidelines of Modeling describe various quality consid-

erations for process models [7]. The so-called Seven Process

Modeling Guidelines accumulate the insights from various

empirical studies (e.g., [36]) to develop a set of actions a sys-

tem analyst may want to undertake in order to avoid issues

with respect to understandability [34]. More generally, guide-

lines for other conceptual modeling languages, such as ER

Diagrams [8], and OWL [45], were proposed as well. Like-

wise, in [30], the effectiveness and usability of design guide-

lines for multiple diagrams was evaluated. Though all these

guidelines aim to improve the understandability of concep-

tual models, none of them takes declarative process models

into account, as approached in this contribution.

In this work, we have investigated the understanding of

declarative process models; likewise, the creation of declara-

tive process models is closely connected to this work. In par-

ticular, the role of understanding declarative process models

during modeling has been investigated in [67]. Similar to our

work, it has been postulated that declarative models are most

beneficial when sequential information is directly available,

as empirically validated in [63]. In a similar vein, the con-

struction of declarative process models from execution traces

is described in [32] and the verification of respective models

is discussed in [62]. Even though these works advance the

creation of declarative process models, the sense-making of

declarative process models is not investigated as detailed as in

this contribution. Besides the creation of declarative process

models, their execution, as enabled by Declare [47], should be

mentioned as well. In particular, although declarative process

models provide a high degree of flexibility, their execution

might pose a significant challenge. As argued in [57], it may

not always be clear to end users, which activity shall be exe-

cuted next. To counterbalance this problem, several methods

for guiding the end user through the execution of a declarative

process instance were proposed. For instance [47], proposes

to generate an automaton which represents all feasible traces

related to a declarative process model. From such automa-

tion, in turn, optimized execution plans can be created. In

a similar way, the approach of [38] can be used to gener-

ate and select traces of differing quality factors. Likewise,

optimized execution plans may be used for giving recom-

mendations to users [5], generating imperative process mod-

els [18], simulation, and time prediction [27]. More broadly

[57], propose similar methods that can be applied to impera-

tive process models as well. Even though this approach high-

lights improving the usability of declarative process models,

focus is on the phase of process operation solely.

For this study, we have focused on the declarative mod-

eling language Declare. Recently, also dynamic condition

response (DCR) graphs [41] have gained increasing inter-

est. DCR graphs, like Declare, allow for the specification

of declarative process models, support the specification of

sub-processes [24], and have been applied in a case study

for a cross-organizational case management system [25].

Unlike Declare, DCR graphs focus on a set of core constraints

instead of allowing for the specification of arbitrary con-

straints. DCR graphs also employ different formalisms for

operationalizing constraints. So far, contributions related to

DCR graphs have rather focused on technical aspects, such as

technical feasibility, formal correctness, and expressiveness,

while understandability issues have not been approached yet.

In this work, we investigated the outcome of a process

modeling endeavor, i.e., the process model. Recently,

researchers have begun to investigate the process of creating

a model, referred to as the process of process modeling [50].

Similar to this work, the way in which modelers make sense

of a model, while creating it, is investigated, e.g., by visual-

izing the process of process modeling [11]. Similarly, differ-

ent personalized modeling styles [49] and modeling strate-

gies have been identified [12]. Even though this stream of

research promises to provide insights into the sense-making

during modeling, none of these works has investigated the

creation of declarative models yet. Rather, current works

seem to focus on imperative modeling languages.

6 Summary and outlook

Declarative approaches to business process modeling have

recently attracted interest, as they provide a high degree of

flexibility [47]. However, the increase in flexibility comes at

the cost of understandability and hence might result in main-

tainability problems of respective process models [47,67].

To advance the understandability of declarative process mod-

els, we conducted an empirical investigation, consisting of
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an exploratory study and a follow-up study. The exploratory

study investigated how system analysts make sense of declar-

ative process models specified in Declare and provided

insights into associated problems. Further, the results indi-

cate that system analysts read declarative process models in a

sequential way. Regarding the combination of constraints, the

exploratory found that single constraints caused only minor

problems, but combinations of several constraints seem to

be challenging. More specifically, hidden dependencies, as

caused by the combination of constraints, were hardly iden-

tified.

In the follow-up study, we set out to confirm and refine

the findings of the exploratory study. In the exploratory study,

we found that system analysts read declarative process mod-

els in an iterative and sequential way. However, this finding

could not be fully confirmed in the follow-up study. In par-

ticular, the follow-up study showed that starting at the init

constraint and proceeding in a sequential way, considering

the execution order of activities, is a common strategy. How-

ever, the analysis also showed that there is a second com-

monly applied strategy, in which the analysis is started in

the top-left corner, reading the model in a top-down manner.

In the exploratory study—due to the way models were laid

out—these two strategies coincided. Using models with two

different layout variants in the follow-up study, we were able

to identify these two distinct strategies.

All other findings of the exploratory study could be

confirmed and refined in the follow-up study. In particu-

lar, the follow-up study showed that single constraints—

analogous to the exploratory study—did not cause consid-

erable problems. The combination of constraints, however,

caused considerable challenges. These challenges could be

observed in the context of several tasks like naming mini-

mal traces, naming valid traces, understanding pairs of con-

straints, and understanding hidden dependencies. In addi-

tion, the study showed that experience regarding declarative

process modeling correlates with accuracy, i.e., the amount

of correct answers, while experience regarding imperative

modeling did not lead to better results. While literature sug-

gests that process modeling knowledge can be transferred

from one imperative language to the other quite easily [51],

this apparently does not hold for different paradigms. More-

over, regarding the assessment of understandability, a close

relationship between mental effort and accuracy could be

established. Besides the combination of constraints, aspects

of declarative process models that graphically look simi-

lar to imperative concepts, e.g., cycle-looking structures and

directed edges, were mentioned.

Our studies focused on the sense-making of manually cre-

ated Declare models, but we did not consider models created

with the help of process mining. Even though approaches for

mining declarative constraints, e.g., [32], certainly support

the creation of declarative process models, it seems likely

that certain post-processing steps are necessary. For instance,

as the follow-up study showed, a model’s layout is an impor-

tant aspect when trying to make sense of a model. As the

entry point of a declarative process model is not necessarily

unique [67], automatically laying out a declarative process

model may not always be possible. Hence, one option might

be to start with a process model that was created by process

mining and to manually adapt the model according to the

findings of this work, e.g., to clean up the layout and to avoid

the usage of paired constraints.

To improve the understandability of declarative process

models, it seems particularly promising to make hidden

dependencies explicit, e.g., by providing computer-based

support, facilitating the interpretation of constraints [67],

and to make use of modularization [68]. Regarding design-

ing declarative process modeling notations, it might be rec-

ommendable to avoid representing declarative models in a

way similar to imperative models, especially when seman-

tic differs considerably (cf. Mindshift Learning theory [3]).

Guidelines aiming to improve the understandability of con-

ceptual models are introduced in Sect. 5, but guidelines eas-

ing the sense-making of declarative process model in order

to avoid pitfalls are still missing. Sections 3.3 and 4.3 show

frequently occurring difficulties (e.g., paired constraints and

hidden dependencies) that should be specifically addressed

in class. Even though the data provided first insights into the

process of understanding declarative models, further inves-

tigations are needed. Particularly, replications utilizing more

complex models seem to be appropriate means for additional

empirical tests. Although the think-aloud protocols already

provided a detailed view on the reasoning processes of sys-

tem analysts, we plan to employ eye movement analysis for

more detailed analysis. The adoption of eye tracking, as dis-

cussed in [48], allows for accurately identifying parts of the

process model system analysts are focusing on. In addition,

this technology allows for constantly assessing the mental

effort [23], allowing for the identification of particularly chal-

lenging parts in the process model. Based on these insights,

we intend to evolve our work toward empirically founded

guidelines enabling better understandability of declarative

process models.
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