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Abstract

Image representations, from SIFT and Bag of Visual

Words to Convolutional Neural Networks (CNNs), are a

crucial component of almost any image understanding sys-

tem. Nevertheless, our understanding of them remains lim-

ited. In this paper we conduct a direct analysis of the visual

information contained in representations by asking the fol-

lowing question: given an encoding of an image, to which

extent is it possible to reconstruct the image itself? To an-

swer this question we contribute a general framework to

invert representations. We show that this method can invert

representations such as HOG more accurately than recent

alternatives while being applicable to CNNs too. We then

use this technique to study the inverse of recent state-of-the-

art CNN image representations for the first time. Among our

findings, we show that several layers in CNNs retain pho-

tographically accurate information about the image, with

different degrees of geometric and photometric invariance.

1. Introduction

Most image understanding and computer vision methods

build on image representations such as textons [17], his-

togram of oriented gradients (SIFT [20] and HOG [4]), bag

of visual words [3][27], sparse [37] and local coding [34],

super vector coding [40], VLAD [10], Fisher Vectors [23],

and, lately, deep neural networks, particularly of the convo-

lutional variety [15, 25, 38]. However, despite the progress

in the development of visual representations, their design is

still driven empirically and a good understanding of their

properties is lacking. While this is true of shallower hand-

crafted features, it is even more so for the latest generation

of deep representations, where millions of parameters are

learned from data.

In this paper we conduct a direct analysis of representa-

tions by characterising the image information that they re-

tain (Fig. 1). We do so by modeling a representation as a

function Φ(x) of the image x and then computing an ap-

proximated inverse φ−1, reconstructing x from the code

Φ(x). A common hypothesis is that representations col-

Figure 1. What is encoded by a CNN? The figure shows five

possible reconstructions of the reference image obtained from the

1,000-dimensional code extracted at the penultimate layer of a ref-

erence CNN[15] (before the softmax is applied) trained on the Im-

ageNet data. From the viewpoint of the model, all these images are

practically equivalent. This image is best viewed in color/screen.

lapse irrelevant differences in images (e.g. illumination or

viewpoint), so that Φ should not be uniquely invertible.

Hence, we pose this as a reconstruction problem and find

a number of possible reconstructions rather than a single

one. By doing so, we obtain insights into the invariances

captured by the representation.

Our contributions are as follows. First, we propose a

general method to invert representations, including SIFT,

HOG, and CNNs (Sect. 2). Crucially, this method uses only

information from the image representation and a generic

natural image prior, starting from random noise as initial

solution, and hence captures only the information contained

in the representation itself. We discuss and evaluate differ-

ent regularization penalties as natural image priors. Sec-

ond, we show that, despite its simplicity and generality, this

method recovers significantly better reconstructions from

HOG compared to recent alternatives [33]. As we do so,

we emphasise a number of subtle differences between these

representations and their effect on invertibility. Third, we

apply the inversion technique to the analysis of recent deep

CNNs, exploring their invariance by sampling possible ap-

proximate reconstructions. We relate this to the depth of the

representation, showing that the CNN gradually builds an
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increasing amount of invariance, layer after layer. Fourth,

we study the locality of the information stored in the rep-

resentations by reconstructing images from selected groups

of neurons, either spatially or by channel.

The rest of the paper is organised as follows. Sect. 2 in-

troduces the inversion method, posing this as a regularised

regression problem and proposing a number of image priors

to aid the reconstruction. Sect. 3 introduces various repre-

sentations: HOG and DSIFT as examples of shallow repre-

sentations, and state-of-the-art CNNs as an example of deep

representations. It also shows how HOG and DSIFT can be

implemented as CNNs, simplifying the computation of their

derivatives. Sect. 4 and 5 apply the inversion technique to

the analysis of respectively shallow (HOG and DSIFT) and

deep (CNNs) representations. Finally, Sect. 6 summarises

our findings.

The neural network models for HOG and DSIFT

and the MATLAB code for this paper are available

at http://www.robots.ox.ac.uk/˜vgg/

research/invrep/index.htm. We use the matcon-

vnet toolbox [32] for implementing convolutional neural

networks.

Related work. There is a significant amount of work in un-

derstanding representations by means of visualisations. The

works most related to ours are Weinzaepfel et al. [35] and

Vondrick et al. [33] which invert sparse DSIFT and HOG

features respectively. We also note work on inverting the

Bag-of-Visual-Words model by Kato et al. [13] and Local

Binary Descriptors by d’Angelo et al. [5]. While our goal is

similar to these prior works, our method is substantially dif-

ferent from a technical viewpoint, being based on the gra-

dient descent of a simple regularised regression problem.

The benefit is that our technique applies equally to shallow

(SIFT, HOG) and deep (CNN) representations. We did not

perform any experiments on inverting Bag-of-Visual-Words

features or Local Binary Descriptors. Compared to existing

inversion techniques for dense shallow representations such

as HOG [33], it is also shown to achieve superior results,

both quantitatively and qualitatively.

An interesting conclusion of [33, 35] is that, while HOG

and SIFT may not be exactly invertible, they capture a sig-

nificant amount of information about the image. This is in

apparent contradiction with the results of Tatu et al. [29]

who show that it is possible to make any two images

look nearly identical in SIFT space up to the injection of

adversarial noise. A symmetric effect was demonstrated

for CNNs by Szegedy et al. [28], where an imperceptible

amount of adversarial noise suffices to change the predicted

class of an image. The apparent inconsistency is easily re-

solved, however, as the methods of [28, 29] require the in-

jection of high-pass structured noise which is very unlikely

to occur in natural images.

Our work is also related to the DeConvNet method of

Zeiler and Fergus [38], who backtrack the network com-

putations to identify which image patches are responsible

for certain neural activations. Simonyan et al. [26], how-

ever, demonstrated that DeConvNets can be interpreted as a

sensitivity analysis of the network input/output relation. A

consequence is that DeConvNets do not study the problem

of representation inversion in the sense adopted here, which

has significant methodological consequences; for example,

DeConvNets require auxiliary information about the acti-

vations in several intermediate layers, while our inversion

uses only the final image code. In other words, DeConvNets

look at how certain network outputs are obtained, whereas

we look for what information is preserved by the network

output.

The problem of inverting representations, particularly

CNN-based ones, is related to the problem of inverting

neural networks, which received significant attention in the

past. Algorithms similar to the back-propagation technique

developed here were proposed by [16, 18, 21, 36], along

with alternative optimisation strategies based on sampling.

However, these methods did not use natural image priors as

we do, nor were applied to the current generation of deep

networks. Other works [11, 30] specialised on inverting

networks in the context of dynamical systems and will not

be discussed further here. Others [1] proposed to learn a

second neural network to act as the inverse of the original

one, but this is complicated by the fact that the inverse is

usually not unique. Finally, auto-encoder architectures [9]

train networks together with their inverses as a form of su-

pervision; here we are interested instead in visualising feed-

forward and discriminatively-trained CNNs now popular in

computer vision.

2. Inverting representations

This section introduces our method to compute an ap-

proximate inverse of an image representation. This is for-

mulated as the problem of finding an image whose repre-

sentation best matches the one given [36]. Formally, given

a representation function Φ : RH×W×C → R
d and a rep-

resentation Φ0 = Φ(x0) to be inverted, reconstruction finds

the image x ∈ R
H×W×C that minimizes the objective:

x∗ = argmin
x∈RH×W×C

ℓ(Φ(x),Φ0) + λR(x) (1)

where the loss ℓ compares the image representation Φ(x) to

the target one Φ0 and R : RH×W×C → R is a regulariser

capturing a natural image prior.

Minimising (1) results in an image x∗ that “resembles”

x0 from the viewpoint of the representation. While there

may be no unique solution to this problem, sampling the

space of possible reconstructions can be used to charac-

terise the space of images that the representation deems

to be equivalent, revealing its invariances. Multiple recon-

structions are obtained by initializing a gradient descent op-

timization at random different start locations.

http://www.robots.ox.ac.uk/~vgg/research/invrep/index.htm
http://www.robots.ox.ac.uk/~vgg/research/invrep/index.htm


We next discusses the choice of loss and regulariser.

Loss function. There are many possible choices of the loss

function ℓ. While we use the Euclidean distance:

ℓ(Φ(x),Φ0) = ‖Φ(x)− Φ0‖
2, (2)

it is possible to change the nature of the loss entirely, for ex-

ample to optimize selected neural responses. The latter was

used in [6, 26] to generate images representative of given

neurons.

Regularisers. Discriminatively-trained representations

may discard a significant amount of low-level image statis-

tics as these are usually not interesting for high-level tasks.

As this information is nonetheless useful for visualization, it

can be partially recovered by restricting the inversion to the

subset of natural images X ⊂ R
H×W×C . However, min-

imising over X requires addressing the challenge of mod-

eling this set. As a proxy one can incorporate in the re-

construction an appropriate image prior. Here we experi-

ment with two such priors. The first one is simply the α-

norm Rα(x) = ‖x‖
α
α, where x is the vectorised and mean-

subtracted image. By choosing a relatively large exponent

(α = 6 is used in the experiments) the range of the image

is encouraged to stay within a target interval instead of di-

verging.

A second richer regulariser is total variation (TV)

RV β (x), encouraging images to consist of piece-wise con-

stant patches. For continuous functions (or distributions)

f : RH×W ⊃ Ω→ R, the TV norm is given by:

RV β (f) =

∫

Ω

(

(

∂f

∂u
(u, v)

)2

+

(

∂f

∂v
(u, v)

)2
)

β

2

du dv

where β = 1. Here images are discrete (x ∈ R
H×W ) and

the TV norm is replaced by the finite-difference approxima-

tion:

RV β (x) =
∑

i,j

(

(xi,j+1 − xij)
2
+ (xi+1,j − xij)

2
)

β

2

.

It was observed empirically that the TV regularizer (β = 1)

in the presence of subsampling, also caused by max pooling

in CNNs, leads to “spikes” in the reconstruction. This is a

known problem in TV-based image interpolation (see e.g.

Fig. 3 in [2]) and is illustrated in Fig. 2.left when inverting

a layer in a CNN. The “spikes” occur at the locations of

the samples because: (1) the TV norm along any path be-

tween two samples depends only on the overall amount of

intensity change (not on the sharpness of the changes) and

(2) integrated on the 2D image, it is optimal to concentrate

sharp changes around a boundary with a small perimeter.

Hyper-Laplacian priors with β < 1 are often used as a better

match of the gradient statistics of natural images [14], but

they only exacerbate this issue. Instead, we trade-off the

sharpness of the image with the removal of such artefacts

Figure 2. Left: Spikes in a inverse of norm1 features - detail

shown. Right: Spikes removed by a V β regulariser with β = 2.

by choosing β > 1 which, by penalising large gradients,

distributes changes across regions rather than concentrating

them at a point or curve. We refer to this as the V β regu-

lariser. As seen in Fig. 2 (right), the spikes are removed with

β = 2 but the image is washed out as edges are penalized

more than with β = 1.

When the target of the reconstruction is a colour image,

both regularisers are summed for each colour channel.

Balancing the different terms. Balancing loss and regu-

lariser(s) requires some attention. While an optimal tuning

can be achieved by cross-validation, it is important to start

from reasonable settings of the parameters. First, the loss is

replaced by the normalized version ‖Φ(x) − Φ0‖
2
2/‖Φ0‖

2
2.

This fixes its dynamic range, as after normalisation the loss

near the optimum can be expected to be contained in the

[0, 1) interval, touching zero at the optimum. In order to

make the dynamic range of the regulariser(s) comparable

one can aim for a solution x∗ which has roughly unitary

Euclidean norm. While representations are largely insensi-

tive to the scaling of the image range, this is not exactly true

for the first few layers of CNNs, where biases are tuned to a

“natural” working range. This can be addressed by consid-

ering the objective ‖Φ(σx) − Φ0‖
2
2/‖Φ0‖

2
2 +R(x) where

the scaling σ is the average Euclidean norm of natural im-

ages in a training set.

Second, the multiplier λα of the α-norm regulariser

should be selected to encourage the reconstructed image

σx to be contained in a natural range [−B,B] (e.g. in

most CNN implementations B = 128). If most pix-

els in σx have a magnitude similar to B, then Rα(x) ≈
HWBα/σα, and λα ≈ σα/(HWBα). A similar argu-

ment suggests to pick the V β-norm regulariser coefficient

as λV β ≈ σβ/(HW (aB)β), where a is a small fraction

(e.g. a = 1%) relating the dynamic range of the image to

that of its gradient.

The final form of the objective function is

‖Φ(σx)− Φ0‖
2
2/‖Φ0‖

2
2 + λαRα(x) + λV βRV β (x) (3)

It is in general non convex because of the nature of Φ. We

next discuss how to optimize it.

2.1. Optimisation

Finding an optimizer of the objective (1) may seem a

hopeless task as most representations Φ involve strong non-

linearities; in particular, deep representations are a chain



of several non-linear layers. Nevertheless, simple gradient

descent (GD) procedures have been shown to be very effec-

tive in learning such models from data, which is arguably

an even harder task. Hence, it is not unreasonable to use

GD to solve (1) too. We extend GD to incorporate momen-

tum that proved useful in learning deep networks [15], as

discussed below.

Momentum. GD is extended to use momentum:

µt+1 ← mµt − ηt∇E(x), xt+1 ← xt + µt

where E(x) = ℓ(Φ(x),Φ0) + λR(x) is the objective func-

tion. The vector µt is a weighed average of the last several

gradients, with decaying factor m = 0.9. Learning pro-

ceeds a few hundred iterations with a fixed learning rate ηt
and is reduced tenfold, until convergence.

Computing derivatives. Applying GD requires comput-

ing the derivatives of the loss function composed with the

representation Φ(x). While the squared Euclidean loss is

smooth, this is not the case for the representation. A key

feature of CNNs is the ability of computing the deriva-

tives of each computational layer, composing the latter in

an overall derivative of the whole function using back-

propagation. Our implementation of HOG and DSIFT into

CNN allows us to apply the same technique to these repre-

sentations too.

3. Representations

This section describes the image representations stud-

ied in the paper: DSIFT (Dense-SIFT), HOG, and refer-

ence deep CNNs. Furthermore, it shows how to implement

DSIFT and HOG in a standard CNN framework in order to

compute their derivatives. Being able to compute deriva-

tives is the only requirement imposed by the algorithm of

Sect. 2.1. Implementing DSIFT and HOG in a standard

CNN framework makes derivative computation convenient.

CNN-A: deep networks. As a reference deep network

we consider the Caffe-Alex [12] model (CNN-A), which

closely reproduces the network by Krizhevsky et al. [15].

This and many other similar networks alternate the fol-

lowing computational building blocks: linear convolution,

ReLU gating, spatial max-pooling, and group normalisa-

tion. Each such block takes as input a d-dimensional image

and produces as output a k-dimensional one. Blocks can

additionally pad the image (with zeros for the convolutional

blocks and with −∞ for max pooling) or subsample the

data. The last several layers are deemed “fully connected”

as the support of the linear filters coincides with the size of

the image; however, they are equivalent to filtering layers in

all other respects. Table 2 details the structure of CNN-A.

CNN-DSIFT and CNN-HOG. This section shows how

DSIFT [19, 22] and HOG [4] can be implemented as CNNs.

This formalises the relation between CNNs and these stan-

dard representations. It also makes derivative computa-

tion for these representations simple; for the inversion al-

gorithm of Sect. 2. The DSIFT and HOG implementations

in the VLFeat library [31] are used as numerical references.

These are equivalent to Lowe’s [19] SIFT and the DPM

V5 HOG [7, 8].

SIFT and HOG involve: computing and binning image

gradients, pooling binned gradients into cell histograms,

grouping cells into blocks, and normalising the blocks. De-

note by g the gradient at a given pixel and consider binning

this into one of K orientations (where K = 8 for SIFT and

K = 18 for HOG). This can be obtained in two steps: di-

rectional filtering and gating. The kth directional filter is

Gk = u1kGx + u2kGy where

uk =

[

cos 2πk
K

sin 2πk
K

]

, Gx =





0 0 0
−1 0 1
0 0 0



 , Gy = G⊤
x .

The output of a directional filter is the projection 〈g,uk〉 of

the gradient along direction uk. A suitable gating function

implements binning into a histogram element hk. DSIFT

uses bilinear orientation binning, given by

hk = ‖g‖max

{

0, 1−
K

2π
cos−1 〈g,uk〉

‖g‖

}

,

whereas HOG (in the DPM V5 variant) uses hard assign-

ments hk = ‖g‖1 [〈g,uk〉 > ‖g‖ cosπ/K]. Filtering is

a standard CNN operation but these binning functions are

not. While their implementation is simple, an interesting

alternative is the approximated bilinear binning:

hk ≈ ‖g‖max

{

0,
1

1− a

〈g,uk〉

‖g‖
−

a

1− a

}

∝ max {0, 〈g,uk〉 − a‖g‖} , a = cos 2π/K.

The norm-dependent offset ‖g‖ is still non-standard, but the

ReLU operator is, which shows to which extent approxi-

mate binning can be achieved in typical CNNs.

The next step is to pool the binned gradients into cell

histograms using bilinear spatial pooling, followed by ex-

tracting blocks of 2× 2 (HOG) or 4× 4 (SIFT) cells. Both

such operations can be implemented by banks of linear fil-

ters. Cell blocks are then l2 normalised, which is a special

case of the standard local response normalisation layer. For

HOG, blocks are further decomposed back into cells, which

requires another filter bank. Finally, the descriptor values

are clamped from above by applying y = min{x, 0.2} to

each component, which can be reduced to a combination of

linear and ReLU layers.

The conclusion is that approximations to DSIFT and

HOG can be implemented with conventional CNN compo-

nents plus the non-conventional gradient norm offset. How-

ever, all the filters involved are much sparser and simpler

than the generic 3D filters in learned CNNs. Nonetheless,



descriptors HOG HOG HOGb DSIFT

method HOGgle our our our

error (%) 66.20 28.10 10.67 10.89
±13.7 ±7.9 ±5.2 ±7.5

Table 1. Average reconstruction error of different representation

inversion methods, applied to HOG and DSIFT. HOGb denotes

HOG with bilinear orientation assignments. The standard devia-

tion shown is the standard deviation of the error and not the stan-

dard deviation of the mean error.

Figure 4. Effect of V β regularization. The same inversion algo-

rithm visualized in Fig. 3(d) is used with a smaller (λV β = 0.5),

comparable (λV β = 5.0), and larger (λV β = 50) regularisation

coefficient.

in the rest of the paper we will use exact CNN equivalents of

DSIFT and HOG, using modified or additional CNN com-

ponents as needed. 1 These CNNs are numerically indis-

tinguishable from the VLFeat reference implementations,

but, true to their CNN nature, allow computing the feature

derivatives as required by the algorithm of Sect. 2.

Next we apply the algorithm from Sect. 2 on CNN-A,

CNN-DSIFT and CNN-HOG to analyse our method.

4. Experiments with shallow representations

This section evaluates the representation inversion

method of Sect. 2 by applying it to HOG and DSIFT. The

analysis includes both a qualitative (Fig. 3) and quantitative

(Table 1) comparison with existing technique. The quanti-

tative evaluation reports a normalized reconstruction error

‖Φ(x∗) − Φ(xi)‖2/NΦ averaged over 100 images xi from

the ILSVRC 2012 challenge [24] validation data (images

1 to 100). A normalization is essential to place the Eu-

clidean distance in the context of the volume occupied by

the features: if the features are close together, then even a

Euclidean distance of 0.1 is very large, but if the features

are spread out, then even a Euclidean distance of 105 may

be very small. We use NΦ to be the average pairwise Eu-

clidean distance between Φ(xi)’s across the 100 images.

We fix the parameters in equation 3 to λα = 2.16× 108,

λV β = 5, and β = 2.

1This requires addressing a few more subtleties. In DSIFT gradient

contributions are usually weighted by a Gaussian centred at each descriptor

(a 4×4 cell block); here we use the VLFeat approximation (fast option)

of weighting cells rather than gradients, which can be incorporated in the

block-forming filters. In UoCTTI HOG, cells contain both oriented and

unoriented gradients (27 components in total) as well as 4 texture compo-

nents. The latter are ignored for simplicity, while the unoriented gradients

are obtained as average of the oriented ones in the block-forming filters.

Curiously, in UoCTTI HOG the l
2 normalisation factor is computed con-

sidering only the unoriented gradient components in a block, but applied

to all, which requires modifying the normalization operator. Finally, when

blocks are decomposed back to cells, they are averaged rather than stacked

as in the original Dalal-Triggs HOG, which can be implemented in the

block-decomposition filters.

a b c d

Figure 5. Test images for qualitative results.

The closest alternative to our method is HOGgle, a tech-

nique introduced by Vondrick et al. [33] for the visual-

isation of HOG features. The HOGgle code is publicly

available from the authors’ website and is used through-

out these experiments. Crucially, HOGgle is pre-trained to

invert the UoCTTI implementation of HOG, which is nu-

merically equivalent to CNN-HOG (Sect. 3), allowing for a

direct comparison between algorithms.

Compared to our method, HOGgle is fast (2-3s vs. 60s

on the same CPU) but not very accurate, as it is apparent

both qualitatively (Fig. 3.c vs. d) and quantitatively (66%

vs. 28% reconstruction error, see Table. 1). Interestingly,

[33] propose a direct optimisation method similar to (1),

but show that it does not perform better than HOGgle. This

demonstrates the importance of the choice of regulariser

and the ability of computing the derivative of the represen-

tation. The effect of the regulariser λV β is further analysed

in Fig. 4 (and later in Table 3): without this prior infor-

mation, the reconstructions present a significant amount of

discretization artefacts.

In terms of speed, an advantage of optimizing (1) is that

it can be switched to use GPU code immediately given the

underlying CNN framework; doing so results in a ten-fold

speed-up. Furthermore the CNN-based implementations of

HOG and DSIFT are currently unoptimized and it should be

possible to accelerate them several times.

It is also apparent that different representations can be

easier or harder to invert. In particular, modifying HOG

to use bilinear gradient orientation assignments as SIFT

(Sect. 3) significantly reduces the reconstruction error (from

28% down to 11%) and improves the reconstruction quality

(Fig. 3.e). More impressive is DSIFT: it is quantitatively

similar to HOG with bilinear orientations, but produces sig-

nificantly more detailed images (Fig. 3.f). Since HOG uses

a finer quantisation of the gradient compared to SIFT but

otherwise the same cell size and sampling, this result can

be imputed to the heavier block-normalisation of HOG that

evidently discards more image information than SIFT.

5. Experiments with deep representations

This section evaluates the inversion method applied to

CNN-A described in Sect. 3. Compared to CNN-HOG and

CNN-DSIFT, this network is significantly larger and deeper.

It seems therefore that the inversion problem should be con-

siderably harder. Also, CNN-A is not hand-crafted but

learned from 1.2M images of the ImageNet ILSVRC 2012

data [24].

The algorithm of Sect. 2.1 is used to invert the code ob-



(a) Orig. (b) HOG (c) HOGgle [33] (d) HOG−1 (e) HOGb−1 (f) DSIFT−1

Figure 3. Reconstruction quality of different representation inversion methods, applied to HOG and DSIFT. HOGb denotes HOG with

bilinear orientation assignments. This image is best viewed on screen.

layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

name conv1 relu1 mpool1 norm1 conv2 relu2 mpool2 norm2 conv3 relu3 conv4 relu4 conv5 relu5 mpool5 fc6 relu6 fc7 relu7 fc8

channels 96 96 96 96 256 256 256 256 384 384 384 384 256 256 256 4096 4096 4096 4096 1000

rec. field 11 11 19 19 51 51 67 67 99 99 131 131 163 163 195 355 355 355 355 355

Table 2. CNN-A structure. The table specifies the structure of CNN-A along with the receptive field size of each neuron. The filters in

layers from 16 to 20 operate as “fully connected”: given the standard image input size of 227× 227 pixels, their support covers the whole

image. Note also that their receptive field is larger than 227 pixels, but can be contained in the image domain due to padding.

Figure 8. Effect of V β regularization on CNNs. Inversions of the

last layers of CNN-A for Fig. 5.d with a progressively larger regu-

lariser λV β . This image is best viewed in color/screen.

tained from each individual CNN layer for 100 ILSVRC

validation images (these were not used to train the CNN-A

model [15]). Similar to Sect. 4, the normalized inversion er-

ror is computed and reported in Table 3. The experiment is

repeated by fixing λα to a fixed value of 2.16×108 and grad-

ually increasing λV β ten-folds, starting from a relatively

small value λ1 = 0.5. The ImageNet ILSVRC mean im-

age is added back to the reconstruction before visualisation

as this is subtracted when training the network. Somewhat

surprisingly, the quantitative results show that CNNs are, in

fact, not much harder to invert than HOG. The error rarely

exceeds 20%, which is comparable to the accuracy for HOG

(Sect. 4). The last layer is in particular easy to invert with

an average error of 8.5%.

We choose the regulariser coefficients for each represen-

tation/layer based on a quantitative and qualitative study

of the reconstruction. We pick λ1 = 0.5 for layers 1-6,

λ2 = 5.0 for layers 7-12 and λ3 = 50 for layers 13-20. The

error value corresponding to these parameters is marked in

bold face in table 3. Increasing λV β causes a deterioration

for the first layers, but for the latter layers it helps recover a

more visually interpretable reconstruction. Though this pa-

rameter can be tuned by cross validation on the normalized

reconstruction error, a selection based on qualitative analy-

sis is preferred because we would like the method to yield

visually meaningful images.

Qualitatively, Fig. 6 illustrates the reconstruction for a

test image from each layer of CNN-A. The progression is

remarkable. The first few layers are essentially an invert-

ible code of the image. All the convolutional layers main-

tain a photographically faithful representation of the image,

although with increasing fuzziness. The 4,096-dimensional

fully connected layers are perhaps more interesting, as they

invert back to a composition of parts similar but not iden-

tical to the ones found in the original image. Going from

relu7 to fc8 reduces the dimensionality further to just 1,000;

nevertheless some of these visual elements can still be iden-

tified. Similar effects can be observed in the reconstructions

in Fig. 7. This figure includes also the reconstruction of an

abstract pattern, which is not included in any of the Ima-

geNet classes; still, all CNN codes capture distinctive visual

features of the original pattern, clearly indicating that even

very deep layers capture visual information.

Next, Fig. 7 examines the invariance captured by the

CNN model by considering multiple reconstructions out of



conv1 relu1 mpool1 norm1 conv2 relu2 mpool2 norm2 conv3 relu3

conv4 relu4 conv5 relu5 mpool5 fc6 relu6 fc7 relu7 fc8

Figure 6. CNN reconstruction. Reconstruction of the image of Fig. 5.a from each layer of CNN-A. To generate these results, the regular-

ization coefficient for each layer is chosen to match the highlighted rows in table 3. This figure is best viewed in color/screen.

λV β 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

conv1 relu1 pool1 norm1 conv2 relu2 pool2 norm2 conv3 relu3 conv4 relu4 conv5 relu5 pool5 fc6 relu6 fc7 relu7 fc8

λ1 10.0 11.3 21.9 20.3 12.4 12.9 15.5 15.9 14.5 16.5 14.9 13.8 12.6 15.6 16.6 12.4 15.8 12.8 10.5 5.3
±5.0 ±5.5 ±9.2 ±5.0 ±3.1 ±5.3 ±4.7 ±4.6 ±4.7 ±5.3 ±3.8 ±3.8 ±2.8 ±5.1 ±4.6 ±3.5 ±4.5 ±6.4 ±1.9 ±1.1

λ2 20.2 22.4 30.3 28.2 20.0 17.4 18.2 18.4 14.4 15.1 13.3 14.0 15.4 13.9 15.5 14.2 13.7 15.4 10.8 5.9
±9.3 ±10.3 ±13.6 ±7.6 ±4.9 ±5.0 ±5.5 ±5.0 ±3.6 ±3.3 ±2.6 ±2.8 ±2.7 ±3.2 ±3.5 ±3.7 ±3.1 ±10.3 ±1.6 ±0.9

λ3 40.8 45.2 54.1 48.1 39.7 32.8 32.7 32.4 25.6 26.9 23.3 23.9 25.7 20.1 19.0 18.6 18.7 17.1 15.5 8.5
±17.0 ±18.7 ±22.7 ±11.8 ±9.1 ±7.7 ±8.0 ±7.0 ±5.6 ±5.2 ±4.1 ±4.6 ±4.3 ±4.3 ±4.3 ±4.9 ±3.8 ±3.4 ±2.1 ±1.3

Table 3. Inversion error for CNN-A. Average inversion percentage error (normalized) for all the layers of CNN-A and various amounts

of V β regularisation: λ1 = 0.5, λ2 = 10λ1 and λ3 = 100λ1. In bold face are the error values corresponding to the regularizer that works

best both qualitatively and quantitatively. The deviations specified in this table are the standard deviations of the errors and not the standard

deviations of the mean error value.

pool5 relu6 relu7 fc8

pool5 relu6 relu7 fc8

Figure 7. CNN invariances. Multiple reconstructions of the images of Fig. 5.c–d from different deep codes obtained from CNN-A. This

figure is best seen in colour/screen.

each deep layer. A careful examination of these images re-

veals that the codes capture progressively larger deforma-

tions of the object. In the “flamingo” reconstruction, in par-

ticular, relu7 and fc8 invert back to multiple copies of the

object/parts at different positions and scales.

Note that all these and the original images are nearly in-

distinguishable from the viewpoint of the CNN model; it is

therefore interesting to note the lack of detail in the deep-

est reconstructions, showing that the network captures just

a sketch of the objects, which evidently suffices for classifi-

cation. Considerably lowering the regularization parameter

still yields very accurate inversions (Figure 8), but this time

with barely any resemblance to a natural image. This con-

firms that CNNs have strong non-natural confounders.

It is interesting to note that a lot of the inverted images

have large green regions (see also Figure 11). We claim that

this is a property of the network and not the natural image

prior. The effect of the prior for a layer of CNN-A is shown

in Figure 8. The prior only encourages smoothness as it is

equivalent (for β = 2) to penalising high-frequency com-

ponents of the reconstructed image. More importantly, it is

applied equally to all colour channels. When gradually re-

moving the prior, random high-frequency components dom-

inate and it is harder to discern a human-interpretable sig-



conv1 relu1 mpool1 norm1 conv2 relu2 mpool2

norm2 conv3 relu3 conv4 relu4 conv5 relu5

Figure 9. CNN receptive field. Reconstructions of the image of Fig. 5.a from the central 5× 5 neuron fields at different depths of CNN-A.

The white box marks the field of view of the 5× 5 neuron field. The field of view is the entire image for conv5 and relu5.

conv1-grp1 norm1-grp1 norm2-grp1 conv1-grp1 norm1-grp1 norm2-grp1

conv1-grp2 norm1-grp2 norm2-grp2 conv1-grp2 norm1-grp2 norm2-grp2

Figure 10. CNN neural streams. Reconstructions of the images of Fig. 5.c-b from either of the two neural streams of CNN-A. This figure

is best seen in colour/screen.

nal. The green colour, however, persists; we verified this on

ten further images that did not contain green patches to start

with as well as the MIT Places CNN[39].

We now examine reconstructions obtained from subset

of neural responses in different CNN layers. Fig. 9 explores

the locality of the codes by reconstructing a central 5 × 5
patch of features in each layer. The regulariser encourages

portions of the image that do not contribute to the neural

responses to be switched off. The locality of the features is

obvious in the figure; what is less obvious is that the effec-

tive receptive field of the neurons is in some cases signifi-

cantly smaller than the theoretical one - shown as a white

box in the image.

Finally, Fig. 10 reconstructs images from a subset of fea-

ture channels. CNN-A contains in fact two subsets of fea-

ture channels which are independent for the first several lay-

ers (up to norm2) [15]. Reconstructing from each subset

individually clearly shows that one group is tuned towards

colour information whereas the second one is tuned towards

sharper edges and luminance components. Remarkably, this

behaviour emerges spontaneously in the learned network.

Figure 11. Diversity in the CNN model. mpool5 reconstructions

show that the network retains rich information even at such deep

levels. This figure is best viewed in color/screen (zoom in). More

qualitative results are provided in the project web page.

6. Summary

This paper proposed an optimisation method to invert

shallow and deep representations based on optimizing an

objective function with gradient descent. Compared to al-

ternatives, a key difference is the use of image priors such

as the V β norm that can recover the low-level image statis-

tics removed by the representation. Applied to CNNs, the

visualisations shed light on the information represented at

each layer. In particular, it is clear that a progressively more

invariant and abstract notion of the image content is formed

in the network.
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