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Abstract

Background: Understanding the aspects of the cell functionality that account for disease or drug action mechanisms

is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of

precision medicine.

Results: Here we propose a simple probabilistic model in which signaling pathways are separated into elementary

sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene

expression measurements into probabilities of activation of such signal transmission circuits. Using this model,

differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses

can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based

biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms.

The accuracy of the proposed model is demonstrated with simulations and real datasets.

Conclusions: The proposed model provides detailed information that enables the interpretation disease mechanisms

as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for

suggesting possible ways of therapeutic intervention in a pathologically perturbed system.

Keywords: Signaling pathways, Probabilistic model, Disease mechanism, Precision medicine, Disease mechanism,

Cancer, Fanconi anemia, Obesity, Stem cells

Background
Precision medicine requires of better ways of defining

diseases by introducing state-of-the-art genomic tech-

nologies into the diagnostic procedures. A more precise

diagnostic of diseases, based on the description of their

molecular mechanisms, is critical for creating innovative

diagnostic, prognostic, and therapeutic strategies properly

tailored to each patient’s necessities [1]. Consequently, a

deeper understanding of the consequences that the com-

bined effect of gene activities has over the functionality of

the cell has become a major concern in the analysis of

genomic data. Moreover, this knowledge is essential to

understand how gene activity perturbations account for

disease. The analysis of genome-wide expression profiles

has produced an unprecedented amount of data on gene

activity under a plethora of experimental conditions. Now-

adays more than one million of microarray experiments

are available, stored in public databases. However, the

conversion of such data into a better understanding of the

underlying biological processes that explain molecular

mechanisms of diseases still remains an open issue. Early

attempts to deal with the problem of understanding the

collective contribution of gene activities to the definition

of phenotypes (e.g. disease) produced a family of algo-

rithms commonly known as single enrichment methods

(SEA) [2]. Such methods study over-representations of

functional annotations in groups of differentially expressed

genes [3-8]. Typical functional annotations used for this

purpose are gene ontology (GO) [9], KEGG pathways [10],

etc. Later, the gene set enrichment analysis (GSEA) method

[11] pioneered another family of more sensitive algorithms

based on testing the distribution of functional annotations

along a list of genes ranked by differential expression

[12-16]. Both approaches consider functional modules

as discrete, unstructured entities composed of elements
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(proteins) of identical importance with respect to the

trait analyzed. This is a quite unrealistic assumption

that drastically reduces the statistical power in any test-

ing framework [17].

Nevertheless, functional modules with detailed infor-

mation on their internal structures are available in sev-

eral repositories such as KEGG [10], Reactome [18],

etc. In fact, there is a recent interest in exploiting the

information contained in different biological pathways

to understand cellular function and disease mecha-

nisms [19]. Recently, a few pathway topology PT-based

algorithms have been published [20] that use the in-

ternal structure of the pathway to elucidate global acti-

vation status for the pathway from gene expression

data. Some PT-based algorithms use the pathway struc-

ture to compute measurements of coordinated activity

(such as correlation, covariance, etc.) among pairs of

genes [21]. Other, as the signaling pathway impact ana-

lysis (SPIA) [22,23] or the NetGSA [24], infer scores

that account for the global activation status of pathways

taking into account the relationships among their con-

stituent gene products. Conceptually similar methods,

implementing more sophisticated ways of scoring path-

way global activity based in the relationships among the

corresponding gene products, have also been proposed

[25-35].

In most of the methods described above individual

values accounting for gene expression are combined, as

defined by the internal structure of the pathway, into a

global score for the entire pathway. That is, pathways

are used as whole functional units in the interpretation

of gene expression experiments. However, the biological

consequence of the activity of a pathway is not a trivial

concept. Stating that a pathway is activated (or deacti-

vated) is not very informative by itself. In fact, partial ac-

tivation (or deactivation) within the same pathway can

have very different (and sometimes opposite) biological

implications. For example, the apoptosis signaling path-

way can lead to two opposite cell behaviors: apoptosis

and degradation (cell death) or antiapoptosis (cell survival)

depending on the final protein that receives the signal (see

hsa04210 pathway in the KEGG repository). Therefore,

depending on their relative location within the pathway,

changes in the activation state of one or several proteins

can change (and even reverse) the cell behavior. Some of

the PT-based methods use values of differential gene ex-

pression within the context of the pathways to calculate

scores for pathway sub-structures [28-31,36]. However,

such scores have a difficult interpretation for both signifi-

cant and non-significant parts of the pathway because the

differential expression of a gene does not necessarily imply

a transition from an active to an inactive state (or vice

versa). However, the most serious problem occurs when

one or several inhibitors within a pathway present a non-

significant differential expression. In this case, its acti-

vation state is unknown and, consequently, its effect

(normally drastic) on the sub-pathway.

From a completely different angle, other approaches

have attempted to model protein signaling networks in

detail [37-40]. Such approaches offer a detailed descrip-

tion of the network modeled and have been used to

check for inconsistences in the network or for finding

new interdependences between their constituent elements.

These models were used to study properties of the path-

ways analyzed [41], to optimize network models using

experimental data (protein activations, measured as

phosphorylation or other biochemical properties) [37],

or to study pathway responses [42], but none of these ap-

proaches consider the use of gene expression measure-

ments derived from transcriptomic experiments (probably

the most frequently used genomic data in biomedical re-

search during the last decade).

The approach proposed here offers a conceptually new

way of understanding the functional consequences of

changes in gene activity associated to any comparison of

conditions by taking into account the internal structure

of the pathways. This structure is used to split up the

pathway into stimulus-response sub-pathways, or cir-

cuits, which trigger particular cell functionalities. In

other words, the method enables the estimation of the

probabilities of activation of these cell functionalities.

This approach allows overtaking the simplistic view of

a pathway as an entity that is either active or inactive as

a whole. Here we show how the analysis of these signaling

circuits results in a more detailed and realistic description

of the functional consequences of gene up-and down-

regulations within the context of each pathway. In many

cases, the resulting activation/deactivation of individual

functionalities within the pathway helps to suggest a

causal explanation for disease mechanisms. We illustrate

the application of the methodology with gene expression

data obtained from various microarray experiments with

different conditions and diseases.

Results and discussion
Performance of the methodology

As previously commented pathways are multifunctional

entities that can trigger a range of different cell functions

and it is often meaningless to talk about the activation

of a pathway as a whole or relating its global activity to

a disease. Opposite to this view, we propose a different

method which accounts for the change in the probabil-

ities of signal transmission along the different signaling

circuits defined within pathways. Briefly, we first use the

values of gene expression to infer probabilities of gene

product presence/absence (and, consequently, their poten-

tial for transmitting a signal). Then, we use such probabil-

ities to calculate the probability of signal transmission
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along the circuit, from the receptor protein (that receives

the stimulus) to the effector protein (that triggers the re-

sponse). We take into account that interactions between

proteins can be either activations or inhibitions (see

Methods for details). If the probability of having the cir-

cuit activated for signal transmission is significantly higher

in one of the conditions of the comparison then a change

in a specific pathway activity is reported as a result. Since

some circuits of the modeled pathways might be declared

significant simply as a consequence of type I errors (false

positives), we carried out a simulation and we also studied

a real case in which no differences were expected.

We first simulate probe datasets with identical prob-

ability of being activated, to which normally distributed

noise is added (mean zero, and standard deviation 0.05).

All the samples would represent pathways whose genes

will have a similar activity state and, consequently,

should have their signaling circuits in the same activity

state. For this reason, no differences should be observed

in any comparison. We produced 1000 datasets, of n = 10,

20, 50 and 100 samples with probabilities 0.1, 0.3, 0.5, 0.7

and 0.9 of being activated. Figure 1A shows the results of

the simulation. At the conventional p-value of 0.05 chosen

for the test the ratios of false positives are negligible (and

far below the expected 5%).

We have also used a large dataset of pediatric acute

myeloid leukemia (AML) which contains gene expres-

sion microarray data of 237 children [43]. In principle all

samples should have a similar profile of gene expression,

and consequently similar activation states in the signal-

ing circuit. We produce 1000 datasets, of n = 10, 20, 50

and 100 samples, by randomly subsampling the 237

samples. Any of the datasets was divided into two equal

parts and compared to each other with the proposed

methodology. Figure 1B shows that for any data size

(given the p-value of 0.05 used in the test as threshold)

Figure 1 Analysis of the false discovery rate of the signaling circuit test proposed. A) Results of the simulation experiment. A total of 1000

datasets, of n = 10, 20, 50 and 100 samples were simulated. All the probes for all the genes in all the nodes of the pathways had the same probability

of being activated (0.1, 0.3, 0.5, 0.7 and 0.9). Normal distributed (mean = 0, SD = 0.05 noise was added to each probe). At the conventional p-value of

0.05 chosen for the test, the ratios of false positives are negligible. B) Results with a real dataset of pediatric acute myeloid leukemia (AML)

which contains gene expression microarray data of 237 samples, which (in principle) should display a similar gene expression profile. We produced

1000 datasets, of n = 10, 20, 50 and 100 samples, by randomly subsampling the 237 samples dataset. Any of the datasets was divided into two equal

parts and compared to each other with the test. Again, the number of false positives is negligible.
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the number of false positives is almost inexistent. In fact,

some real biological variation that could result in slight

circuit activity differences cannot be ruled out. Conse-

quently, some of these very few false positives might, in

reality, be true positives as well.

Additionally, two microarray datasets containing cases

and controls in a study of breast cancer (GSE27562) [44]

and another study of genes with increased expression in

AML (GSE9476) [45] were used to check the predictive

performance of features consisting of circuit activation

values estimated using the proposed method. This pre-

dictive performance can be considered representative of

a low number of failures in detecting real activations

(false negatives) [26,35] and allows us to check for the ex-

tent of type II error. We used Support Vector Machine

(SVM) [46] for the classification of the samples. The ac-

curacy of the classification obtained was evaluated by ten-

fold cross validation [47], using the following parameters:

proportion of correct classification (PCC) and the area

under the curve (AUC). The results obtained were in: for

the breast cancer dataset, PCC was 0.99 and the AUC

0.99, while in the AML dataset [45] PCC was 0.96 and the

AUC 0.96. These results allow discarding a significant

amount of type II error in the method.

Dissecting pathway functionalities

Signaling-dependent mechanisms of colorectal cancer

progression

We have used an example of colorectal cancer (CRC) to

illustrate this concept. A recent microarray (Affymetrix™

array HG-U133 Plus2.0) study has been used to system-

atically search for genes differentially expressed in early

onset CRC [48]. The study involves the comparison be-

tween 12 CRC cases and 10 healthy controls (see Material

and Methods for details). Several pathways are known to

be affected in CRC. For example, the proposed test detects

a significant increase of signaling activity in circuits lead-

ing to growth proliferation, cell cycle and anti-apoptosis in

the Jak-STAT pathway (see Figure 2). This result is coher-

ent with previous results, which describe how the inhib-

ition of this pathway induces apoptosis, cell cycle arrest,

and reduces tumor cell invasion in colorectal cancer cells

[49,50].

Another pathway whose activity is significantly altered

is the WNT signaling pathway. This pathway has a ca-

nonical Wnt/β-catenin cascade and two non-canonical

pathways named Wnt/Planar cell polarity (Wnt/PCP)

pathway and Wnt/Ca2+ pathway, forming part of the

complete WNT signaling pathway. The results of the test

reveal a significantly increased activity for two out of the

three circuits (Additional file 1: Figure S1). Genes be-

longing to the Wnt/PCT pathway, such as RhoA or RAC

and JNK are known to be up-regulated in cancer [51].

This would explain the activation of the circuit leading

to JNK, which is one of the possible responses triggered

by this pathway. Other PT-based analyses also point to

this pathway as a key player in CRC [30].

A remarkable example of precise detection of a signal-

ing circuit activity occurs in the VEGF pathway, whose

induction is known to be involved in malignant trans-

formation [52]. Human colorectal tumors produce vascu-

lar endothelial growth factor (VEGF) whose expression is

up-regulated in tumor cells by cyclooxygenase-2 (COX2),

represented in the KEGG pathway in Additional file 2:

Figure S2 by node PTGS2 (prostaglandin G/H synthase

and cyclooxygenase), and directly correlated to neoangio-

genesis and clinical outcome [53,54]. COX2 catalyzes the

production of PGI2, and high levels of PGE2 have been re-

ported in colorectal adenocarcinomas in comparison with

adjacent normal tissue [55]. We observed that only the

circuit leading to PGI2 production, via PTGS2 (COX2),

was significantly activated (Additional file 2: Figure S2A)

in this pathway.

As a general rule, it is worth noticing that the pat-

terns of circuit activities, which account for cell func-

tionalities, cannot be easily derived from the changes in

gene expression. Additional file 2: Figure S2B illustrates

how different gene (with either signaling or repressing

activities) up- and down-regulations suppress and com-

pensate to each other to finally (unexpectedly) result

in no change for the rest of circuits (Additional file 2:

Figure S2A). Thus, genes activated or deactivated, with

no effect in this pathway, are free to play a different

role in another pathway. This demonstrates the useful-

ness of the proposed approach that provides direct in-

formation on the specific pathway activities that result

in pathologic conditions, instead of just reporting gene

activities out of context.

Study of genetic and diet-induced murine models of obesity

In our previous study [56], we characterized the adipose

tissue macrophages (ATM) from wild type (WT) and

ob/ob mice at 5 and 16 weeks of age. We showed that at

16 weeks WT ATM had a predominantly M2 antinflam-

matory phenotype. The M2 phenotype was also ob-

served in 5 weeks old ob/ob ATMs. Conversely, 16 week

old ob/ob ATMs had switched to a predominantly M1

proinflammatory phenotype, which was associated with

severe insulin resistance, diabetes and an enrichment of

proinflammatory macrophages in adipose tissue. The

analysis of the activity of signaling circuits revealed spe-

cific signaling ways used to achieve the different physio-

logical conditions. After 16 weeks, wild type animals

remain able to control their carbohydrate metabolism

and they are progressively expanding their adipose tis-

sue. This process requires remodeling of adipose tissue

and may be facilitated by M2 antinflammatory ATMs.

Compatible with this expansion, Figure 3A documents a
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significant activation of circuits triggering cell cycle, in

particular the Wnt/β-catenin, whose role in tissue re-

modeling by weight gain has already been identified

[57,58]. VEGF pathway is also activated in 16w WT

ATMs (Additional file 3: Figure S3). The activity of this

pathway is increased when there is increased demand in

adipose tissue expansion and also when there is hypoxia

as part of an adaptation to increase vascularization in

the tissue. In some way, increased demands for growth

results in hypoxia which is compensated by increased

vascularization. This result is compatible with macro-

phages producing VEGF and contributing to remodeling

of adipose tissue when it is expanding as part of the age

related growth [59]. On the other hand, Figure 3B docu-

ments the generalized activation of different circuits of

the apoptosis pathway in ob/ob 16 week mice when

compared to the 16 week WT mice. Degradation and

Cleavage of caspase substrate is activated. However the

relationship between survival and apoptosis changes

with respect to the 16 week WT mice. Survival is acti-

vated and the circuits triggering apoptosis are different.

These anomalous activities in apoptosis pathways in

ATM macrophages from ob/ob 16 weeks are in agree-

ment with the characteristic huge amount of fat depos-

ition, inflammatory responses and adipocyte crowns of

apoptotic adipocytes.

Signaling changes in human bone marrow hematopoietic

stem cells

In the human hematopoietic system, aging is concomitant

with decreased bone marrow cellularity and decreased

adaptive immune system function. On the other hand it is

also associated to increased incidence of anemia and other

hematological disorders and malignancies. It has been

suggest that changes within the hematopoietic stem cell

(HSC) population during aging contribute significantly to

the manifestation of these age-associated hematopoietic

pathologies in mice [60].

Figure 2 Model of the JAK-STAT pathway in CRC with the corresponding significant changes in the signaling circuit activities. Red nodes

indicate activated circuits in the CRC patients with respect to the healthy controls and blue nodes indicate circuit deactivations. Solid lines

indicate activations and dashed lines indicate inhibitions.
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A recent gene expression profiling study revealed that

aged human HSC transcriptionally up-regulate genes re-

lated to cell cycle, myeloid lineage specification, and mye-

loid malignancies [61]. The study highlighted a few genes

that have been implicated in hematopoietic malignances

and are differentially expressed between elderly and

young human HSC, being age-up-regulated: AURKA,

FOS, HOXA9, MYC, TRIM13, while MAFF and FPLT3

resulted to be age-down-regulated [61]. Our analysis of

signaling circuit activity detected activation in the circuit

Figure 3 Signaling changes in mouse models of obesity. A) Activation within the Wnt pathway of circuits triggering cell cycle, in particular

the Wnt/β-catenin, when wildtype mice 16 weeks old is compared to wildtype 5 weeks old, and B) Activation of different circuits of the apoptosis

pathway in Ob/Ob 16 week mice when compared to the 16 week wildtype mice. Red nodes label activated circuits with respect to initial state of

each comparison and blue nodes label deactivations. Solid lines indicate activations and dashed lines indicate inhibitions.
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ending in the FOS gene in the T-Cell receptor signaling

pathway. This circuit triggers proliferation, differentiation

and immune response (see Figure 4). Actually, gene set

analysis carried out in the original study suggests that

slight but coordinate deregulations in genes associated

to Cell cycle, Hematological System Development and

Function, Cellular Growth and Proliferation and Humoral

Inmune Response occurred in elderly HSC when com-

pared to young cells [61]. In other words, the original

study discovered only the gene expression signatures of

the processes whose activation mechanisms is reported in

detail by the signaling circuit activation method proposed

here.

Cross-talk between pathways: a case study of deregulation

of programmed cell death in Fanconi Anemia

Signaling pathways are connected among them and such

connections can also be detected using the method pro-

posed here. Furthermore, the results can potentially reveal

the precise mechanism by which a pathway specifically

triggers a particular biological response in a second

pathway. Since pathways work cooperatively, the incor-

rect activation of a specific circuit can activate a wrong

circuit in another pathway creating a perturbed signal-

ing cascade that could eventually result in a disease

condition. The observation of the combined behavior of

all the signaling pathways in a diseased cell can eventu-

ally reveal interesting details of the overall mechanism

of the disease and help in the inference of ways of

intervention. We illustrate this concept with the detec-

tion of cross-talk between pathways in an example of

Fanconi Anemia (FA), a disease in which signaling is

known to play a relevant role. FA is a rare chromosome

instability syndrome characterized by aplastic anemia

as well as cancer and leukemia susceptibility [62]. It has

been proposed that disruption of the apoptotic control,

a hallmark of FA, explains the phenotype of the disease

to some extent [63]. A recent study used gene expression

microarrays to identify differences at the transcription

level in bone marrow cells between normal volunteers and

FA patients [64]. Eleven normal volunteers and 21 patients

Figure 4 Signaling changes in the T-Cell receptor signaling pathway of human bone marrow hematopoietic stem cells. Red nodes label

activated circuits with respect to initial state of each comparison and blue nodes label deactivations. Solid lines indicate activations and dashed

lines indicate inhibitions.
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were studied. Gene expression datasets for FA were

obtained from the GEO database (see methods for

details).

It has been proposed that one of the genes related to

the disease, FANCC, is involved in Jak/STAT signaling

and apoptotic signaling [62]. The model of both path-

ways using the data of this experiment enables the pre-

cise identification of the mechanisms by which Jak/STAT

pathway specifically triggers one of the survival circuits

of the apoptosis pathway that eventually results in the

disease. Figure 5 shows the changes in signal transmis-

sion activities across all the signaling circuits when FA

patients are compared to the controls. While the activity

of the signaling circuit ending in CIHS, leading to cell

proliferation, is inhibited the activity of the circuit end-

ing in AKT3 is significantly activated in FA (Figure 5A).

This signaling circuit, according to KEGG functional an-

notation, specifically triggers the antiapoptotic activity in

the apoptosis pathway. Figure 5B shows a detailed descrip-

tion of the process of antiapoptotic activity activation.

Three signaling circuits are significantly inactive in FA

(the ones ending in BAD, DFFA and CASP6) and other

three circuits are significantly active (the ones ending in

BCL2L1, BIRC2 and BCL2). The consequences of the ob-

served changes in the activation status of the circuits

affected can easily be understood at the light of the

functions they trigger (Figure 5B). Firstly, one of the

circuits triggering apoptotic response (the one ending

in BAD) is inactivated in FA. Additionally, another two

circuits triggering degradation (DFFA) and cleavage of

caspase substrate (CASP6), respectively, are also deacti-

vated. On the other hand, circuits ending in BCL2L1,

BIRC2 and BCL2, that trigger survival, are activated.

Thus, the final consequence is that the antiapoptotic

pathway activity in FA increases with respect to a nor-

mal cell. This does not mean that apoptosis cannot

occur in FA. Actually it does [63], most probably

through the circuits ending in BAX and/or TP53 (see

Figure 5B), whose activity is not different from the activity

in normal cells. This observation suggest that known fea-

tures of FA, such as hypersensitivity to DNA cross-linking

agents [65,66] or chromosomal instability [66] could be a

consequence of the abnormal survival of cells with dam-

aged DNA. Actually, the authors of the original study

describe that some functional categories, including

“negative regulation of programmed cell death” are over-

represented in the FA samples. Actually, recent reports

have confirmed that FA proteins participate directly in ca-

nonical signaling pathways that influence survival and

self-replication of hematopoietic cells [64].

Conventional (PT)-based methods of functional en-

richment, even if they take into account the relationships

between the components, fail in revealing details on the

molecular mechanisms that mediate the pathologic

behaviors of the apoptosis in FA. And, obviously, can-

not account for the cross-talk between pathways.

Comparison with other approaches

It is difficult to provide a reasonable comparison of the

procedure proposed with other procedures because they

test different aspects of the functionality of the pathway.

A recent revision on pathway-based methods describe

the evolution of the different algorithms proposed from

those that only consider membership relationships be-

tween the genes of a pathway (SEA or Functional Class

Scoring -FSC-) to those, more sophisticated, that use the

topology of the pathway (PT-Based) [20]. However, the

ultimate property to be tested here is the behavior of the

whole pathway, while our approach checks for signifi-

cant differences in the probability of activation of the in-

dividual stimulus-response signaling circuits. Only very

recently, a few methods that consider sub-pathways have

been proposed [28-31]. The clipper approach [28] ap-

plies first a Gaussian graphical model that deconstructs

the whole graph that defines the pathway into smaller

sub-graphs (cliques), that are further individually tested.

The cliques are genes connected through the pathway

structure but not necessarily related with the actual

stimulus-response biologically relevant circuits used here.

For example, a clique within a stimulus-response sub-

pathway can have their genes significantly up-regulated

but the signal might not be transmitted if the sub-pathway

is interrupted upstream or downstream. Another ap-

proach, the DEgraph [31], uses multivariate analysis to

identify differential expression patterns that are coherent

with a given sub-graph structure. Again, this method uses

the same approach of searching for any sub-graph within

the pathway, irrespective of its biological meaning. More-

over, both approaches splits nodes composed of several

proteins into multiple nodes regardless of the nature of

these multi-protein nodes. The dissociation of a node

which is a protein complex, where all the proteins must

be present to produce an active complex, into individual

nodes leads to erroneous results. We used the CRC data-

set [48] to compare the signaling circuit activity method

proposed here to the clipper method [28], as recently im-

plemented in the Graphite Web application [67], and the

DEgraph [31] method. Additional file 4: Table S1 shows

the 85 significant pathways found. A large number of

pathways, such as Cocaine addiction, African trypanosom-

iasis, Long-term depression, Salivary secretion, and many

others completely unrelated to cancer are obvious false

positives. Focusing only on cancer related pathways we

consider VEGF, Jak-STAT, ERBB and WNT. In VEGF, clip-

per only detect a portion of the sub-pathway leading to

the production of COX2 via PTGS2 (prostaglandin G/H

synthase and cyclooxygenase), which is detected by our

approach and is known to be activated in CRC [55,68].
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Figure 5 Models of the A) JAK-STAT and B) Apoptosis pathways in FA along with the corresponding significant changes in the signaling

circuit activities. Red nodes label activated circuits in the FA patients with respect to the healthy controls and blue nodes label deactivations.

Nodes that simultaneously participate in activated and deactivated pathways are labeled in yellow.
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Clipper and DEgraph declare so many pathways as signifi-

cantly activated because they detect sub-graphs, which are

portions of signaling circuits of dubious biological mean-

ing. As previously commented for some up-and down-

regulations of individual genes, some sub-graphs have not

impact on biological functions triggered by signaling path-

ways as well. And again, in many cases the use of differen-

tial expression instead of individual gene activation or

deactivations might introduce errors in the role of inhibi-

tors in the pathways.

Additionally, two almost identical approaches that de-

fine sub-pathways in a similar manner to our signaling

circuits but score them in a similar manner to SPIA [22]

have recently been published [29,30]. However, the use

of differential expression values in the nodes instead of

actual presence/absence estimations lead to incorrect as-

sumptions on the activities of sub-pathways, as mentioned

above. Moreover, they do not provide any software for car-

rying out the test, which critically compromises the poten-

tial usefulness of both approaches.

In an apparent conceptual downgrade, the way in which

new sub-pathway based methods check its validity implies

checking whether the pathways in which they found sig-

nificant sup-pathways are also significant in conventional

FSC or PT-based methods or not. Although probably of

limited value, we produced a similar comparison. We have

used the CRC example [48] for the comparison. We have

analyzed the pathways to detect significant changes in sig-

nal transmission activities in the signaling circuits be-

tween the two conditions compared. Table 1 represents

the number of circuits significantly activated and deac-

tivated in cases with respect to the controls. We com-

pare this approach to: a) a conventional ORA test [3],

which require a pre-selection of genes based on individ-

ual tests for each gene [13]; b) to a FSC test (in particu-

lar a representative of the family of GSEA tests [15])

which do not require of the previously mentioned step

of pre-selection of genes; c) to a PT-based approach,

the SPIA [22], which takes into account the internal

structure of the pathway for the calculation of a global

activity index for the whole pathway.

No main discrepancies were observed among the sig-

nificant values reported by the SPIA method and the

proposed method. In some cases, the behavior of SPIA

is closer to the GSEA, probably because both methods

return a global pathway score (despite the fact that SPIA

weights take into account the pathway structure, thus

providing a more accurate description of the whole be-

havior of the pathway.) However, our method is testing a

different aspect of the activity of a pathway than SPIA

and GSEA do. For example, a pathway known to be ac-

tive in cancer is the VEGF signaling pathway, whose in-

hibition has been suggested as an anticancer therapy

[69]. Several circuits in this pathway were detected as

activated by the proposed approach but not by the other

approaches (see Table 1). Likewise, the relationship of

JAK-STAT signaling pathway to colorectal cancer is known,

given that its disruption reduces tumor cell invasion in

this cancer [49]. Again, circuits within the JAK-STAT

pathway were found activated by the approach proposed

here and by GSEA but not by SPIA. The apparent super-

ior sensitivity of GSEA methodologies in this case is

probably due to its lower specificity [70]. The general

conclusion derived from the comparison is that the

method proposed here finds circuits activated in pathways

which are detected as significant by whole-pathway FSC

or PT-based methods. As expected, our more sensitive

method also detects activations of specific signaling cir-

cuits in pathways which were non-significant in FSC tests.

Conclusions
Because of the complexity of the cell, functional traits

cannot be understood as the result of the action of only

one or a few genes [71,72]. The multigenic (and non-

necessarily additive) nature of many common pheno-

types (including common diseases) is one of the causes

of the low statistical power rendered by conventional

marker- or gene-based testing strategies when applied to

genomic data (e.g. genotyping or transcriptomic) [73,74].

Specific strategies for pathway analysis (such as SEA,

FSC and PT-based methods that test the collective activ-

ity of sets of functionally related genes as defined in GO,

KEGG, etc.), despite more sensitive than gene-based ap-

proaches, still provide a very poor detail on the actual

functionalities affected in the cell.

Therefore, in a realistic scenario, the conventional

paradigm that link disease to the failure of a particular

gene needs to be changed for a systems-biology-oriented

view [75-77], in which the causative factor of the disease

is not the gene itself but perturbations of the combined

activity of several genes, functionally related through

pathways (the signaling circuit here). Thus, the anomal-

ous activity of one or several circuits, responsible for

specific cell functionalities, could be the ultimate cause

of the disease. Probabilistic models have been used some

time ago in theoretical approaches to understand regula-

tory networks [78-80] and, more recently, for different

types of studies that involved the characterization of

regulatory or signaling circuits [37-40,81]. Increasing the

knowledge on the way in which signaling circuits operate

is crucial: changes in the activity of the biological func-

tions triggered by signaling pathways (via the circuits that

compose them) are behind the mechanisms of several dis-

eases. Here, we extend the idea of probabilistic model to

the study of the functional consequences of gene expres-

sion in the context of signaling pathways. Simple but effi-

cient probabilistic models of pathway activity have been
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developed here for a collection of signaling pathways from

KEGG [10].

Unlike other conventional approaches, where either the

activity of individual genes or the activity of the complete

pathway was tested, this approach dissects the structure of

the pathway and tests the activity of the stimulus-response

signaling circuits. Actually, the notion of pathway is some-

how an arbitrary concept based, in some cases, on histor-

ical or theoretical concepts that may include many

different actual functional roles. The aim of the method

proposed here is focusing on the actual elementary func-

tionalities triggered by these circuits within the context of

the pathway, whose failure (wrong activation state, tested

by the method) can be associated to the disease. There are

only a few recently published methods that consider sub-

pathways, however they present some problems that ser-

iously limit its applicability and compromises the accuracy

of the results provided [28-31]. Firstly, some of them do

not consider biologically meaningful sub-pathways, such

as the signaling circuits considered here, but rather any se-

quence of connected proteins (sub-graphs), no mater of

their relevance in the signaling transmission process

[28,31]. This produces false positives because pathways

are declared as significantly activated when some of such

topologically-defined sub-graphs are active, regardless of

their contribution to effective signal transmission. Even if

the circuits are reasonably well defined [29,30], many

nodes, often composed by several proteins, are not well

resolved, which results in erroneous estimations of the

states of the circuits. Moreover, all these methods use dif-

ferential expression values in the nodes instead of actual

probabilities of node activity, which lead to incorrect as-

sumptions on the activities of sub-pathways in general

and signaling circuits in particular. In addition some of

the methods do not provide any software, which critically

compromises their potential use [29,30].

The analysis of type I and type II errors demonstrated

the accuracy of the methodology proposed. The examples

Table 1 Analysis of the activity of the pathways by means of different approaches in the case-control comparison of

early onset colorectal cancer

Circuits SEA

PATHWAY Total Case Control UP vs DOWN UP vs ALL DOWN vs ALL GSEA SPIA

PPAR SIGNALING PATHWAY 106 3 19 DOWN ALL ALL DOWN* INH*

ERBB SIGNALING PATHWAY 139 11 2 UP UP DOWN DOWN* INH

CALCIUM SIGNALING PATHWAY 20 2 2 DOWN UP DOWN UP* ACT

NEUROACTIVE LIGAND-RECEPTOR INTERACTION 7 0 0 UP UP ALL UP* ACT

APOPTOSIS 28 0 0 DOWN ALL DOWN DOWN* INH

WNT SIGNALING PATHWAY 37 6 6 UP UP DOWN DOWN* INH

NOTCH SIGNALING PATHWAY 14 0 0 DOWN ALL ALL DOWN INH

VEGF SIGNALING PATHWAY 10 2 0 DOWN ALL ALL DOWN INH

CELL ADHESION MOLECULES 43 6 3 UP UP ALL UP* –
1

GAP JUNCTION 17 4 0 UP UP ALL UP* ACT

ANTIGEN PROCESSING AND PRESENTATION 6 0 0 DOWN ALL DOWN UP ACT

TOLL-LIKE RECEPTOR SIGNALING PATHWAY 103 0 0 UP UP DOWN UP* INH

JAK-STAT SIGNALING PATHWAY 7 7 0 DOWN ALL DOWN UP* INH

B CELL RECEPTOR SIGNALING PATHWAY 10 0 0 UP UP ALL UP* INH

Fc EPSILON RI SIGNALING PATHWAY 7 0 0 UP ALL ALL DOWN* INH

INSULIN SIGNALING PATHWAY 54 1 0 DOWN UP ALL DOWN* INH

GnRH SIGNALING PATHWAY 9 0 0 UP UP ALL DOWN* ACT

MELANOGENESIS 8 1 0 UP ALL ALL UP ACT

ADIPOCYTOKINE SIGNALING PATHWAY 31 0 2 DOWN ALL ALL UP INH

1 – This pathway is not implemented in SPIA.

The first column contains the name of the pathway. The next three columns, collectively labeled as circuits, list the number of sub-pathways in the pathways

(Total) and the number of them significantly activated in cases with respect to controls (Case) or vice versa (Control) in the comparison, respectively. The three

next columns, collectively labeled as SEA, list the results of a conventional functional enrichment test [3] in three situations: UP vs DOWN) when the significantly

upregulated genes are compared to the significantly downregulated genes, UP vs ALL) when significantly upregulated genes are compared to rest of genes, and

DOWN vs ALL) when significantly downregulated genes are compared to the rest of genes. UP, DOWN and ALL means where the major part of the pathway lies

in the comparison. Significantly up- and downregulated genes are obtained by a conventional t-test with multiple test adjustment as implemented in the Babelomics

program [89]. Although the trends of the results are coincident with the other analyses, none of them resulted significant. The column labeled GSEA contains a version

of GSEA test [15] implemented in the Babelomics program. The * and the boldface indicate the trend is significant according to the test. The last column, labeled as

SPIA, contains the result of the application of the pathway impact analysis [23].
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presented in this paper illustrate the use of the concept of

the probability of stimulus-response circuit integrity for

signal transmission in different scenarios including cross-

talk between pathways.

We have focused on gene expression data obtained from

microarrays purely by practical reasons of availability: it is

the most abundant genomic data publicly available. Obvi-

ously, gene expression values can be obtained by other

methodologies, providing the data compared are in the

same scale (this is the objective of the normalization

process). In particular, it is likely that in a near future most

of the gene expression measurements will be obtained

from RNA-seq experiments [82]. Different measurements

for differential gene expression have been proposed, that

can accurately account for the estimation of the differen-

tial gene expression [83] that could be easily adapted to

measure the differential activation of a signaling circuit.

Detailed pathway models helps to understand the dis-

ease mechanism [72] as well as throw light on possible

mechanisms of drug action [84]. Such models facilitate

the advent of a real systems medicine where interventions

over particular molecules can be understood within a sys-

tems context [76,77]. Actually, the method proposed fos-

ters the conceptual transition from gene-based biomarkers

to mechanism-based biomarkers (the signaling circuits).

These can be derived from the gene expression values com-

bined in a way that have a biological meaning and poten-

tially account for the disease mechanism. Moreover,

pathway models will likely play an important role in the

interpretation of different types of genomic data apart

from gene expression. Thus, models of pathways can also

be used to study the possible impact of mutations found

in exome or whole genome resequencing experiments in

the context of pathway functionality. The study of the

combined effect of these mutations on the different signal-

ing circuits and consequently the resulting cellular func-

tionality damaged will help to understand the mechanism

of the disease and to propose ways of intervention. Simi-

larly, it will also be possible to understand the functional

implications at pathway level of genome-wide regulatory

constraints found in methyl-seq [85] experiments and its

corresponding impact in diseases. Steps toward model the

functionality of the cell will render more detailed insights

into the knowledge of the living systems and will provide

more powerful statistical tools to study the behavior of the

cell in a diseased condition. Models developed here for the

relatively simple scenario of signaling pathways really cap-

ture the network of relationships among proteins that ac-

count for particular aspects of the functionality of the cell.

Methods
Data sources and preprocessing

All data used in this study was downloaded from the Gene

Expression Omnibus (GEO), public repository of the

NCBI [86]. By the time this study was carried out, there

were 169 GEO series containing microarray data gener-

ated using the Affymetrix GeneChip HG-U133 Plus 2.0

Array (GPL570 platform in the GEO data base). Only for

74 of those series raw data (Affymetrix .CEL files) were

available, comprising a total of 3034 array hybridized to all

kind of human samples. The same search was performed

for the platforms HG-U133A and MoGene-1_0-st-v1, ren-

dering a total of 5293 and 683 arrays, respectively. A col-

lection of reference arrays was made with them. The raw

data (.CEL files) for these platforms were downloaded.

The arrays were normalized in batches of size 100 (be-

cause of memory size limitations) using the function

RMA in the affy library [87] of Bioconductor and finally

all batches were rescaled together using the “quantile”

method of the limma library [88] of Bioconductor, imple-

mented in the Babelomics [89] platform. Details of the

procedure followed have been published elsewhere [17].

The data collection covered an ample spectrum of bio-

logical conditions including different tissues, and diseases,

male and female individuals as well as cell lines.

Gene expression data for the CRC analysis were re-

trieved from the GEO (GSE4107). Gene expression data-

sets for the Fanconi Anemia analysis were obtained from

GEO (GSE16334) (Affymetrix HG-U133A Array). Gene

expression datasets for the murine models of obesity

were downloaded from GEO (GSE36669). Human bone

marrow hematopoietic stem cells gene expression data

were retrieved from GEO (GSE32719). Gene expression

data of pediatric acute myeloid leukemia (AML) used in

the validation of the methodology were retrieved from

GEO (GSE17855). Gene expression data for breast cancer

and data from the study of genes with increased expres-

sion in AML were also retrieved from GEO (GSE27562

and GSE9476, respectively).

The original GEO normalization of each dataset was

used. Differential gene expression control versus case

samples were carried out using the Limma library [88]

from Bioconductor.

Models of KEGG's pathways

Signaling pathways offer an excellent framework for de-

riving models of biological activity because their func-

tionality can be easily conceptualized: it simply consists

on the potential of transmitting a signal from the protein

that receives a stimulus (signal input) to the effector

protein that triggers the action (signal output) in re-

sponse to the stimulus. In practical terms, any node with

no incoming interactions is defined as signal input node

and any node with outgoing interaction is defined as a

signal output node. Then, a sub-pathway is defined as a

signal entry point and the collection of intermediate

connecting nodes that links it to a signal output node.
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We will name circuits to these particular sub-pathways

in order to distinguish them from any other possible

sub-pathway that does not connect signal input to signal

output nodes within the pathway. Thus, we recode each

pathway into a collection of circuits. Any of these cir-

cuits represent a potential elementary functionality trig-

gered by the corresponding signal output node. Some

signal output nodes have specific annotations, included

in the KEGG pathway definition, about the functionality

triggered, although a number of them lack annotation.

Figure 6 schematizes an example with three possible in-

puts and three possible outputs that trigger three possible

functionalities of the pathway. The connection matrix

shows how input and output can be connected through 5

different circuits (non-zero entries). Circuits can have

more than one sub-pathway (linear path) that connects

the input to the output node. For example, Figure 6 shows

how the circuit that connects ProtA to ProtH can be tra-

versed by two different ways, represented by the following

sequences of nodes: ProtA, ProtB, ProtD, ProtF, ProtH or

ProtA, ProtB, ProtD, ProtG, ProtH. A node can be one in-

dividual protein, several alternative proteins or a complex

of proteins.

A total of 27 KEGG pathways for Homo sapiens and

18 for Mus musculus belonging to the general categor-

ies Environmental Information Processing and Cellular

Processes, which include important processes and systems

such as Signal Transduction (ERBB, WNT, NOTCH, JAK-

STAT, calcium, VEGF, HEDGEHOG and mTOR signaling

pathways), Signaling Molecules and Interaction (neuroac-

tive ligand-receptor interaction, cell adhesion molecules,

cytokine-cytokine receptor interaction and EMC-receptor

interaction), Cell Growth and Death (apoptosis and p53

signaling pathway), Cell Communication (GAP junction

and tight junction), Endocrine System (insulin signaling

pathway, adipocytokine signaling pathway, PPAR signaling

pathway, GnRH signaling pathway and melanogenesis)

and Immune System (toll-like receptor signaling pathway,

B cell receptor signaling pathway, T cell receptor signaling

pathway, Fc epsilon RI signaling pathway, antigen process-

ing and presentation, and chemokine signaling pathway),

could be coded in this way.

The information about the topology of each pathway

was extracted from the corresponding KEGG’s XML files.

The KEGG database provides information on the genes

and their corresponding relationships, making it possible

to reconstruct each pathway from its corresponding

XML-formatted file (in KGML format - KEGG Markup

Language). The Dijkstra's algorithm [90] is used to dis-

cover all the possible sub-pathways between an input

and an output node.

Only two types of relationships are considered: activa-

tions and inhibitions. These are coded in the XML file, ei-

ther directly or through a more detailed description of the

mechanism by which the molecules perform the action.

Thus, according to KEGG nomenclature, the labels Phos-

phorylation, Dephosphorylation, Indirect, Expression and

Compound are initially considered activations, unless the

contrary is specified. That is, if a relationship is labeled as

phosphorylation, we consider that the signal is transmitted

to the next node, however, if it is labeled as both, phos-

phorylation and inhibition, we consider that the relation-

ship is a phosphorylation that is inhibiting the activity of

the next node in the pathway. On the other hand, Ubiqui-

tination, and Inhibition are considered inhibitions. When

several proteins are linked by binding/association relation-

ships, or are indicated as a group in the XML file, they are

considered as a single node that need to be simultaneously

activated to transmit the signal.

Once a pathway is represented in this way, the probabil-

ities of signal transmission from any entry point (stimulus

receptor) in the input layer to any exit point (protein that

triggers the response to the stimulus) in the output layer

can be calculated, providing the activation state of the

nodes connecting them are known. Moreover, changes in

signal transmission probabilities when comparing different

experimental situations can be tested.

Estimation of the activation state of a node in the

pathway

As mentioned above, a node can be composed of only

one protein, several alternative proteins or a complex of

proteins. The probability of activity in any of these sce-

narios can be conceptually derived from the probability

of activation of a protein. Commonly, the presence of

the transcript(s) corresponding to a gene is taken as a

proxy of the presence of the resultant gene product [26].

We assume that two alternative states are possible for a

gene: active and inactive. The activation state can be in-

ferred from the expression value observed across many

samples. It has been previously described that gene ex-

pression values for the inactive state often follow an ex-

ponential distribution, while the values corresponding to

the activated state tend to follow a normal distribution

[26]. Microarrays provide indirect measurements of the

gene expression values via sets of probes (namely probe-

sets in the Affymetrix™ technology). Following this, we

have calculated the mixture of distributions that best re-

flects the level of expression of any gene (represented by

the corresponding probeset in the microarray) across the

collection of microarrays of reference described above.

The Expectation-Maximization algorithm, as implemented

in the R package mixdist [91], was used to fit the expres-

sion data to a mixture of two distributions (that can be

normal or gamma, which are generalizations of the distri-

butions proposed for this scenario [26,92]). For any probe-

set for each gene, the program calculates the two highest
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peaks in the distribution of expression values, and uses

them as starting point for the calculation of the mixtures.

Then, it calculates the distribution that best suits the data,

the proportion in the population of each component of

the mixture and the associated parameters to each distri-

bution which are calculated from its mean and standard

deviation.

Once such calculations are available for any of the pro-

besets across all the microarrays studied, the distributions

obtained can be used to estimate the probability of activa-

tion for this probeset in a different microarray [26,92,93].

The probability of a probe being activated given its

expression level x can be calculated from the Bayes’

Theorem:

Figure 6 Example pathway with three possible inputs and three possible outputs. Any of the output proteins trigger a different functionality

of the pathway. The connection matrix shows how input and output can be connected through 5 different sub-pathways. Any sub-pathway can be

traversed by different paths. For example, the sub-pathway connecting ProtA to ProtH can be traversed by two different paths, represented by two

sequences of nodes (that, for the sake of the simplicity are here equivalent to proteins): ProtA, ProtB, ProtD, ProtF, ProtH or ProtA, ProtB, ProtD, ProtG,

ProtH. On the right, the two interactions among proteins: top right represents activation, with an arrowhead line, and bottom right represents

repression with a line with no arrow. In the lower part there is an example to illustrate the way in which the probability of activation of a sub-pathway

can be calculated from the combined activation of the corresponding nodes. From top to bottom: i) Probability of the transmission of the signal

through an activation action, ii) Probability of the transmission of the signal through a repression action, iii) An example of a simple bifurcating

sub-pathway and iv) the probability of signal transmission along this pathway.
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P Activejxð Þ ¼
p xjActiveð ÞP Activeð Þ

p xð Þ

where, according to the Law of total probability:

p xð Þ ¼ p x ActiveÞP Activeð Þ þ p x InactiveÞP Inactiveð Þjðjð

That, in terms of our mixtures can be written as:

p Activatedjxð Þ ¼
π1p1 xð Þ

π0p0 xð Þ þ π1p1 xð Þ

Where π0 = P(Inactive) and π1 = P(Active) are the pro-

portions in the population for each distribution, that are

calculated by the mixdist package, and p0(x) = p(x|In-

active) and p1(x) = p(x|Active) are the distributions that

form the mixture.

Although the distributions derived from these particu-

lar datasets are only applicable to the particular micro-

array platforms used in this study (HG-U133 Plus 2.0,

HG-133A and MoGene-1_0-st-v1), it is straightforward

to produce similar distributions for the corresponding

probesets of reference in other microarray platforms

(actually, more platforms are available in the implemen-

tation of the method). Probesets mapping on multiple

genes are discarded from the calculations.

Given a microarray, the probabilities for each probeset

of being activated can be used to derive the probabilities

of gene activation (proxies for the corresponding protein

activation probabilities) in the experiment studied. We

use the 90% percentile of the distribution of the probeset

activation probabilities as the value of probability of gene

activation. The rationale behind this approach is to take

the highest signal of hybridization of a probeset as an

evidence of the existence of gene activity trying to avoid

the most extreme values. In this way we choose a repre-

sentative value for each gene [94] by means of which we

minimize the false positives and negatives derived either

from outliers or (more frequently) from unsuccessful

probe hybridizations.

Nodes in the pathway are composed of one or more

proteins. In the case of nodes of multiple proteins, these

can be independent or can be part of a protein complex.

When the node is composed by a single protein, the

probability of node activity is the probability of activa-

tion of this protein. The second scenario corresponds to

a node composed by more than one alternative protein.

These are supposed to be redundant in its activity,

meaning that the existence of only one of these proteins

would be enough for the transmission of the signal. In

this case, all the probes corresponding to all the genes in

the node are taken together and the 90% percentile of

the distribution of their activation probabilities is taken

as the value of probability of node activation. The third

scenario, corresponding to a complex of proteins, is

slightly different because all the proteins are simultan-

eously necessary for its integrity. Unlike in the previous

case, we consider that the activity of the node depends

on the simultaneous presence of all their components.

Consequently, we consider that the probability of having

this type of node active is conditioned by the lowest

probability of having any of the proteins of the complex

active. The lowest of these probabilities will be the limiting

factor for the integrity (and consequently, the activity) of

the node. Of course, the scenarios for the nodes are ideali-

zations of a reality which may be much more complex,

but they have demonstrated to represent a realistic

enough scenario and to work in practical terms [95].

Probability of signal transmission along a circuit

As stated above, a signaling circuit is defined by an input

node (the protein that receives the stimulus), an output

node (the protein that triggers the response to the stimu-

lus) and all the intermediate nodes connecting them.

Thus, the probability of signal transmission along a circuit

can be derived from the probability of a) having all the

nodes connecting the input node to the output node ac-

tive and b) having all the nodes that are inhibitors of

nodes in the pathway in an activation state compatible

with the transmission of the signal. When there are several

possible ways (bi- or multi-furcations) to transmit the sig-

nal from the input node to the output node (linear sub-

pathways), the formula of the probability of the union of

several events can be used. Thus, once input and output

nodes and the topology of the intermediate nodes has

been defined for a particular circuit, and the probabilities

of activation for each node in the pathway has been esti-

mated (as described in the previous section), the prob-

ability of signal transmission across any circuit can be

calculated as:

P ∪
n
k¼1Ak

� �

¼
X

n

k¼1

P Akð Þ−
X

i<j

P Ai ∩Aj

� �

þ
X

i<j<k

P Ai ∩Aj∩Ak

� �

þ …

þ −1ð Þnþ1
P ∪

n
k¼1Ak

� �

being n the number of linear paths conforming a circuit

and being Ai (i = 1,…,n) any of the paths in the circuit.

Thus, the resulting probability, which can be assimilated

to the probability of signal transmission across the cir-

cuit, is estimated as the probability of the union of all

the linear paths that form this circuit.

Figure 6 (lower part) illustrates with a very simple ex-

ample the way in which the probability of combined ac-

tivation can be used to calculate the probability of

activation (signal transmission) of a circuit.

Circuits containing loops cannot be modeled under

this simple approach and are not considered here.
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Specifically, this situation occurs in four pathways where

we eliminated the following number of circuits

(hsa04150: mTOR signaling pathway, hsa04612: Antigen

processing and presentation, hsa04630: Jak-STAT signal-

ing pathway and hsa04920: Adipocytokine signaling path-

way, in which 11, 3, 18 and 22 loops were removed,

respectively).

Comparing pathways and signal transmission in two

experimental conditions

Since we are using gene expression values as proxies of

protein activation statuses, the resulting probabilities of

signal transmission across circuits at mRNA level might

not have an exact correspondence with the protein level.

In other words, the value of probability obtained for a

circuit could not be by itself very informative about the

real activation status of the circuit. However, the compari-

son of two conditions will render results with a clear bio-

logical interpretation: a significant change in the probability

of signal transmission along a circuit is most probably ac-

counting for a real change it the cellular response to any

stimulus. In that case it can be anticipated that changes in

mRNA levels causing significant changes in signal trans-

mission circuit status will most likely be accompanied by

the corresponding change at protein levels.

This method seeks to assess the activation probability

of every circuit, representing a canonical functionality

within the pathway, given the status of the sample (e.g.,

disease, control, etc.) In order to achieve that, we use the

Wilcoxon test [96] (implemented in R as the wilcox.test

function) to compare the difference of activation probabil-

ity of each individual circuit in the pathway. Then we use

a False Discovery Rate (FDR) [97] control to correct the

p-values obtained for each circuit in the pathway. This

p-value can be used to detect circuits with a significant

difference of activation between conditions. The wilcox.

test function returns the location parameter that indi-

cates which is the activated condition when a circuit

was found to be significantly activated. Depending on

the topology of the pathway a few genes can produce a

remarkable change in the number of circuits activated/

deactivated or vice versa.

Methods for functional enrichment
In order to compare the proposed approach to other

pathway-based methods we have used different algorithms

for functional analysis, namely singular enrichment ana-

lysis (SEA), gene set enrichment analysis (GSEA), and im-

pact analysis [23]. The FatiGO [3] is a widely used SEA

implementation, which is included in the Babelomics

web-based package [89]. For the GSEA we have used an-

other implementation developed by us [15], also included

in the Babelomics package [89]. For the SPIA we have

used the program provided by the authors [23].

Sample classification using circuit activation
statuses as features for sensitivity assessment
In order to test the sensitivity of the method for the esti-

mation of the probabilities of circuit activation, we have

used them as features to predict disease class. A low mis-

classification rate can be considered an appropriate proxy

for a low type II error rate [26,35]. We have used Support

Vector Machine (SVM) [46] for the classification of the

samples. The accuracy of the classification obtained was

evaluated by ten-fold cross validation [47], using the fol-

lowing parameters: proportion of correct classification

(PCC) and the area under the curve (AUC).

Representation of the results
A web interface that implements the test described above

has been developed [98] and is available at: http://pathi-

ways.babelomics.org. The results are displayed in a table

that contains each circuit and its corresponding p-value,

its FDR corrected p-value and its estimation of the loca-

tion parameter. A graphical representation of the results

in the pathway context of a KEGG-like map is also pro-

vided. This representation is obtained using the R package

igraph [99]. Nodes belonging to circuits significantly more

activated in the first condition appear in blue while nodes

significantly more activated in the second condition ap-

pear in red. Nodes belonging to several circuits with dif-

ferent activation statuses appear in yellow. Activations are

represented by solid arrows and inhibitions by dashed

arrows.

Additional files

Additional file 1: Figure S1. Model of the Wnt signaling pathway in

CRC with the corresponding significant changes in the signaling circuit

activities. Red nodes indicate activated circuits in the CRC patients with

respect to the healthy controls and blue nodes indicate circuit

deactivations.

Additional file 2: Figure S2. Model of the VEGF signaling pathway in

CRC with: A) the corresponding significant changes in the signaling circuit

activities. Red nodes indicate activated circuits in the CRC patients with

respect to the healthy controls and blue nodes indicate circuit deactivations.

B) Individual differential gene expression values in the nodes of the same

pathway. Red nodes indicate genes over-expressed in CRC with respect to

controls and blue nodes the opposite situation.

Additional file 3: Figure S3. Signaling changes in mouse models of

obesity. Activation of circuits within the VEGF pathway in wildtype mice

16 weeks old. Red nodes label activated circuits with respect to initial state

of each comparison and blue nodes label deactivations.

Additional file 4: Table S1. Significant pathways obtained upon the

application of the clipper method on KEGG pathways as implemented in

the Graphite Web program to the CRC dataset.
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