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We analyze the method of encoding pairwise interactions of higher-than-binary discrete variables
(these models are sometimes referred to as discrete quadratic models) into binary variables based on
domain walls on one dimensional Ising chains. We discuss how this is relevant to quantum annealing,
but also many gate model algorithms such as VQE and QAOA. We theoretically show that for
problems of practical interest for quantum computing and assuming only quadratic interactions are
available between the binary variables, it is not possible to have a more efficient general encoding in
terms of number of binary variables per discrete variable. We furthermore use a D-Wave Advantage
1.1 flux qubit quantum annealing computer to show that the dynamics effectively freeze later for
a domain-wall encoding compared to a traditional one-hot encoding. This second result could help
explain the dramatic performance improvement of domain wall over one hot which has been seen
in a recent experiment on D-Wave hardware. This is an important result because usually problem
encoding and the underlying physics are considered separately, our work suggests that considering
them together may be a more useful paradigm. We argue that this experimental result is also likely
to carry over to a number of other settings, we discuss how this has implications for gate-model and
quantum-inspired algorithms.

I. INTRODUCTION

Quantum computing shows great promise for combina-
torial optimisation problems, and many proof-of-concept
experiments have been performed demonstrating the po-
tential in a variety of areas including vehicle schedul-
ing [1], traffic flow optimisation [2, 3], hydrology [4], com-
putational biology [5, 6], community detection [7], graph
theoretical problems [8–10], and supply chain logistics
[11]. While this is an area with great promise, available
devices exist in relatively early stages of development,
which is often termed the noisy intermediate-scale quan-
tum (NISQ) [12] era of quantum computing. In these
early stages, it is crucial to be able to get the most out
of these devices through, among other things, optimal
encoding of problems [13].

Currently there are two major paradigms of quan-
tum computing, analog quantum computing, typified by
quantum annealing computers, and employing continu-
ous time evolution, and digital gate model quantum com-
puting which performs a series of discrete “gate” opera-
tions. In both settings, it is crucial to use the hardware
optimally, including optimal encoding of problems, but
the constraints may be different. In particular, the physi-
cal interactions underlying the operation of these devices
typically do not involve more than two qubits, so it is nat-
ural to consider optimisation problems which can be ex-
pressed as a quadratic problem, those which only involve
single Boolean variable terms and interactions between
pairs of Boolean variables. One example of particular
interest here are quadratic unconstrained binary optimi-
sation problems (QUBOs). It is always possible to map
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an optimisation problem involving higher order interac-
tions into a QUBO, but this will come at a cost in terms
of “auxilliary” variables which must be added to engi-
neer the interactions [14–16]. In the case of gate model
quantum computers, it is also possible to engineer these
higher order interactions out of a sequence of pairwise
interactions, without having to add more qubits. For
example, a sequence of CNOT gates can map the total
parity of an arbitrary number of qubits to a single qubit
value.

In this work, we study the specific case where prob-
lems involve higher-than-binary discrete variables, which
must be mapped to Boolean variables [58]. One way to
approach this problem is binary encoding, where each
value of the discrete variable is assigned a bitstring and
the number of binaries used is the minimum allowed by
information theory. Another approach is to use a unary
encoding for each discrete variable, such that the num-
ber of Boolean variables used to encode grows linearly
with the size of the discrete variable. The two common
methods used here are one-hot and domain-wall encoding
[17].

Both of these encodings are discussed in detail in the
next section and a few other examples of encodings are
discussed in appendix II. It is worth remarking that while
an encoding which only uses unary methods is not a scal-
able way to build a quantum computer, a setting where
the number of (potentially large) discrete variables is in-
creased as the problem size is scaled up does meet the
criteria for scalability as discussed in [18].

In this paper we consider these encodings at the level
of problem mapping, meaning that we assume that the
problem should be expressed directly as a QUBO. This is
a realistic assumption in the setting of quantum anneal-
ing, but may not be for gate model quantum computing,
where there may be other compilation methods available.
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As [19] illustrates, that leads to complicated trade-offs
which will not be discussed here.

The first key result we find is that in the quadratic
setting, the domain-wall encoding is the most efficient
possible encoding in terms of Boolean variable number
per encoded discrete variable (when auxilliary qubits nec-
essary to encode the interaction are accounted for) for
practical problems if arbitrary interactions between the
discrete variables are desired. This result includes not
only one-hot and binary encodings, but also any hypo-
thetical, yet-to-be-discovered encodings.

The second major result of this paper is to gain a better
understanding of why the domain-wall encoding experi-
mentally out-performs one-hot in recent quantum anneal-
ing experiments [10]. By performing experiments on a
D-Wave Advantage 1.1 quantum annealing computer, we
find that this is due to a combination of factors, including
the fact that fewer Boolean variables induces a smaller
solution space, and therefore reduces the effect of ther-
mal fluctuations, as well as the fact that the annealing
dynamics effectively “freeze” later in the anneal, meaning
that the dynamics are more conducive to computation.
The second of these effects was theoretically predicted in
[17], due to the fact that only a single Boolean variable
needs to be flipped to change the value of the discrete
variable in the domain-wall encoding, while two need to
be flipped in the one-hot setting. These results rely on
a simplified version of a problem known as the quadratic
assignment problem (QAP), and modeling based on the
celebrated Kibble-Zurek mechanism [20, 21]. This mech-
anism has previously been studied as a model of pro-
grammable quantum annealing computers [22–24]. In
particular, [22] used the same model of instantaneous
freezing we use here, but for a problem where both the
effects of quantum and thermal fluctuations were frozen
in. We show that for the experiments here a model based
only on thermal fluctuations at the freeze time is a valid
approximation.

II. BACKGROUND

A. Flux qubit quantum annealing computer

The experiments reported here are performed on a D-
Wave Advantage 1.1 programmable flux qubit quantum
annealing computer. These devices produce a fully pro-
grammable transverse field Ising model on a restricted
hardware graph χ. The effective Hamiltonian of the de-
vice takes the form

H(s) = −A(s)
∑
i

Xi +B(s)

∑
i,j∈χ

JijZiZj +
∑
i

hiZi


(1)

where X and Z are Pauli matrices and 0 ≤ s ≤ 1 is the
annealing parameter which controls the anneal such that
A(s) monotonically decreases and B(s) monotonically in-

0.0 0.2 0.4 0.6 0.8 1.0
s

0

2

4

6

8

10

En
er

gy
 (G

Hz
)

A
B
T

0.00 0.25 0.50 0.75 1.00

10 6

10 3

100

FIG. 1: Annealing schedule for the D-Wave Advantage 1.1
processor showing the A (decreasing with increasing s), and
B (decreasing with increasing s) curves along with the tem-
perature (≈ 15mK ≈ 0.31GHz). The inset is the same plot
but with a logarithmic scale on the y-axis.

creases, as depicted in figure 1. We only consider forward
annealing protocols without schedule variations in this
paper, s = t

tanneal
where t is time and tanneal = 20µs,

which is the default value for these devices. It is worth
noting that, while not conventionally included in the
Hamiltonian, there is also significant thermal dissipation
within the circuit. Since optimal solutions are mapped
to low energy states, this dissipation can play a positive
role, in fact it was even shown in [25] that energy in-
creases due to thermal fluctuations can lead to improved
performance. There are also negative effects from the
interaction with the environment, including thermody-
namic effects related to sampling a finite temperature
distribution [26], the effects of finite temperature play an
important role in the results reported here.

The optimisation problems which these devices solve
are programmed into the B terms of equation 1. Equiva-
lently, these problems can be considered as QUBO prob-
lems, by realizing that the bit value b ∈ {0, 1} can be en-
coded as b = 1−Z

2 , where the allowed measurement values
of Z are {1,−1}. Note that if we think of the measure-
ment value of Z it can be treated as a classical Boolean
variable σ ∈ {1,−1}, since we are most interested in the
higher level picture of the problem not including detailed
annealing dynamics we use σ for the remainder of the pa-
per. Because the problems we are considering will usually
not be subgraphs of the hardware graph χ, we map the
problem using minor embedding [27, 28]. We use the
“uniform torque compensation” [29] heuristic which is
provided as part of the D-Wave Ocean software suite to
determine the strength of the minor embedding chains.

It is important to note that the minor embedding pro-
cess is likely to have a strong effect on our results, includ-
ing in some ways which we discuss explicitly. It therefore
follows that the results using a problem which did not
require minor embedding may be substantially different
and probably could not be inferred from our current re-
sults. However, we feel that the minor embedded setting
is the interesting one for understanding real problems,
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since it will likely remain an unavoidable step for the
forseeable future. While in principle it may be possi-
ble to use a set of methods known as parity encoding
[15, 30, 31] to map problems which are not compatible
with the graph, these methods are not commonly used
for D-Wave devices, and numerical studies [32] suggest
that minor embedding is likely to be more effective in
the D-Wave setting.

B. Unweighted assignment problem

The quadratic assignment problem is an optimisation
problem based on a hypothetical situation where m fa-
cilities must be assigned to m locations which are each
located a set distance di,j apart, and there is a set flow
between each pair of facilities fα,β . The objective func-
tion is the sum of the products of flows and distances∑
i,j fαi,βj

di,j .
For the experimental results presented here, we study

an unweighted version of the assignment problem. In
other words we consider a version where all combinations
of facilities and locations have an equal cost, but each
facility must still be assigned a unique location. This
version of assignment is no longer a hard combinatorial
optimisation problem, since all feasible assignments are
equally optimal, and a feasible assignment can be found
(for example) by assigning the first facility to a location
at random and than iteratively performing assignments
based on the lists of remaining facilities and locations.

While not a direct test of the ability of the annealing
computer to solve hard combinatorial optimisation prob-
lems, this problem can act as an indirect test, since the
ability to find feasible solutions (by which we mean so-
lutions where one facility is assigned to one location and
vice-versa) is an important step on the way to finding
optimal solutions, such as in optimality certificate-based
approaches, e.g., Graver basis [33]. Moreover, since the
unweighted version of this problem is symmetric with re-
spect to permutations of the facilities and locations, it
is easier to perform thermal sampling using Monte Carlo
methods. This follows from the fact that sampling the
solution space around one feasible solution is the same as
sampling around any other–the solution space is a single
orbit under the permutations group action.

Moreover, the basic structure of the double constraint,
one facility per location, and one location per facility
is the same as the underlying constraint in a travelling
salesperson (TSP) problem. Consider the placement of
the order in which each city is visited in the journey (first,
second, third, etc...). Then the constraint that each city
can be visited only once is equivalent to saying that each
city must have a unique placement in the order of the
journey (the same city cannot be both first and third
for example). The constraint that each city must be vis-
ited at least once can then be enforced by allowing each
placement in the order to be used only once (for example
only a single city can be third in the order). Since the

TSP is not usually thought of as an unweighted assign-
ment with additional quadratic interactions, we discuss
this construction explicitly in appendix I.

For the TSP the distances between cities become ad-
ditional quadratic interactions between the discrete vari-
ables. For the (weighted) QAP, quadratic interactions
are added between pairs of facility and location choices
are added, both cases would add additional couplings
which would change the minor embedding of the problem,
but since we are primarily interested in the underlying
physics of how the device solves the problem, we consider
the simple case where only the constraint is mapped, and
not additional interactions needed for the problem.

C. Discrete Quadratic Models (DQMs) and
encoding to Boolean variables

Many important optimisation problems which exist in
the real world involve discrete variables which are higher
than binary. In other words, they involve variables for
which the allowed values belong to m distinct classes,
where m > 2. For the QAP, each facility can be placed
at any location, so this can also be expressed by discrete
variables. Problems which can be expressed as discrete
variables with arbitrary pairwise interactions are conven-
tionally called discrete quadratic models, which we ab-
breviate as DQM.

To express the QAP (or TSP) as a DQM, either con-
straint can be used. For instance, we can either define
the DQM variables as the choice of facilities for each lo-
cation (the order in which each city appears for TSP)
or equivalently as the choice of location for each facility
(which city appears at each placement in the order for
the TSP). In both cases, additional constraints must be
added to the DQM to guarantee that the discrete vari-
ables take unique values.

Following the convention in [10], we define DQMs
based on a collection of two index variables, xi,α, where
the index i refers to the variable number, and the index
α refers to the variable’s class such that

xi,α =

{
1 variable i takes value α

0 otherwise.
(2)

An arbitrary DQM is then defined by the following
Hamiltonian,

HDQM =
∑
i,j

∑
α,β

D(i,j,α,β)xi,αxj,β (3)

where D(i,j,α,β) are the pairwise interactions which de-
termine the overall energy of a configuration.

An unweighted assignment can be defined by setting
D(i,j,α,α) = 1 ∀α, i > j. However it is worth not-
ing that this definition is not unique because xi,αxi,β =
0 ∀α 6= β, so any finite value of D(i,i,α,β) with α 6= β
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does not change the underlying problem. A compu-
tationally interesting QAP will also include values of
D(i,j,α>β,β) = fα,βdi,j corresponding to each combina-
tion of distance and flow and will require D(i,j,α,α) =
κ ∀α, i > j, where κ takes a large enough positive value
to enforce the constraint. Similarly a TSP can be defined
using the same constraint but taking D(i,j,α>β,β) values
corresponding to distances between cities. By this logic
the unweighted assignment problem can also be thought
of as an (unphysical) version of the TSP where the dis-
tance between all cities is zero (we again refer the reader
to appendix I for the details of this mapping).

a. One-hot constraints: Perhaps the simplest way to
express a DQM as binary variables is to apply a con-
straint so that only a single variable can take the value 1
and enforce that all others take 0 values. This constraint
can be realized as

Hone-hot = κ

(∑
α

bα − 1

)2

, (4)

where bα ∈ {0, 1} is a binary variable corresponding to
each possible value, and κ > 0 is the constraint strength.
In this method, if variables also are indexed by i there
is a one-to-one correspondence between QUBO variables
bi,α and DQM variables xi,α. This correspondence makes
it tempting to consider the one-hot encoding not as an
encoding at all, but simply as constraints on binary vari-
ables (this is the way in which we introduced the QAP
and TSP in section II B), each of which correspond to a
specific value of a specific variable. However, this way
of thinking about problems is no longer useful when no
such one-to-one correspondence exists. This is the case
for the other two encoding methods we discuss. Since
one-hot can also be thought of as an encoding of a DQM
(although a rather trivial one), this way of thinking about
it is more useful to compare it to other methods on the
same footing. While they will not be directly analyzed
here, there are two important extensions to one hot, k-
hot constraints and integral encodings, which we review
in appendix II.

b. Domain-wall encoding: Another recently pro-
posed method to encode DQMs is the domain-wall en-
coding [17]. In this encoding, for a discrete variable m,
only m−1 “spin” binary variables σα ∈ {1,−1} (the term
“spin” derives from condensed matter physics where the
direction of the magnetic spin of a spin 1

2 particle is often
denoted in this way). The values encode a domain-wall
location (a point where the value of σ goes from −1 to
1) in a frustrated segment of a ferromagnetic spin chain.
In other words, the Hamiltonian is defined as

Hdomain-wall = −κ
m−2∑
α=−1

σασα+1, (5)

where the variables are defined for α ∈ {0,m − 2} and
boundary conditions are enforced by setting σ−1 = −1
and σm−1 = 1 (κ is again the constraint strength). An

FIG. 2: Domain-wall encodings can be represented by tri-
angulations of the Mobius strip. The number of squares rep-
resents the integer number m, and the blue twist gives the
domain-wall location. Here m = 4 and the encoded value is
| ↓↓↑〉.

advantage of this encoding is that the DQM terms xi,α
can be expressed in a way which is linear in the σ vari-
ables:

xi,α =
1

2
(σi,α − σi,α−1). (6)

Because xi,α translates to a linear term in the domain
wall encoding, it follows that xi,αxj,β will be quadratic
in σ, therefore the domain-wall encoding of a DQM is
always also quadratic in the underlying binary variables.
Note that the notation here is identical to that used in
[10] except for the fact that we use σ in place of s to avoid
confusion with s = t

tanneal
. It is also worth remarking,

that although not the subject of this paper, the domain-
wall encoding has potential in simulating quantum field
theories [34, 35].

A pictorial description of the domain-wall encoding is
provided by triangulations of the Mobius Strip – See Fig-
ure 2. It is also worth observing that unlike one-hot en-
codings, the value of a discrete encoded by the domain-
wall method can be updated by changing a single binary
variable. In the case of one-hot these updates require at
least two binary variables to be changed as depicted in
Figure 3. This distinction will become important later
when we consider the dynamics of physical systems us-
ing these encodings, notably it will determine the order
of perturbation theory which needs to be considered.
c. Binary encoding: In terms of number of binary

variables used to encode a discrete variable (if we ignore
auxilliary variables which may be needed to encode in-
teractions), the most efficient method to encode a DQM
is to use binary encoding, in other words to assign each
value of the discrete variable a bitstring. This method
uses dlog2(m)e binary variables to encode variables of
size m. To encode a DQM variable xα, we must assign

it a bitstring r(α), where r
(α)
q ∈ {0, 1} is the value the

bitstring takes on binary variable q. The encoding of a
DQM therefore becomes

xi,α =

dlog2(m)e−1∏
q=0

(
bi,αr

(α)
q + (1− bi,α)(1− r(α)q )

)
, (7)

where again bi,α ∈ {0, 1}.
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FIG. 3: Top: Two ways to update the value of a discrete
variable which can take five possible values within a one-hot
encoding. Note that there is no way to update the value
by changing a single binary variable as all states which are
one bit-flip away from a valid state do not represent valid
encodings. Bottom: A single bit-flip can update the value of
a domain-wall variable. Edges represent interactions between
binary variables, and the red line in the bottom subfigure is
a guide to the eye to show domain wall location.

This encoding is not generally quadratic for m > 2
(it may happen that higher order terms cancel in special
cases though). Therefore, in order to translate a binary
encoding of a DQM into a QUBO, we must also quadra-
tize higher order terms. In other words, we must trans-
form any terms of the form bi,αbj,βbk,γ ... to one which
only has terms of the form bi,αbj,β . There are multi-
ple methods to translate higher order interactions into
quadratic ones, but all require adding at least one aux-
illiary variable [14–16]. The optimal quadratization, i.e.,
quadratization with the minimum number of auxillary
variables, is NP-hard since the problem translates into
computing a Groebner basis of a toric ideal [36]. A fair
comparison between binary encoding and other methods
such as one-hot and domain-wall, has to include these
extra variables. It was shown in [10] that, at least for
one approach to quadratization, after these variables are
taken into account, binary encoding of the specific colour-
ing problems studied in that paper is less efficient than
one-hot or domain-wall. In this paper we show a more
general result based on degree-of-freedom counting, that
for problems of more than three variables, there is no
encoding strategy which can encode general DQM inter-
actions and for which binary encoding uses fewer discrete
variables than domain-wall encoding (which in turn uses
fewer than one-hot).

d. Other encodings: While we are not aware of any
other encoding methods to translate DQMs into QUBOs,
it is possible that others could exist which use nvar bi-
nary variables where dlog2(m)e < nvar < m − 1. In
principle such encodings could always be constructed by
taking a binary encoding and adding auxilliary variables
which are constrained by the values the variables used in
the binary encoding take. For this reason, we consider
the possibility of using such encodings in our degree-of-
freedom counting analysis as well. Since our analysis is
performed from a perspective of counting degrees of free-
dom, the details of the encoding are not necessary to
bound the number of binary variables required.

D. From one-hot to domain-wall

Since a domain-wall encoding encodes the same infor-
mation as a set of binary variables which are subject to
a one-hot constraint, it is always possible to transform
between the two. The recipe is as follows:

1. Identify all sets of one-hot constrained variables
which need to be replaced and translate to a dis-
crete quadratic model (DQM)

2. For each DQM variable, choose an order in which
the values will be physically encoded on the chain
used for the domain-wall encoding, this is neces-
sary since, while one-hot constraints are permuta-
tion symmetric, the domain-wall encoding is not.

3. Generate the necessary domain-wall encodings for
each DQM variable.

4. Translate DQM interactions into quadratic and bi-
nary terms acting on the new variables.

While it is most intuitive to think of the domain-wall
encoding in terms of spin variables σ as discussed in sec-
tion II C, optimisation problems are usually formulated
as QUBOs. To allow easier comparison between the one-
hot version (already formulated as a QUBO) and the
domain-wall encoding we formulate this encoding as a
QUBO as well, using the translation,

σi,α = 1− 2 bi,α, (8)

where σi,α ∈ {1,−1} is a spin variable and bi ∈ {0, 1} is
a QUBO variable. In this new formulation, we define a
DQM variable xi,α as

xi,α =
1

2
(σi,α − σi,α−1) = bi,α−1 − bi,α. (9)

Furthermore the domain-wall constraint can be trans-
lated as,

Hchain = −κ

(
m−2∑
α=−1

1− 2 bi,α − 2 bi,α+1 + 4 bi,αbi,α+1

)
,

(10)
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where the pinned boundary values become bi,α=−1 = 1
and bi,α=m−1 = 0.

The new QUBO generated by this translation has effec-
tively turned half of the one-hot encoding into a domain-
wall encoding. The remaining one-hot constraints end
up acting like colouring constraints on a fully connected
graph, effectively preventing any of the domain-walls
from sitting on the same location in the chain and there-
fore preventing any of the encoded DQM variables from
taking the same values.

One might be curious if it is possible to construct
an encoding where both sets of one-hot constraints are
translated into domain-wall constraints simultaneously,
thereby reducing the number of binary variables to
(m− 1)2 rather than m(m− 1). The degree-of-freedom-
counting argument in in section III A indicates that this
is not possible.

E. Freezing of quantum annealing dynamics

Before presenting our experimental results it is worth
explaining the techniques which we have used to under-
stand the dynamics. In this subsection we mostly provide
a qualitative and conceptual explanation, with the details
of our techniques being reported in section IV In partic-
ular, we approximate that the dynamics quickly change
from equilibrating very quickly and being well described
by a Boltzmann distribution to being completely frozen
and experiencing no dynamics. This is fundamentally
the approximation which is made behind the celebrated
Kibble-Zurek mechanism (KZM) [20–24, 37] which has
been successfullly used to understand a variety of phys-
ical systems, both in within the broader Universe and
within the laboratory.

Fortunately, the physical temperature of the device is
well known, ≈ 15mK, so we don’t need to measure it.
The thermal distribution is not determined by the phys-
ical temperature alone, but by the ratio of T

B(sfreeze)
were

sfreeze is the value of the parameter s at which the dy-
namics freeze. Because the maximum value which we
allow |J | to take is 1, the maximum coupling which
is involved in the thermal distribution will have an effec-
tive strength of B(sfreeze). The quantity sfreeze depends
in detail on the dynamics of the system and in general
should not be expected to be the same for different encod-
ings. We estimate its value by performing experiments
and comparing to simulations and known values as we
describe later in this section.

Since the problems we are solving are not in general
subgraphs of the connectivity graph of the quantum an-
nealer, we must minor embed them [27]. This introduces
the strongest energy scale of the problem since these
chains must be strong enough that the interaction terms
do not overwhelm the embedding chain couplings which
make multiple qubits encode a single binary variable [27].
Since the maximum value of |J | is 1, we cannot directly
increase the strength of these couplers of the minor em-

Raw feasible probabilites Monte Carlo simulations

Unitless
Temperature

Estimate

Chain 
Strength

Rescale

Fridge
Temperature

Divide

Annealing 
Schedule

FIG. 4: A flowchart of how we calculate physical quantities
related to the freezing of the annealer, specifically included
which quantities are incorporated where. This is important
to understand the role which quantities such as chain strength
and physical device temperature play in the calculation. The
initial unitless teperature which is calculated is depicted in
figure 13, the values after rescaling with chain strength are
shown in figure 14, and the estimations of sfreeze shown in
figure 15, estimated values of B(sfreeze) can be found in figure
16.

bedding chains, however, we can weaken the coulplings
and fields related to the interactions, which we call the
QUBO energy scale. We effectively define the chain
strength as the amount by which we scale down these
other terms.

To estimate T
B(sfreeze)

, which we call the effective tem-

perature and from which can be then used to extrapo-
late the other quantities, we analyse the success proba-
bility, the probability that the annealer found a configu-
ration which satisfies the constraints. By comparing with
a numerically estimated thermal distribution (and then
rescaling due to minor embedding chain strength, as dis-
cussed in the previous paragraph), we are able to extract
this quantity since the temperature is known this also
gives us the unitful value of B(sfreeze). Since we know the
annealing schedule we therefore can also extract sfreeze.
The process is depicted in the flowchart which appears
in figure 4, the caption of which also references relevant
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plots in the results section. For this comparison we have
chosen to compare the probability of finding a valid solu-
tion. While any property should do, based on the KZM
picture we are using, this quantity has the advantage of
being highly relevant to one of the most important tasks
in quantum annealing, finding high-quality solutions to
optimisation problems.

III. RESULTS

A. Efficiency of domain-wall technique

While the experimental results reported in this paper
all involve the domain-wall and one-hot encodings, it is
worth reflecting on whether a direct binary encoding (or
some other known encoding) could be more efficient in
terms of number of binary variables used, or whether
there are room for other, yet-to-be-discovered encodings
which could beat the efficiency of the domain-wall en-
coding. The domain-wall encoding was only proposed
in 2019 [17], so it is not unreasonable a priori to sus-
pect that other gains could be made. We restrict our-
selves to the question of encoding general interactions, in
other words encodings which can assign arbitrary ener-
gies based on the value of the two variables. This is an
important restriction, since binary encoding is known to
be efficient for specific interactions, for example in the
case of the shortest vector problem [38]. The structure
here which can be exploited is that the interactions can
be expressed as zizj , where zi ∈ {0, 1...m− 1} is the nu-
merical value of each variable, a general interaction would
involve all powers of zi and zj up to m−1, so interactions
experessed in terms of these variables would need to be
expressed as

m−1∑
u,v=0

auvz
u
i z

v
j . (11)

We find however for general quadratic interactions
that, for problems with four or more variables (as all in-
teresting combinatorial optimisation problems will have),
the domain-wall encoding is more efficient in terms num-
ber of binary variables required than any known encoding
including binary, moreover, we rule out the possibility of
any yet-to-be-discovered encoding which is more efficient.
We do this using degree-of-freedom counting arguments
similar to [17]. To start with we consider the case where
auxilliary variables are not allowed, in other words, the
interaction must be encoded directly in the linear and
quadratic degrees of freedom of the binary variables used
to encoded discrete variables. We later generalize to the
case where auxilliary variables are allowed and find the
same conclusion, that the domain wall encoding is the
most efficient for all cases of interest. For simplicity we
assume that all discrete variables are of size m, although
in principle the arguments here could be extended to
problems containing DQM variables of different sizes.

An important concept which we use throughout our
derivation is the concept of independent degrees of free-
dom, which we usually just shorten to degrees of free-
dom. The idea here is that while the effect of QUBO
terms on the encoded DQM interaction may not be sim-
ple, for every variable within the DQM model every in-
dependent element in the tensor from equation 3, there
should be at least one QUBO variable (either diagonal
or off-diagonal). If there are not sufficiently many such
terms, than arbitrary interactions will not be possible.

The reason we have chosen to focus on general inter-
actions is that many interesting real world optimisation
problems will not have structure which can be exploited
in more specialized encodings, for instance the interac-
tions will generally involve all powers of the variables
in equation 11. For example, in a quadratic assignment
problem, the quadratic penalties between the variables
will not generally have any special relationship which al-
lows any terms of this formula to be eliminated in the
interactions, similarly, there is no reason to expect such
a relationship between distances between cities in a trav-
elling salesperson problem, or time windows when tasks
are performed in a scheduling problem. The only cases
we are aware of where a special structure which can be
used to make the encoding more efficient is known are
when the discrete variables represent numbers (rather
than choices) in which case an objective functions which
only involve a restricted set of powers of z (in particu-
lar the special case where only the first power of z is in-
volved) could be meaningful and k-hot which is discussed
in appendix II and effectively represents a generalisation
discrete variables where they can be assigned k values
simultaneously.

There are some cases such as colouring problems,
where the interactions are not completely general (in that
specific case they prevent coupled variables from taking
the same values), but also do not restrict the powers in-
volved when interactions are expressed as equation 11. In
these cases, our degree-of-freedom counting arguments do
not, strictly speaking, rule out the possibility of a more
efficient encoding existing, but to the best of our knowl-
edge, one is not known, so one must revert to general
encoding techniques. Given that the more efficient en-
coding in [38] and similar works relies on multiplication
being easily represented in terms of the binary digits of a
number, and there is no analogous structure in terms of a
colouring constraint, we find it unlikely that there would
be a special structure which would allow colouring prob-
lems to be encoded more efficiently, but this cannot be
conclusively proven using the methods we present here.

1. No auxilliary variables

In this case all we need to do is to count the linear and
quadratic degrees of freedom from the binary variables
comprising each discrete variable, and find the size at
which there are just enough degrees of freedom to imple-
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ment the necessary interactions, taking into account that
only interactions involving variables used in both terms
can induce correlations. We first make an observation,
terms which are either linear, or quadratic but between
two binary variables which are used to encode the same
discrete variable can only contribute a maximum of m de-
grees of freedom per variable. The reason for this is that
the energy shifts these give are not sensitive to the state
of the other variable, and therefore can only contribute
one degree of freedom per available value. In cases where
there are sufficiently many of these degrees of freedom,
we then need to show that there are at least m2 − 2m

quadratic degrees of freedom which contain one binary
variable used to encode each.

To understand mathematically why there is a limita-
tion on the number of degrees of freedom which can be
contributed by interactions within a single variable en-
coding, let us consider the general case of two variables
of size m. In this case the QUBO terms can be written
(using two index qubo variables where the first index i
or j corresponds to a discrete variable encoding and the
second index α′ or β′ corresponds to the qubit number
within the discrete variable encoding) as

HQUBO =

nvar∑
i

∑
α′,β′

B(i,j,α′,β′)bi,α′bj,β′

=

nvar∑
i,j

∑
α′

B(i,i,α′,β′)bi,α′bi,β′ +

nvar∑
i,j

∑
α′<β′

(B(i,j,α′,β′) +B(i,j,β′,α′))bi,α′bj,β′ (12)

where B(i,j,α,β) is a tensor used to store the QUBO
terms used in the encoding in a similar way in which
D(i,j,α,β) is used to store the interactions between dis-
crete variables and nvar is the number of binary variables

used to encode each discrete variable. We now make an
observation, if we translate between the QUBO interac-
tions and the energies of the encoded variables, we have

∑
α′,β′

B(i,i,α′,β′)bi,α′bi,β′ ↔
m∑
α<β

D(i,i,α,β)xi,αxi,β =

m∑
α

D(i,i,α,α)xi,α (13)

the second equality can be derived from the fact that each
variable can only take one value, so therefore xi,αxi,β = 0
for all cases where α 6= β, along with the fact that
(xk,α)2 = xk,α. The result is that, no matter how
many B(i,j,α,α) degrees of freedom are available, they
can only contribute a maximum of m independent de-
grees of freedom for each discrete variable, since there

are only m possible values of xk,α. Equation 14 shows
where the different degrees of freedom come from for
an interaction between two variables, giving a total of

2 min(m, nvar(nvar+1)
2 )+n2var degrees of freedom for an in-

teraction between two discrete variables of size m indexed
with α and β each encoded into nvar binary variables.

HQUBO =
∑
α′,β′

nvar∑
i

B(i,i,α,β′)bi,α′bi,β′

︸ ︷︷ ︸
2 min(m, nvar(nvar+1)

2 )

+

nvar∑
i,j

∑
α′<β′

(B(i,j,α′,β′) +B(i,j,β′,α′))bi,α′bj,β′

︸ ︷︷ ︸
n2var

. (14)

Put another way, we can divide the terms into two
categories. The first we call correlating and are repre-

sented by the second set of terms in equation 14, these
terms necessarily involve binary variables used to con-
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struct each of the two DQM variables, as such these
terms can create energy correlations between the two
DQM variables in principle there can be up to m2 in-
dependent correlating terms. On the other hand, we call
the first set of terms non-correlating, since they involve
binary variables which are used to construct only one of
the two DQM variables. Non-correlating terms cannot
induce energy correlations between the DQM variables
by construction. While non-correlating terms can in gen-
eral be constructed from correlating terms, the converse
is not true, there is no way to represent a correlated en-
ergy using a sum of terms which only each contribute
to the energy of one of the two DQM variables. When
counting the non-correlating terms we have to be care-
ful not to over-count redundant terms which could be
constructed from the others. The interesting quantity is
therefore how many independent (in the sense that the do
not represent a contribution to the DQM energy which
can be constructed from terms which are already present)
degrees of freedom these terms contribute. If we exam-
ine each DQM variable independently, we find that each
will have m possible energies for the m possible values
the variable can take, and therefore only m indpendent
terms can be constructed. Since these are the only ener-
gies to which non-correlating terms can contribute, than
no matter how many non-correlating terms are available,
only 2m of them will ever be independent of each other.

As an example of the limitation on the number of de-
grees of freedom which the non-correlating terms can con-
tribute, consider the particular case of domain-wall en-
coding. Terms of the form bi,αbi,α = bi,α will uniquely
define the energy of the m values of a DQM variable up
to an irrelevant offset, while terms of the form bi,αbi,β
with α 6= β represent interactions between different vari-
ables on the same Ising chain, these terms will contribute
an energy only if both variables are 1 as opposed to 0,
and therefore if α > β would be exactly equivalent to
bi,α, and therefore not contribute an independent degree
of freedom.

We start our anlysis by counting degrees of freedom
within the domain-wall encoding, which uses nvar = m−1
binary variable to encode a discrete variable of size m.

Firstly, for m > 2, we find that indeed (m−1)(m−2)
2 > m,

so there are sufficient terms to gain m degrees of freedom
per variable. Next we observer that (m−1)2 = m2−2m+
1 > m2 − 2m, so again sufficient degrees of freedom, but
with only one spare.

Next, we ask what happens when we remove one bi-
nary variable from even just one of the discrete variable
encodings, we now have (m− 1)(m− 2) = m2 − 3m+ 2
degrees of freedom, for m > 2 we find that there are in-
sufficiently many degrees of freedom (and will be even
fewer if the number of binary variables are reduced fur-
ther). We therefore conclude that unless auxilliary vari-
ables are added for each coupling, there is no way to
construct a more efficient general interaction than the
domain-wall encoding. Note that this result is somewhat
more substantial than the one in [17], which showed that

the degrees of freedom which were used in the encoding
were just sufficient, here we have shown that the domain-
wall encoding is maximally efficient even if all linear and
quadratic interactions are used. In this section we only
consider the case of arbitrary quadratic interactions be-
tween discrete variables, while the arguments here could
in principle be extended to higher order interactions
(those involving more than 2 discrete variables) this is
beyond the scope of the present work.

B. Including auxilliary variables

We now ask whether more efficient encodings are pos-
sible if we allow each interaction to be supplemented by
additional auxilliary variables which could, for example,
be used to engineer higher-than-quadratic interactions,
as shown in [14–16]. Unlike the previous case, where the
number of Boolean variables scales only with the number
of discrete variables, in this context the auxilliary vari-
ables will be required for each interaction, therefore the
degree of the interaction graph for the discrete variables
becomes important. Our strategy proceeds as follows:

1. Count the number of degrees of freedom which
are deficient in each interaction, and therefore how
many need to be added with auxiliary variables

2. Derive an expression for how many degrees of free-
dom will be contributed by adding naux auxilliary
variables in encoding an interaction

3. From this expression, derive an expression for the
critical interacting graph degree dcrit above which
a method using auxilliary variables cannot be more
efficient than domain-wall even if all degrees of free-
dom can be used optimally in terms of the number
of variables and the size m of the discrete variables
(assuming all are the same size)

4. Evaluate this expression numerically for sizes up to
m = 1000 for various number of Boolean variables
per discrete variable (nvar) in the allowed range (bi-
nary encoding up to one fewer than the number
required for domain-wall)

5. Based on these results, argue that for all cases of
practical interest, specifically those with the num-
ber of discrete variables nvar > 3, there cannot be
encodings which make use of auxilliary variables
and are more efficient than domain wall

Since there are many different potential strategies for
using auxilliary variables, and we do not want to con-
sider every possibility independently, we instead base
our argument on counting degrees of freedom, if there
are insufficient degrees of freedom to independently con-
trol the energy of every configuration of a pair of vari-
ables, than no strategy can be used to construct general
interactions[59]. We first use the results of the previous
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section to count the degrees of freedom before any auxil-
liary variables are added, if each discrete variable of size
m uses dlog2(m)e ≤ nvar < m − 1 binary variables than
there will be

D = m2 − n2var − 2 min(m,
nvar(nvar + 1)

2
) (15)

degrees of freedom which will need to be added via linear
terms on auxilliary variables and interactions between
auxilliary variables. We will now assume that for each
interaction between a pair of discrete variables naux aux-
illiary variables are included, which interact both with
the discrete variables and between themselves. The goal
of adding these variables is that each of them can be con-
strained to represent additional derived properties of the
binary variables used to encoded discrete variables, such
as “majority votes” or parity values of subsets. Since
the interactions between the auxilliary variables and the
discrete variables will be used to control the values the
auxilliaries take, they should not be counted toward the
total available degrees of freedom, but both linear terms
on the auxilliaries, and quadratic terms between them
should, meaning that naux auxilliary variables give us
naux(naux+1)

2 additional degrees of freedom.
We can therefore calculate the minimum necessary

number of auxilliary variables needed to make up for the
missing degrees of freedom by setting

naux(naux + 1)

2
≥ D.

By completing the square, we find the minimum num-
ber of auxilliary variables required to generate enough
degrees of freedom

naux =

⌈
√

2

√
D +

1

8
− 1

2

⌉
, (16)

where the bracketing symbols indicate ceiling, since this
value must be an interger. The average number of binary
variables used per discrete variable than becomes

nbin = nvar +
d

2
naux, (17)

where d is the average degree of the interaction graph
of the problem. The condition for an encoding to be
more efficient than the domain-wall encoding is therefore
nbin < m − 1, rearranging, we can find a critical de-
gree below which an auxilliary variable based encoding
could be more efficient than the domain-wall encoding,
this yields

dcrit = 2
m− 1− nvar

naux
. (18)

Substituting in variables yields

dcrit =
√

2
m− 1− nvar√

m2 − n2var − 2 min(m, nvar(nvar+1)
2 ) + 1

8 −
1
2

.

(19)

5 10 15 20 25
nvar

0.2

0.4

0.6

0.8

1.0

d c
rit

m=4
m=6
m=8
m=10
m=12
m=14
m=16
m=18
m=20
m=22
m=24
m=26

FIG. 5: Critical degree dcrit as defined in Eq. 19 for encodings
using auxilliary variables with nvar binary variable per dis-
crete variable for discrete variables sizes in the range m = 4
to m = 26. Only even values are plotted for easier visual
interpretation, no significant even-odd effects have been ob-
served. At all sizes shown here, choosing the minimum value
of nvar (corresponding to a binary encoding) yields the high-
est dcrit and therefore the most efficient encoding, although
not shown, a similar trend has been observed up to m = 1000.

while applying this formula by hand to check every al-
lowed value of nvar for a given value of m is impractical,
especially for larger m, this value can be readily calcu-
lated by a computer. It is furthermore clear that in the
limit of large m and small nvar, in other words for binary
encodings with large m, the limiting value is dcrit =

√
2.

From applying eq. 19 for all values 3 < m ≤ 1000
we find firstly that the highest values of dcrit are always
attained for binary encodings, in other words where the
minimum number of binary variables are used to encode
each discrete variable, this trend is shown for small m in
fig. 5. As fig. 6 shows the maximum dcrit asymptotically
approaches

√
2 from below.

Let us now consider what this critical value of degree
means for real optimisation problems. Firstly, we are
only interested in the connected components of the in-
teraction graphs, since disconnected components can be
solved separately. This limits the minimum average de-
gree a graph can have based on the number of nodes (each
of which correspond to DQM variables in this case), since
the minimum connected graph with q nodes is either a
star or line graph with q − 1 edges, and therefore an av-
erage degree of dq = 2 q−1q . For example, a three node

connected graph cannot have a degree less than 4
3 and a

four node connected graph cannot have degree less than
3
2 , since 3

2 >
√

2 > dcrit, it follows that an auxiliary based
encoding cannot be more efficient than the domain-wall
encoding for problems on graphs with more than three
nodes (and therefore containing more than three DQM
variables). As discussed in [18] increasing the variable
size with a fixed number of variables is not a scalable
way to perform quantum computation, so therefore the
domain-wall encoding is the most efficient encoding in
terms of binary variable count for problems needing gen-
eral interactions in all cases of practical interest.
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FIG. 6: Critical degree dcrit as defined in Eq. 19 for op-
timal encoding using auxilliary variables versus the size of
the variable. Dashed line is a guide to the eye located at
dcrit =

√
2. The inset is a zoom of the outer plot. All values

of dlog2(m)e ≤ nvar < m−1 were tested and the highest value
of dcrit attained is plotted here, we observe that this always
corresponded to the binary encoding case, nvar = dlog2(m)e.
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FIG. 7: Number of unique feasible solutions found for both
encodings over all 10 embeddings versusm. Dashed line shows
the total number of feasible solutions at each m value. The in-
set is the same plot but with a logarithmic scale on the y-axis.
Note that no matter how effective a solver is it can never find
more than the total number of feasible solutions (indicated
by the dashed line). The relevant performance measure is
therefore how close the device gets to the best possible per-
formance.

It is worth remarking that while this result only ap-
plies to arbitary interactions between the discrete vari-
ables, the interactions between the variables are allowed
to take essentially arbitrary values in both the QAP and
the travelling salesperson problem, so our results do im-
ply that the domain-wall encoding is the most efficient
way to encode both of these problems.

C. Domain wall versus one-hot for quantum
annealing

Now that we have established the domain-wall encod-
ing as the optimal encoding for general DQM’s we turn
to the other main result of this paper, asking whether
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FIG. 8: Fraction of returned solutions which are feasible at
different values of m. Full colour symbols indicate average
over all 10 embeddings, while fainter symbols indicate values
for individual embeddings. The inset shows a zoom on part
of the plot with a linear y-axis to show the behavior before
the crossover more clearly.

the annealing dynamics are favourable for a domain-wall
encoded problem when compared to the same problem
with a one-hot encoding. To do this, we first run the
one-hot and domain-wall encoding of the unweighted as-
signment for 10 different embeddings with 10, 000 anneals
for each. As figure 7 shows, the domain-wall encoding
is always able to find the same number or more feasi-
ble solutions in our experiments. However, as figure 8
shows, there is a crossover in terms of the probability
that an individual annealing run yields a feasible solu-
tion, with one-hot performing better at smaller sizes and
domain-wall performing better as the problem becomes
larger. This is interesting because, while not in a par-
ticularly interesting regime (small sizes), this is the first
case we are aware of where one-hot is able to outper-
form domain-wall by any metric. As we discuss later
the cause of this crossover can be explained by a simple
thermodynamic model. It is worth remembering that the
purpose of this analysis is not to directly test the ability
of the device to solve hard combinatorial optimisation
(unweighted assignment is not a computationally hard
problem), but rather to perform analysis on the under-
lying physical dynamics which allow the device to find
solutions which satisfy a constraint.

In section III D in the spirit of the Kibble-Zurek Mech-
anism, we use these finite temperature models to estimate
an effective temperature, and therefore determine which
encoding yields dynamics which are more favourable to
computation. We find that both thermodynamic and dy-
namical effects contribute to the superior performance of
the domain-wall encoding. We also find that the chain
strength chosen by a standard heuristic is actually lower
for the one-hot encoding.

To understand the thermodynamics of the problems
better, we first examine how temperature effects the QAP
when using the domain-wall or one-hot encodings. To do
this we perform a simple Metropolis algorithm on the two
encodings at various temperatures for m = 8. While it
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FIG. 9: Comparison of thermal probabilities for feasible solu-
tions at different temperatures for domain-wall and one-hot
encodings of m = 8 unweighted assignment problem. Tem-
perature on this plot is in dimensionless units. All points
represent Monte Carlo sampling with 107 samples, standard
error and 95% error bars are both much smaller than the de-
picted symbols.
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FIG. 10: Embedding chain strength calculated using the de-
fault uniform torque compensation heuristic for domain-wall
and one-hot encodings. Because of dynamaic range limita-
tions, the inverse of this quantity effectively sets the value of
κ in equations 4 and 5.

won’t necessarily be true for every problem, these con-
verge well for the unweighted assignment problem. (Con-
vergence of the Monte Carlo sampling is discussed in ap-
pendix III.) As Fig. 9 shows, at lower temperature the
one-hot encoding performs better, but the domain-wall
encoding performs better above a unitless temperature
of T ≈ 0.5. It is expected that at high temperatures, the
domain-wall encoding should perform better, since the
encoding uses m fewer qubits, and therefore the solution
space is 2m times smaller, 256 times in the m = 8 case
examined here

However, even assuming that the device always sam-
ples an equilibrium distribution at the same temperate,
there are other considerations for device performance. To
start with, the problem must be minor embedded in both
cases, and the embedding chain strength required may
not be the same for both encodings. Although experi-
mentally we have seen that chain breaks are rare (this
is also predicted by the large relative energy scale for
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FIG. 11: Estimated effective temperature for one-hot and
domain-wall encodings at different values of m. These values
are calculated using a rough estimate of the unitless temper-
ature and rescaling by the minor embedding chain strength.
Since the heuristic has chosen a higher chain strength for the
domain-wall encoding, this results in a higher effective tem-
perature (unitless temperature of 0.063).

the chains seen in figure 16), dynamic range limitations
mean that the stronger the embedding chains needed, the
higher the effective temperature of the encoded problem.
For this study we have used the “uniform torque compen-
sation” heuristic available in the Ocean software suite
with default parameters [29]. Note that this heuristic
does not depend on the embedding itself, only the pre-
embedding problem. This heuristic estimates the nec-
essary chain strength based on summing the couplings
each logical variable experiences in quadrature. As fig. 10
shows, the heuristic consistently assigns stronger chain
strengths for the domain-wall encoding, although the
difference decreases as m increases. While beyond the
scope of this investigation, it may be fruitful to examine
whether different heuristics are more appropriate when
domain-wall encoding is used, since the current heuristic
was likely tested and tuned based on problem structures
which are currently used, likely including one-hot con-
straints.

The final ingredient to investigate equilibrium effects
on the annealing computer is an estimate of the tem-
perature. While the physical temperature of these de-
vices is well known at around 15mK, the energy scale
of the couplers at the point where the dynamics freeze is
harder to estimate. This energy scale plays an important
role, because the relative probability of configurations
in a Boltzmann distribution is not solely determined by
the physical (unitful) temperature but by a unitless ra-
tio of the temperature of the energy scale (temperature
already in units of mK, so Boltzmann constant is not
necessary). From equation 1 we find that B(sfreeze) term
determines the energy scale of the couplers, where sfreeze
is the value of s at the freezing point. In general we
expect sfreeze to be problem dependent. For our final an-
ysis we want to estimate it experimentally, but before we
do, it is instructive to see how the system behaves if we
make a very rough approximation that for both encod-
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FIG. 12: Probability to find feasible solution based on ther-
mal equilibrium model at different values of m. This plot
includes effects of minor embedding and assumes freezing at
a fixed value of B = 5GHz and a temperature of 15mK ≈
0.31GHz. This plot is to illustrate the behaviour of the
model, extracted values of the freeze time energy scales can be
found in figure 16. All data points are based on 107 samples,
95% confidence statistical errorbars are smaller than depicted
symbols.

ings B(sfreeze) ≈ 5GHz.

While this value is very approximate, and in practice
the energy scale will change with the freeze time, choos-
ing an approximate value of the correct order of mag-
nitude for the device will allow investigation of relevant
qualitative effects. Using this energy and physical tem-
perature to calculate the the overall unitless temperature,
we find T = 0.063. In section III D we use our modeling
techniques to estimate the effective unitless temperature
of the different encodings. However, at this stage an ap-
proximate value is sufficient to demonstrate the effects
we want to show. Since some of the dynamic range is
taken up by the embedding chains [26] the effective tem-
perature we should use to model the solver needs to be
further rescaled to take this into account, by about a
factor of 10 in the m = 8 case. Fig. 11 shows the ef-
fective unitless temperature after rescaling effects from
minor embedding are taken into account by rescaling the
unitless temperature by the chain strength.

Using the same Metropolis techniques as before, we can
estimate the probability of feasible solutions at different
values of m. The results are shown in Fig. 12. Again, we
see a crossover: For smaller m the one-hot encoding per-
forms better, but above m = 7 the domain-wall method
performs better. This is consistent with previous results,
for smaller m the effective temperature is smaller, and
the difference in effective temperatures is greater. For
larger m, on the other hand, the larger solution space
is likely to have an increased effect given both the fact
that the effective temperature is higher, and the ratio of
the sizes of the solution spaces doubles each time m is
increased.

D. Effective temperature

In the previous section we examined the effect of encod-
ing on success probability at thermal equilibrium. This
thermal modelling can moreover be useful in evaluating
the dynamics. In particular we can consider a model
based on the KZM [20–24, 37] where a system is approx-
imated to remain in equilibrium until it approaches a
phase transition and the dynamics suddenly freeze out.
Furthermore, since it is the quantum fluctuations which
mediate the dynamics, it is reasonable to assume that
these have relatively little effect at the freezing point,
and to a first approximation we consider the distribution
at the freezing point to be a classical thermal distribu-
tion. This assumption may not be justified for all sys-
tems, particularly those which use “free variable” gadgets
[22, 25, 39–42], where the transverse fields act at degen-
erate order in perturbation theory. It was further seen
in [22], that for problems which do not have “free” vari-
ables (all variables having having type 0 or I spin-sign
transitions in the language of that work), the effects of
transverse field and thermal fluctuations were very simi-
lar.

Furthemore, all problems studied here are minor em-
bedded, so therefore in many cases, multiple physical
qubits must be flipped to change the value of a single
logical variable, and the system must pass through high-
energy “broken chain” states to do so. In other words,
in a perturbative treatment similar to that used in [43],
the minimum perturbative order at which the transverse
field can have an effect is equal to the minimum number
of qubits in an embedding chain. For one-hot encoding,
all variables map to at least two qubits for m > 6, while
for domain-wall these variables map to at least two qubits
for m > 7.

For lower values of m, we need to compare the strength
of the quantum and thermal fluctuations at the freeze
time, which can be estimated by comparing the experi-
mental probability of feasible solutions to our model. If
thermal fluctuations are much stronger than quantum
fluctuations then we are justified in our analysis. On the
other hand, if it is the case that quantum fluctuations are
on the order of thermal fluctuations (and some variables
map to single qubits), then a model which explicitly in-
cludes quantum fluctuations is necessary. Fortunately,
as we show later in figure 16, our classical treatment is
justified.

To estimate the temperature we take the measured
probability of a feasible solution and perform bisection
until the model and the experiment match well. We
first extract the unitless ratio of the temperature over
the energy scale of the optimisation problem, ignoring
for the moment the dynamic range squeezing caused by
the strong ferromagnetic chains needed for minor embed-
ding. The result is shown in Fig. 13. From this figure we
see little difference between the two encodings.

However, this figure does not tell the whole story, re-
call from Figs. 10 and 11 that the heuristic we have used
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FIG. 13: Effective temperature compared to QUBO energy
scale at different values of m for both encodings of the un-
weighted assignment problem. Methods for extracting the
temperature are discussed in section IV.Note that the ex-
tremely large confidence intervals for one-hot at larger m are
primarily due to few feasible solutions being found, at the ex-
treme of only a single feasible solution in all 105 samples for
m = 9.

to choose the chain strength has specified a significantly
weaker chain strength for one-hot. To really understand
the freezing time we must compare the temperature not
to the QUBO energy strength, but to the maximum cou-
pling used for the problem. As Fig. 14 shows, once
the overall energy scale is taken into account, it is clear
that the domain-wall encoding is in fact sampling at a
lower effective temperature. This result suggests that,
the domain-wall encoding does indeed lead to later freez-
ing of the dynamics (as depicted in figure 15).

A later freezing time shows something fundamental
about our encoding, namely that the dynamics of the
annealing are facilitated by this encoding. The dynamics
are more resistant to localization than they would be in
one-hot. Since problem encoding is traditionally consid-
ered the domain of computer scientists, there is little (in
fact no previous work we are aware of) research on how
the physics is affected by how problems are encoded, this
result shows that this is in fact an important considera-
tion, and considering the encoding and device physics as
completely separate “layers” of the device operation may
not be an optimal approach.

We now return to the question of whether we were jus-
tified in ignoring quantum fluctuations in our final model
of the distribution. To do this, we need to show two
things, firstly we need to show that for regimes where
some variables map only to single qubits the transverse
field energy scale A(s) is much lower than the tempera-
ture of the device, so that thermal fluctuations will have
a stronger effect than quantum fluctuations. Secondly, in
the regime where all variables are mapped to at least two
qubits, we still need to show that A(s) � B(s) so that
treating the effect of the transverse field at second order
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FIG. 14: Effective temperature compared to maximum pos-
sible coupling at different values of m for both encodings of
the unweighted unweighted assignment problem. Methods for
extracting the temperature are discussed in section IV.
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FIG. 15: Extracted value of annealing parameter s at the
freezing point for one-hot and domain-wall encodings of the
unweighted assignment problem at different sizes. Methods
for extracting the value of s are discussed in section IV.

in perturbation theory is justified. Again we can calcu-
late these values by matching the success probability to
an effective temperature in the thermal model and then
extrapolating the energy scales based on an approximate
temperature of 15mK. As Figure 16 shows, these crite-
ria are met for all problems studied here, suggesting that
this model should at least be a reasonable approximation
(although this approximation may begin to break down
for one-hot at large m values).

IV. EXPERIMENTAL AND NUMERICAL
METHODS

In this section we explain the details of our experi-
ments (both physical and numerical) for reproducibility
purposes, for a more conceptual description of our tehc-
niques, see section II E. All experiments reported here
were performed on a D-Wave Advantage 1.1 quantum
annealing computer which was accessed through Amazon
Web Services between the dates of June 22 and June 25
2021. All experiments were performed using the default
device settings, including an annealing time of 20µs.
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FIG. 16: A(s) and B(s) energy scales at freeze time for
the one-hot and domain-wall encoded unweighted assignment
problem for different values of m. This is compared to the ap-
proximate temperature of 15mK ≈ 0.31GHz. Vertical lines
(labeled “no free one hot” and “no free domain wall”) indi-
cated the transition between values of m where at least one
variable in at least one embedding maps to a single qubit, and
where every one maps to at least two qubits.

Spin reversal transforms (also known as gauge averaging)
were not used. For each value of m, ten separate embed-
dings were used with 10, 000 anneals for each (for a total
of 100, 000 anneals at each size). In addition to the sizes
reported here, sizes m = 11 and m = 12 were also tested,
but no feasible solutions were found with either encoding
in all 100, 000 anneals. Furthermore, no experimental re-
sults are reported for one-hot with m = 10 because no
feasible solutions were found experimentally (for this rea-
son we have left the m = 10 symbol for one-hot unfilled
on relevant theory plots). The annealing schedule and
other device parameters were obtained from the D-Wave
user forums [44].

Effective temperatures for figures 13 and 14 were cal-
culated by bisection using Monte Carlo. An initial tem-
perature range was defined to run between Tmin = 0 and
Tmax = 2.5 times the QUBO energy scale, then with
107 samples at the midpoint of the range to test if the
fraction of feasible solutions exceeded what was observed
experimentally, if it did than a new Tmin was defined
to be this midpoint if not Tmax was assigned the mid-
point value. This routine was performed for 15 itera-
tions for each point. The 95% confidence bounds were
calculated using the same procedure, but using an ex-
perimental success probability which was the measured
value plus or minus twice the experimental standard er-
ror. Quantities A, B and s were then calculated by first
extracting B based on a physical temperature of approx-
imately 15mK ≈ 0.31GHz, A and s were calculated
by performing linear interpolation against an annealing
schedule provided on the D-Wave user forums [44]. Note
that these schedules are approximate and according to
the source may deviate by up to 30%. Monte Carlo sam-
pling was performed using standard Metropolis updates
starting from a feasible solution. The number of Monte
Carlo samples is based on the number of attempted up-

dates (we have used 107 to ensure statistical convergence
and to ensure sufficiently many updates for the algorithm
to achieve equilibrium, see appendix III), so cases where
the update was attempted but not performed would still
count as separate samples.

V. DISCUSSIONS AND CONCLUSIONS

We have shown two important results related to the
domain-wall encoding, and answered two key open ques-
tions. Firstly we have shown that for DQMs with general
interactions, no better (quadratic) encoding can exist for
problems with more than 3 variables, which comprise all
interesting optimisation problems for quantum comput-
ing applications. This result applies to any algorithm
where a unary encoding of single variables is desired,
this includes quantum annealing, but not exclusively, for
example this method could equally well save qubits in
gate model optimisation (in fact promising early results
have been found [45, 46]) and quantum inspired algo-
rithms. Secondly, we have experimentally verified theo-
retical predictions that domain-wall encoding will lead to
more favourable dynamics in physical implementations of
quantum annealing. The first of these results is impor-
tant because it implies that any search for more efficient
(in terms of number of binary variables used) general
DQM to QUBO encoding will be unsuccessful, and any
future efforts can be focused on encoding specific struc-
tures of interactions or to settings where more general
interactions are allowed and therefore our result does not
hold. The second of these results highlights the impor-
tance of considering the physical dynamics the system
will undergo when designing problem encodings.

While problem encoding has traditionally be consid-
ered to be a computer science topic, our results suggest
that there is important interplay between the encoding
and the underlying physics, therefore the physics of the
device needs to be considered when designing problem
encodings. While the problem statement used in the ex-
periments reported here is not computationally hard, it
is a common constraint structure for hard optimisation
problems, such a the quadrtic assignment problem and
travelling salesperson. Since the constraints will have
to be stronger than the penalty terms which make the
problems hare, they are likely to have a dominant ef-
fect on freeze time, therefore the results reported here
are likely to carry over to those settings, at least quali-
tatively in the sense that domain-wall encoding leads to
later freezing. On top of providing additional evidence
that domain-wall encoding yields superior performance in
the minor-embedded annealing setting, it also illuminates
the mechanism, a fundamental change in the underlying
dynamics of the system.

The goal of this study was not to fully understand how
to optimise the performance of the device, so it is worth
noting that other factors, such as anneal time will also
change these properties. In particular, our results sug-
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gest that especially for larger QAP problems, annealing
for longer to gain a later freeze time and therefore a lower
effective temperature is likely to be fruitful. It is impor-
tant to note that, while this work does provide useful
relative comparisons of encodings, as with the work in
[10], it does not test the ultimate performance limits of
the devices [60], so that the experiments remain simple.
In particular the features which allow the minor embed-
ding chains to effectively be twice as strong would prob-
ably improve the results substantially [47] (this feature
requires substantial calibration time so was not used in
our experiment since we care about relative rather than
absolute performance).

While the experimental portion of this work was per-
formed on a quantum annealing computer due to the
larger sizes of devices available, other settings of par-
ticular interest are gate model settings, it is compara-
tively easier to engineer higher than quadratic interac-
tions within this setting (typically at the cost of more
circuit depth) leading to complicated tradeoffs [19], but
it is likely that in at least some cases unary encoding
of single variables are desired. There are also two-body
drivers which drive directly between valid states for both
one hot [48] and domain wall [17], but typically two qubit
gates are noisier so this is again a tradeoff. In cases where
unary encodings are used our work has a potentially
strong impact, optimal QAOA [49] will mimic quantum
annealing [50] and therefore be subject to similar “freeze
time” dynamics to those discussed here. The concept of
a “freeze time” in fact affects any a system approaches
a phase transition [20, 21] so may be relevant to other
cases as well, for example in VQE [51] where the desired
state lies near a phase transition. Furthermore, coherent
Ising machines [52, 53] and digital annealers [54, 55] both
are limited to quadratic interactions and will be approx-
imated by similar “freeze time” models to the ones we
use here.
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Appendix I: Travelling Salesperson as a DQM built
on unweighted assignment constraints

We start with the conventional statement of the trav-
elling salesperson problem [56]: a salesperson must visit
m cities but can do so in any order and must choose
the order which minimizes the total distance travelled,
given distances dα,β between each city. This problem
may also include details such as requiring that the sales-
person needs to start from and return to a base, and that
each city can only be visited once [56]. We will first show
a version without the base, and then show that additional

linear terms can be added to represent the start and re-
turn to base. We also show that as long as the distances
between the cities are positive, our mapping works even
if a city can be visited multiple times.

We consider a discrete quadratic model where the first
discrete variable x1 represents the choice of city to visit
first, the second, x2 represents the city visited second,
the last represents the last, etc... Since there are m cities
the variables will have size m, and there will be m of
them. This constraint takes the form:

κ

m−1∑
i,j=0

m∑
α=0

xi,αxj,α, (20)

where κ is a sufficiently strong positive weight to ensure
the constraint is enforced. This constraint has the effect
of incurring a cost if any of the two variables take the
same values, in other words, if any city is visited twice.
Furthermore since there are m cities and m variables,
than no city being visited more than once implies that
each is visited exactly once. To encode the distances be-
tween the cities, we add terms of the form dα,βxi,αxi+1,β

which will add to the cost iff on a given leg of the journey,
we start from city α and go to city β. The total problem
statement becomes

HTSP =

m−2∑
i=0

m−1∑
α,β=0

dα,βxi,αxi+1,β + κ

m−1∑
i,j=0

m∑
α=0

xi,αxj,α.

(21)
If we would like to further add a base from which the
salesperson must start from and return to, we can add
linear penalties to the first and last terms.

HTSP+base = HTSP +

m∑
α=0

dbase,α(x0,α + xm−1,α), (22)

where dbase,α is the distance between the base and city
α.

One may now worry about what happens if we relax
the condition that each city can only be visited once, in
other words, what if the most efficient route to get to
city β from city α is to go through city γ which may
have already been visited. The answer is that as long as
dα,β represents this route where dα,β = dα,γ + dγβ , the
formalism still works, in other words, our representation
makes no distinction between a route which involves pass-
ing through γ if it has already been visited, or one which
does not (assuming α is the ith city visited, this would
be represented by setting xi,α = 1, xi+1,β = 1). More-
over if γ hasn’t already been visited than a route which
does involve stopping at γ can be represented (assuming
α is the ith city visited) by setting xi,α = 1, xi+1,γ =
1, xi+2,β = 1. As long as all dα,β are positive the only
way an optimal solution can involve re-visiting an already
visited city is on the way to a new city, as discussed here,
therefore our method of encoding the problem does sup-
port “loops” where the salesperson passes through the
same city multiple times.
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Our method does implicitly assume that the minimum
distance between each pair of cities has already been cal-
culated classically, however, finding the minimum dis-
tance between only two points is not computationally
hard on a classical computer[57].

Appendix II: extensions of one-hot encoding

a. k-hot constraints: A natural extension to the one-
hot constraint is to consider the more general case where

Hk-hot = κ

(∑
α

bα − k

)2

, (23)

where k is an integer between 1 and m − 1. These con-
straints only allow states where k of the binary variables
take the 1 value. Quadratic interactions must take the
form bi,αbj,β , and linear terms do not add independent
degrees of freedom (

∑
β bi,αbj,β ∝ bi,α+C, where C is an

irrelevant offset). For a k-hot encoding where each dis-
crete variable is encoded into nvar binary variables there
will be

(
nvar

k

)
possible configurations while quadratic and

linear interactions only add n2var +2nvar independent de-

grees of freedom while
(
nvar

k

)2 − 1 degrees of freedom are
available (assuming each quadratic term within a vari-
able is independent). It follows that (except for possi-
bly in small instances) quadratic and linear terms can
only realize general interactions for k = 1 (one-hot) and
k = nvar − 1 (one-hot with the definition of 0 and 1
reversed) where

(
nvar

k

)
= k. These constraints are still

very useful because the form of interactions between the
discrete variables encode a structure where each of the
binary variables taking a value of 1 represents identical
assets to be allocated, for example if k identical pieces
of equipment must be allocated over a total of nvar loca-
tions.

b. Integral encodings: Integral encodings can be
thought of as products of k-hot encodings. Taking the
specific form

Hintegral = κ

R∏
q

(
∑
α

bα − kq)
2 (24)

where the coefficients k should be integers in the range 0
to m, i.e. k ∈ ZR. The R = 1 case is a k-hot encoding,
but for all R > 1 this constraint will require terms of
order 2R, which have to be realized by quadratization.
Since k-hot encodings are not able to realize general inter-
actions without higher than quadratic terms (assuming
each state maps to a unique bitstring), integral encoding
will not be able to either.

Appendix III: Convergence of Monte Carlo sampling

The experimental data analysis in this work relies on
the numerical Monte Carlo sampling being able to ac-
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FIG. 17: Running average of excess energy (compared to a
feasible state) for an unweighted m = 10 assignment problem
with up to 107 samples at different dimensionless tempera-
tures encoded using the domain-wall encoding. Note logorith-
mic scale of x-axis.
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FIG. 18: Running average of excess energy (compared to a
feasible state) for an unweighted m = 10 assignment problem
with up to 107 samples at different dimensionless temper-
atures, encoding using one-hot encoding. Note logorithmic
scale of x-axis.

curately sample a thermal distribution. While the high
level of symmetry of the unweighted assignment prob-
lem suggests that equilibration should be relatively quick,
we should still verify this numerically. As we can see
from figures 17 and 18, even for the largest system here,
complete convergence has occurred after 106 samples at
all temperatures, and a fair quality approximate conver-
gence has occurred even by 105 samples.

While these plots show convergence, the remaining
question is rather subsequent runs will typically reach
a similar equilibrium. To check this we perform for each
temperature and both encodings ten times with 107 sam-
ples each. We than find the ratio of the standard de-
viation divided by the mean over each set of ten sam-
ples. Standard deviation is used rather than standard
error, since many of our methods rely on a single set
of 107 samples. What we find is that for most cases
the standard error relative to mean is small with a few
notable exceptions. The sampling is not reliable below

T
QUBOenergy = 0.2 for either encoding, the domain-wall

encoding shows a large normalized standard deviation
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T domain wall one-hot

0.1 0.17 N/A

0.2 0.016 0.039

0.3 0.0063 0.013

0.4 0.0030 0.004

0.5 0.0069 0.0028

0.6 0.095 0.0012

0.7 0.0032 0.095

0.8 0.046 0.080

0.9 0.00316 0.0013

1.0 0.11 0.062

TABLE I: Standard deviation (NB not standard error) over
mean energy value for 10 Monte Carlo runs with 107 samples
each at different temperatures for both encodings.

at T
QUBOenergy = 0.1, while the ratio is not defined for

the one-hot encoding because in some cases no unfeasible
solutions were found. Fortunately this is not very rele-
vant to our experimental analysis since the lowest exper-
imentally fitted value of unitless temperature is around

T
QUBOenergy ≈ 0.25 (see figure 13). It is likely that this

relatively large normalized standard deviation is due to
the fact the the mean energy is very small. The normal-
ized standard deviation for T

QUBOenergy = 1.0 for domain

wall is also relatively large, and might somewhat affect
the accuracy of the extracted temperature for m = 10,
but this point cannot change our key conclusions because
there is no one-hot data to compare with. We have not
checked temperatures above T

QUBOenergy = 1.0 but the

only experimental value which significantly exceeds this
temperature is the one-hot sample at m = 9, since this
point already has a large experimental standard error, it
is not relevant to check that the contribution to the error
from sampling is significant.

[1] A. Crispin and A. Syrichas. Quantum annealing algo-
rithm for vehicle scheduling. In 2013 IEEE International
Conference on Systems, Man, and Cybernetics, pages
3523–3528, Oct 2013.

[2] Florian Neukart, Gabriele Compostella, Christian Seidel,
David von Dollen, Sheir Yarkoni, and Bob Parney. Traffic
flow optimization using a quantum annealer. Frontiers in
ICT, 4:29, 2017.

[3] Sheir Yarkoni, Florian Neukart, Eliane Moreno Gomez
Tagle, Nicole Magiera, Bharat Mehta, Kunal Hire,
Swapnil Narkhede, and Martin Hofmann. Quantum
Shuttle: Traffic Navigation with Quantum Computing,
page 22–30. Association for Computing Machinery, New
York, NY, USA, 2020.

[4] Daniel O’Malley. An approach to quantum-
computational hydrologic inverse analysis. Scientific
Reports, 8(1):6919, 2018.

[5] Alejandro Perdomo-Ortiz, Neil Dickson, Marshall Drew-
Brook, Geordie Rose, and Alan Aspuru-Guzik. Find-
ing low-energy conformations of lattice protein models
by quantum annealing. Scientific Reports, 2(571), 2012.

[6] Vikram Khipple Mulligan, Hans Melo, Haley Irene
Merritt, Stewart Slocum, Brian D. Weitzner, An-
drew M. Watkins, P. Douglas Renfrew, Craig Pelissier,
Paramjit S. Arora, and Richard Bonneau. Designing pep-
tides on a quantum computer. bioRxiv, 2020.

[7] Christian F. A. Negre, Hayato Ushijima-Mwesigwa, and
Susan M. Mniszewski. Detecting multiple communities
using quantum annealing on the d-wave system. PLOS
ONE, 15(2):1–14, 02 2020.

[8] Hayato Ushijima-Mwesigwa, Christian F. A. Negre, and
Susan M. Mniszewski. Graph partitioning using quantum
annealing on the d-wave system, 2017. arXiv:1705.03082.

[9] Zsolt Tabi, Kareem H. El-Safty, Zsófia Kallus, Péter
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