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New community strategies to improve understanding and modeling of El Niño in state-of-

the-art climate models provide opportunities for more accurate tropical climate predictions.

T
he term El Niño was originally used to denote the 

annual occurrence of a warm ocean current that 

flows southward along the west coast of Peru and 

Ecuador around Christmas. The term is now used to 

refer to the basin-scale warming in the tropical Pacific 

Ocean that takes place at intervals of 2–7 yr and alter-

nates with an opposite cold phase, called La Niña. The 

atmospheric manifestation of El Niño is the Southern 

Oscillation—a large-scale tropical east–west seesaw in 

southern Pacific sea level surface pressure. Hence, the 

phenomenon is now often called El Niño–Southern 

Oscillation (ENSO). Although ENSO originates in the 

tropical Pacific, it affects global climate and weather 

events such as drought/flooding and tropical storms. 

Therefore, understanding and predicting ENSO are 

crucial to both the scientific community and the 

public (McPhaden et al. 2006).

The theoretical explanations of ENSO can 

be loosely grouped into two frameworks (Wang 

and Picaut 2004). In one framework, ENSO is a 

self-sustained and naturally oscillatory mode of the 

coupled ocean–atmosphere system. In the second, 

ENSO is a damped mode externally sustained by 

atmospheric random “noise” forcing. There are 

arguments to support both perspectives, and there 

are studies that suggest that the system may alter-

nate between multidecadal epochs of more damped 
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versus more freely oscillating dynamics (Fedorov 

and Philander 2000). In addition, El Niño involves 

interactions extending through different time scales 

with various climate phenomena, such as the sea-

sonal cycle, intraseasonal oscillations, or decadal 

oscillations. For example, ENSO is more sensitive to 

wind perturbations in spring and autumn but less so 

in summer and winter (Burgers et al. 2005). Despite 

past efforts at reconciling early coarse-grid coupled 

model simulations of ENSO phenomena with theory 

and observations (Neelin 1991), as well as a number 

of recent theoretical, observational, and modeling 

efforts to more fully understand ENSO, many inter-

twined issues regarding its dynamics, impacts, and 

predictability remain unresolved.

We here report on advances made in recent years 

in modeling ENSO in coupled general circulation 

models (CGCMs), the challenges that lie ahead, and 

the related current scientific debate. The material 

presented draws on chapters 8 and 10 of the fourth 

assessment report (AR4) of the Intergovernmental 

Panel on Climate Change (IPCC; Meehl et al. 2007b), 

as well as on community discussions initiated during 

the ENSO in IPCC AR4 meeting held in May 2006 in 

Paris, France (http://ncas-climate.nerc.ac.uk/~ericg/
Projects/ipcc_enso_06.html), and continued at the 

Third Working Group on Numerical Experimenta-

tion (WGNE) Workshop on Systematic Errors in 

Climate and Numerical Weather Prediction Models 

held in San Francisco, California, in February 2007 

(http://www-pcmdi.llnl.gov/wgne2007).

CURRENT MODEL PERFORMANCE. During 

the last decades, there has been steady progress in 

the simulation and seasonal prediction of ENSO and 

its global impacts using CGCMs (Delecluse et al. 

1998; Latif et al. 2001; Davey et al. 2001; AchutaRao 

and Sperber 2002; Randall et al. 2007). More re-

cently, the parameterized physics have become 

more comprehensive, the horizontal and vertical 

TROPICAL PACIFIC MEAN STATE AND ANNUAL CYCLE PERFORMANCE IN CGCMS

S
imulating the time-mean properties in the tropics has con-
tinually been a challenge for coupled GCMs. Though most 

models can internally generate the fundamental mechanisms 
that drive El Niño properties, most models simulate a mean 
zonal equatorial wind stress that is too strong and that has 
an annual amplitude that is also too strong (Fig. 1; see also 
Guilyardi 2006; Lin 2007a). This has profound effects on ENSO 
behavior in that it limits the regimes in which 
interannual anomalies can develop. Indeed, 
several studies have shown that a large am-
plitude of the seasonal cycle usually implies 
a weak El Niño, and vice versa (Fedorov and 
Philander 2001; Guilyardi 2006). Similarly, 
the meridional extent of the wind variability, 
of importance for ENSO phase change, is too 
confined near the equator (Zelle et al. 2005; 
Capotondi et al. 2006; Capotondi 2008). 
The “double Intertropical Convergence 
Zone (ITCZ)” problem, in which a symmetri-
zation of the circulation across the equator 
leads to a spurious Southern Hemisphere 
ITCZ and is associated with excessive pre-
cipitation over much of the tropics, remains 
a major source of model error in simulating 
the annual cycle in the tropics (Lin 2007a), 
and it can ultimately impact the fidelity of 
the simulated El Niño (Guilyardi et al. 2003; 
Sun et al. 2009). Similarly, there are still large 
differences in how the models reproduce the 
mean state of the tropical ocean, including 
the mean thermocline depth and slope along 
the equator (Fig. 2) and the structure of the 

equatorial currents (Brown and Fedorov 2008). Along the 
equator in the Pacific, the models have difficulty capturing the 
correct intensity and spatial structure of the East Pacific cold 
tongue. Often, the simulated cold tongue is too equatorially 
confined, extends too far to the west and is too cold (see 
Fig. 4 of Reichler and Kim 2008). These recurrent biases, 
already present in CMIP1 15 yr ago, arise from numerous fac-

FIG. 1. Mean zonal wind stress (squares) and annual cycle amplitude 

(bars) in the central-western Pacific (Niño-4 region; see Fig. 4) for the 

20th-century simulations of the IPCC AR4. (left) Observations are taken 

from the 40-yr European Centre for Medium-Range Weather Forecasts 

(ECWMF) Re-Anlaysis (ERA40) [1950–2000 average is –0.03 N m–2].  

Units are N m–2.
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resolutions have increased (Guilyardi et al. 2004; 

Roberts et al. 2009), and the application of ocean 

observations in initializing seasonal forecasts has 

become more sophisticated (Alves et al. 2004). These 

improvements in model formulation have led to a 

better representation of the spatial pattern of the sea 

surface temperature (SST) anomalies in the eastern 

Pacific and of ENSO’s periodicity (AchutaRao and 

Sperber 2006). Compared to previous generation 

models, some of the third coupled model intercom-

parison project (CMIP3) models used for the fourth 

assessment report (AR4) of the IPCC (Randall et al. 

2007; Meehl et al. 2007a) can now simulate not only 

the mean state and the annual cycle with some 

degree of fidelity but also the tropical interannual 

variability, without the use of the flux corrections—

an artificial adjustment to correct model biases and 

used in earlier generations of CGCMs. Indeed, many 

CGCMs now exhibit a behavior that is qualitatively 

similar to that of the real-world ENSO, which is a 

considerable achievement given the complexity of 

the interactions involved.

Despite this progress, recent multimodel analyses 

show that serious systematic errors in the simulated 

background climate (time mean and annual cycle; see 

the sidebar “Tropical Pacific mean state and annual 

cycle performance in CGCMs” below for more infor-

mation) as well as in the simulated natural variability 

persist (van Oldenborgh et al. 2005; Guilyardi 2006; 

Capotondi et al. 2006; Wittenberg et al. 2006). Several 

studies pointed out that these coupled model errors 

can often be traced to the atmosphere component 

(Braconnot et al. 2007; L’Ecuyer and Stephens 2007; 

Sun et al. 2009).

Coupled GCMs produce a variety of El Niño vari-

ability time scales (Fig. 3): model spectra range from 

very regular near-biennial oscillations to spectra 

that are close to the observed 2–7 yr. The observed 

seasonal phase locking—El Niño and La Niña anoma-

lies tend to peak in boreal winter and are weakest 

FIG. 2. Mean depth of the equatorial thermocline and mean 

thermocline slope along the equator as simulated in a num-

ber of ocean-only models (blue), data assimilation models 

(black), and coupled models (red). The thermocline slope is 

defined as the normalized difference between thermocline 

depth at 180° and 100°W, where an appropriate isopycnal 

surface was chosen for each individual model. The ther-

mocline depth corresponds to maximum vertical density 

gradient along the equator. Note the large differences in the 

mean thermocline depth and, especially, thermocline slope 

in the models. After Brown and Fedorov (2008).

tors including overly strong trade winds, leading to increased 
cooling via oceanic upwelling, mixing, and latent heat flux to 
the atmosphere; a diffuse thermocline structure, leading to 
improper sensitivity of SST to anomalous upwelling and vertical 
mixing; insufficient surface and penetrating solar radiation, and 
weak ocean vertical mixing in the subtropics, leading to subsur-
face temperature errors along the equator; and weak tropical 
instability waves, resulting in too little meridional spreading 
of SST anomalies during cold events (Meehl et al. 2001; Luo 
et al. 2005; Wittenberg et al. 2006; Lin 2007a). There are also 
errors in the tropical Pacific seasonal cycle, both in SST and 
wind: many models exhibit an overly strong seasonal cycle in 
the east Pacific (Fig. 1) and/or a spurious semiannual cycle, 
possibly tied to the lack of sufficient meridional asymmetry in 
the background state (Li and Philander 1996; Guilyardi 2006; 
Timmermann et al. 2007) and/or errors in the water vapor 
feedbacks (Wu et al. 2008). The lack of marine stratocumulus 
clouds in the eastern part of the tropical Pacific is still a major 
issue in CGCMs (Lin 2007a) and, associated with a too weak 
coastal upwelling along the coast of Peru and Chili, leads to a 

warm bias in these regions. Nevertheless, the CMIP3 models 
show a clear improvement over previous generation models, 
as shown in AchutaRao and Sperber (2006) and Reichler and 
Kim (2008).
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in boreal spring—is often not captured by models, 

which either show little seasonal modulation or a 

phase locking to the wrong part of the annual cycle, 

although some models do show some tendency to 

have ENSO peaking in boreal winter (not shown). All 

of these biases combine to generate errors in ENSO 

amplitude, period, irregularity, skewness, or spatial 

patterns (Fig. 4).

Even though CGCMs have common biases, they 

still exhibit a diversity of El Niño behavior that is 

well beyond the observed diversity of events. For 

instance, the modeled amplitude of El Niño ranges 

from less than half to more than double the ob-

served amplitude (van Oldenborgh 

et al. 2005; AchutaRao and Sperber 

2006; Guilyardi 2006; Fig. 5). The 

complex interactions of the main 

biases described above (and with 

a number of likely others as dis-

cussed below) together with model 

structural diversity still make it dif-

ficult to clearly identify the origin 

of deficiencies in simulated ENSO. 

Nevertheless, it is likely that progress 

can be made. CGCMs do appear now 

to exhibit many of the key processes 

and interactions thought to control 

ENSO in the real world.

ENSO FEEDBACKS. Theory 

has established that ENSO results 

from the interaction of a number 

of feedbacks, either amplifying or 

damping the associated interannual 

anomalies (Wang and Picaut 2004). 

ENSO involves the positive ocean–

atmosphere feedback of Bjerknes 

(1969) that culminates with warm 

or cold SST anomalies in the equa-

torial eastern and central Pacific. 

Once an event is under way, negative 

feedbacks are also required to ter-

minate the growth of warm or cold 

SST anomalies. Theoretical work 

on ENSO during the past decades 

has proposed four major negative 

feedbacks: wave ref lection at the 

ocean western boundary (Suarez 

and Schopf 1988; Battisti and Hirst 

1989), a discharge process resulting 

from Sverdrup transport (Jin 1997), 

a western Pacific wind-forced Kelvin 

wave of opposite sign (Weisberg 

and Wang 1997), and anomalous zonal advection 

(Picaut et al. 1997). These negative feedbacks may 

work in varying combinations to terminate El Niño 

or La Niña (Wang 2001).

Starting from the linearized SST equation, Jin et al. 

(2006) derived a coupled stability index (referred to 

the BJ index) that details ocean–atmosphere feed-

backs. They identified five different feedbacks: the 

mean advection and upwelling feedback (always 

negative), the thermal damping rate (resulting from 

surface heat f luxes and also negative), the zonal 

advection feedback (positive), the Ekman pumping 

feedback (positive), and the thermocline feedback 

FIG. 3. Niño-3 SST anomaly spectra for IPCC AR4 models in prein-

dustrial conditions. (a) Original figure from AchutaRao and Sperber 

(2006); (b) “eye-ball” selection of six closest to observed (note that 

MRI is the only flux-adjusted of the six).
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(positive) (for details, see 

Burgers et al. 2005; Jin et al. 

2006). Hence, El Niño and 

La Niña will develop only if 

the sum of these feedbacks 

is positive or if the system 

is constantly forced by ex-

ternal perturbations. To 

the extent that this theo-

retical framework also ap-

plies to complex models, 

evaluating these feedbacks 

in CGCMs may help to 

illuminate the sources of 

errors. For instance, most 

models underestimate the 

thermocline feedback, that 

is, the effect of thermo-

cline depth variations on 

SST (van Oldenborgh et al. 

2005), as well as the air–sea 

coupling strength (involved in the Bjerknes feedback), 

which measures the wind response to SST anomalies 

(Guilyardi 2006) and is a main contributor to the last 

three positive feedbacks of the BJ index. This is com-

pensated for by too little thermal damping, mainly re-

sulting from reduced cloud-shading feedback (Philip 

and van Oldenborgh 2006; Sun et al. 2009).

NONLINEARITIES AND THE ROLE OF 

TROPICAL MULTISCALE INTERACTIONS. 

ENSO cannot be viewed in isolation of other space 

and time scales in the tropical Pacific. A body of 

recent studies strongly suggests 

that El Niño also interacts with 

higher-frequency processes (like 

intraseasonal oscillations; Kessler 

2002; Fedorov 2002; Fedorov et al. 

2003; Lengaigne et al. 2004a,b) and 

with the mean state and seasonal 

cycle of the tropical Pacific (Jin et al. 

1994; Tziperman et al. 1994, 1997; 

Guilyardi 2006). CGCMs have a 

number of biases in these other space 

and time scales that can impede on 

the fidelity of the modeled ENSO 

(see Lin et al. 2006). Nonlinear 

processes are required to transfer 

energy between fluctuations at dif-

ferent space and time scales. The 

main nonlinear processes relevant 

to ENSO and highlighted by the 

above studies include atmospheric 

convection, evaporation and cloud feedbacks, wind 

response to SST anomalies, zonal advection, and 

thermocline–surface coupling. Nonlinearity can also 

arise from the small-scale coupling between the ocean 

and the atmosphere, like tropical instability waves 

(TIW) in the east Pacific (Pezzi et al. 2004; Jochum 

and Murtugudde 2006; An 2008a; Norton et al. 2009). 

In models with high enough ocean resolution to 

permit such waves (and other small ocean structures, 

like equatorial and eastern boundary upwelling or 

western boundary currents) there is evidence that 

the resolution of the atmosphere numerical grid also 

FIG. 4. SST std dev (°C) for 100 yr of monthly data for models in Fig. 3b. 

Observations are taken from HadISST1.1 (1900–99). The location of the Niño 

regions discussed in the text is also shown.

FIG. 5. ENSO amplitude in 23 coupled CGCMs, including those used 

for the IPCC AR4, as measured by the Niño-3 SST anomaly std dev 

in preindustrial simulations (blue bars) and equilibrated 2 × CO
2
 

scenarios (red bars).
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needs to be increased to resolve the coupling of these 

small ocean features, which have sizes typically less 

than 100 km (i.e., 1°). This may partly explain the 

improved simulation of ENSO when the atmosphere 

numerical grid reaches this resolution (Guilyardi et al. 

2004; Roberts et al. 2009).

Nonlinear interactions have further been pro-

posed to explain the observed positive skewness 

of ENSO, that is, the fact the El Niño events have a 

larger amplitude than La Niña situations (Burgers 

and Stephenson 1999; Hannachi et al. 2003; An and 

Jin 2004; Monahan and Dai 2004), a property that 

can also evolve at decadal time scales (An 2008b). 

Several studies have looked into reproducing the 

observed skewness in simple ENSO models (Lin 

and Derome 2004; An et al. 2005a,b; Philip and 

van Oldenborgh 2009) and analyzing it in CGCMs 

(Hannachi et al. 2003; van Oldenborgh et al. 2005; 

Yeh and Kirtman 2007). Unlike observations, most 

GCMs exhibit a linear ENSO, with SST skewness 

near zero in the tropical Pacific (Hannachi et al. 

2001; van Oldenborgh et al. 2005). This could con-

ceivably render them less sensitive than the real 

world to changes in climate, even though other 

studies attribute the positive skewness of ENSO 

to sources other than nonlinearity such as the 

superposition of ENSO, decadal variations, or global 

warming trends (Lau and Weng 1999).

ATMOSPHERE MODEL BIASES VERSUS 

OCEAN MODEL BIASES. A common theme 

emerging from CGCM studies is the role of atmo-

spheric dynamics and feedbacks in determining 

model El Niño characteristics. Mechanistic models 

tend to parameterize the atmospheric component 

of El Niño in terms of simple concepts, such as a 

constant value for the coupling strength or for the 

surface heat f lux damping of SST anomalies. Yet, 

studies such as Schneider (2002), Guilyardi et al. 

(2004), and Toniazzo et al. (2008) have revealed a 

strong diversity of behavior in models in which either 

atmospheric models or even just the parameters in 

a single atmospheric model are varied. The ocean 

GCMs typically used in IPCC-class CGCMs also play 

a role in ENSO systematic errors (e.g., the representa-

tion of turbulent mixing remains a major challenge 

and strongly influences thermocline properties) but 

appear to play a lesser role than atmospheric GCMs 

(Guilyardi et al. 2004). Nevertheless, simulations 

similar to those reported in Toniazzo et al. (2008), but 

in which ocean rather than atmosphere parameters 

are varied in the HadCM3 model, do show variations 

in ENSO behavior.

Whether further improvements in ENSO simula-

tion with CGCMs depends more on improving the 

atmospheric or the oceanic component of CGCMs 

will be answered over time. Properties of atmospheric 

GCMs appear to be critical, perhaps because their 

sensitivity, complexity, and nonlinearity can pro-

duce larger biases that impose limitations on ENSO 

properties and feedbacks. For example, Lin (2007a) 

has shown that several shortcomings of the coupled 

CMIP3 models stemmed from the atmosphere com-

ponent of these models. In view of the high sensitivity 

of CGCMs to the atmospheric convection scheme 

(Kim et al. 2008; Neale et al. 2008, Guilyardi et al. 

2009, manuscript submitted to J. Climate), more 

research is needed on the role of thermodynamical 

processes and feedbacks. Bony and Dufresne (2005) 

also analyzed the cloud radiative feedbacks in con-

vection/subsidence dynamical regimes in the CMIP3 

models and concluded that the simulation of marine 

boundary layer clouds is at the heart of tropical cloud 

feedback uncertainties in current CGCMs. These 

marine boundary layer clouds occur in the eastern 

tropical Pacific, a key region for El Niño amplifica-

tion, and biases in their representation can also con-

tribute to the simulated ENSO diversity.

ENSO IN A CHANGING CLIMATE. Most (but 

not all) IPCC AR4 models are qualitatively consistent 

in their projections of mean changes over the tropical 

Pacific. The SST warms more along the equator than 

off the equator, and a reduced east–west SST gradient 

(Fig. 6) is associated with a weakened Walker circu-

lation and reduced trade winds (Hansen et al. 2006; 

Fedorov et al. 2006; Vecchi et al. 2006, 2008). Such 

changes in the mean state can influence the ENSO-

related processes and feedbacks and have the potential 

to modify ENSO properties. For example, studies 

show that a more stable ENSO is less sensitive to 

changes in the background state than when it is closer 

to instability (Zelle et al. 2005). Atmosphere deep-

convection triggering is also highly dependent on 

the mean SST distribution, and associated heat flux 

feedbacks may change. Nevertheless, van Oldenborgh 

et al. (2005) noted that if only the six “best” models 

for ENSO are considered, the tendency for a reduced 

mean east–west gradient is much less obvious than 

if all models are considered.

However, and as seen from Fig. 6 (Fig. 10.16 of the 

IPCC AR4 report), which displays the ratio of ENSO 

variability between the current climate and the last 

50 yr of the SRES A2 experiments (2051–2100) as a 

function of the background change, models are in-

consistent with respect to their projections of change 
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in ENSO amplitude (see also van Oldenborgh et al. 

2005; Merryfield 2006; Guilyardi 2006), even in 

very high CO
2
 scenarios (Fig. 5). While some models 

show an increase in ENSO variability in response to 

greenhouse gas increases, others do not exhibit any 

detectable change, and still others show a decrease 

in variability.

Discerning whether any future changes in ENSO 

amplitude are due to external forcing or are simply 

due to internal longer-term variation is complicated 

by significant decadal fluctuations both in observa-

tions and in long control integrations (Knutson et al. 

1997; AchutaRao and Sperber 2002; Yukimoto and 

Kitamura 2003; Yeh et al. 2004; Yeh and Kirtman 

2004; An et al. 2005; Meehl et al. 2006; Lin 2007b). 

Nevertheless, changes of ENSO variability, where 

they can be detected above these large natural varia-

tions, are highly model dependent, even if extreme 

scenarios are analyzed (4 × CO
2
). Hence, even though 

all models show continued ENSO variability in the 

future no matter what the change of average back-

ground conditions, there is no consistent indication 

at this time of discernible changes in amplitude or 

frequency for the twenty-first century (Meehl et al. 

2007b). Similarly, large model differences in the skew-

ness of the variability limits the assessment of the 

future relative strength of El Niño and La Niña events 

(van Oldenborgh et al. 2005). Because ENSO is the 

dominant mode of climate variability at interannual 

time scales, the lack of consistency in the model pre-

dictions of the response of ENSO to global warming 

currently limits our confidence in using these pre-

dictions to address adaptive societal concerns, such 

as regional impacts or extremes (Joseph and Nigam 

2006; Power et al. 2006). Nevertheless, paleoevidence 

that ENSO may have been quite different in the past 

(e.g., Tudhope et al. 2001; Cobb et al. 2003) indicates 

the risk that ENSO and the associated teleconnec-

tions [see, e.g., Meehl and Teng (2007) on the shift of 

ENSO teleconnections in North America] might be 

quite different in the future, a fact also available to 

those assessing mitigation options.

A better understanding of the sensitivity of ENSO 

to changes in processes and feedbacks will help 

explain these differences, possibly leading to more 

confident projections. For instance, the disagree-

ment among the various IPCC AR4 models regarding 

future changes in ENSO does not rule out that a sub-

set of models can show a common ENSO response to 

climate change. Guilyardi (2006) showed that among 

those models that best reproduced the diversity of the 

observed ENSO, there was a significant trend toward 

increased El Niño amplitude in high-CO
2
 scenarios. 

Hence, to improve decadal-to-centennial projec-

tions, process and feedback diagnostics are needed 

to limit the subset of models to those that are more 

consistent with the real world. Even if models do not 

predict significant changes in El Niño statistics in 

the future (e.g., either amplitude or frequency), the 

relative balance of feedbacks and teleconnections (and 

the associated impacts) during ENSO could evolve 

(Philip and van Oldenborgh 2006), perhaps altering 

ENSO predictability.

The characteristics of ENSO in past climates, as 

provided by paleoclimate records and coupled model 

simulations, can also help constrain models for future 

climate changes [see Chen et al. (2004), Zheng et al. 

(2008), and Brown et al. (2007), who address the 

mid-Holocene ENSO weakening as a test of a coupled 

model]. For instance, recently obtained temperature 

records (derived from tropical deep-sea cores) suggest 

that in the early Pliocene, approximately 3–5 million 

years ago, the tropics were characterized by a per-

sistent warm state similar to the peak of El Niño 

(Fedorov et al. 2006). During this time interval, and 

possibly before, the proxy data may be interpreted 

as showing a significantly reduced or virtually non-

existent zonal SST gradient along the equator with 

FIG. 6. Mean state change in average tropical Pacific 

SSTs and change in El Niño variability simulated by 

AOGCMs (adapted from Meehl et al. 2007b). The mean 

state change (horizontal axis) is computed over the 

area 10°S to 10°N, 120°E to 80°W (reproduced from 

Yamaguchi and Noda 2006). The change in El Niño 

variability (vertical axis) is denoted by the ratio of the 

ENSO amplitude between the current climate and the 

last 50 yr of the SRES A2 experiments (2051–2100), 

except for FGOALS-g1.0 and MIROC3.2(hires), for 

which the SRES A1B was used, and UKMO-HadGEM1, 

for which the 1% yr–1 CO
2
 increase climate change ex-

periment was used, in the region 30°S to 30°N, 30°E to 

60°W (reproduced from van Oldenborgh et al. 2005). 

Error bars indicate the 95% confidence interval.
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therefore no possibility for ENSO development. The 

climate of the early Pliocene can be considered as a 

partial analog to the contemporary global warming, 

because external factors that control climate were 

similar to what they are today. The current generation 

of climate models do not simulate a persistent warm 

state even when forced with concentrations of carbon 

dioxide an order of magnitude larger than the current 

values (e.g., Haywood et al. 2007). If the paleodata 

available at present are indeed representative of such 

a state, then problems in the ability of models to 

simulate perennial warm conditions could indicate 

deficiencies in the models. More study is needed on 

both the modeling and observational aspects.

Finally, there are additional new questions on the 

horizon as full Earth system models mature: How 

might ENSO’s impact on fires, dust, ecosystems, 

agriculture, and fisheries change in the future? How 

might evolving ocean chlorophyll concentrations 

affect oceanic solar penetration (Timmerman and 

Jin 2002; Lengaigne et al. 2007), the equatorial ther-

mocline, and SST through the ENSO cycle and in 

response to climate change? Might the ENSO–CO
2
 

cycle help to constrain global carbon-cycle feedbacks? 

Making progress on these issues first requires a better 

understanding of the physical and dynamical proper-

ties of ENSO in CGCMs.

W H AT O B S E RVATI O N S D O E N S O 

MODELERS NEED? Until the observed relation-

ships describing the ENSO feedbacks are better 

constrained, modelers will continue to struggle to 

get the right balance of processes for ENSO. This 

points to a key need of the modeling community: a 

sustained, multidecadal global climate observing sys-

tem for both the upper ocean and lower atmosphere, 

with attention given to maintaining continuity and 

diversity of observations. The key variables that 

must be constrained include the SST, precipitation 

and atmospheric convection, surface f luxes (wind 

stress, air–sea heat f lux), subsurface thermal and 

haline structure of the upper ocean, and upper ocean 

currents. A sample of some leading ENSO-relevant 

observational products is given in Wittenberg et al. 

(2006). In addition, observations of chemical and 

biological variables will be required as Earth system 

models mature.

Investment in the future observing system is 

essential for continued progress in modeling for 

coming decades. However, to address the deficiencies 

of today’s models, we cannot afford to wait for future 

observations. To sample the real-world natural vari-

ability of ENSO and its response to slow changes in 

climate, it is also essential to 1) continually reanalyze 

existing observations using state-of-the-art atmo-

spheric, oceanic, and coupled models, to ensure that 

the best observational guidance is available to model-

ers in a convenient form; 2) recover missing historical 

observations, as in the Global Oceanographic Data 

Archaeology and Rescue Project (GODAR; www.
nodc.noaa.gov/General/NODC-dataexch/NODC-
godar.html); and 3) develop merged paleoclimate 

records, based on corals and other proxies, which 

have been verified against the historical record and 

extended as far as possible into the deep past. For all of 

these efforts, it is essential to produce not only the best 

estimate of the observed quantity but also a realistic 

representation of the associated uncertainty.

Process-oriented, regional-scale observational 

field campaigns (such as SPICE; www.ird.nc/UR65/
SPICE/, or VOCALS; www.eol.ucar.edu/projects/
vocals/) are needed because they will undoubtedly 

fuel model improvements in the long term. But the 

lack of historical long-term, sustained, basin-scale, 

high-quality observations [in contrast to today’s 

Tropical Atmosphere Ocean Triangle Trans-Ocean 

Buoy Network (TAO/TRITON) Project (www.pmel.
noaa.gov/toa/; McPhaden et al. (1998) and Research 

Moored Array for African–Asian–Australian 

Monsoon (RAMA) moorings (McPhaden et al. 2009), 

Argo automatic f loats (www.argo.ucsd.edu), Jason 

altimetry (http://topex-www.jpl.nasa.gov/), and the 

A-Train constellation of satellites (Stephens et al. 

2002)] to constrain models is perhaps the biggest 

impediment to winnowing the wide variety of ENSO 

simulations among today’s CGCMs.

THE CASE FOR NEW ENSO MODELING 

STRATEGIES. How good do ENSO models need to 

be? Indeed, the question that scientists face in making 

climate projections or predictions is one of model 

credibility (see, e.g., Räisänen 2007). In many predic-

tion problems, seasonal climate forecasting of El Niño 

being a prime example, it is possible to verify predic-

tions after the fact. This becomes practically very 

difficult in the case of the ENSO response to climate 

change, as the signal-to-noise ratio is very small be-

cause of strong interannual (and decadal) variability. 

Nor can scientists and policymakers wait until the 

climate change has already occurred for verification 

scores. Thus, an “expert assessment” is usually re-

quired, based on a model’s ability to reproduce aspects 

of present-day and/or past conditions. New modeling 

strategies to provide such assessments can now be en-

visioned, thanks to the rise of multimodel ensembles 

and the use of seasonal forecast techniques.
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A multimodel ensemble allows both an assess-

ment of the consistency of the predictions of different 

models and an overall (probabilistic) forecast to be 

made, taking into account the spread of the model 

predictions. Multimodel ensembles of seasonal fore-

casts or projections almost always outperform the 

best models’ skill (Palmer et al. 2004; Rahmstorf et al. 

2007). A major factor in this is that the multimodel 

ensemble samples some of the model formulation 

uncertainty, which as described above is quite large for 

ENSO. When it comes to predicting the evolution of 

ENSO for a specific year, this “averaging out” of model 

error can be quite effective, perhaps because the im-

pact of a particular model’s errors is in many situations 

equally likely to lead to an over- or underestimate of 

the actual SST. For statements on the expected future 

increase/decrease of ENSO variability, however, there 

seems no reason to trust the “average” answer as being 

close to the truth. Indeed, given the evident sensitivity 

of the results and the imperfections of even the best 

models, we cannot be confident that the outcome 

will even lie within the range predicted by today’s 

models. Coordinated multimodel experiments [using 

several CGCMs as for the CMIP3 database or the same 

model with varying parameters as in Toniazzo et al. 

(2008)] do however allow the exploration of common 

sensitivities—or lack thereof. For this reason, main-

taining a diversity of models (both within the IPCC 

class and through the complexity hierarchy of toy 

models, intermediate models, and hybrid statistical/

dynamical models) is very important.

Seasonal forecasts can also provide a powerful 

test for IPCC-class CGCMs (Palmer et al. 2008). 

The classical analysis of ENSO in IPCC integrations 

(either basic statistics or more advanced evaluation of 

feedbacks) usually concentrates on the long (at least 

multidecadal) time series statistics needed to compute 

robust signals. Yet, this strategy cannot fully explain 

how the model’s errors (in the mean state but also in 

the feedbacks) were generated in the first place. This 

is an issue because the initial model errors result in 

a balance (a new mean state and annual cycle) that 

then becomes difficult to link to particular model 

deficiencies (such as arising from model parameter-

izations). Hence, there is a need for an experimental 

framework that would focus on the initial adjustment 

of these models. Such a framework can be provided 

by the seasonal forecast approach.

We here encourage the use of such an approach 

to initialize the ocean and atmosphere state of a 

coupled model as close as possible to the observed 

state and launch “forecasts” of several months (up 

to a year) at regular intervals during the recent 

“well-observed” decades. These simulations can 

provide rich diagnostic possibilities, to see how 

(and sometimes why) coupled errors develop in the 

tropics, in the context of detailed observations. For 

instance, they provide a good configuration to look 

at cloud–convection–radiation–SST interactions, in 

conditions specific to a given year, allowing detailed 

comparison with observations such as satellite data. 

In an era in which model errors are very large, then 

comparison of any short-term integration with an 

observed “climatology” would show the large errors 

adequately, regardless of which years were chosen for 

comparison. However, as short-term coupled model 

errors become comparable to observed interannual 

variability, proper referencing of the model integra-

tions to specific observed years becomes important 

to make further progress.

By carefully analyzing the models’ departure from 

the observed state, one should be able to more precisely 

identify the parameterization(s) responsible for any 

drift. For example, if a forecast is launched before an 

observed El Niño event and the model fails to repro-

duce the event, a careful analysis might show that the 

surface heat flux damping feedbacks were too strong 

in the model to allow the event to develop, or if the 

event has a too weak amplitude, that the wind response 

to the SST anomaly was too confined near the equator 

or that the ocean dissipation was too strong to sustain 

intraseasonal signals (Woolnough et al. 2007).

Such simulations are computationally cheap to 

perform and allow more possibilities for testing 

than do multicentury simulations. For instance, an 

experiment using 6-month hindcasts with two starts 

per year, looking at five different situations (e.g., 

1993/1995/1997/1999/2001) and using five-member 

ensembles requires only 25 yr of integration. A more 

comprehensive assessment of the seasonal forecast 

skill of a climate model can be made via participation 

in the Climate-system Historical Forecast Project 

(CHFP; www.clivar.org/organization/wgsip/chfp/
chfp.php) organized by the CLIVAR Working Group 

on Seasonal to Interannual Prediction (WGSIP) for 

the World Climate Research Program (WCRP).

There are still several questions in the setup of 

these simulations that will need to be addressed, like 

initialization or drift interpretation. A simple initial-

ization has to be proposed for the IPCC groups that do 

not have an ocean data assimilation system in place. 

One possibility is to “nudge” a coupled simulation 

with observed wind stress and/or SST (Keenlyside 

et al. 2005; Luo et al. 2008). Recent work has shown 

that just nudging the wind stress in a coupled model 

allows a good representation of the interannual SST 
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(Fig. 7; Joly et al. 2009). Nevertheless, even if a model 

could produce a completely accurate prediction 

of ENSO (within the constraints of chaotic error 

growth), this is not a sufficient condition for a model 

to accurately simulate ENSO under climate change. 

Even if the processes and feedbacks that occur on 

seasonal time scales do not necessarily form the com-

plete set of climate change processes and feedbacks, 

improving them in models will reap many benefits.

DEVISING A SUITE OF ENSO METRICS 

AND DIAGNOSTICS. It is important to assess 

ENSO characteristics in terms of theoretical/

mechanistic understanding of the phenomena, 

not just looking at local statistics (e.g., Niño-3 SST 

anomalies)1, which may have the correct value for the 

wrong reasons (i.e., as a result of bias compensation). 

Moreover, multimodel analyses should rely on com-

mon diagnostics. The definition of a set of “metrics” 

to assess a phenomenon can have great value to the 

wider community engaged in model development 

and/or analysis. Metrics are now under discussion  

in preparation for future CMIPs (Gleckler et al.  

2008), and the CLIVAR Pacific Panel (www.clivar.
org/organization/pacific/pacific.php) is charged with 

devising metrics for ENSO and for the wider tropical 

Pacific climate. Here we use the term “metric” as a 

measure of the “distance” of the model to some obser-

vational reference, usually computed as a single scalar 

value (Gleckler et al. 2008) while 

other more complex or qualitative 

analyses where observations do not 

provide an easy reference are called 

“diagnostics.” The intent is not to 

reduce evaluation of models to single 

numbers, except in the specif ic 

example of producing likelihood 

weights in probabilistic prediction 

[in which case such metrics should 

test all the relevant physical process 

involved in the prediction problem, 

e.g., Collins (2005, 2007)]. Rather, 

a suite of metrics and diagnostics, 

which addresses a range of physical 

processes and impacts of interest to 

various experts and stakeholders, 

should be applied.

A first step is to distinguish the 

metrics from the diagnostics. Metrics 

require a set of well-observed refer-

ences and should be concise, physically informa-

tive, societally relevant, and easy to understand, 

compute, and compare. A few examples are given 

in the “Examples of ENSO-related metrics” sidebar. 

When summarized by a single scalar, the metrics 

are amenable to intermodel Taylor (2001) diagrams. 

The more sophisticated theory-based diagnostics are 

less easily constrained by observations. Nevertheless, 

by helping to bridge the gap between our theoretical 

understanding of ENSO and its representation in 

CGCMs (Fedorov et al. 2003; Held 2005), this second 

category holds the most promise in helping scien-

tists to understand the modeled errors in CGCMs, 

as already demonstrated by several recent studies 

(Mechoso et al. 2003; Capotondi et al. 2006; Philip and 

van Oldenborgh 2006; Jin et al. 2006; Fedorov 2007; 

Dewitte et al. 2007; Brown and Fedorov 2008).

Among the key metrics to measure and constrain 

with observations are the feedbacks between the 

ocean and atmosphere, which give rise to ENSO and 

help govern its behavior. A list of leading concepts 

from ENSO theory that have guided recent studies 

could include the wind response to SST anoma-

lies, thermocline and zonal adjective feedbacks, 

wind-coupling strength and pattern, surface heat flux 

damping, oceanic adjustment delay time, and sto-

chastic forcing. For instance, the coupling strength, 

which measures the intensity of the Bjerknes (1969) 

feedback, can be quantified using a linear regression 

of the wind stress anomaly field onto the Niño-3 

SST anomaly index (Guilyardi 2006). Similary, the 

damping of SST anomalies by surface heat fluxes can 

1 The Niño-3 region spans 5°S–5°N and 150°–90°W in the East 

Pacific; see Fig. 4.

FIG. 7. Evolution of the Niño-3.4 (170°W–110°W, 5°N–5°S) interannual 

SST anomaly for the HadISST1.1 observations (black), a simulation 

in which the tropical ERA-40 wind stress has been nudged into the 

CNRM-CM3 IPCC coupled model (pink), a similar simulation with a 

global nudging of the wind stress (orange) and a simulation with im-

posed ERA-40 climatology (blue). After Joly and Voldoire (2009).
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be assessed by regressing the net heat flux onto the 

Niño-3 SST anomaly index or, alternatively, onto the 

colocated SST anomaly (Lin 2007a; Sun et al. 2006, 

2009). These can further be assembled in the com-

mon framework of the BJ index, which measures the 

amplification/damping rate of ENSO (Jin et al. 2006). 

The efficiency of the energy transfer from the winds 

to the thermocline is another important parameter 

that can affect the properties of ENSO.

There are two key challenges in devising the right 

blend of metrics and diagnostics. First, the theoretical 

understanding of all aspects of ENSO evolution is still 

incomplete—ENSO is a multimechanism phenom-

enon and different mechanisms may work in varying 

combinations to produce and terminate a particular 

El Niño event (Wang 2001). Second, the difficulty of 

constraining all the relevant feedbacks with obser-

vations, due to the brief, nonstationary, and partial 

observations of the real world, still exists, despite con-

siderable recent achievements in observational pro-

grams. For example, there is large uncertainty among 

satellite data, in situ measurements, and reanalysis 

products for feedbacks as basic to ENSO as the ocean–

atmosphere coupling strength (Wittenberg 2004) or 

the cloud radiative feedbacks (Cronin et al. 2006). Nor 

is it clear how long we must run models and observe 

nature to get robust statistics for comparison (due to 

large decadal variations as discussed above), or what 

metrics are most robust. Hence, an evaluation of the 

uncertainties in these metrics and diagnostics has 

to be included, to prevent assigning large weights 

to small differences in the performance of models. 

Nevertheless, given the large errors still exhibited by 

most current CGCMs, process- and feedback-based 

metrics and diagnostics do provide an objective way 

to downweight the results from obviously unrealistic 

models, and they could help focus modeling effort in 

improving the realism of ENSO while maintaining a 

healthy model diversity.

As CGCM developers and users, we envision the 

ENSO metrics and diagnostics to be presented on 

a CLIVAR Web site, including pathways to recom-

mended observational datsets [in an easy-to-use 

gridded format like OPeNDAP (http://opendap.
org) and following community agreed-upon meta-

data standards like NetCDF (www.unidata.ucar.
edu/software/netcdf) and those developed for the 

next IPCC, e.g., http://metaforclimate.eu or www.
earthsystemcurator.org/] and a repository of scripts 

to generate the diagnostics for the observations and 

model data as well as “distance” metrics between 

those diagnostics.

CONCLUSIONS. The IPCC AR4 projections offer 

a wide range of possibilities regarding what will hap-

pen to ENSO in the future. However, there is neither 

an indication of a complete disappearance of ENSO 

variability over the next century nor an explosion of 

EXAMPLES OF ENSO-RELATED METRICS

The following are a few examples of ENSO metrics:

                 
warm pool, equatorial wave guide, etc.) and for key fields: SST, precipitation, wind stress, cloudiness, etc. (see Gleckler et al. 

2008).

                   
(in order of increasing sophistication) can be

 climatological annual mean (a single scalar);

 climatological annual cycle (12 months), leading to the climatological standard deviation;

 time series statistics of anomaly standard deviation, skewness, phase locking, and autocorrelation;

 wavelet decomposition leading to time-mean spectrum and ENSO modulation; and

 correlation with other time series (e.g., Niño-4 zonal wind stress).

                   
2001; www.pmel.noaa.gov/tao/elnino/wwv/).

                  
(Trenberth and Stepaniak 2001).

           http://climate.snu.ac.kr/mjo_metrics/index.htm).
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large ENSO events. Most of the CMIP3 models can 

now produce a reasonable climatology and ENSO 

without flux adjustments, enhancing their physical 

credibility for simulating ENSO and its response to 

climate changes. The credibility of these models could 

be further enhanced by improving the simulations of 

twentieth-century ENSO statistics and by subjecting 

the models both to seasonal forecast and paleoclimate 

tests to assess their ENSO sensitivities. To constrain 

the physics and behavior of ENSO models, the climate 

community must

paleoclimate records;

the future;

common formats so that intercomparison studies 

can be easily performed;

guided by theory, observations, and rigorous 

evaluation of the models, including tests in sea-

sonal forecast mode;

in the response of ENSO to climate change and 

link those to the main sources of model error; 

and

feedbacks.

Defining a set of metrics will help scientists assess 

the quality of ENSO simulations and easily intercom-

pare different models in a way that integrates both ob-

servations and theory. This will also allow non-ENSO 

specialists and the wider impacts community using 

CGCM outputs to better evaluate the ENSO processes 

and feedbacks relevant for their own particular study. 

Finally, this definition should also help decide how to 

best invest limited computer and model-development 

resources. As the models are improved, there is hope 

for better ENSO simulations and more reliable sea-

sonal forecasts and climate projections.
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