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Abstract

The use of dynamic information to aid in software un-

derstanding is a common practice nowadays. One of the

many approaches concerns the comprehension of execution

traces. A major issue in this context is scalability: due to the

vast amounts of information, it is a very difficult task to suc-

cessfully find your way through such traces without getting

lost. In this paper, we propose the use of a novel trace visu-

alization method based on a massive sequence and circular

bundle view, constructed with scalability in mind. By means

of three usage scenarios that were conducted on three dif-

ferent software systems, we show how our approach, imple-

mented in a tool called EXTRAVIS, is applicable to the ar-

eas of trace exploration, feature location, and feature com-

prehension.

1. Introduction

Software engineering is a multidisciplinary activity that has

many facets to it. In particular, in the context of software

maintenance, one of the most daunting tasks is to under-

stand the software system at hand. During this task, the

software engineer attempts to build a mental map that re-

lates the system’s functionality and concepts to its source

code [22, 14].

Understanding a system’s behavior implies studying ex-

isting code, documentation, and other design artifacts in or-

der to gain a level of understanding of the software sys-

tem that is sufficient for conducting a given maintenance

task. This program understanding or program comprehen-

sion process is known to be very time-consuming, and Corbi

reports [3] that up to 50% of the time allocated for a main-

tenance task is spent on gaining knowledge of the software

system at hand. Thus, considerable gains in overall ef-

ficiency can be obtained if tools are available that facili-

tate this comprehension process. The greatest challenge for

such tools is to create an accurate image of the entities and

relations in a system that play a role in a particular task.

Dynamic analysis, or the analysis of data gathered from

a running program, has the potential to provide an accu-

rate picture of a software system, among others because it

can reveal object identities and occurrences of late binding.

However, dynamic approaches are often characterized by

enormous amounts of data, which gives rise to scalability

issues [27]. Particularly, execution traces from sizeable pro-

grams are not easily understood because the efficient visu-

alization of both the structures and the many interrelation-

ships is far from trivial.

In this paper, we present a novel visualization method

that allows the visualization of dynamically gathered data

from a software system in a condensed way, while still be-

ing highly scalable and interactive. We attempt to achieve

these goals by presenting two synergistic views: (1) a cir-

cular bundle view that projects the system’s structure in

terms of hierarchical elements (and their call relationships)

on a circle, and (2) a massive sequence view that provides

a global overview of the trace. These techniques are imple-

mented in our tool EXTRAVIS (EXecution TRAce VISual-

izer) that is publicly available for download.1

To characterize our approach, we use the framework in-

troduced by Maletic et al. [15]:

1. Task: Why is the visualization needed? The amount

of trace data that often results from dynamic analysis,

calls for an effective visualization. More specifically,

we describe how EXTRAVIS is useful for:

• trace exploration and phase detection,

• feature location, and

• feature comprehension.

2. Audience: Who will use the visualization? The tar-

get audience consists of software developers and re-

engineers who are faced with understanding (part of) a

complex software system.

3. Target: What low level aspects are visualized? Our

main aim is to represent information pertaining to call

relationships, and the chronological order in which

1Available at http://www.swerl.tudelft.nl/extravis/
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these interactions take place. This information is aug-

mented with static data to establish the system’s struc-

tural decomposition.

4. Representation: What form of representation best con-

veys the target information to the user? We strive

for our visualization to be both intuitive and scalable.

To optimize the use of screen real estate, we repre-

sent a system’s structure in a circular view. More-

over, our massive sequence view presents an interac-

tive overview.

5. Medium: Where is the visualization rendered? The

visualization is built up from two synchronized views

that are rendered on a single computer screen.

To assess the usefulness of our approach in the aforemen-

tioned contexts, we use the tool to conduct three extensive

case studies on an academic, an open source and an indus-

trial software system.

Structure of the paper In Section 2 we provide a detailed

description of our visualization approach and tool, along

with the requirements. We then present the case studies in

Sections 3 through 6. Next, we discuss the advantages and

limitations of our approach in Section 7. We cover related

work in Section 8, and we summarize our main contribu-

tions and future work in Section 9.

2. EXTRAVIS

The goal of EXTRAVIS is to visualize execution traces in or-

der to support program comprehension during various soft-

ware maintenance tasks. Given an execution trace (or a part

thereof), EXTRAVIS presents two synchronized views (see

Figure 2 for a screenshot)2:

• a circular view that shows the system’s structural de-

composition and the nature of its interactions during a

(part of the) trace;

• a massive sequence view that provides a concise and

navigable overview of the consecutive calls between

the system’s elements in a chronological order.

Both views offer multiple interaction methods and detailed

textual information on demand, and a synchronized mode

of operation ensures that changes in the one view are prop-

agated to the other. In this section, we describe the meta-

model used by EXTRAVIS and present the two views that

it is based on. The ensuing sections discuss the use of our

tool, and illustrate how the combined views can help in con-

ducting various program comprehension tasks.

2.1. Meta-model

The tool is based on a meta-model that describes the struc-

tural decomposition of the system (a contains hierarchy)

2The figures in this paper are best viewed in color, and are also available

in hi-res at http://www.swerl.tudelft.nl/extravis/.

Figure 1. Call relations within a program shown

using linear edges (left) and using hierarchical

edge bundles (right).

and a (time-stamped) call relation. Optionally, additional

relations can be supplied which contain more detailed in-

formation. Input for the tool is provided in the form of RSF

files [26].

Structural information To visualize the structure of a

program, the tool requires a containment relation that de-

fine the system’s structural decomposition, e.g., in terms of

package structures or architectural layers.

Basic call relations The second mandatory part of input is

a series of call relations, which are extracted from an exe-

cution trace. The RSF file thus contains information on the

caller and callee’s classes, the method signatures, and the

chronological order of the calls (by means of an increment).

Additionally, to link with the source code, the method sig-

natures contain pointers to the source files (if available) and

include the relevant line numbers.

Detailed call relations Optionally, more detailed informa-

tion on the calling relationships can be added by means of

a third input file. This extra data is linked to the basic in-

put on the basis of the aforementioned increment, and deals

with object identifiers, runtime parameters and actual return

values.

2.2. Circular Bundle View

The circular bundle view offers a detailed visualization of

the system’s structural entities and their interrelationships.

As shown in Figure 1, these relations are depicted by bun-

dled splines. Visually bundling relations together helps to

reduce visual clutter, and also shows the implicit call rela-

tions between parent elements resulting from explicit calls

between their respective children. These bundles, called hi-

erarchical edge bundles, were presented by Holten in [9].

The hierarchical elements can be collapsed to enable the

user to focus on specific parts of the system. Collapsing

an element hides all of its child elements and “lifts” the re-

lations pertaining to these child elements to the parent el-

ement, providing a straightforward abstraction mechanism.

The (un-)collapsing process is fully animated for the user to
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Figure 2. Full view of an entire Cromod trace.

maintain a coherent view of the system, i.e., to facilitate the

cognitive linking of the “pre” and “post” view.

Furthermore, textual information related to the underly-

ing source code is provided by means of call highlighting

and by providing direct links to the relevant source parts.

In EXTRAVIS, we use hierarchical edge bundles to vi-

sualize the dependencies that occur during a selected part

of the execution trace. Thus, the circular view provides a

snapshot in time that corresponds to the part of the execu-

tion trace that is currently being viewed. Splines are drawn

between hierarchical elements that communicate with each

other. Given (part of) a trace, the thickness of a spline indi-

cates the number of calls between two elements.

With respect to the coloring, the user can choose from

either the directional or the temporal mode. In the former

case, a color gradient along the spline indicates its direction.

The latter mode colors the relations such that the relations

are ordered from least recent (dark) to most recent (light).

2.3. Massive Sequence View

To support users in identifying parts of the trace of interest,

EXTRAVIS offers the massive sequence view. It provides an

overview of (part of) the full execution trace. At the top,

the system’s structure is shown along the horizontal axis;

underneath, there is the visualization of the call relations,

which are ordered along the vertical time axis from least re-

cent (top) to most recent (bottom). Again, the directions of

the relations are color coded using a gradient (see Figure 2).

Additionally, the massive sequence view allows to zoom in

on parts of the execution trace by allowing the selection of

a fragment that needs closer inspection.

The massive sequence view expands upon the concept of

the “execution mural” by Jerding et al. [10] in the sense that

interaction patterns can be used as abstractions: connect-

ing low-level implementations to higher level design mod-

els is potentially useful in program understanding tasks. We

provide the user with an additional abstraction mechanism:

rather than merely using the visual appearance of patterns,

the circular view’s collapse mechanism and the lifting of re-

lations results in new, higher level relations which, in turn,

correspond to a higher level behavior of the system.

Apart from the coloring aspect, our technique also differs

from Jedring’s work [10] in that the massive sequence view

displays a system’s entire structural hierarchy.

3. Case Studies

To illustrate the effectiveness of our techniques, we discuss

three specific usage scenarios:

15th IEEE International Conference on Program Comprehension (ICPC'07)
0-7695-2860-0/07 $20.00  © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:17 from IEEE Xplore.  Restrictions apply.



Exploration (Section 4)

• Context: System is largely unknown, trace is available.

No (or little) up-front knowledge is present.

• Goal: Get an initial feeling of how the system works.

Feature location (Section 5)

• Context: Features of the software system are known.

One or more feature traces, which are manufactured

traces that exercise one or more features, are available.

• Goal: Knowing which (end user) features are available

in a system, the software engineer tries to detect them,

i.e., locate their occurrences in the execution trace.

Feature comprehension (Section 6)

• Context: A particular feature of the software system

has been isolated.

• Goal: Understanding how the feature is implemented.

Each of these purposes is exemplified by means of a typical

usage scenario that involves a medium-scale Java system3.

3.1. Preparatory Steps

Before we can start to visualize execution traces, we need

to generate the necessary input data. We briefly describe the

steps needed to collect the inputs.

We make use of a simple Perl tool that derives a sys-

tem’s class decomposition from its directory structure. This

results in a parent-child relation that defines the system’s

structure in terms of classes and (sub-)packages.

As for the dynamic part, we trace a system’s execution

by monitoring for method invocations and registering the

objects that are involved. We achieve this by extending the

SDR framework from our earlier work [4]. The associated

tracer registers unique objects, method names, information

on the call sites (i.e., source filenames and line numbers),

runtime parameters and actual return values, and the listener

converts these events to RSF.

4. Exploratory Comprehension

Motivation When a system is largely unknown and an ex-

ecution trace is available, being able to understand the con-

trol flow in the trace can be of great help in understanding

the system. However, it is a well-known phenomenon that

dynamic analysis tends to result in large amounts of data.

Due to this “overload”, the exploration of such traces is by

no means a trivial task. To illustrate how we can tackle this

issue, we explore an industrial system called CROMOD.

Exercised features For the purpose of exploratory pro-

gram understanding, we expect to need the following set of

3Note that although this experiment involves Java because our tool-

chain is optimized for Java systems, we have no reason to believe that our

technique is not applicable to other (non-object oriented) languages.

features that are incorporated in EXTRAVIS:

• The massive sequence view enables us to visually

spot phases in the software’s execution (similar to

Reiss [19]).

• Packages can be collapsed to make both the circular

and the massive sequence view less densely populated.

• Whereas certain visualizations (e.g., sequence dia-

grams) would necessitate two-dimensional scrolling,

the circular view that we use presents all of the cur-

rent interactions in one concise view.

4.1. Cromod

CROMOD is an industrial Java system that regulates the en-

vironmental conditions in greenhouses. The system is built

up from 145 classes that are distributed across 20 packages.

According to the manual, it takes a greenhouse configu-

ration (e.g., four sections, 15 shutters, and 40 lights) and

a weather forecast as its input; it then calculates the opti-

mal conditions and determines how certain parameters such

as heating, lights, and shutters are controlled and, finally,

writes its output. The model calculations typically induce

massive amounts of interactions, which makes this system

an interesting subject for trace visualization.

Setup The trace that results from a typical CROMOD exe-

cution contains millions of events, of which a large part can

be attributed to logging. For this reason, we have run the

program at a log level such that the resulting trace contains

roughly 270,000 method and constructor calls, of which the

comprehension is still quite a challenge. The trace (100MB)

was converted to RSF, and then extended with information

on the system’s hierarchical decomposition in terms of its

package structure.

4.2. Typical Usage Scenario

Loading the trace into EXTRAVIS provides us with the ini-

tial view that is shown in Figure 2.

Detecting the major phases The massive sequence view

indicates that there are three major “phases” in this execu-

tion scenario, characterized by two small beams (first and

third phase) and a long segment that appears to be somewhat

broader (second phase). At this point in time, we formed

our initial hypothesis that these stages concern (1) an input

phase, (2) a calculation phase, and (3) an output phase. This

proved to be correct upon further examination.

Focusing on the first phase The first phase that we vi-

sually discern in the massive sequence view looks like an

almost straight vertical “beam”. We zoom in on this phase

by selecting an interval, and thus reducing the timeframe

under consideration. Now, EXTRAVIS only visualizes the

interactions within the chosen timeframe. Turning our at-

tention to the circular view (Figure 3), we learn that this
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Figure 3. Circular view of Cromod’s initialization

phase.

first phase merely involves a limited number of classes and

packages, of which most pertain to I/O operations.

Understanding what is happening in a phase Double

clicking on packages collapses them, which renders the cir-

cular view less cluttered and makes the interactions clearer.

In this phase it proves useful to collapse the “model” pack-

age, which is a relatively large package that is seldomly

used at this stage. By means of the edge colors we observe

that certain (groups of) classes have high fan-in and fan-out

rates and, with respect to the chosen timeframe, the thick-

ness of an edge indicates the number of calls that occurred

between the associated elements.

We followed a similar strategy for the second and third

phase, the latter being very similar in terms of I/O activ-

ity. The second phase was characterized by a number of

repeating sub-phases (mainly within the “model” package)

that involves the many interactions that make up a model

calculation; in particular, it turned out the creation and pro-

cessing of massive amounts of Time objects accounts for the

majority of the interactions.

The main lesson learned from this case study is that the

identification of phases can help to quickly outline a sys-

tem’s general functionality.

5. Feature Location

Motivation As was briefly mentioned in the introduction,

a significant portion of the effort in a maintenance task is

spent on determining where to start looking within the sys-

tem, and which parts to focus on. As such, we consider

feature location [6] to be an important use case, and show

how to use our tool to localize features in JHOTDRAW.

Exercised features In addition to the features that were

used in the previous section, this case reveals two more:

• The massive sequence view, with its zooming capabil-

ity, is not merely suitable for phase detection but also

for (visually) recognizing patterns, which is a first step

towards the location of features.

• In case the zooming process was not satisfactory, it is

a matter of pressing the “back” button to return to the

original view and redefine a zoom window.

5.1. JHotDraw

JHOTDRAW
4 is a well-known, highly customizable Java

framework for graphics editing. It was developed as a “de-

sign exercise” and is considered to be well-designed. It

comprises roughly 300 classes and 20 packages. Running

the program presents the user with a GUI, in which he or

she can create drawings that may contain manual sketches,

text, predefined figures and such.

Setup To generate a suitable feature trace, we have con-

structed a user scenario that involves several major features

that we hope to detect: the creation of a new drawing, and

the insertion of five different types of figures therein. These

figures include rectangles, rounded rectangles, ellipses, tri-

angles, and diamonds. To make the localization of the “new

drawing” and its “insert figure” features easier, we invoked

the aforementioned scenario a total of three times. How-

ever, since JHOTDRAW registers all mouse movements, the

trace that results from our scenario is bound to contain a lot

of noise. We have therefore filtered these mouse events to

obtain a trace that is somewhat cleaner.

5.2. Typical Usage Scenario

Figure 4(a) shows the massive sequence view of the entire

execution trace, in which we can immediately observe sev-

eral recurrent patterns.

Locating the “new drawing” feature Since in our trace

scenario we invoked the “new drawing” feature three times,

we are looking for a pattern that has the same number of oc-

currences. Finding these patterns in the massive sequence

view is not very difficult: we can discern three similar

blocks, all of which are followed by fragments of roughly

the same length. This leads us to the hypothesis that the

blocks concern the initialization of new drawings, and that

the subsequent fragments pertain to the figure insertions.

Locating the “insert figure” feature To verify our hy-

pothesis, we take a closer look at the patterns mentioned

4http://www.jhotdraw.org/
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Figure 4. (a) Full trace of the JHotDraw scenario.

(b) Zooming in on the “new drawing” feature and

the subsequent figure insertions.

above. Figure 4(b) presents a zoomed view of such a

fragment, in which we can see the alleged initialization

of the drawing in the top fraction. What follows is a se-

ries of patterns, of which five are very similar. Indeed,

these patterns must relate to the figure insertions, as in

each pattern there is a fair amount of outgoing calls to-

wards either the “figures” package (first three figures) or

the “contrib” package (last two figures). Upon closer

inspection of these packages, our assumption turns out

to be correct: RectangleFigure, RoundRectangleFigure,

and EllipseFigure are standard figures in JHOTDRAW,

whereas TriangleFigure and DiamondFigure are in the

“contrib” package because they were contributed by third

parties.

As soon as the feature has been isolated, we can attempt

to understand the interactions involved in its implementa-

tion. We focus on this activity in the next section.

6. Feature Comprehension

Motivation Once a feature has been located, i.e., when

the timeframe of interest has been found, the next step is to

understand the feature. Feature comprehension is thus con-

cerned with understanding the interactions that take place

during a feature invocation: gaining knowledge of a fea-

ture’s implementation is an important step towards easing

maintenance tasks such as change requests.

Exercised features Our tool offers several functionalities

to help gain a detailed understanding of trace fragments:

• Highlighting the occurrences of hierarchical elements

in the circular view indicates where these elements ac-

tively participate within the chosen timeframe. This

enables the viewer to quickly focus on these locations.

• Once a suitably small timeframe is chosen, switching

the display mode from “basic” to “runtime” presents

runtime information such as objects and actual param-

eters, rather than classes and formal signatures.

• The user can request a view of the specific parts of the

source code with a simple right mouse click.

• Switching the circular view into temporal mode allows

for an accurate view of the chronological ordering of

the interactions, and offers a means to systematically

step through the execution.

6.1. JPacman

To assess the usefulness of our approach in gaining (de-

tailed) knowledge of features, we have conducted a study

on JPACMAN, an academic teaching example at Delft Uni-

versity of Technology. It is a fairly simple Java application

that consists of 20 classes and 3,000 lines of code. It is an

implementation of the well-known Pacman game, in which

there exists a board of 20 by 20 cells containing food items,

monsters, and walls. Among the many features in this con-

text are: moving, eating food, bumping into a wall, colliding

with a monster, and restarting the game.

Although JPACMAN is a small system, its execution

traces typically contain hundreds of thousands of calls,

which renders it an appropriate case study for any trace vi-

sualization technique.

Setup We obtained a suitable execution trace for JPAC-

MAN by playing a short game and thereby invoking a set of

features. These features include (in order of invocation):

starting a game, eating food, dying, restarting, and quit-

ting. The trace that resulted from this scenario contains a

little over 150,000 calls, of which a great deal is made up of
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Figure 5. (a) Full trace of the JPacman scenario.

(b) Zooming in on the “player dies” feature. (c)

Highlighting an interaction.

“noise” because of the many player and monster movements

that take place in between the intended feature invocations.

6.2. Typical Usage Scenario

The massive sequence view of the entire JPACMAN trace is

displayed in Figure 5(a). To proceed with the inspection of

a feature, we must first locate it and then zoom in on it.

Locating the “player dies” feature Our aim is to learn

about the feature that is the death of the player. Since in our

execution scenario the player’s death took place just before

the game was restarted, which we expect to be a relatively

complex feature, we want to zoom in on a fragment of the

execution that precedes the restart phase. The overview al-

lows for the easy detection of this phase: at roughly halfway

through the trace there exists a fragment that bears a strik-

ing resemblance to the initialization phase, which leads us

to believe that this is where the game is restarted. Thus, in

the massive sequence view, we select a large interval pre-

ceding the restart pattern (Figure 5(a)).

The new view (Figure 5(b)) shows the restart phase at

the bottom; however, it is still difficult to spot the collision

between the player and a monster, and we do not know on

which part to zoom in next. To further narrow down the

search space, we have two options.

Narrowing down the timeframe The first option is to

consider the circular view and to highlight the PlayerMove

and Monster classes. In the massive sequence view, a blue

horizontal line (within a grayed-out context) indicates the

mutual interactions of these elements within the chosen in-

terval. However, in case of a large system that consists of

many (unknown) classes, it might prove difficult to deter-

mine which classes to highlight.

Alternatively, we can look at the circular view and,

more specifically, inspect the interactions pertaining to the

Player and PlayerMove classes. We choose these classes

because their names suggest that they are likely to be part

of any player movement. We can immediately see a re-

lation between the latter class and a Monster, and choose

to highlight it. As it turns out, this relation concerns two

calls in opposite directions, of which the signatures are

Guest.meetPlayer() and PlayerMove.die(), which indi-

cates that we are on the right track.

Again, by means of a blue line in the massive sequence

view, we can see when these interactions take place: Fig-

ure 5(c) reveals the collision’s exact location. We can now

zoom in even further, and obtain a compact visualization of

the player-monster collision feature.

Inspecting the feature We switch the circular view to tem-

poral mode, and can see the chronological order of the inter-

actions that took place during this feature. This view allows

us to get a quick, yet reasonably complete view on what

happens at this stage. For more details we can switch to run-

time mode and gradually step through the execution. This

way, we observe that the caller of meetPlayer() is in fact an

object that is a subclass of Guest, namely Monster450 (Fig-

ure 6). This turns out to be a double dispatch [1]: the effect

of a call to the generic meetPlayer() is dependent on the

dynamic type of the caller, and in the case of a monster it

results in the player’s death. The use of this mechanism also

sheds light upon the implementation of other types of colli-

sions (e.g., the “eat food” feature), which can be studied in

a similar fashion.

7. Discussion

The case studies in Sections 3 through 6 have pointed out a

series of potential applications of our approach in the con-

text of understanding large execution traces and, by exten-

sion, understanding software systems. This section lists a

number of important characteristics of our techniques and

discusses both the advantages and limitations.

Advantages Most trace visualization tools use UML se-

quence diagrams (or variants thereof) to display a system’s
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Figure 6. Circular, temporal view of the “player

dies” feature that shows runtime information.

structure and the detailed interactions between its compo-

nents (e.g. De Pauw [17] and Jerding [11]). Although se-

quence diagrams are very intuitive, they typically become

difficult to navigate when the number of components and

the time period under consideration become too large: situa-

tions where two-dimensional scrolling is necessary to grasp

even relatively simple interactions can quickly occur, which

easily disorients and confuses the user. EXTRAVIS, on the

other hand, uses a scalable circular view that fits on one

screen. All of the system’s components are hierarchically

projected on a circle, and components that are of no imme-

diate interest can be collapsed, which improves readability

and ensures that the user is not overwhelmed by too much

information.

Moreover, the calling relationships between elements are

visualized using bundling, which greatly improves the over-

all readability in case of many simultaneous relations. By

use of colors, there is the ability to either (1) show these re-

lationships in a chronological order or (2) indicate the fan-in

and fan-out behavior of the various components.

Finally, the massive sequence view, which provides a

concise overview of an entire execution trace, allows the

user to easily zoom in on parts of the trace. This reduces

the time period under consideration in both views and eases

the navigation. Another benefit of this view is that it is easy

to recognize patterns and phases on the macroscopic level

and, by use of zooming, on the fine-grained level as well.

Limitations While EXTRAVIS successfully visualizes

large execution traces that are normally too difficult to un-

derstand, the size of the input trace is still limited. The

reason for this is twofold: not only does the tool require a

Criterion EXTRAVIS implementation

Overview Massive sequence view

Zooming Zooming in the massive sequence view

Filtering Collapsing of elements

Details-on-demand Highlighting of elements / relations

Relate Circular view (with bundling)

History Forward / back buttons

Extract Save / load current state

Table 1. Shneiderman’s GUI criteria.

substantial amount of computational resources – i.e., mem-

ory to keep track of all elements and relations, and CPU

cycles to perform calculations, counts etc. – but visualiz-

ing large systems also requires a considerable amount of

screen real estate. The latter problem exists because not

all events can be visualized in the massive sequence view

in a non-ambiguous fashion in case there are more events

than there are horizontal pixel lines. It must be noted, how-

ever, that EXTRAVIS is not necessarily a stand-alone tool; it

could well be used as part of a tool chain, e.g., after some

abstraction phase.

Moreover, while the circular view is a good means to dis-

play a series of call relations without the need for scrolling,

it can be fairly difficult to grasp the temporal aspect within a

time fragment. This is especially the case when considering

a rather large amount of calls, as it becomes difficult to dis-

cern the various colors and, thus, their chronological order.

Our tool’s ability to “step” through the fragment, however,

partly solves this issue.

Furthermore, threads are currently not supported. Al-

though our tracer does register thread information, the visu-

alization tool is not yet equipped with a means to effectively

visualize the interactions between these threads.

Shneiderman Shneiderman introduced seven criteria for

assessing the graphical user interfaces of information visu-

alizations [23]. Table 1 outlines how the two synchronized

views of EXTRAVIS satisfy each of these seven criteria.

8. Related Work

Research into trace visualization has resulted in various

techniques and tools over the years. Most related articles

are concerned with explaining the visualization tools and

techniques by example, whereas in Sections 3 through 6

we have reported on a range of both general and very spe-

cific applications of our tool. This section provides a brief

overview of the related work in this area.

De Pauw et al. [17] are known for their work on IBM’s

Jinsight, a tool for visually exploring a program’s runtime

behavior. Many features of this prototype tool have since

found their way into Eclipse as plug-ins, more specifically,

the Test & Performance Tools Platform (TPTP). Though be-

ing useful for program comprehension purposes, scalability
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remains worrisome. To this end, the authors have intro-

duced the execution pattern notation [18].

Lange et al. [13] report on Program Explorer which,

given an execution trace, visualizes a program’s interaction

graph. This graph can then be studied, and there is sup-

port for several filtering techniques to reduce its size. The

tool does not offer a comprehensive view of all the packages

and classes that are involved, and selecting a trace interval

for detailed viewing is not very feasible.

Jerding et al. [11] present ISVis, a tool that features two

simultaneous views of a trace: a continuous sequence di-

agram, and a mural view that is somewhat similar to our

massive sequence view [10]. ISVis’ main strength lies in

pattern detection, which allows to summarize common ex-

ecution patterns, and reduces the size of the trace consider-

ably. Our approach differs from ISVis in that the latter deals

from the perspective of sequence diagrams (which can not

contain a large number of structural elements), whereas our

tool is centered around a scalable circular view.

AVID [25, 2], a visualization tool by Walker et al., aims

at depicting a system’s dynamic behavior by having the user

define an architecture and then enriching it with runtime in-

formation. A form of Reflexion [16] lies at the basis of this

process. Although there is support for the (sampling based)

selection of a scenario fragment, the tool faces a significant

scalability issue as scenarios still induce a potentially large

amount of trace data that cannot be directly visualized.

Reiss and Renieris [21] note that execution traces are

typically too large to visualize directly and therefore pro-

pose to select, compact, and encode the trace data. Jive,

also by Reiss [20], is a Java front end that visualizes a pro-

gram’s behavior while it is running, rather than analyzing its

traces in a postmortem fashion. While the runtime visual-

ization and relatively small overheads render it an attractive

tool, it is hard to visualize entire executions.

Greevy et al. [7] present a 3D visualization of the execu-

tion of a software system. The visualization metaphor that

they use to display large amounts of dynamic information

is that of growing towers, with towers becoming taller as

more instances of a type are created. The authors aim to (1)

determine which parts of the system are actively involved

in a particular (feature) scenario execution, and (2) identify

patterns of activity that are shared among different features

of the system.

Another set of trace visualizations with a variety of pur-

poses can be found in the work of Ducasse et al. [5], who

use so-called polymetric views to visualize dynamically

collected metrics. Kuhn et al. [12] exploit the correlation

between execution traces and signals in time, an approach

similar to the one by Zaidman and Demeyer [28]. Hamou-

Lhadj et al. [8] apply “use case maps” to visualize behav-

ioral models in a compact fashion. Systä et al. [24] use a

variant of sequence diagrams to visualize trace information.

9. Conclusions

Dynamic analysis is generally acknowledged to be a useful

means to gain insight about a system’s inner workings. The

major drawback of dynamic analysis is the huge amounts

of trace data that are collected and need to be analyzed. As

such, designing an effective trace visualization that (1) is

able to cope with these huge amounts of data, and (2) does

not confuse the viewer, remains a challenge.

The solution that we propose to tackle this scalability

issue is centered around two synchronized views of an exe-

cution trace. The first view, which we call the circular view,

shows all the system’s hierarchical elements (e.g., classes

and packages) and their dynamic calling relationships in a

bundled fashion. The second view, the massive sequence

view, shows a large-scale sequence diagram that provides

an interactive overview of an entire trace. The combination

of the two views creates a synergy that ensures the easy nav-

igation and study of large execution traces. Our approach is

implemented in a publicly available tool called EXTRAVIS.

To illustrate the broad range of potential usage contexts

of our approach, we conducted three usage scenarios on

three different software systems. More specifically, we per-

formed (1) trace exploration, (2) feature location, and (3)

feature comprehension. For each of these scenarios, we

have presented anecdotal evidence on how our approach

helped us gain insight into the software systems under study.

Finally, we have reported on the strengths and limitations of

our tool and discussed its added value over related work.

To summarize, our contributions in this paper are:

• A novel approach to visualizing execution traces that

employs two synchronized views, namely (1) a circu-

lar bundle view for displaying the structural elements

and bundling their call relationships, and (2) a massive

sequence view that provides an interactive overview.

• The application of our tool, based on this approach,

in three reverse engineering contexts on three distinct

software systems: exploratory program comprehen-

sion, feature detection, and feature comprehension.

Future work There are many potential directions for fu-

ture work, both in terms of improving our techniques and in

applying them to alternate usage scenarios.

Among the improvements is to facilitate the comparison

of execution traces: for example, observing two traces side

by side (and thereby detecting correlations) might make fea-

ture location considerably easier.

Furthermore, we want to investigate the role of threads

in our visualization, and come up with techniques to effec-

tively display both the threads and their interactions.

Future applications include not only the visualization of

much larger execution traces, but also the detection of out-

liers. Outlier detection concerns the revelation of call rela-

tionships that are not allowed to exist for some reason, e.g.,
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because the elements belong to non-contiguous layers. The

circular view, with its ability to show relations from entire

traces in a bundled fashion, provides an excellent basis for

the detection of such relationships.

Finally, we want to assess the usefulness of our tech-

niques by conducting an emperical study. For instance, in

the context of a large software system, one could think of an

experiment that involves EXTRAVIS, a questionnaire, and

several test users who are not familiar with the system.
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