
Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2019

Understanding flaky tests: the developer’s perspective

Eck, Moritz ; Palomba, Fabio ; Castelluccio, Marco ; Bacchelli, Alberto

Abstract: Flaky tests are software tests that exhibit a seemingly random outcome (pass or fail) despite
exercising unchanged code. In this work, we examine the perceptions of software developers about the
nature, relevance, and challenges of flaky tests. We asked 21 professional developers to classify 200 flaky
tests they previously fixed, in terms of the nature and the origin of the flakiness, as well as of the fixing
effort. We also examined developers’ fixing strategies. Subsequently, we conducted an online survey with
121 developers with a median industrial programming experience of five years. Our research shows that:
The flakiness is due to several different causes, four of which have never been reported before, despite being
the most costly to fix; flakiness is perceived as significant by the vast majority of developers, regardless
of their team’s size and project’s domain, and it can have effects on resource allocation, scheduling, and
the perceived reliability of the test suite; and the challenges developers report to face regard mostly the
reproduction of the flaky behavior and the identification of the cause for the flakiness. Public preprint
[http://arxiv.org/abs/1907.01466], data and materials [https://doi.org/10.5281/zenodo.3265785].

DOI: https://doi.org/10.1145/3338906.3338945

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-197726
Conference or Workshop Item
Published Version

Originally published at:
Eck, Moritz; Palomba, Fabio; Castelluccio, Marco; Bacchelli, Alberto (2019). Understanding flaky tests:
the developer’s perspective. In: ESEC/FSE ’19: 27th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, Tallinn Estonia, 26 September 2019
- 30 September 2019. ACM, 830-840.
DOI: https://doi.org/10.1145/3338906.3338945

Understanding Flaky Tests: The Developer’s Perspective

Moritz Eck
University of Zurich
Zurich, Switzerland
moritz.eck@uzh.ch

Fabio Palomba
University of Zurich
Zurich, Switzerland
palomba@ifi.uzh.ch

Marco Castelluccio
Mozilla Software Foundation
London, United Kingdom
mcastellucio@mozilla.org

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@ifi.uzh.ch

ABSTRACT

Flaky tests are software tests that exhibit a seemingly random

outcome (pass or fail) despite exercising unchanged code. In this

work, we examine the perceptions of software developers about

the nature, relevance, and challenges of flaky tests.

We asked 21 professional developers to classify 200 flaky tests

they previously fixed, in terms of the nature and the origin of the

flakiness, as well as of the fixing effort. We also examined develop-

ers’ fixing strategies. Subsequently, we conducted an online survey

with 121 developers with a median industrial programming experi-

ence of five years. Our research shows that: The flakiness is due to

several different causes, four of which have never been reported

before, despite being the most costly to fix; flakiness is perceived

as significant by the vast majority of developers, regardless of their

team’s size and project’s domain, and it can have effects on resource

allocation, scheduling, and the perceived reliability of the test suite;

and the challenges developers report to face regard mostly the re-

production of the flaky behavior and the identification of the cause

for the flakiness. Public preprint [http://arxiv.org/abs/1907.01466],

data and materials [https://doi.org/10.5281/zenodo.3265785].

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Flaky Tests; Empirical Studies; Mixed-Method Research.

ACM Reference Format:

Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.

Understanding Flaky Tests: The Developer’s Perspective. In Proceedings of

the 27th ACM Joint European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering (ESEC/FSE ’19), Au-

gust 26ś30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3338906.3338945

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338945

1 INTRODUCTION

Software tests are flaky when they exhibit a seemingly random

outcome despite exercising code that has not been changed.

Even though previous work has proposed techniques to automat-

ically fix some types of flaky tests [10, 11, 14, 21, 42], our scientific

knowledge about flaky tests is still very limited.

Luo et al. [24] presented the earliest and most significant work

advancing our empirical knowledge on flaky tests. The researchers

inspected 201 commits that likely fixed flaky tests from 51 Apache

projects. They, thus, derived a taxonomy of the most common root

causes (their nature, henceforth) of flaky tests, as well as identified

strategies to manifest and fix certain types of flakiness [24].

The work we present in this paper continues on this line of re-

search about understanding flaky tests. Here we present the devel-

oper’s perspective: Our goal is to investigate developers’ perception

on the causes and effort in fixing flaky tests, the significance of the

problem, as well as what they deem to be the most important chal-

lenges. An improved comprehension of these aspects is key to the

definition of solutions and research lines to better help practitioners

in diagnosing and fixing test flakiness.

To achieve our goal, (1) we ask 21 professionalMozilla develop-

ers to classify 200 real-world flaky tests they had previously fixed,

in terms of the nature of the flakiness, the origin of the flakiness

(test or production code), and the fixing efforts. We complement

this analysis with information about the fixing strategy, which

we collect from the source code repository. Focusing on a single

ecosystem gives us the opportunity to detect the less frequent cases

that would not likely appear by panning wide. Subsequently, (2) we

conduct an online survey that was answered by 121 developers

(106 professionals and 15 academics). Since these developers are

from different projects and backgrounds, their answers give us the

opportunity to learn from a variety of cases.

The categorization by theMozilla developers uncovered four

previously unreported causes of flakiness, which are also deemed

as those requiring the most effort to fix. Most surveyed developers

(79%) consider flaky tests a moderate to serious problem, regardless

of their team’s size and project’s domain; and 40% deal with flaky

tests at least weekly. In terms of problems, flaky tests are reported to

have serious consequences on the scheduling, allocation, and relia-

bility of the testing process. Finally, reproducing the flaky behavior

and classifying its cause are perceived as the major challenges.

We publicly release the full dataset concerning our contributions,

as well as the data and materials for the futher analyses [13].

830

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli

2 GOALS AND METHOD’S OVERVIEW

The goal of this study is to capture’s the developer’s perspective on

flaky tests with the purpose of: (1) understanding the nature of test

flakiness, investigating why and where flaky tests arise, as well as

the fixing effort and strategies, (2) gathering the relevance of and

problems caused by flaky tests in practice, and (3) collecting the

challenges faced by developers when handling flaky tests.

2.1 Research Questions

We start our research by asking professional developers to classify

(in terms of nature, origin, and fixing effort) flaky tests they pre-

viously fixed. Differently from Luo et al. [24], we do not classify

the underlying causes of flakiness ourselves, rather the original

developers do and add information on the origin and fixing effort.

Moreover, we complement the developers’ analysis with informa-

tion on the fixing strategies. Our goal is to triangulate the taxonomy

proposed by Luo et al. [24] from a different data source and with a

different methodology. Hence, our first research question:

RQ1. How do professional developers categorize flaky tests, in

terms of nature, origin, and fixing effort? How do they fix them?

Subsequently, we turn to a broader audience of respondents. We

conduct a survey targeting software developers on their experience

with flaky tests. We investigate the frequency of flaky tests in

practice and how problematic flaky tests are from the developer’s

perspective. We ask:

RQ2. How prominent is test flakiness and how problematic is it

as perceived by developers?

Finally, we investigate the challenges that developers perceive

as most critical when they have to deal with flaky tests. We ask:

RQ3. What are the main challenges that developers face when

dealing with flaky tests?

2.2 Overview Of The Research Method

Our study features a mixed-methods approach [22] where quanti-

tative and qualitative research are run in parallel with the goal of

converging toward an empirical understanding of test code flaki-

ness. We design and conduct a study to obtain data from two main

sources: A novel annotated dataset (ds) of flaky tests (with 200 in-

stances annotated by 21 professional developers) and the responses

to an online survey (os) (with 121 valid responses from developers).

2.3 Developers’ Analysis Of Flaky Tests

In the following, we describe the methodological steps conducted

to address our first research question.

Subject Flaky Tests.We first need to collect a dataset of flaky

tests, which we then present to developers for their analysis. To

this aim, we mine the Bugzilla issue tracker of Mozilla (i.e., a

large free software organization counting more than 40,000 active

contributors spread around the world and developing a variety

of software, ranging from layout engines to operating systems).

Mozilla has a database of flaky tests, verified and fixed by develop-

ers. According to such a database, the organization has 100 to 150

new flaky tests being detected every week: this makes it particularly

suitable for our study because developers are very frequently in

charge of diagnosing and fixing flaky tests, being therefore able to

provide authoritative information on the nature of test flakiness,

its origin, and the fixing effort.

We extract the data available after a flaky test has been reported.

Thus, we gather the log files produced by the continuous integration

system and the source code associated with the fixed flaky test

(if available). In a first step, we identify all (869) fixed flaky tests

the Mozilla’s bug tracking system tagged resolved and fixed

between May 2017 and April 2018. We consider this time window

since the company only stores the log files for twelve months after

their creation. From the set of retrieved flaky tests, we remove all

instances for which no patch has been applied or other type of

attachment is available (e.g., some flaky tests stop occurring after

a while and are closed as fixed), as they were never fixed or were

false alarms. This step filters out 295 tests; resulting in a set of 574

flaky tests, which we use in the next steps.

Recruiting Mozilla Developers. The remaining 574 actual

flaky tests are taken into further consideration and sorted according

to the developer who is listed as the assignee or patch creator. From

this list, to ensure we select people with a concrete knowledge

on flaky tests, we exclude 177 programmers who have only fixed

less than five flaky tests. We end up with a list of 29 developers

for a total of 304 fixed flaky tests. We contact these programmers

through email and ask them to analyze the flaky tests as detailed

in the following subsection.

Developers’ Analysis. We create a spreadsheet for each devel-

oper that contains two columns: the first reports the link to the bug

report related to each flaky test fixed by a certain developer; the

second is used by the programmer to classify the nature of each

flaky test in the list. The participating developers are allowed to use

the taxonomy defined by Luo et al. [24] as a starting point for the

classification process, as it (1) eases their task and (2) standardizes

their answersÐthis is commonly done in both confirmatory and

exploratory surveys [15]. However, they are also allowed to create

additional categories if none of the existing ones fit; at the same

time, they can indicate more than one type to specify the reasons

behind the flakiness of a test (it may be flaky because of both a

race condition and a network problem). We also ask the develop-

ers to specify the development effort they spent to fix the flaky

tests, based on a Likert scale [28] between 1 (very low) to 5 (very

high), as well as the origin (test or production code) of the flakiness.

Once each developers completes the analysis, they send back their

spreadsheets with the annotated classification. We received a total

of 248 responses from 21 professionalMozilla developers. These

developers have 7.5 years (median) of experience withMozilla, 958

bug reports (median) assigned to, andÐover the last yearÐ14 flaky

tests fixed (median). Each developer provided us with 8.5 (median)

answers (min = 4, max = 48). Of those responses, we excluded 48:

(i) 24 cases turned into permanent failures, i.e., they were labeled

as intermittent by a Mozilla sheriff [40], but the fixing developer

found them to be permanent failures; (ii) in the other 24 cases, the

type of flakiness was unknown even to the developers, meaning

831

Understanding Flaky Tests: The Developer’s Perspective ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

that the fixing developers worked around the flakiness rewriting

the whole test and code-under-test, but they could not ascertain

the cause of the flakiness. By removing these cases, we intend to

rely on precise information, only. Nevertheless, the excluded cases

are available to our online appendix [13].

Analysis Of TheDevelopers’ Responses.We use the 200 clas-

sified flaky tests to define a taxonomy on the nature of flaky tests.

In 72 cases (31%) the assigned categories do not correspond to those

available in the taxonomy by Luo et al. [24] and, therefore, they are

new and need to be defined. To this aim, we conduct an iterative con-

tent analysis [39] to assign a common name to these new categories.

The process involves three software engineering researchers, all

authors of this paper, (one graduate student, one research associate,

and one faculty member) and consists of the two iterative sessions:

Iteration 1: The first author of this paper goes over the classifica-

tions made by developers. If the categories assigned belong to

the taxonomy by Luo et al. [24], he leaves them as they are; if

not, he assigns a temporary label to them. As an output, this step

provides a draft categorization of the types of flakiness.

Iteration 2: The three researchers open a discussion on the draft

taxonomy, with the aim of reaching a consensus on the assigned

categories. Afterwards, the first author re-categorizes flaky tests

according to the decisions taken during the discussion. Finally,

the second author of the paper double-checks the classifications

to reduce the risk of errors (he found no wrong classifications,

thus reaching a total agreement).

The resulting extended taxonomy is then used to address RQ1.

Besides reporting the list of such categories, we also characterize

them with additional information on (i) their frequency, computed

on the basis of the distribution of the categories within the dataset,

and (ii) the fixing strategies. As for the latter point, to characterize

the fixing strategies adopted by developers when dealing with flaky

tests, two authors of this paper conduct a new iterative content anal-

ysis thatÐsimilarly to the previous oneÐconsists of two iterations.

In the first iteration, the first author analyzes the patches associated

to the resolution of the considered flaky tests to label them with

a name and a short description of the fixing action performed by

developers. In the second iteration, the two authors open a discus-

sion on the initial labels assigned to reach a consensus. Then, the

first author applies the changes according to the discussion while

the second re-checks the final classifications to reduce threats in

the interpretation of the results.

2.4 Survey: Research Method

To answer RQ2 and RQ3, we design and deploy an online survey,

and analyze the collected answers.

Overall Survey Design. Following the guidelines provided by

Flanigan et al. [15], we limit common issues possibly arising in

survey studies and affecting the response rate: we keep the survey

short, respecting the anonymity of participants and preventing our

influence in the answers. We create an anonymous online survey

using a professional tool (i.e., Surveygizmo [1]).

The survey first describes to the respondents the concept of flaky

tests, following the definition accepted by the research community:

ł[flaky tests are] intermittent tests that sometimes pass, sometimes fail,

even though there are no changes in the code they testž. Then, the

survey asks for demographic information about the participants,

including programming/testing experience as well as company and

team size/domain. Subsequently, the survey contains other two

main sections to collect data about the relevance of flakiness (RQ2)

and its challenges (RQ3).

RQ2 ś Collecting Information About Relevance.We gather

data on (i) how many times flaky tests occur, (ii) how problematic

they are, and (iii) what are the top 3 to 5 problems caused by test

flakiness. Participants can answer the first two questions by using

a 5-point Likert scale indicating the extent to which the problem

exists and how much it is serious, while they are free to write down

the problems (if any) in a text box.

RQ3 ś Collecting Information About Challenges.

We first conduct a multivocal literature review (MLR) [19]. This

allows us to let emerge eight pieces of information that may be

linked to challenges in the process of fixing flaky tests. Afterwards,

we ask the survey respondents to rate how important is each of

those information pieces from ‘Not at all important’ to ‘Extremely

important’ (on a 4-point Likert scale) and the difficulty in obtaining

it from ‘Very easy’ to ‘Very difficult’ (on a 5-point Likert scale).

We also let the respondents indicate any information needs and/or

challenges they face that are not included in the list (respondents

indicated a total of another eleven needs/challenges).

For our MLR, we analyze (as described in the following protocol)

both previously published papers on the topic (i.e., white literature)

and online sources (e.g., blog posts, websites, and documentswritten

by practitioners) related to flaky tests (i.e., gray literature).

• Identifying relevant white literature:Weperform a keyword search

on Google Scholar, IEEE Explore, and ACM Digital Library

to create an initial selection of articles. As keywords we use: ‘flaky

tests’, ‘flaky test resolution practices’, ‘intermittent failures’. This

step results in an initial set of 15 papers. We also perform forward

and backward snowballing [41], inspecting sources referred or

that refer to those belonging to the initial set of primary studies.

At the same time, we consider the proceedings of all the relevant,

top-tier conference venues in Software Engineering such as ICSE

[7], ISSTA [3], ICST [8], ICSME [5], ESEC/FSE [2] and journals

such as IEEE TSE [6], ACM TOSEM [4], and Springer’s EMSE

[9]. This step results in the inclusion of additional four papers.

Once having this set of resources, we filter out the papers that

do not report information on what are the practices used by

developers to diagnose and/or fixing flaky tests: This is achieved

by reading study setting, methodology, and conclusions made in

all the considered papers. The filtering process is jointly discussed

among all the authors of the paper and, in the end, we agree on

a list of three papers.

• Identifying relevant gray literature:We conduct the gray literature

survey following the guidelines by Garousi et al. [19]. We query

Google by using ‘flaky tests’, ‘flaky test resolution practices’,

‘intermittent failures’ as keywords. We perform our search on

the results appearing in all the relevant Google pages until satu-

ration is reached, i.e., until the search results contain references

to blogs, documents, or websites reporting information on flaky

tests. We take great care to ensure that considered sources origi-

nate from reputable companies, organizations, and authors. We

832

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli

also take steps from preventing our personal search bias from

playing a role in the search results, hence we search on Google

using the incognito mode. Overall, we find 56 relevant sources

to further consider. Whenever possible, we also follow the web

links contained in the initial set of sources as they might refer

to other documents. This step results in the addition of three

sources. The high number of relevant sources identified in the

gray literature, as opposed to that of the white one, hints at the

fact that the problem of understanding flaky tests has been only

partially addressed by the research community. This situation

calls for further empirical studies to create a stronger scientific

knowledge around test flakiness.

• Data Extraction: We summarize each of the 62 identified relevant

sources and create an enumeration of the aspects that are men-

tioned and may impact on the flaky tests fixing process. Then,

we conduct another iterative content analysis sessions to group

those aspects into the higher level themes that are related to the

important information developers need to have when diagnosing

and fixing test flakiness. This is a two-step process similar to the

one conducted in the context of RQ1: the second author of this

paper performs a first iteration and then the draft themes are

refined with the help of the last author. This iterative process

results in eight relevant information types, which we list in the

survey as previously mentioned.

Analysis Of The Open Answers. For the open answers in the

survey, we conduct a two-stage process comprising Descriptive

and Pattern coding analysis to name them [12]. Specifically, in a

first step two authors shortly summarize the topic of each passage

from the open answers; then, they identify explanatory codes to

create themes that are finally discussed among all the authors. For

example, in case of the challenges, with this process we end up

with nine additional challenges grouped into two categories that

indicate the point in time in which they occur, i.e., (1) Test case

design and (2) Flaky test fixing.

Attracting Participants. We advertised the online survey us-

ing the personal social network accounts of the authors (i.e., Face-

book, Twitter, and LinkedIn), through private contacts, and also

published on practitioners blogs (e.g., Reddit). To stimulate the

participation, we allow the participants to indicate a non-profit

organization of their choice to which we donate 2 USD.

Respondents. As a result, we collect 188 answers: We filter out

68 partial answers, thus, we only consider 121 full responses. Among

these respondents, 75% have more than 6 years of programming

experience (median 10) and two years of industrial programming

as well as testing experience (median 5). Moreover, 45% respon-

dents come from large companies having more than 250 employees.

Our sample is composed of developers who are experienced with

(industrial) programming and tests, thus we consider the collected

responses as valuable for our research questions.

3 RQ1 ś FLAKY TESTS: NATURE, ORIGIN,
AND FIXING

The first research question aims at describing the possible types of

flakiness, as well as their origin, fixing effort and strategies.

The categories are reported by frequency of nature and, within

those, by frequency of fixing strategies. For consistency with pre-

vious literature, whenever possible, we followed the taxonomy by

Luo et al. [24]; newly reported categories (i.e., natures of flakiness

that were not included in the taxonomy proposed by Luo et al. [24])

are underlined and marked with a ‘*’.

Concurrency. A test that is flaky due to synchronization issues

originating from multiple threads interacting in an unsafe man-

ner is classified in this category. For example, a race condition

occurs due to threads relying on an implicit ordering of the exe-

cution leading to a deadlock in certain situations. As observed

by Luo et al. [24], this is a high diffused cause of flakiness. In

our dataset, it is present in 61 cases (26%). Moreover, the median

effort required to fix this problemÐas assigned by developersÐis

4 (high), indicating that it is problematic and further justifying

the amount of research effort done so far to define automatic

techniques able to solve it [26, 27]. Interestingly, not all flaky

tests in this category origin in test code: indeed, the developers

report that in 34% of the cases the fixing process requires the

examination of the production code and not of the test. Thus, test

flakiness can be originated by the production code; besides moti-

vating further research on the origin of flaky tests, this finding

indicates that automated approaches aimed at fixing this problem

must consider whether the flakiness originates in test or produc-

tion code. As a final note, there seem to be one key fixing strategy,

namely the addition of a waitFor statement, while other opera-

tions, like the modification of the concurrency guard condition

or the addition of lock statement to avoid other threads running

at the same time represent less frequent strategies to remove

this flakiness. In 5% of the cases, developers act by refactoring

production code to remove concurrency, thus making the code

deterministic. Finally, it is also interesting to observe that in 2%

of the cases, developers either preferred to rewrite the test ot

completely disable it.

Async Wait. This flakiness is characterized by a test performing

asynchronous calls without waiting properly for their result

to become available. As opposed to the Concurrency category

presented above, which mostly relates to local synchronization

issues, this category usually refers to remote resources being un-

available. For example, a test performing a request to a remote

server and continuing the execution without ensuring the re-

quested resource is available results in the test failing or passing

depending on how quickly the resource becomes available. We

confirm the results by Luo et al. [24] on the high diffusion of this

category, as it affects 52 of the validated tests (22%). Moreover,

the median effort is 3 (medium). The origin of the flakiness for all

these tests is in test code. As for the fixing strategy, in most of the

cases (86%) developers fix it by means of a waitFor statement

addition.

*Too Restrictive Range. This category was not included in the

catalog by Luo et al. [24]. In this category, some of the valid output

values are outside the assertion range considered at test design

time, so the test fails when they show up. In other words, such

test cases have a range of predefined values for which the test

is allowed to pass; if this range is defined too restrictively, tests

may start failing in a not deterministic way. This type of flakiness

833

Understanding Flaky Tests: The Developer’s Perspective ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: Taxonomy of the nature of flaky tests with the corresponding fixing strategies, by frequency (N = 234, because de-

velopers were allowed to assign more than one nature to each of the 200 flaky tests they analyzed). The ‘*’ and underlining

indicates newly reported categories (i.e., they were not included in the taxonomy proposed by Luo et al. [24]).

Nature: Concurrency Cases: 61 | Avg. Fixing Effort: 4.0 | Origin: 66% Test Code

Fixing Strategies:

Name Description Frequency

Wait For Addition An await or waitFor promise is added to wait for the required event. 46%

Change Concurrency Guard Conditions Modification of the constraints that may block the applicability of the clause

under some conditions.

26%

Adding Lock New locks are introduced to ensure mutual exclusion between threads. 21%

Make Code Deterministic The concurrency is removed. 5%

Test Replacement The flaky test is replaced with a brand new test. 1%

Disable Test The flaky test is disabled and no longer executed. 1%

Nature: Async Wait Cases: 52 | Avg. Fixing Effort: 3.0 | Origin: 100% Test Code

Wait For Addition An await or waitFor promise is added to wait for the required event. 86%

Reordering Threads Execution The source code is reorganized or refactored tomake the execution deterministic

or less async.

13%

Disable Test The flaky test is disabled and no longer executed. 1%

Nature: *Too Restrictive Range Cases: 40 | Avg. Fixing Effort: 1.0 | Origin: 100% Test Code

Fix Assertion The cause leading to the failure is diagnosed and fixed. 45%

Adjust Fuzzing The assert statement is modified so that it provides less extreme values or

allow larger difference when comparing expected and actual outcome.

20%

Disable Test The flaky test is disabled and no longer executed. 16%

Missing Code Added The code needed to check whether a certain condition is met is added. 1%

Nature: Test Order Dependency Cases: 22 | Avg. Fixing Effort: 2.0 | Origin: 100% Test Code

Remove Dependency Changes aimed at (i) modifying the output directory for the test to use a separate

directory or (ii) checking instance variables before that the test is accessed and

executed.

100%

Nature: *Test Case Timeout Cases: 18 | Avg. Fixing Effort: 4.0 | Origin: 100% Test Code

Increase Timeout The timeout time is increased to avoid the flakiness behavior. 85%

Skip Non-Initialized Part Code added to skip non-initialized parts to make the test run faster and not

timeout.

5%

Split Test Split up all tests (run in parallel) into more groups to reduce risk of a timeout. 5%

Disable Test The flaky test is disabled and no longer executed. 5%

Nature: Resource Leak Cases: 14 | Avg. Fixing Effort: 3.0 | Origin: 85% Test Code

Destroy Object New code is added so that the conflicting object is destroyed before continuing

the execution.

50%

Test Replacement The flaky test is replaced with a brand new test. 36%

Disable Test The flaky test is disabled and no longer executed. 14%

Nature: *Platform Dependency Cases: 10 | Avg. Fixing Effort: 4.0 | Origin: 90% Test Code

Run Additional Tests New platform-specific tests are ran instead of the flaky one. 60%

Correct Directories The test suite is modified so that it includes the correct platforms to run the

tests on or to fix a directory issue.

40%

Nature: Float Precision Cases: 6 | Avg. Fixing Effort: 4.0 | Origin: 100% Test Code

Subtract Bytecode Offset The floating point is corrected by subtracting the bytecode offset so that the

precision is preserved.

100%

Nature: *Test Suite Timeout Cases: 4 | Avg. Fixing Effort: 3.5 | Origin: 100% Test Code

Skip Non-Initialized Part Code added to skip non-initialized parts to make the test run faster and not

timeout.

75%

Split Test Suite Split up all tests (run in parallel) into more groups to reduce risk of a timeout. 25%

Nature: Time Cases: 4 | Avg. Fixing Effort: 1.0 | Origin: 100% Test Code

Disable Test The flaky test is disabled and no longer executed. 75%

Preserve Time Precision The test case is modified so that the time precision is preserved. 25%

Nature: Randomness Cases: 3 | Avg. Fixing Effort: 1.0 | Origin: 100% Test Code

Replaced Math.random The Math.random call is replaced with more reliable random number generator. 100%

additionally includes failures originating from improperly placed

assertion statements causing the test to pass or fail independently

of the test execution. In our dataset, 17% of the flaky tests belong

to this category, indicating that this problem is not uncommon.

On the other hand, developers find this type of problem easy to

fix (median effort=1) as it is always located in test code and only

requires the proper definition of a range of values: indeed, in

65% of the cases, developers address this problem by fixing or

834

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli

adjusting the range of values the assertion refers to. Interestingly,

however, 16% of the times the corresponding tests were disabled:

likely, this is due to the limited time developers have to spend in

understanding the correct range to use within the assertion and,

thus, they prefer to keep having a green test suite.

Test Order Dependency. The class is characterized by the result

of the test run depending on the execution order of the tests.

This occurs mostly due to tests not properly cleaning up after

themselves (e.g., restoring common states and shared variables)

or failing to setup the necessary preconditions (e.g., a test en-

vironment state) before starting to run [24]. 11% of the flaky

tests are due to this reason, confirming its diffusion [30]. This is,

by nature, a problem raising in test code. As for the effort, the

median is equal to 2 (low)Ðthus, quite easy to fix for developers

through the (i) modification of the output directory - so that the

test uses a separate one, avoiding conflicts or (ii) checking the

instance variables before the test is executed.

*Test Case Timeout. Flaky tests experiencing non-deterministic

timeouts related to a single test belong to this category. It is

comparable to the Test Suite Timeout (reported later), with the

difference that the size of a single test grew over time without

adjusting the max runtime value. Various reasons (e.g., failing to

download prerequisites or a test not producing output for a fixed

amount of time, which then is killed by the execution system

assuming that the test stalled) can lead to the non-deterministic

outcome. In our dataset, this flakiness type appears in 18 tests

(8%). Moreover, it is associated with a high effort to fix: despite it

might seem that this problem would be only concerned with the

increasing of the timeout, practitioners explained that finding the

right timeout is unexpectedly hard. The increase of the timeout

time is, obviously, the most frequent solution to this type of

flakiness (85%), however other fixing strategies such as (i) the

addition of code that make the test faster or (ii) the extraction of

a new test to reduce the risk of timeout are also sometimes taken

into account.

Resource Leak. Improper management of a external resources

(e.g., failing to release previously allocated memory or deref-

erence a pointer) characterize this category. Additionally, this

includes test failing due to garbage collection processes removing

parts of the test execution environment or required resource (e.g.,

a file stored in memory the test is reading multiple times) [24].

This category represents the root-cause of 7% of the flaky tests,

and has a medium effort equals to 3. As for the origin, developers

report that 15% of them are due to production code issues: thus,

we confirm that test flakiness is not just a problem of tests. With

respect to the possible fixing strategies, in 50% of the cases the

test is modified so that the conflicting object is destroyed before

continuing the execution. However, in the remaining cases, de-

velopers prefer to replace the test entirely or disable it: this result

seems to confirm that dealing with test flakiness can be annoying

for developers and that, in several cases, they prefer to skip the

problem rather than find a solution to deal with it.

*Platform Dependency. The Platform Dependency flakiness is:

Non-deterministic test failures occurring only on specific plat-

forms (e.g., a test only failing in debug builds or on 32-bit Win-

dows 7 systems). While a test failing consistently on a specific

platform could represent a permanent failure, developers con-

sider such a test as flaky. In fact, if an organization employs cloud

servers for builds/tests, machines with different characteristics

(e.g., Linux kernel version) could be provisioned according to

available resources (in a seemingly random fashion from the

user perspective), so the test fails intermittently. This type of

flakiness occurs due to various reasons, such as a platform being

unusually slow or missing preconditions (e.g., the test failed to

setup or download a required resource). They appear 10 times in

our dataset and originate mostly in the test code (90%), since they

would most likely become permanent if they originated from a

bug in the production code (as the tests would not run indepen-

dently of what platform they are run on). The effort associated is

4 (high), as it turns to an infrastructure problem to be diagnosed

and fixed. The high effort is also justified by the fixing strategies

applied: indeed, 60% of the times brand new platform-dependent

tests are added, while in 40% of the cases developers directly

correct the existing code to avoid this flakiness.

Float Precision. As previously observed by Luo et al. [24], float-

ing point operations may lead to non-deterministic test failures

if potential precision over- and underflows are not considered

(e.g., converting a float formatted as a string, rounding or cut-

ting to a certain number of significant digits). Additionally, this

includes tests failures occurring due to different number of sig-

nificant digits being reported in different executions. Even if the

diffusion of this flakiness type is pretty low (only 6 cases), the

reported effort is high, which indicates that developers might

spend considerable time in dealing with this type of flaky tests.

The fixing operation associated with this flakiness relates to the

modification of the test to preserve precision.

*Test Suite Timeout. Flaky tests originating because of the test

suite non-deterministically timing out are classified as Test Suite

Timeout flakiness. Test suites grow over time and the max run-

time value is not always adjusted accordingly, leading to the test

suites passing or failing depending on different random variables

(e.g., the network congestion, the execution speed of the platform

or the type of build). Note that in a Test Suite Timeout, no

single test is the cause of flakiness, rather the whole execution;

this makes this cause different from Test Case Timeout, whose

cause is a specific test. This flakiness cause appears very rarely

(only 4 cases in our dataset) and the developers assigned a median

effort score of 3.5. As this is test issue-related problem, its origin

is within test files. To fix the flakiness, developers frequently

decide to take actions able to fasten the execution of the test

suite (75% of the cases), while the remaining 25% of times they

perform an Extract Class refactoring [17] to make the resulting

suites more independent and faster.

Time. This cause of flakiness is characterized by tests relying on

the executing system local time. For example, a test may fail due

to the local system changing its day, i.e., reporting a different day

in the next iteration, or failing to take the timezone into account

when comparing two timestamps. In line with Luo et al. [24],

this kind of flakiness is generally not diffused; at the same time,

we observe that it is always related to test code and is very easy

to fix: the perceived easiness is due to the fact that in 75% of the

835

Understanding Flaky Tests: The Developer’s Perspective ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

cases developers just disable the test, and thus only in a few cases

(25%) they actually try to preserve the time precision.

Randomness. The generation of random numbers may lead to

non-deterministic failures if not all possible values generated

including edge cases are considered (e.g., the generation of zero

when any number greater than zero was expected or the random

number is used in a mathematical operation). We confirm the

results of previous work [24] on the very low diffusion of this

flakiness cause. The associated effort is very low, the problem

only appears in test files, and is always fixed by replacing the

used random library call with a reliable number generator.

In our dataset, we do not find evidence of the presence of three out

of the ten categories found by Luo et al. [24], namely Network, I/O,

and Unordered Collections. On the one hand, this may be due

to the type of analysis we do in this study: instead of classifying

ourselves the likely causes behind test flakiness, we prefer asking

to the original developers the type of flakiness occurring in the

tests they fixed: in this way, we rely on the expertise of people

that actually dealt with the investigated problems. On the other

hand, the missing observation of those three categories might be

due to the nature of the system we exploit, i.e., the flakiness might

manifest itself in different manners depending on the system taken

into account. Our findings reveal the need for further research on

the naturalness of flaky tests, where the role played by additional

factors like project and organizational domains are assessed. At the

same time, our taxonomy does not exclude the original one [24],

rather complements it.

Finding 1. We confirm the existence and frequencies of seven

flakiness types revealed by Luo et al. [24]. We discover four

additional categories, three of which developers consider as

the most effort-prone types of flakiness to deal with. Finally,

we present the fixing strategies developers put in place to deal

with flakiness and provided evidence that flaky tests can be

also caused by problems in production code.

4 RQ2 ś FLAKY TESTS: RELEVANCE

Our second research question aims at understanding flaky tests

prominence and how problematic they are according to developers.

Figure 1 shows the survey respondents’ answers in terms of how

frequently they deal with flaky tests and how problematic these

tests are for those who deal with them at least a few times a year.

The vast majority (109 respondents) encounter the problem at

least some times a year, and 58% at least every month. Among these

109 respondents, 79% find flaky tests to be at a moderate to serious

problem, while 21% a minor to not a problem, despite having to

deal with them at least a few times per year.

The analysis of the open text comments received by the partici-

pants about the top problems they have with flaky tests reveal the

presence of issues that can be grouped in three major themes:

Scheduling: According to the opinions of 92 developers (77%),

flaky tests are time consuming since reproducing the test failure

is not easy and not always guaranteed to be possible. The de-

bugging process includes multiple reruns of the same test while

0 25 50 7525 100

How problematic are flaky tests for you?

How often do you deal with flaky tests?

count

0 25 50 7525 100

61194 25

11 2438 1829

125

count

Not a problem A minor problem A moderate problem A serious problem

Never A few times a year Monthly Weekly Daily

Figure 1: Frequency and relevance of the problem according

to the respondents to our online survey.

varying the level of log output and context taken into account.

Additionally, since flaky tests fail intermittently, their priority

is often lower than those of permanent failures, i.e., developers

need to find the time and request manager’s permission to care

for the flaky tests and the resources for the refactoring effort.

Test Suite Reliability: Once a test becomes flaky, 88 developers

(73%) report that the test is no longer fully reliable. Thus, devel-

opers start to trust the test output less and, therefore, may start

disregarding it, potentially leading to ignoring an actual failure.

Moreover, the unexpectedness of flaky tests is an additional issue

since it is unclear which tests will start to fail intermittently next.

Developer Allocation: 85 developers (71%) mention that it is im-

portant to keep in mind that some flaky tests are more likely

to occur (e.g., tests relying on external dependencies) than oth-

ers and, therefore, to distinguish how much attention shall be

directed toward a specific type of failure. Since flaky tests are

often intertwined with other tests, they require a certain level of

knowledge to be able to fix them and, thus, intermittent tests may

lead to problems in the allocation of the available resources.

Finding 2. The collected developers’ opinions indicate that

flaky tests are rather frequent and a non-negligible problem,

with possibly important consequences on resource allocation

and scheduling, as well as on the reliability of the test suite.

5 RQ3 ś FLAKY TESTS: CHALLENGES

To answer what are the main challenges developers face when

dealing with test flakiness, we further analyze the results of our

online survey. When quoting developers, we refer to them by their

ID, which corresponds to the incremental number assigned by the

survey creation system.

Table 2 lists the eight pieces of information that emerged as

potentially relevant for fixing a flaky behavior of a test from the

multivocal literature review (Section 2.4). As explained in the meth-

dology, we asked participants to rate these pieces of information in

terms of importance for fixing and difficulty in obtaining. Therefore,

the rows are sorted according to the weighted average importance1

1We assigned a value of 0 (minimum) to answers stating ‘Not important at all’ and
of 3 (maximum) to answers stating ‘Extremely important’, and 1 or 2 to the values in
between.

836

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli

Table 2: Pieces of information for fixing a flakiness (as

emerged from the multivocal literature review), ranked by

their importance (0ś3) and difficulty (0ś3) in obtaining, as

rated by the survey respondents.

Information

on the flaky test

Importance

for fixing

Difficulty

in obtaining

Cf - The context leading to failure 2.69 1.65

N - The nature of the flakiness 2.40 1.71

O - The origin of the flakiness 2.22 1.17

E - The involved code elements 2.21 1.13

C - The changes to perform the fix 2.08 1.59

Cp - The context leading to passing 1.95 1.20

Co - The commit introducing the

flakiness

1.89 0.75

H - The history of this test’s flaki-

ness (previous causes and fixes)

1.79 0.83

according to our survey’s respondents; the table also details the re-

ported weighted average difficulty.2 In this way, we identify pieces

of information that developers actually perceive as challenging to

obtain, thus indicating potential pain points to address with future

research or better practices.

Cf) Failing Context. The first important and challenging piece

of information to obtain is understanding what is the context that

leads to the failing behavior. As P161 puts it: łthe most difficult

operation is reproducing a flaky test, as sometimes only 1/20 failsž.

Additionally, P174 reports: łour UI tests are fairly slow, and the

only real way to verify if the flakiness was resolved is to re-run

the tests several times in the CI environmentž. In other words, the

verification of the failing behavior is even more complicated by

some co-factors, such as the slowness of tests and the environment

in which they are run.

N) Nature. The second major challenge to the fixing process is

the timely identification of the nature of the flakiness affecting a

test. Understanding which of the causes discussed in RQ2 and in

previous work [24] is the one leading to a flaky test represents a

critical challenge for developers. Indeed, 52% of the survey partici-

pants consider this information as ‘extremely important’ and 37%

of them as ‘moderately important’. Similarly, 68% of the developers

report that figuring out the flakiness root-cause is ‘difficult’ to ‘very

difficult’. For instance, P166 explains: ła big challenge is to detect the

root cause that leads to a flaky test. You need to check concurrency

issues or cache related problems that might be common causes of

flakinessž. This finding supports the need for empirical analyses

aimed at further studying the phenomenon of test flakiness and the

way it manifests itself.

E) Involved Code Elements. Detecting the code elements in-

volved in the flakiness is valuable information to obtain for 83% of

the developers, but most of them (75%) consider it as not hard to

gather. Therefore, this does not seem to be a major pain point, as

the information is at hand by looking at the test code and log files.

Nevertheless, there are still developers who consider this as major

2We assigned 0 (minimum) to both the values ‘Very easy’ and ‘Easy’, and 3 (maximum)
to ‘Very difficult’, and 1 or 2 to the values in between.

difficulty in the whole fixing process; looking more in depth into

the reported opinions, we discover that the main factor character-

izing the easiness of such information retrieval is how complex the

source code actually is. As P166 puts it: łI think that for example

finding the involved code might be rather easy if your code is well

designed and written or might proof to be a complete nightmare if

your codebase is a messž. This may indicate that keeping test code

quality high may naturally ease the flaky test fixing process.

O) Origin. The final potential challenge based on the information

needs we identified in literature is whether the flakiness is caused

by the test or by the production code. As shown in RQ2, the flaki-

ness can be even caused by problems in the production code and,

apparently, having this information is important to speed-up the

diagnosing of flaky tests. Indeed, 79% of the participants evaluated

this challenge as ‘moderately important’ to ‘extremely important’.

However, in this case, most of the developers (66%) consider it

pretty easy to obtain.

Cp ,Co,H) Passing Context, Commit, and History. Finally, the

context that leads to the passing behavior is considered only slightly

or moderately important in 69% of the cases because developers

mainly aim at identifying the cases where behavior of the test leads

to a failure. Similarly, the past flakiness history of a test seems to be

poorly relevant during the fixing process for 72% of the developers:

This is likely due to the tests being subject to different flakiness

types, meaning that the information from past history cannot be

effectively reused to solve the current cause.

Table 3: Futher challenges due to flaky tests, as reported by

the survey respondents.

Category Challenge # of mentions

Design

Mocking Dependencies 6

Keeping Tests Decoupled 6

Reliance on External Dependencies 3

Too Much Setup Code 3

Common Coding Style / Etiquette 1

Fixing

Uncertainty of Changes Fixing The Test 7

Not Detailed Enough Log 4

Lack of Insight Into The System 4

Restructuring The Tests 2

Table 3 presents the additional challenges mentioned by the de-

velopers in the survey, by their reporting frequency. Overall, the

first observation is related to the development phases mentioned

by the survey participants. While we expect to find critical chal-

lenges arising during the diagnosing and fixing process, the fact

that developers report the presence of challenges at design-time is

somehow surprising and unexpected. OLur findings indicate how

the problem of flakiness is spread over the entire life-cycle of tests.

Design. According to our participants, the probability for a test

to be flaky can be reduced if good design principles are appliedwhile

developing it, thus confirming previous findings in the field [31].

Six developers report that keeping tests decoupled and mocking

dependencies are major challenges when designing test to be less

prone to flakiness. In the former case, keeping low the coupling

between tests is a key property because there is the risk that, quoting

837

Understanding Flaky Tests: The Developer’s Perspective ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

P130, łone test sets something up that affects another test, and so onž.

In the second case, understanding when it is convenient to mock

external objects can be useful to łcontrol the environment (making

sure packages installed are all the right version, mocking time,

mocking/stubbing out dependencies on external services)ž [P80].

Additional challenges are represented by (i) designing systems that

do not rely too much on external dependencies, to reduce the risk

of intermittent failures due to not controllable sources; (ii) reducing

the amount of setup code required, so that flakiness eventually due

to problems with the setup of tests can be more easily diagnosed;

and (iii) establishing a common coding style and etiquette, to ease

the understanding of test code.

Fixing. Seven participants report as a main challenge the un-

certainty of not knowing whether a code change actually fixes the

flakiness (it may disappear by chance). This is currently solved

by manually re-running multiple times the supposedly fixed flaky

tests, but it is not considered as an optimal solution. Finally, log

files with insufficient levels of detail and a lack of insights into the

system are also reported as a major challenge, as well as the process

of restructuring the test to remedy the flakiness.

Finding 3. Reproducing the context leading to the test fail-

ure and understanding the nature of the flakiness are the

most important, yet challenging needs according to develop-

ers. Moreover, designing test code properly to avoid flakiness

emerged as an additional challenge not mentioned in the

reviewed academic and gray literature.

6 DISCUSSION AND IMPLICATIONS

Our results highlighted a number of points to be further discussed

and several implications for the research community:

Flaky tests as a relevant research problem. Besides confirm-

ing seven of the root-causes behind flaky tests originally defined by

Luo et al. [24], our work let emerge the existence of four additional

types of flakiness previously unknown, i.e., Too Restrictive

Range, Test Case Timeout, Platform Dependency, and Test

Suite Timeout. We found them to be highly diffused over our

dataset, and the latter three causes are those that developers as-

sociated with a higher fixing effort. This finding calls for further

research in this area to both understand how such flaky tests are

introduced and managed, as well as devise automatic solutions to

locate and fix them. The worrisome finding that, in a not negligible

amount of cases, developers prefer to just disable flaky tests rather

than properly deal with them is a urgent call for researchers to find

solutions to help practitioners dealing with developers’ information

needs (as emerged from this study) to reduce their efforts.

An organizational view. The presence of flaky tests leads to

several undesired problems and consequences connected to orga-

nizational aspects (e.g., resource allocation issues). This finding

highlights the current inability of development teams to properly

manage flaky tests; thus, we argue that a broader view of test flak-

iness should not only involve source code and its management,

but also how flaky tests impact teams’ organization and how their

resolution process may be optimized. For instance, research can

be conducted to investigate approaches able to recommend who

should fix a flaky test based on developers’ knowledge/experience,

flakiness type, and the available time.

Preventing Flaky Tests. As test flakiness is problematic, it

is of the greatest importance the definition of methods able to

prevent the introduction of flaky tests. We envision the adoption

of machine learning techniquesÐproperly trained on the features

characterizing each flakiness typeÐto be a promising way to help

developers in preventively spotting tests that have the highest risk

to become flaky in the future.

Design for Testability. Our participants revealed that finding

how to design a test code to avoid flakiness is an important chal-

lenge to face. This motivates the growing research area around test

code quality [18, 29, 33ś37] and provides two promising directions

that the research community can focus on: (i) the definition of a

set of design patterns that can support the creation of deterministic

tests; (ii) the definition of a set of flakiness-related anti-patterns that

practitioners should avoid when writing test cases. While some

initial steps have been done about the relation between test smells

and flaky tests [31, 32], further investigation is necessary.

Flaky Test Prioritization. The results on the effort required

to fix each flaky test type, as well as their perceived importance,

indicated that not all flaky tests are equally problematic. As large

codebases might contain a higher number of tests suffering flakiness

issues, approaches that can rank these tests by exploiting effort-

related information would help developers in maintaining high

quality test suites. Machine learning is a promising approach to

exploit to accomplish this task, as it could spot patterns in the code

that are the fingerprints of certain types of flakiness.

7 THREATS TO VALIDITY

This section discusses the threats that might have influenced our

findings, despite our mitigation strategies.

Construct Validity. Threats in this category are mainly con-

cerned to the way we built the dataset of flaky tests (RQ1), the

relevance of the problem (RQ2), and the potential challenges (RQ3).

To obtain a reliable analysis of the flaky test types, we directly

involved the professionalMozilla developers and asked them to

analyze the flakiness cases they fixed themselves. Although we

considered flaky tests they fixed in a recent time and provided them

with the links to their own patches as well as issue reports, we

cannot exclude that they could not recall the required fixing effort

precisely. To collect information about the frequency and relevance

of flakiness for developers, we used an online survey. Although we

spread the survey through several channels, our survey responses

may suffer from a self-selection or voluntary response bias: People

who volunteered to respond may be more involved with flakiness

than the average developer. To mitigate this bias, we introduced a

donation-based incentive of 2 USD to a charity per valid respondent.

Although our results concerning the frequency are aligned with

those reported by Luo et al. [24], it is still possible that we have

more extreme results about flakiness frequency and harmfulness

than what would be in the average practice. Finally, besides inquir-

ing developers on the major challenges they face when dealing

with test flakiness, in RQ3 we came up with a set of information

needs anecdotally considered relevant by practitioners. We did this

838

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli

by surveying both white and gray literature following the validated

guidelines by Garousi et al. [19]. However, we cannot exclude that

other sources presented further potential information needs and

challenges when dealing with test flakiness.

Conclusion Validity. As for the analysis methods exploited in

our study, in RQ1 we computed statistics on the answers provided

by the participants of our survey. In the context of RQ2 we defined

a taxonomy of flaky test types by relying on an iterative content

analysis that involved three software engineering researchers hav-

ing experience with flaky tests. Although such iterative process is

designed to mitigate the possibility of classification errors, subjec-

tive judgement may have played a role in the elaboration of the

themes. A similar process has been done in the context of RQ3

to classify the challenges emerged from the multivocal literature

review. We cannot exclude human errors or that some important

challenges, not present in the sources examined, were not reported

in the survey. Further replications and analyses would be beneficial

to corroborate our findings.

External validity. Threats related to the generalizability of our

findings concern size and nature of the dataset exploited. We consid-

ered 200 flaky tests coming from Mozilla. Although the company

has been the subject of several software engineering studies, which

later also generalized to other contexts, the taxonomy we created

may (and may not) be applicable to other systems and, therefore,

further studies are needed to investigate this aspect.

8 RELATED WORK

A number of researchers and practitioners reported that some flaky

tests can be a serious problem in automated regression testing [10,

16, 24, 26, 27, 31, 42]. Memon and Cohen [26] described multiple

negative effects that flaky tests can create, discovering that their

occurrence may even lead to features not being included in a release

as they were not able to be tested sufficiently beforehand [26].

Marinescu et al. [25] and Hilton et al. [20] analyzed the evolution

of test suite coverage, reporting that the presence of flaky tests

produces an intermittent variation of the branch coverage.

Other researchers tried to understand the reasons behind test

code flakiness. Luo et al. [24] manually analyzed the source code of

tests involved in 201 commits that likely fixed flaky tests, defining a

taxonomy of ten common root-causes. Moreover, they also provide

hints on how developers usually fix flaky tests. As a result, they

found that the top three common causes of flakiness are related to

asynchronous wait, concurrency, and test order dependency issues.

While the taxonomy of flaky test root causes built in the context

of RQ1 is mostly aligned with the one presented by Luo et al. [24],

our study reveals the existence of additional causes for flakiness. In

this sense, our paper can be seen as an additional source aimed at

better understanding the phenomenon of flaky tests.

Also other researchers investigated the motivations behind flaky

tests as well as devised strategies for their automatic identification.

For instance, Palomba and Zaidman [31, 32] discovered that test

smells [38] may induce test code flakiness; moreover, they found

that the removal of such smells through refactoring also induce

fixing flaky tests. Zhang et al. [42] focused instead on test suites

affected by test dependency issues, reporting methodologies to

identify these tests. Muslu et al. [27] found that test isolation may

help in fault localization, while Bell and Kaiser [10] proposed a

technique able to isolate test cases in Java applications by tracking

the shared objects in memory. Bell et al. [11] proposed DeFlaker,

an automated technique that identifies flaky tests by running a mix

of static and dynamic analyses.

Another well-studied root cause of flaky test is concurrency.

Farchi et al. [14] identified a set of common erroneous patterns in

concurrent code, while Lu et al. [23] reported a comprehensive study

into the characteristics of concurrency bugs. Jin et al. [21] devised a

technique for automatically fixing concurrency bugs by analyzing

the single-variable atomicity violations. With respect to the studies

discussed above, our work can be considered as complementary

as it provides, for the first time, an in-depth investigation of the

developer’s perspective, which includes the nature of flaky tests and

fixing efforts, the relevance of the problem, and the most important

challenges that face when handling flaky tests.

9 CONCLUSION

We presented an empirical study aimed at improving our scientific

knowledge around the problem of test flakiness. We first assembled

a dataset of 200 flaky tests, asking the original developers that fixed

the problem to analyze them in terms of nature, fixing effort, and

origin of the flakiness. Then, we used this annotated dataset (which

we also make publicly available) to define a taxonomy of flaky test

types, which comprises seven categories already known in literature

[24] as well as four additional ones; out of these four, we found that

three are the most demanding overall in terms of fixing efforts. In

parallel, we performed a survey study having the goal of collecting

developers’ opinions on the relevance of flakiness in practice, as

well as major challenges and information needs they have when

dealing with flaky tests. This study revealed a set of problems and

needs that the research community should carefully look at as to

improve the way test flakiness is managed by practitioners.

(1) Evidence on four new categories of flaky testsÐimportant

for both researchers (called to devise techniques to deal with

these new types) and practitioners (called to fix these issues);

(2) First reported evidence that flakiness is also caused by prob-

lems in production code;

(3) Surprising evidence from our analyses on the effort required

to fix flaky tests, like the timeout problem;

(4) Evidence on unexpected side-effects of flaky tests, such as the

issues they induce to organizational aspects (e.g., resources

allocation). This gives insights to practitioners to reflect on

their practices with flaky tests.

It is our hope that the insights we have discovered lead to more

improved techniques and tools, based on research, to aid developers

handle flaky tests.

ACKNOWLEDGMENTS

The authors would like to thank all theMozilla developers who

participated in the creation of the dataset, as well as the respondents

to our survey: You provided us and our research community with

very precious data. Bacchelli and Palomba gratefully acknowledge

the support of the Swiss National Science Foundation through the

SNF Project No. PP00P2_170529.

839

Understanding Flaky Tests: The Developer’s Perspective ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] 2019. SurveyGizmo. https://www.surveygizmo.com.
[2] 2018. 2018. ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering. http://www.esec-fse.org
[3] 2018. 2018. ACM SIGSOFT International Symposium on Software Testing and

Analysis. https://conf.researchr.org/series/issta
[4] 2018. 2018. ACM Transactions on Software Engineering and Methodology. https:

//tosem.acm.org
[5] 2018. 2018. IEEE TCSE International Conference on Software Maintenance and

Evolution. http://conferences.computer.org/icsm/
[6] 2018. 2018. IEEE Transactions on Software Engineering. https://www.computer.

org/web/tse
[7] 2018. 2018. IEEE/ACM International Conference on Software Engineering. http:

//www.icse-conferences.org
[8] 2018. 2018. International Conference on Software Testing. https://www.es.mdh.

se/icst2018/
[9] 2018. 2018. Springer’s Empirical Software Engineering Journal. https://link.

springer.com/journal/10664
[10] Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In

Proceedings of the International Conference on Software Engineering (ICSE). ACM,
550ś561. https://doi.org/10.1145/2568225.2568248

[11] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In
Proceedings of the International Conference on Software Engineering (ICSE). To
Appear.

[12] Juliet M Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative sociology 13, 1 (1990), 3ś21.

[13] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Data
and materials for: ‘Understanding Flaky Tests: The Developer’s Perspective’.
https://doi.org/10.5281/zenodo.3265830.

[14] E. Farchi, Y. Nir, and S. Ur. 2003. Concurrent bug patterns and how to test them.
In Proceedings International Parallel and Distributed Processing Symposium. 7 pp.ś.
https://doi.org/10.1109/IPDPS.2003.1213511

[15] Timothy S Flanigan, Emily McFarlane, and Sarah Cook. 2008. Conducting survey
research among physicians and other medical professionals: a review of cur-
rent literature. In Proceedings of the Survey Research Methods Section, American
Statistical Association, Vol. 1. 4136ś47.

[16] Martin Fowler. [n.d.]. Eradicating non-determinism in tests. https://martinfowler.
com/articles/nonDeterminism.html

[17] M. Fowler. 1999. Refactoring: improving the design of existing code. Addison-
Wesley.

[18] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276ś291.

[19] Vahid Garousi, Michael Felderer, and Mika V Mäntylä. 2016. The need for
multivocal literature reviews in software engineering: complementing systematic
literature reviews with grey literature. In Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering. ACM, 26.

[20] Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A Large-Scale, Lon-
gitudinal Study of Test Coverage Evolution. In 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2018). http://jonbell.net/
publications/coverage

[21] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated
Atomicity-violation Fixing. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). ACM, 389ś400.
https://doi.org/10.1145/1993498.1993544

[22] R Burke Johnson and Anthony J Onwuegbuzie. 2004. Mixed methods research:
A research paradigm whose time has come. Educational researcher 33, 7 (2004),
14ś26.

[23] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Charac-
teristics. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). ACM, 329ś339.

https://doi.org/10.1145/1346281.1346323
[24] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An

Empirical Analysis of Flaky Tests. In Proceedings of the SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). ACM, 643ś653. https:
//doi.org/10.1145/2635868.2635920

[25] Paul Marinescu, Petr Hosek, and Cristian Cadar. 2014. Covrig: A Framework
for the Analysis of Code, Test, and Coverage Evolution in Real Software. In
Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA). ACM, 93ś104. https://doi.org/10.1145/2610384.2610419

[26] Atif M. Memon andMyra B. Cohen. 2013. Automated Testing of GUI Applications:
Models, Tools, and Controlling Flakiness. In Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 1479ś1480.

[27] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding Bugs by Isolating
Unit Tests. In Proceedings of the SIGSOFT Symposium on Foundations of Software
Engineering and the European Conference on Software Engineering (ESEC/FSE).
ACM, 496ś499. https://doi.org/10.1145/2025113.2025202

[28] A. N. Oppenheim. 1992. Questionnaire Design, Interviewing and Attitude Measure-
ment. Pinter Publishers.

[29] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2016. Automatic test case generation: What if test code quality mat-
ters?. In Proceedings of the 25th International Symposium on Software Testing and
Analysis. ACM, 130ś141.

[30] Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells induce
fixing flaky tests?. In Proceedings - 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017. 1ś12. https://doi.org/10.1109/ICSME.
2017.12

[31] Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells induce
fixing flaky tests?. In Software Maintenance and Evolution (ICSME), 2017 IEEE
International Conference on. IEEE, 1ś12.

[32] Fabio Palomba and Andy Zaidman. 2019. The smell of fear: On the relation
between test smells and flaky tests. Journal of Empirical Software Engineering
(2019).

[33] Fabio Palomba, Andy Zaidman, and AD Lucia. 2018. Automatic test smell detec-
tion using information retrieval techniques. In Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). IEEE.

[34] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017.
To Mock or Not To Mock? An Empirical Study on Mocking Practices. In Mining
Software Repositories (MSR), 2017 IEEE/ACM 14th International Conference on.
IEEE, 402ś412.

[35] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2019.
Mock objects for testing java systems: Why and how developers use them, and
how they evolve. Empirical Software Engineering 24, 3 (Jun 2019), 1461ś1498.

[36] Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanenberg, Magiel Bruntink,
and Alberto Bacchelli. 2019. Test-driven code review: an empirical study. In
Proceedings of the 41st International Conference on Software Engineering. IEEE
Press, 1061ś1072.

[37] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the relation of test smells to software code quality. In Pro-
ceedings of the International Conference on Software Maintenance and Evolution
(ICSME). IEEE.

[38] Arie van Deursen, Leon Moonen, Alex Bergh, and Gerard Kok. 2001. Refac-
toring Test Code. In Proceedings of the 2nd International Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP). 92ś95.

[39] Marilyn Domas White and Emily E Marsh. 2006. Content analysis: A flexible
methodology. Library trends 55, 1 (2006), 22ś45.

[40] Mozilla wiki. 2019. Sheriffing. https://wiki.mozilla.org/Sheriffing.
[41] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies

and a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering. ACM, 38.

[42] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivanç Muslu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically Revisiting the Test Independence
Assumption. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA). ACM, 385ś396. https://doi.org/10.1145/2610384.2610404

840

	Abstract
	1 Introduction
	2 Goals and Method's Overview
	2.1 Research Questions
	2.2 Overview Of The Research Method
	2.3 Developers' Analysis Of Flaky Tests
	2.4 Survey: Research Method

	3 RQ1 – Flaky Tests: Nature, Origin, and Fixing
	4 RQ2 – Flaky Tests: Relevance
	5 RQ3 – Flaky Tests: Challenges
	6 Discussion and Implications
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

