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Abstract
Encoder-decoder networks using convolutional
neural network (CNN) architecture have been ex-
tensively used in deep learning literatures thanks
to its excellent performance for various inverse
problems. However, it is still difficult to obtain
coherent geometric view why such an architecture
gives the desired performance. Inspired by recent
theoretical understanding on generalizability, ex-
pressivity and optimization landscape of neural
networks, as well as the theory of deep convolu-
tional framelets, here we provide a unified theoret-
ical framework that leads to a better understand-
ing of geometry of encoder-decoder CNNs. Our
unified framework shows that encoder-decoder
CNN architecture is closely related to nonlinear
frame representation using combinatorial convo-
lution frames, whose expressivity increases ex-
ponentially with the depth. We also demonstrate
the importance of skipped connection in terms of
expressivity, and optimization landscape.

1. Introduction
For the last decade, we have witnessed the unprecedented
success of deep neural networks (DNN) in various applica-
tions in computer vision, classification, medical imaging,
etc. Aside from traditional applications such as classifica-
tion (Krizhevsky et al., 2012), segmentation (Ronneberger
et al., 2015), image denoising (Zhang et al., 2017), super-
resolution (Kim et al., 2016), etc, deep learning approaches
have already become the state-of-the-art technologies in
various inverse problems in x-ray CT, MRI, etc (Kang et al.,
2017; Jin et al., 2017; Hammernik et al., 2018)

However, the more we see the success of deep learning,
the more mysterious the nature of deep neural networks
becomes. In particular, the amazing aspects of expressive
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power, generalization capability, and optimization land-
scape of DNNs have become an intellectual challenge for
machine learning community, leading to many new theoret-
ical results with varying capacities to facilitate the under-
standing of deep neural networks (Ge & Ma, 2017; Hanin &
Sellke, 2017; Yarotsky, 2017; Nguyen & Hein, 2017; Arora
et al., 2016; Du et al., 2018; Raghu et al., 2017; Bartlett
et al., 2017; Neyshabur et al., 2018; Nguyen & Hein, 2018;
Rolnick & Tegmark, 2017; Shen, 2018).

In inverse problems, one of the most widely employed net-
work architectures is so-called encoder-decoder CNN ar-
chitectures (Ronneberger et al., 2015). In contrast to the
simplified form of the neural networks that are often used
in theoretical analysis, these encoder-decoder CNNs usu-
ally have more complicated network architectures such as
symmetric network configuration, skipped connections, etc.
Therefore, it is not clear how the aforementioned theory
can be used to understand the geometry of encoder-decoder
CNNs to examine the origin of their superior performance.

Recently, the authors in (Ye et al., 2018) proposed so-called
deep convolutional framelets to explain the encoder-decoder
CNN architecture from a signal processing perspective. The
main idea is that a data-driven decomposition of Hankel
matrix constructed from the input data provides encoder-
decoder layers that have striking similarity to the encoder-
decoder CNNs. However, one of the main weaknesses of
the theory is that it is not clear where the exponential expres-
siveness comes from. Moreover, many theoretical issues
of neural networks such as generalizability and the opti-
mization landscape, which have been extensively studied in
machine learning literature, have not been addressed.

Therefore, this work aims at filling the gap and finding the
connections between machine learning and signal process-
ing to provide a unified theoretical analysis that facilitates
the geometric understanding of encoder-decoder CNNs. Ac-
cordingly, we have revealed the following geometric fea-
tures of encoder-decoder CNNs:

• An encoder-decoder CNN with an over-parameterized
feature layer approximates a map between two smooth
manifolds that is decomposed as a high-dimensional
embedding followed by a quotient map.
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Figure 1. An architecture of κ-layer symmetric encoder-decoder CNN with skipped connections. Here, ql denotes the number of channels
at the l-th layer, whereas ml refers to each channel dimension, and dl represents the total dimension of the feature at the l-th layer.

• An encoder-decoder CNN with ReLU nonlinearity can
be understood as deep convolutional framelets that use
combinatorial frames of spatially varying convolutions.
Accordingly, the number of linear representations in-
creases exponentially with the network depth. This
also suggests that the input space is divided into non-
overlapping areas where each area shares the common
linear representation.

• We derive an explicit form of the Lipschitz condition
that determines the generalization capability of the
encoder-decoder CNNs. The expression shows that the
expressiveness of the network is not affected by the
control of the Lipschitz constant.

• We provide explicit conditions under which the opti-
mization landscape for encoder-decoder CNNs is be-
nign. Specifically, we show that the skipped connection
play important roles in smoothing out the optimization
landscape.

All the proof of the theorems and lemmas in this paper are
included in the Supplementary Material.

2. Related Works
Choromanska et al (Choromanska et al., 2015) employed
the spin glass model from statistical physics to analyze
the representation power of deep neural networks. Telgar-
sky constructs interesting classes of functions that can be
only computed efficiently by deep ReLU nets, but not by
shallower networks with a similar number of parameters
(Telgarsky, 2016). Arora et al (Arora et al., 2016) showed
that for every natural number k there exists a ReLU network
with k2 hidden layers and total size of k2, which can be
represented by 1

2k
k+1 − 1 neurons with at most k-hidden

layers. All these results agree that the expressive power
of deep neural networks increases exponentially with the
network depth.

The generalization capability have been addressed in terms
of various complexity measures such as Rademacher com-

plexity (Bartlett & Mendelson, 2002), VC bound (Anthony
& Bartlett, 2009), Kolmorogov complexity (Schmidhuber,
1997), etc. However, a recent work (Zhang et al., 2016)
showed intriguing results that these classical bounds are too
pessimistic to explain the generalizability of deep neural
networks. Moreover, it has been repeatedly shown that over-
parameterized deep neural networks, which are trained with
fewer samples than the number of neurons, generalize well
rather than overfitting (Cohen et al., 2018; Wei et al., 2018;
Brutzkus et al., 2017; Du & Lee, 2018), which phenomenon
cannot be explained by the classical complexity results.

The optimization landscape of neural networks have been
another important theoretical issue in neural networks. Orig-
inally observed in linear deep neural networks (Kawaguchi,
2016), the benign optimization landscape has been consis-
tently observed in various neural networks (Du et al., 2018;
Nguyen & Hein, 2018; Du et al., 2017; Nguyen & Hein,
2017).

However, these theoretical works mainly focus on simplified
network architectures, and we are not aware of analysis for
encoder-decoder CNNs.

3. Encoder-Decoder CNNs
3.1. Definition

In this section, we provide a formal definition of encoder-
decoder CNNs (E-D CNNs) to facilitate the theoretical anal-
ysis. Although our definition is for 1-dimensional signals,
its extension to 2-D images is straightforward.

3.1.1. BASIC ARCHITECTURE

Consider encoder-decoder networks in Fig. 1. Specifically,
the encoder network maps a given input signal x ∈ X ⊂
Rd0 to a feature space z ∈ Z ⊂ Rdκ , whereas the decoder
takes this feature map as an input, process it and produce
an output y ∈ Y ⊂ RdL . In this paper, symmetric con-
figuration is considered so that both encoder and decoder
have the same number of layers, say κ; the input and output
dimensions for the encoder layer E l and the decoder layer
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Dl are symmetric:

E l : Rdl−1 7→ Rdl , Dl : Rdl 7→ Rdl−1

where l ∈ [κ] with [n] denoting the set {1, · · · , n}; and
both input and output dimension is d0. More specifically,
the l-th layer input signal for the encoder layer comes from
ql−1 number of input channels:

ξl−1 =
[
ξl−1>1 · · · ξl−1>ql−1

]>
∈ Rdl−1 ,

where > denotes the transpose, and ξl−1j ∈ Rml−1 refers to
the j-th channel input with the dimension ml−1. Therefore,
the overall input dimension is given by dl−1 := ml−1ql−1.
Then, the l-th layer encoder generates ql channel output
using the convolution operation:

ξlj = σ

(
Φl>

ql−1∑
k=1

(
ξl−1k ~ ψ

l

j,k

))
, j ∈ [ql] (1)

where ξlj ∈ Rml refers to the j-th channel output after the

convolutional filtering with the r-tap filters ψ
l

j,k ∈ Rr and
pooling operation Φl> ∈ Rml×ml−1 , and σ(·) denotes the
element wise rectified linear unit (ReLU). More specifically,
ψ
l

j,k ∈ Rr denotes the r-tap convolutional kernel that is
convolved with the k-th input to contribute to the output of
the j-th channel, ~ is the circular convolution via periodic
boundary condition to avoid special treatment of the convo-
lution at the boundary, and v refers to the flipped version of
the vector v. For the formal definition of the convolution op-
eration used in this paper, see Appendix A in Supplementary
Material.

Moreover, as shown in Appendix B in Supplementary Mate-
rial, an equivalent matrix representation of the encoder layer
is then given by

ξl := σ(El>ξl−1) =
[
ξl>1 · · · ξl>ql

]>
where El ∈ Rdl−1×dl is computed by1

El =

 Φl ~ ψl1,1 · · · Φl ~ ψlql,1
...

. . .
...

Φl ~ ψl1,ql−1
· · · Φl ~ ψlql,ql−1

 (2)

with[
Φl ~ ψli,j

]
:=
[
φl1 ~ ψli,j · · · φlml ~ ψli,j

]
(3)

On the other hand, the l-th layer input signal for the de-
coder layer comes from ql channel inputs, i.e. ξ̃l =

1Here, without loss of generality, bias term is not explicitly
shown, since it can be incorporated into the matrix El and Dl as
an additional column.

[
ξ̃l>1 · · · ξ̃lql>

]>
∈ Rdl , and the decoder layer convolu-

tion is given by

ξ̃l−1j = σ

(
ql∑
k=1

(
Φ̃lξ̃lk ~ ψ̃lj,k

))
, j ∈ [ql−1] (4)

where the unpooling layer is denoted by Φ̃l ∈ Rml−1×ml .
Note that (1) and (4) differ in their order of the pooling
or unpooling layers. Specifically, a pooling operation is
applied after the convolution at the encoder layer, whereas,
at the decoder, an unpooling operation is performed before
the convolution to maintain the symmetry of the networks.
In matrix form, a decoder layer is given by

ξ̃l−1 := σ(Dlξ̃l) =
[
ξ̃l−1>1 · · · ξ̃l−1>ql−1

]>
where Dl ∈ Rdl×dl−1 is computed by

Dl =

 Φ̃l ~ ψ̃l1,1 · · · Φ̃l ~ ψ̃l1,ql
...

. . .
...

Φ̃l ~ ψ̃lql−1,1
· · · Φ̃l ~ ψ̃lql−1,ql

 (5)

3.1.2. E-D CNN WITH SKIPPED CONNECTION

As shown in Fig. 1, a skipped connection is often used to
bypass an encoder layer output to a decoder layer. The
corresponding filtering operation at the l-th layer encoder is
described by[

ξlj
χlj

]
=

σ (Φl>
∑ql−1

k=1

(
ξl−1k ~ ψ

l

j,k

))
σ
(∑ql−1

k=1

(
ξl−1k ~ ψ

l

j,k

))  (6)

where χlj and ξlj denote the skipped output, and the pooled
output via Φl>, respectively, after the filtering with ψj,k. As
shown in Fig. 1, the skipped branch is no more filtered at the
subsequent layer, but is merged at the symmetric decoder
layer:

ξ̃l−1j = σ

(
ql∑
k=1

(
(Φ̃lξ̃lk + χlk) ~ ψ̃lj,k

))

In matrix form, the encoder layer with the skipped connec-
tion can be represented by

E l : ξl−1 7→
[
ξl> χl>

]>
where

ξl := σ(El>ξl−1) , χl := σ(Sl>ξl−1) (7)

where El is given in (2) and the skipped branch filter matrix
Sl is represented by

Sl =

 Iml−1
~ ψl1,1 · · · Iml−1

~ ψlql,1
...

. . .
...

Iml−1
~ ψl1,ql−1

· · · Iml−1
~ ψlql,ql−1

 (8)
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where Iml−1
denotes theml−1×ml−1 identity matrix. This

implies that we can regard the skipped branch as the identity
pooling Iml−1

applied to the filtered signals. Here, we
denote the output dimension of the skipped connection as

sl := ml−1ql .

Then, the skipped branch at the l-th encoder layer is merged
at the l-th decoder layer, which is defined as

Dl :
[
ξ̃l> χl>

]> 7→ ξ̃l−1

where

ξ̃l−1 := σ(Dlξ̃l + S̃lχl) (9)

and Dl is defined in (5), and S̃l is given by

S̃l =

 Iml−1
~ ψ̃l1,1 · · · Iml−1

~ ψ̃l1,ql
...

. . .
...

Iml−1
~ ψ̃lql−1,1

· · · Iml−1
~ ψ̃lql−1,ql

 (10)

3.2. Parameterization of E-D CNNs
At the l-th encoder (resp. decoder) layer, there are qlql−1
filter set that generates the ql (resp. ql−1) output channels
from ql−1 (resp. ql) input channels. In many CNNs, the
filter lengths are set to equal across the layer. In our case,
we set this as r, so the number of filter coefficients for the
l-layer is

nl := rqlql−1, l ∈ [κ]

These parameters should be estimated during the training
phase. Specifically, by denoting the set of all parameter
matrices W = WE×WD where WE := Rnκ×· · ·×Rn1

and WD := Rn1 × · · · × Rnκ , we compose all layer-wise
maps to define an encoder-decoder CNN as

z = F (W, x). (11)

Regardless of the existence of skipped connections, note that
the same number of unknown parameters is used because
the skipped connection uses the same set of filters.

4. Theoretical Analysis of E-D CNNs
4.1. Differential Topology

First, we briefly revisit the work by Shen (Shen, 2018),
which gives an topological insight on the E-D CNNs.
Proposition 1 (Extension of Theorem 3 in (Shen, 2018)).
Let f : X 7→ Y ⊂ Rq be a continuous map of smooth
manifolds such that f = g ◦ h, where g : Rp 7→ Rq with
p ≥ q is a Lipschitz continuous map. If p > 2 dimX , then
there exists a smooth embedding h̃ : X 7→ Rp, so that the
following inequality holds true for a chosen norm and all
x ∈ X and ε > 0:

‖f(x)− g ◦ h̃(x)‖ ≤ ε

Here, p > 2 dimX comes from the weak Whitney em-
bedding theorem (Whitney, 1936; Tu, 2011). Note that
Theorem 1 informs that a neural network, designed as a con-
tinuous map of smooth manifolds, can be considered as an
approximation of a task map that is composed of a smooth
embedding followed by an additional map. In fact, this
decomposition is quite general for a map between smooth
manifolds as shown in the following proposition:

Proposition 2. (Shen, 2018) Let f : X 7→ Y ⊂ Rq be
a map of smooth manifolds, then the task f admits a de-
composition of f = g ◦ h, where h : X 7→ Z ⊂ Rp with
p ≥ 2 dimX is a smooth embedding. Furthermore, the
task map f is a quotient map, if and only if the map g is a
quotient map.

To understand the meaning of the last sentence in Proposi-
tion 2, we briefly review the concept of the quotient space
and quotient map (Tu, 2011). Specifically, let∼ be an equiv-
alence relation on X . Then, the quotient space, Y = X/ ∼
is defined to be the set of equivalence classes of elements
of X . For example, we can declare images perturbed by
noises as an equivalent class such that our quotient map is
designed to map the noisy signals to its noiseless equivalent
image.

It is remarkable that Proposition 1 and Proposition 2 give
interpretable conditions for design parameters such as net-
work width (i.e. no of channels), pooling layers, etc. For
example, if there are no pooling layers, the dimensionality
conditions in Proposition 1 and Proposition 2 can be eas-
ily met in practice by increasing the number of channels
more than twice the input channels. With the pooling lay-
ers, one could calculate the number of channels in a similar
way. In general, Proposition 1 and Proposition 2 strongly
suggest an encoder-decoder architecture with the constraint
d0 ≤ d1 ≤ · · · ≤ dκ with dκ > 2d0, where an encoder
maps an input signal to higher dimensional feature space
whose dimension is at least twice bigger than the input space.
Then, the decoder determines the nature of the overall neural
network.

4.2. Links to the frame representation

One of the important contributions of recent theory of deep
convolutional framelets (Ye et al., 2018) is that encoder-
decoder CNNs have an interesting link to multi-scale convo-
lution framelet expansion. To see this, we first define filter
matrices Ψl ∈ Rrql−1×ql and Ψ̃l ∈ Rrql−1×ql for encoder
and decoder:

Ψl :=

 ψl1,1 · · · ψlql,1
...

. . .
...

ψl1,ql−1
· · · ψlql,ql−1


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Ψ̃l :=

 ψ̃l1,1 · · · ψ̃l1,ql
...

. . .
...

ψ̃lql−1,1
· · · ψ̃lql−1,ql


Then, the following proposition, which is novel and signifi-
cantly extended from (Ye et al., 2018), states the importance
of the frame conditions for the pooling layers and filters to
obtain convolution framelet expansion (Yin et al., 2017).

Proposition 3. Consider an encoder-decoder CNN without
ReLU nonlinearities. Let Φl> and Φ̃l denote the l-th en-
coder and decoder layer pooling layers, respectively, and
Ψl and Ψ̃l refer to the encoder and decoder filter matrices.
Then, the following statements are true.

1) For the encoder-decoder CNN without skipped connec-
tion, if the following frame conditions are satisfied for all
l ∈ [κ]

Φ̃lΦl> = αIml−1
, ΨlΨ̃l> =

1

rα
Irql−1

(12)

then we have

x =
∑
i

〈bi, x〉b̃i (13)

where bi and b̃i denote the i-th column of the following
frame basis and its dual:

B = E1E2 · · ·Eκ, (14)
B̃ = D1D2 · · ·Dκ (15)

2) For the encoder-decoder CNN with skipped connection,
if the following frame conditions are satisfied for all l ∈ [κ]:

Φ̃lΦl> = αIml−1
, ΨlΨ̃l> =

1

r(α+ 1)
Irql−1

(16)

then (13) holds, where bi and b̃i denote the i-th column of
the following frame and its duals:

Bskp (∈ Rd0×(dκ+
∑κ
l=1 sl)) (17)

:=
[
E1 · · ·Eκ E1 · · ·Eκ−1Sκ · · · E1S2 S1

]
B̃skp (∈ Rd0×(dκ+

∑κ
l=1 sl)) (18)

:=
[
D1 · · ·Dκ D1 · · ·Dκ−1S̃κ · · · D1S̃2 S̃1

]
Furthermore, the following corollary shows that the total
basis and its dual indeed come from multiple convolutional
operations across layers:

Corollary 4. If there exist no pooling layers, then the t-th
block of the frame basis matrix for t ∈ [ql] is given by[

E1 · · ·El
]
t

=
[
E1 · · ·El−1Sl

]
t

= Im ~

 ql−1,··· ,q1∑
jl−1,··· ,j1=1

ψlj1,1 ~ · · ·~ ψlt,jl−1


Similarly, [

D1 · · ·Dl
]
t

=
[
D1 · · ·Dl−1S̃l

]
t

= Im ~

 ql−1,··· ,q1∑
jl−1,··· ,j1=1

ψ̃lj1,1 ~ · · ·~ ψ̃lt,jl−1


This suggests that the length of the convolutional filters
increases with the depth by cascading multiple convolution
operations across the layers. While Proposition 3 informs
that the skipped connection increases the dimension of the
feature space from dκ to dκ +

∑κ
l=1 sl, Corollary 4 suggest

that the cascaded expression of the filters becomes more
diverse for the case of encoder-decoder CNNs with skipped
connection. Specifically, instead of convolving all κ layers
of filters, the skipped connection allows the combination of
subset of filters. All these make the frame representation
from skipped connection more expressive.

4.3. Expressiveness

However, to satisfy the frame conditions (12) or (16), we
need ql ≥ rql−1 so that the number of output filter channel
ql should increase exponentially. While this condition can
be relaxed when the underlying signal has low-rank Hankel
matrix structure (Ye et al., 2018), the explicit use of the
frame condition is still rarely observed. Moreover, in con-
trast to the classical wavelet analysis, the perfect reconstruc-
tion condition itself is not interesting in neural networks,
since the output of the network should be different from the
input due to the task dependent processing.

Here, we claim that one of the important roles of using
ReLU is that it allows combinatorial basis selection such that
exponentially large number of basis expansion is feasible
once the network is trained. This is in contrast with the
standard framelet basis estimation. For example, for a given
target data Y =

[
y(1) · · · y(T )

]
and the input data X =[

x(1) · · · x(T )
]
, the estimation problem of the frame

basis and its dual in Proposition 3 is optimal for the given
training data, but the network is not expressive and does
not generalize well when the different type of input data is
given. Thus, one of the important requirements is to allow
large number of expressions that are adaptive to the different
inputs.

Indeed, ReLU nonlinearity makes the network more expres-
sive. For example, consider a trained two layer encoder-
decoder CNN:

y = B̃Λ(x)B>x (19)
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where B̃ ∈ Rd0×d1 andB ∈ Rd0×d1 and Λ(x) is a diagonal
matrix with 0, 1 elements that are determined by the ReLU
output. Now, the matrix can be equivalently represented by

B̃Λ(x)B> =

d1∑
i=1

σi(x)b̃ib
>
i (20)

where σi(x) refers to the (i, i)-th diagonal element of Λ(x).
Therefore, depending on the input data x ∈ Rd0 , σi(x)
is either 0 or 1 so that a maximum 2d1 distinct configura-
tions of the matrix can be represented using (20), which is
significantly more expressive than using the single represen-
tation with the frame and its dual. This observation can be
generalized as shown in Theorem 5.

Theorem 5 (Expressiveness of encoder-decoder networks).
Let

Υ̃l = Υ̃l(x) := Υ̃l−1Λ̃l(x)Dl, (21)
Υl = Υl(x) := Υl−1ElΛl(x), (22)

with Υ̃0(x) = Id0 and Υ0(x) = Id0 , and

M l = M l(x) := SlΛlS(x) (23)
M̃ l = M̃ l(x) := Λ̃l(x)S̃l (24)

where Λl(x) and Λ̃l(x) refer to the diagonal matrices from
ReLU at the l-th layer encoder and decoder, respectively,
which have 1 or 0 values; ΛlS(x) refers to a similarly defined
diagonal matrices from ReLU at the l-th skipped branch of
encoder. Then, the following statements are true.

1) Under ReLUs, an encoder-decoder CNN without skipped
connection can be represented by

y = B̃(x)B>(x)x =
∑
i

〈x, bi(x)〉b̃i(x) (25)

where

B(x) = Υκ(x) , B̃(x) = Υ̃κ(x) (26)

Furthermore, the maximum number of available linear rep-
resentation is given by

Nrep = 2
∑κ
i=1 di−dκ , (27)

2) An encoder-decoder CNN with skipped connection under
ReLUs is given by

y = B̃skp(x)Bskp>(x)x =
∑
i

〈x, bskpi (x)〉b̃skpi (x) (28)

where
Bskp(x) :=[

Υκ Υκ−1Mκ Υκ−2Mκ−1 · · · M1
]

(29)

B̃skp(x) :=

[
Υ̃κ Υ̃κ−1M̃κ Υ̃κ−2M̃κ−1 · · · M̃1

]
(30)

Furthermore, the maximum number of available linear rep-
resentation is given by

Nrep = 2
∑κ
i=1 di−dκ × 2

∑κ
i=1 sk (31)

This implies that the number of representation increase ex-
ponentially with the network depth, which again confirm
the expressive power of the neural network. Moreover, the
skipped connection also significantly increases the expres-
sive power of the encoder-decoder CNN. Another important
consequence of Theorem 5 is that the input space X is par-
titioned into the maximum Nrep non-overlapping regions
so that inputs for each region shares the same linear repre-
sentation.

Due to the ReLU, one may wonder whether the cascaded
convolutional interpretation of the frame basis in Corol-
lary 4 still holds. A close look of the proof of Corol-
lary 4 reveals that this is still the case. Under ReLUs, note
that (Im ~ ψlj,s)(Im ~ ψl+1

t,j ) = Im ~ (ψlj,s ~ ψl+1
t,j ) in

Lemma 11 in Supplementary Material should be replaced
with (Im ~ ψlj,s)Λ

l
j(x)(Im ~ ψl+1

t,j ) where Λlj(x) is a di-
agonal matrix with 0 and 1 values due to the ReLU. This
means that the Λlj(x) provides spatially varying mask to the
convolution filter ψl+1

t,j so that the net effect is a convolu-
tion with the the spatially varying filters originated from
masked version of ψl+1

t,j . This results in a spatially variant
cascaded convolution, and only change in the interpretation
of Corollary 4 is that the basis and its dual are composed of
spatial variant cascaded convolution filters. Furthermore,
the ReLU works to diversify the convolution filters by mask-
ing out the various filter coefficients. It is believed that this
is another source of expressiveness from the same set of
convolutional filters.

4.4. Generalizability

To understand the generalization capability of DNNs, recent
research efforts have been focused on reducing the gap by
suggesting different ways of measuring the network capacity
(Bartlett et al., 2017; Neyshabur et al., 2018). These works
consistently showed the importance of Lipschitz condition
for the encoder and decoder parts of the networks.

More specifically, we have shown that the neural network
representation varies in exponentially many different forms
depending on inputs, so one may be concerned that the
output might vary drastically with small perturbation of the
inputs. However, Lipschitz continuity of the neural network
prevents such drastic changes. Specifically, a neural network
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F (W, x) is Lipschitz continuous, if there exists a constant
K > 0 such that

‖F (W, x(1))− F (W, x(2))‖2 ≤ K‖x(1) − x(2)‖2 .

where the Lipschitz constant K can be obtained by

K = sup
x∈X
‖D2F (W, x)‖2 (32)

where D2F (W, x) is the Jacobian with respect to the sec-
ond variable. The following proposition shows that the Lip-
schitz constant of encoder-decoder CNNs is closely related
to the frame basis and its duals.

Proposition 6. The Lipschitz constant for encoder-decoder
CNN without skipped connection is given by

K = sup
x∈X
‖B̃(x)B(x)>‖2 (33)

whereas Lipschitz constant for encoder-decoder CNN with
skipped connection is given by

K = sup
x∈X
‖B̃skp(x)Bskp>(x)‖2 (34)

where B(x), B̃(x),Bskp(x) and B̃skp(x) are defined in (26),
(29) and (30).

Recall that the input space X is partitioned into regions that
share the same linear representation. Therefore, the local
Lipschitz constant within the p-th partition is given by

Kp = sup
z∈Xp

‖B̃(z)B>(z)‖2

= ‖B̃(zp)B>(zp)‖2, ∀zp ∈ X p (35)

for the case of E-D CNN without skipped connections. Here,
X p denotes the p-th input space partition, and the last equal-
ity in (35) comes from the fact that every point in X p shares
the same linear representation. Thus, it is easy to see that
the global Lipschitz constant can be given by

K = sup
x∈X
‖B̃(x)B(x)>‖2 = sup

p
Kp (36)

Furthermore, Theorem 5 informs that the number of parti-
tion is bonded by Nrep. Therefore, (36) suggests that by
bounding the local Lipschitz constant within each linear re-
gion, one could control the global Lipschitz constant of the
neural network. Similar observation holds for E-D CNNs
with skipped connection.

One of the most important implications of (36) is that the
expressiveness of the network is not affected by the control
of the Lipschitz constant. This in turn is due to the combi-
natorial nature of the ReLU nonlinearities, which allows for
an exponentially large number of linear representations.

4.5. Optimization landscape

For a given ground truth task map f∗ : X 7→ Y and given
training data set {(x(i), y(i))}Ti=1 such that y(i) = f∗(x(i)),
an encoder-decoder CNN training problem can be formu-
lated to find a neural network parameter weight W by min-
imizing a specific loss function. Then, for the case of l2
loss:

C(W) =
1

2

T∑
i=1

‖F (W, x(i))− y(i)‖2 , (37)

Nguyen et al (Nguyen & Hein, 2018) showed that over-
parameterized CNNs can produce zero training errors. Their
results are based on the following key lemma.

Lemma 7. (Nguyen & Hein, 2018) Consider an encoder-
decoder CNN without skipped connection. Then, the Ja-
cobian of the cost function in (37) with respect to Eκ is
bounded as

‖∇EκC‖F

≥ σmin(Ξκ) min
i∈[T ]

σmin

(
Λκ(x(i))

(
Υ̃κ(x(i))

)>)√
2C(W)

and
‖∇EκC‖F

≤ σmax(Ξκ) max
i∈[T ]

σmax

(
Λκ(x(i))

(
Υ̃κ(x(i))

)>)√
2C(W)

where σmin(A) and σmax(A) denote the minimum and max-
imum singular value for a matrix A ∈ Rn×m with n ≥ m,
respectively; Υ̃κ is defined in (21), and Ξκ denotes the fea-
ture matrix for the training data

Ξκ =
[
ξκ(1) · · · ξκ(T )

]
∈ Rdκ×T

and C(W) is the cost in (37).

The authors in (Nguyen & Hein, 2018) further showed that
if every shifted r-segment of training samples is not iden-
tical to each other and dκ ≥ T , then Ξκ has full column
rank. Additionally, if the nonlinearity at the decoder layer
is analytic, then they showed that Υ̃κ(x)Λκ(x) has almost
always full row rank. This implies that both σmin(Ξκ) and
σmin(Λκ(Υ̃κ)>) are non-zero so that ∇EκC|W = 0 if and
only if y(i) = F (W, x(i)) for all i ∈ [T ] (that is, the loss
becomes zero, i.e. C(W) = 0).

Unfortunately, this almost always guarantee cannot be used
for the ReLU nonlinearities at the decoder layers, since the
ReLU nonlinearity is not analytic. In this paper, we extend
the result of (Nguyen & Hein, 2018) for the encoder-decoder
CNN with skipped connection when ReLU nonlinearities
are used. In addition to Lemma 7, the following lemma,
which is original, does hold for this case.
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Lemma 8. Consider an encoder-decoder CNN with skipped
connection. Then, the Jacobian of the cost function in (37)
with respect to S̃l for l ∈ [κ] is bounded as

‖∇S̃lC‖F

≥ σmin(Γl) min
i∈[T ]

σmin

(
Λ̃l(x(i))

(
Υ̃l−1(x(i))

)>)√
2C(W)

and
‖∇S̃lC‖F

≤ σmax(Γl) max
i∈[T ]

σmax

(
Λ̃l(x(i))

(
Υ̃l−1(x(i))

)>)√
2C(W)

where Γl denotes the feature matrix from the skipped branch

Γl =
[
χl(1) · · · χl(T )

]
∈ Rsl×T

and C(W) is the cost in (37).

Lemma 8 leads to the following key results on the opti-
mization landscape for the encoder-decoder network with
skipped connections.

Theorem 9. Suppose that there exists a layer l ∈ [κ] such
that

• skipped features χl(1), · · · , χl(T ) are linear indepen-
dent.

• Υ̃l−1(x)Λ̃l(x) has full row rank for all training data
x ∈ [x(1), · · · , x(T )].

Then, ∇S̃lC|W = 0 if and only if y(i) = F (W, x(i)) for
all i ∈ [T ] (that is, the loss becomes zero, i.e. C(W) = 0).

Proof. Under the assumptions, both σmin(Γl) and
σmin(Λ̃l(Υ̃l−1)>) are non-zero. Therefore, Lemma 8 leads
to the conclusion.

Note that the proof for the full column rank condition
for Ξκ in (Nguyen & Hein, 2018) is based on the con-
structive proof using independency of intermediate features
χl(1), · · · , χl(T ) for all l ∈ [κ]. Furthermore, for the case of
ReLU nonlinearities, even when Υ̃κ(x)Λκ(x) does not have
full row rank, there are chances that Υ̃l−1(x)Λ̃l(x) has full
row rank at least one l ∈ [κ]. Therefore, our result has more
relaxed assumptions than the optimization landscape results
in (Nguyen & Hein, 2018) that relies on Lemma 7. This
again confirms the advantages of the skipped connection in
encoder-decoder networks.

5. Discussion and Conclusion
In this paper, we investigate the geometry of encoder-
decoder CNN from various theoretical aspects such as differ-
ential topological view, expressiveness, generalization capa-
bility and optimization landscape. The analysis was feasible
thanks to the explicit construction of encoder-decoder CNNs
using the deep convolutional framelet expansions. Our anal-
ysis showed that the advantages of the encoder-decoder
CNNs comes from the expressiveness of the encoder and
decoder layers, which are originated from the combinatorial
nature of ReLU for decomposition and reconstruction frame
basis selection. Moreover, the expressiveness of the network
is not affected by controlling Lipschitz constant to improve
the generalization capability of the network. In addition, we
showed that the optimization landscape can be enhanced by
the skipped connection.

This analysis coincides with our empirical verification using
deep neural networks for various inverse problems. For
example, in a recent work of k-space deep learning (Han &
Ye, 2018), we showed that a neural network for compressed
sensing MRI can be more effectively designed in the k-space
domain, since the frame representation is more concise
in the Fourier domain. Similar observation was made in
sub-sampled ultrasound (US) imaging (Yoon et al., 2018),
where we show that the frame representation in raw data
domain is more effective in US so that the deep network is
designed in the raw-date domain rather than image domain.
These empirical examples clearly showed that the unified
view between signal processing and machine learning as
suggested in this paper can help to improve design and
understanding of deep models.
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