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Abstract
Transfer learning transfers knowledge across do-
mains to improve the learning performance. Since
feature structures generally represent the common
knowledge across different domains, they can be
transferred successfully even though the labeling
functions across domains differ arbitrarily. How-
ever, theoretical justification for this success has
remained elusive. In this paper, motivated by self-
taught learning, we regard a set of bases as a fea-
ture structure of a domain if the bases can (approxi-
mately) reconstruct any observation in this domain.
We propose a general analysis scheme to theoret-
ically justify that if the source and target domains
share similar feature structures, the source domain
feature structure is transferable to the target do-
main, regardless of the change of the labeling func-
tions across domains. The transferred structure is
interpreted to function as a regularization matrix
which benefits the learning process of the target do-
main task. We prove that such transfer enables the
corresponding learning algorithms to be uniformly
stable. Specifically, we illustrate the existence of
feature structure transfer in two well-known trans-
fer learning settings: domain adaptation and learn-
ing to learn.

1 Introduction
Transfer learning is motivated by human learning. When hu-
mans encounter a continual stream of learning tasks, we do
not just learn concepts, but also biases, and we are capable
to transfer them to new tasks. Transfer learning is therefore
referred to as extracting knowledge from source domains and
applying it to improve the learning performance in a target
domain.

The last decade has witnessed the success of various trans-
fer learning algorithms [Shao et al., 2014; Long et al., 2015;
Li et al., 2015; Liu et al., 2016; Shao et al., 2016] in ex-
ploiting the transfer of knowledge across domains. Self-
taught learning [Raina et al., 2007], domain adaptation [Ben-
David et al., 2007] (sometimes called transfer learning [Mau-
rer et al., 2013] or lifelong learning [Pentina and Lampert,
2014]), and learning to learn [Baxter, 2000] (sometimes

called multi-task learning [Ando and Zhang, 2005]) have
achieved great successes in a variety of tasks [Si et al., 2010;
Luo et al., 2014]. For additional references, the interested
reader is referred to the survey [Pan and Yang, 2010].

Domain adaptation solves the problem in which the joint
distributions Pxy over the source and target domains are dif-
ferent but related, where x denotes the feature and y the la-
bel. Most algorithms for domain adaptation try to (appro-
priately) correct the source domain distribution so that its
knowledge can be transferred to the target domain. Covari-
ate shift (Px differs across domains) [Huang et al., 2006],
model shift (Py|x differs across domains) [Wang and Schnei-
der, 2014], target shift (Py differs across domains) [Zhang et
al., 2013] and conditional shift (Px|y differs across domains)
[Zhang et al., 2013] are the representative and notable mod-
els for domain adaptation. All these models will succeed only
when the conditional distributions Py|x (or the labeling func-
tions) across domains are (or can be corrected to be) identical
(or at least nearly identical). Most of the existing theoretical
analyses [Ben-David et al., 2007; Blitzer et al., 2008; Man-
sour et al., 2009; Ben-David et al., 2010; Zhang et al., 2015;
Gong et al., 2016] for domain adaptation are based upon this
condition, and cannot explain the success of the applications
where the conditional distributions Py|x differ significantly
(or even arbitrarily) across the source and target domains.

Learning to learn was introduced by [Baxter, 2000] who
defined the task environment as a probability measure on a
set of related tasks. Most algorithms commonly assume that
parameters for modeling different tasks are partially shared.
Most of the existing theoretical analyses [Baxter, 2000;
Maurer, 2009; Kuzborskij and Orabona, 2013; Maurer et al.,
2013] for learning to learn focus on this assumption. For ex-
ample, [Maurer et al., 2013] assumed that the task parame-
ters are well approximated by sparse linear combinations of
the atoms in a dictionary and provided a theoretical justifica-
tion for the success. The corresponding theoretical results are
therefore based upon the condition that the conditional dis-
tributions Py|x across domains are related and limited in the
environment and cannot differ arbitrarily.

Can transfer learning work when the conditional distribu-
tions Py|x differ arbitrarily across domains? The answer is
positive. One well-known successful example is self-taught
learning [Raina et al., 2007]. Given a large amount of unla-
beled data (e.g., randomly collected from the Internet), self-
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taught learning extracts domain invariant visual structure (or
feature structure defined in this paper) to significantly im-
prove the classification accuracy in the task domain. It does
not require the source data to follow the same class labels or
generative distribution as the target domain data, so its con-
ditional distributions Py|x of source and target domains can
differ very much, or even arbitrarily. Feature structures gener-
ally represent common knowledge across different domains,
so they are transferrable regardless of the change of the con-
ditional distributions Py|x across domains.

In this paper, motivated by self-taught learning, we define
the feature structure of a domain as a set of bases which can
(approximately) reconstruct any observation in the domain,
and say an algorithm is a feature structure transfer learning
algorithm if it transfers feature structure from the source do-
main to the target domain. For example, a self-taught learning
algorithm is a feature structure transfer learning algorithm, in
which the transferred feature structure is a set of sparse cod-
ing bases. However, to the best of our knowledge, theoretical
justification for the success of feature structure transfer learn-
ing remains elusive.

Motivated by that self-taught learning can be formulated as
a Tikhonov regularized learning in the target domain, where
the Tikhonov matrix contains the feature structure extracted
from the source domains, we first provide a theoretical jus-
tification for feature structure transfer learning from the per-
spective of regularization. We show that if the feature struc-
tures of the source and target domains are similar (i.e., for any
target domain observation xt, it holds that xt ≈ Bα, where
B denotes the extracted source domain feature structure and
α a reconstruction coefficient), the source domain data will
provide a regularization matrix and enable feature structure
transfer learning algorithms to be uniformly stable [Bousquet
and Elisseeff, 2002] and to learn desirable accurate predictors
from small fractions of labeled examples, which provides in-
sight as to why those algorithms achieve their empirical suc-
cesses.

In contrast to the existing theoretical analyses, we focus
on justifying how feature structure can be transferred to im-
prove classification performance from the perspective of reg-
ularization. Specifically, our analyses show that if the source
domain observations can be a feature structure for the target
domain and the employed loss function is strongly convex,
the source domain observations can be interpreted to func-
tion as a regularization matrix, which benefits the learning
process of the target domain task. We prove that existing
learning algorithms, such as domain adaptation and learning
to learn, for learning the target predictors are feature struc-
ture transfer learning algorithms and therefore are uniformly
stable, which are indispensable complements for the existing
theoretical analyses.

Organization of the paper. We describe the learning set-
up in Section 2. In Section 3, we introduce our motivation
that self-taught learning transfers feature structure and is uni-
formly stable. We provide theoretical justifications for the
transfer of feature structure in the algorithms of domain adap-
tation and learning to learn in Sections 4 and 5, respectively.
Finally, we draw conclusions and discuss future work in Sec-
tion 6. We present the proof of our assertion in Section A.

2 Preliminaries
We start by introducing the notation that will be used through-
out this paper. Let H denote the separable real Hilbert
space with the inner product 〈·, ·〉 and norm ‖ · ‖. Let
z = (x, y) ∈ H × {−1, 1} be a training example and
S = {z1, . . . , zn} an i.i.d. training sample. We denote
the i.i.d. training samples of the source and target domains
by Ss =

{
zs1, . . . , z

s
ns

}
= {(xs1, ys1), . . . , (xsns , y

s
ns)} and

St =
{
zt1, . . . , z

t
nt

}
= {(xt1, yt1), . . . , (xtnt , y

t
nt)}, respec-

tively. Let H be a linear hypothesis class and `(y, h(x)) a
loss function measuring the risk that is incurred by predict-
ing h(x) when the true label is y. We denote the expected
and empirical risks by R(h) = E`(y, h(x)) and Rn(h) =
1
n

∑n
i=1 `(yi, h(xi)), respectively. A learning algorithm dis-

covers a mapping that maps a training sample S to a hypoth-
esis function hS ∈ H . The defect R(hS)−Rn(hS) is called
the generalization error, which is usually exploited to mea-
sure the “goodness” of learning algorithms. A small general-
ization error implies that the algorithm could generalize well
on unseen data.

Intuitively, given a larger training sample, a learning al-
gorithm will learn a more accurate predictor. However, in
practice, for a specific target domain, the training examples
may be limited. Fortunately, we often have a large number
of additional training examples, drawn from closely related
source domains, which contain information that can improve
the learning performance of the target domain task. Transfer
learning is therefore defined as learning algorithms that em-
ploy the additional source domain examples to improve the
learning performance in the target domain.

We define a set of bases B as a feature structure of a do-
main X × {−1, 1} if for any observation x ∈ X , x ≈ Bα,
where α is the reconstruction coefficient. In this paper, we
consider the transfer learning algorithms where feature struc-
tures are transferable across domains to improve the learning
performance, which we call feature structure transfer learn-
ing.

To theoretically justify feature structure transfer learning,
we introduce the stability framework proposed by [Bousquet
and Elisseeff, 2002].
Definition 1 (Uniform stability) An algorithm has uniform
stability β with respect to the loss function ` and a specific
domainZ ⊂ H×{−1, 1} if for any independently distributed
training sample S ∈ Zn, any i ∈ {1, ..., n} and any z ∈ Z ,
the following holds:

|`(y, hS(x))− `(y, hSi(x))| ≤ β, (1)

where Si denotes the training sample S with the i-th example
zi being replaced by an i.i.d. example z′i.

[Bousquet and Elisseeff, 2002] also proved the following
generalization error bound.
Theorem 1 Let the learning algorithm be β-stable and let S
be a training sample with n independent random examples.
Assume that the loss function ` is bounded by M . Then, for
any δ > 0, with probability at least 1−δ, the following holds:

R(hS) ≤ Rn(hS) + β + (2nβ +M)

√
log 1/δ

2n
. (2)
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In this paper, we will illustrate that the transfer of feature
structure enables transfer learning algorithms to be uniformly
stable, as a result of which the generalization errors will be
small.

3 Self-taught Learning and Motivation
In this section, we show that feature structure will have a
Tikhonov regularization property in self-taught learning. Mo-
tivated by this, we will show in the following sections that
feature structure transfer exists widely in existing transfer
learning algorithms.

Self-taught learning introduced by [Raina et al., 2007] ex-
ploits the unlabeled data in the source domain to improve
classification performance in the target domain. It first ex-
tracts a feature structure by learning a set of sparse coding
bases B and then approximately reconstructs each target do-
main observation as a sparse linear combination of the bases
B, i.e., xti = Bαi + ηi, ‖α‖1 ≤ r1, i = 1, . . . , nt, where
ηi is the corresponding residual satisfying that ‖ηi‖ is small
(because B can be over-completed), αi encodes the recon-
struction coefficient for this target domain observation, and
r1 is a constant. Lastly, self-taught learning learns a predictor
by minimizing the following regularized objective function:

min
v

1

nt

nt∑
i=1

`
(
yti , 〈v, αi〉

)
+ λ‖v‖2, (3)

where λ is a regularization parameter.
We explicitly emphasize the function of the coding bases

B and reformulate (3) as

min
w

1

nt

nt∑
i=1

`
(
yti , 〈w,Bαi〉

)
+ λ‖BTw‖2. (4)

Optimization problems (3) and (4) are equivalent if we write
v = BTw.

If the residuals ηi, i = 1, . . . , nt are small, Bαi will be ap-
proximately equal to the target domain observations xti. Thus,
self-taught learning can be viewed as learning algorithms that
minimize the following regularized objective function:

min
w

1

nt

nt∑
i=1

`
(
yti ,
〈
w, xti

〉)
+ λ‖BTw‖2. (5)

By regularizing the parameter with respect to the feature-
structure-based regularization matrix B, self-taught learning
algorithms that solve the optimization problems (3) and (4)
are uniformly stable.

As discussed in [Bousquet and Elisseeff, 2002], to show
regularized learning algorithm is uniformly stable, we need
the employed loss function to be admissible (a Lipschitz-like
condition, which has been widely used [Mohri et al., 2012]).
Definition 2 (σ-admissible) A loss function ` is σ-
admissible with respect to the hypothesis class H if
there exists a σ > 0 such that for any two hypotheses
h, h′ ∈ H and any example z ∈ H × {−1, 1}, the following
inequality holds:

|`(y, h(x))− `(y, h′(x))| ≤ σ|h(x)− h′(x)|. (6)

Theorem 2 Let the loss function ` be convex and σ-
admissible. Algorithms that minimize the objective functions
in (3) and (4) are uniformly stable with respect to the target
domain. For any (xt, yt), xt = Bα+η1, in the target domain,
the following inequality holds for problem (4):∣∣∣`(yt, 〈wSt , Bα〉)− `(yt,〈wSit , Bα〉)∣∣∣ ≤ σ2r21

λnt
. (7)

The proof method of Theorem 2 is the same as that in
[Bousquet and Elisseeff, 2002].

Problems (4) and (5) are the well-known Tikhonov reg-
ularized empirical risk minimization, where ‖BTw‖2 is the
Tikhonov regularization and BT is the Tikhonov matrix (also
known as the regularization matrix). The frequently used `2-
regularization ‖w‖2 is a special case of Tikhonov regulariza-
tion by setting B = I . For particular problems, it would
be more reasonable to find a suitable regularization matrix B
than simply setting B = I . Self-taught learning provides a
way to find a suitable regularization matrix B and its success
has been empirically proven.

Our analyses show that self-taught learning extracts a fea-
ture structure B form the source domain data. It then trans-
fers the feature structure to improve the target task perfor-
mance by regularizing the learning parameter using the ex-
tracted feature structure as a regularization matrix. Theorem
2 proves that self-taught learning algorithms are uniformly
stable. It therefore has a small generalization error accord-
ing to Theorem 1. Motivated by the feature structure transfer
procedure of self-taught learning, we will show in the follow-
ing sections that a similar feature structure transfer procedure
exists widely in the traditional transfer learning algorithms.

We note here that feature structure transfer learning differs
very much from the pre-processing technique that represents
the target domain observations onto a subspace. For example,
the feature structure B could be over-completed. Moreover,
we will show in the following sections that feature structures
can be transferred in a general form of a set of source do-
main observations for domain adaptation and learning to learn
problems, where we do not need to specifically learn the cod-
ing bases B.

4 Domain Adaptation
Often, domain adaptation studies the transfer learning prob-
lem where the target domain has a small amount of data, or
even no label information, while the source domain has rel-
atively sufficient data. However, in this paper, we consider
the situation where the target domain has a number of labeled
examples, which often happens in practice.

We study the domain adaption algorithms proposed by
[Blitzer et al., 2008] which minimize a convex combination
of the source and target empirical risk:

min
w
Rns+nt,α = αRnt(w) + (1− α)Rns(w), (8)

where α ∈ (0, 1). By setting a proper value for α, i.e.,
α = nt/(ns + nt), the objective function in (8) includes the
objective function of the traditional domain adaptation algo-
rithm

min
w

1

ns + nt

ns+nt∑
i=1

` (yi, 〈w, xi〉) (9)
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as a special case.
In the following, we will show that if the source and target

domains have similar feature structures, uniform stability can
be derived for the learning algorithms that minimize (8) by
interpreting the function of the source data as a regularization
matrix.

The source domain observations can function as a transfer-
able feature structure for improving the target domain task if
the following assumption holds:

Assumption 1 For any target domain observation xt, we
have xt =

∑ns
j=1 γjx

s
j + η2, where ‖γ‖ ≤ r2, {xs1, . . . , xsns}

are the source domain observations, and η2 is a small resid-
ual that ‖η2‖ ≤ ε2.

To interpret the function of source domain observations as
a regularization, we need the employed loss function to be
strongly convex.

Definition 3 (c-strongly convex) A differentiable loss func-
tion `(y, h(x)) is called c-strongly convex with respect to ‖ ·‖
if the following inequality holds for any z = (x, y) in its do-
main and any h, h′ ∈ H:

(∇`(y, h(x))−∇`(y, h′(x)))T (h(x)− h′(x))

≥ c‖h(x)− h′(x)‖2, (10)

where c > 0 and∇`(y, h(x)) denotes the gradient of the loss
function `(y, h(x)) with respect to the predictor h(x).

Strong convexity and strong smoothness are dual proper-
ties. Strongly convex programming algorithms have many
benign properties, both in the speed of optimization and the
quality of generalization [Kakade and Tewari, 2009].

The square loss function is 2-strongly convex and has been
widely used. Many other frequently used loss functions,
such as hinge loss and logistic loss, are only convex but
not strongly convex. However, they may be strongly con-
vex when h(x) is restricted to a compact set. For exam-
ple, the logistic loss `(y, h(x)) = log(1 + exp(−yh(x)))
is exp(−U)/4-strongly convex when h(x) is restricted
to the interval [−U,U ], because d2`(y, h(x))/d2h(x) =
exp(yh(x))/(exp(yh(x)) + 1)2 ≥ exp(−U)/4. They can
also be revised as strongly convex by adding a strongly con-
vex regularization, e.g., the `2-regularization.

The goal of domain adaptation is to modify the source do-
main distribution so that the learned predictor can perform
well on the target domain. We now show that the feature
structure provided by the source domain data can be trans-
ferred to enable domain adaptation algorithms to be uni-
formly stable with respect to the target domain.

Theorem 3 Suppose Assumption 1 holds. Let the loss func-
tion ` be c-strongly convex and σ-admissible. Then, algo-
rithms that solve optimization problem (8) are uniformly sta-
ble with respect to the target domain. For any (xt, yt) drawn
from the target domain, we have:∣∣∣`(yt, 〈wSt , xt〉)− `(yt,〈wSit , xt〉)∣∣∣

≤ 2αnsσ
2(r2 +O(ε2))2

c(1− α)nt
. (11)

When ε2 = 0, which means that the target observations can
be perfectly reconstructed by the source observations or that
the source domain observations can serve as a feature struc-
ture for the target domain, we have∣∣∣`(yt, 〈wSt , xt〉)− `(yt,〈wSit , xt〉)∣∣∣ ≤ 2αnsσ

2r22
c(1− α)nt

. (12)

See the proof in the Appendix.
Inequalities (11) and (12) in Theorem 3 show that the upper

bound of the uniform stability will decrease fast with a an
order of O(1/nt), where nt is the sample size of the target
domain. This means that the target learning algorithm can
generalize fast on unseen data.

The empirical study in [Blitzer et al., 2008] shows that for
some real-world datasets, tuning the parameter α can greatly
improve transfer learning performance. They also derived up-
per bound and discussed that by choosing different values of
α, we can effectively trade off the small amount of target data
against the large amount of less relevant source data. This
is in accordance with our analyses, where α has been inter-
preted as a regularization parameter. Such a tuning parameter
is necessary for the transfer of feature structure by balancing
the different feature structure scales across domains.

In the proof of Theorem 3, we have interpreted the source
domain observations Xs = [xs1, . . . , x

s
ns ] as a transferable

feature structure, which function as a regularization matrix
for the learning algorithm that learns the target domain task;
while in self-taught learning, the coding basesB is a transfer-
able feature structure functioning as a regularization matrix
for the learning algorithm that learns the target domain task.
Although the source domain data are labeled, we have not ex-
ploited the label information during the proof procedure, and
thus our theoretical justification for feature structure transfer
depends on the marginal distribution Px and is independent of
the change of the conditional distribution Py|x over domains.
This makes sense because we observed that feature structure
can be transferred even though the conditional distribution
differs arbitrarily across domains.

The obtained generalization error bound in Theorem 1 has
a fast convergence rate with respect to the target domain train-
ing sample size nt, of order O(1/nt). However, no benefit
for increasing the source training sample size ns is shown.
This is because we have theoretically focused on justifying
the transfer of feature structure, but not the transfer of label-
ing information, and we have assumed that the target domain
feature structure is already given by the source domain train-
ing sample; under this circumstance, increasing the size of the
source domain training sample may help little. In practice,
however, more source domain training examples will provide
a more completed feature structure and more labeling infor-
mation. A large source domain training sample is therefore
preferred.

In the rest of the paper, for simplicity, we will consider the
case that the residual is zero, which occurs if the feature struc-
ture is perfectly provided by the source domain observations
(i.e., the source domain observations can exactly reconstruct
the target domain data). However, similar to the results shown
in Theorem 3, our results can be easily extended to the case
in which the residual ε 6= 0.
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5 Learning to Learn
Learning to learn was formulated by [Baxter, 2000], where
a probability measure E known as the environment was in-
troduced on a set of related tasks. It aims to find learning
algorithm that performs well on all of the tasks in the envi-
ronment.

Let µl be the probability measure of the example zl =
(xl, yl) in the context of the task l. We will use Sl =
{(xl,1, yl,1), . . . , (xl,nl , yl,nl)} to denote the training sample
of the task l. Let hD,Sl denote the predictor computed by a
learning algorithmAD using the training sample Sl, whereD
is a learning parameter for the learning algorithm AD. The
notion of expected transfer risk [Maurer et al., 2013] associ-
ated with the learning algorithm AD is defined as follows:

RE(AD) = El∼EESl∼µnll Ez∼µl`(y, hD,Sl(x)). (13)

The expected transfer risk can be estimated by the empiri-
cal transfer risk of a finite set of tasks. Many learning to learn
algorithms therefore minimize the expected transfer risk by
alternatively minimizing the empirical transfer risk ofN tasks
that have been drawn independently from the environment E :

Rn,N (AD) =
1

N

N∑
l=1

1

nl

nl∑
i=1

`(yl,i, hD,Sl(xl,i)). (14)

The learning parameter D can be of many different forms,
e.g., either a matrix or a vector. [Maurer et al., 2013] de-
fined D to be a matrix as a set of dictionary bases. [Ev-
geniou and Pontil, 2004] assumed D to be a vector as the
overlap of the parameters among multiple tasks. Specifically,
they assumed that all task parameters wl can be written as
wl = w0 + vl

1. We have proven that in this setting tasks
could regularize tasks [Liu et al., 2017b] and therefore the
algorithms generalize fast [Liu et al., 2017a].

In this paper, we consider the matrix case, where
hD,Sl(xl) = 〈Dγ, xl〉. Then, the empirical risk minimiza-
tion algorithm becomes [Maurer et al., 2013]

min
D∈Dk

1

N

N∑
l=1

min
γ∈Cγ

1

nl

nl∑
i=1

`(yl,i, 〈Dγ, xl,i〉), (15)

where Dk is a set of k-dimensional dictionaries, every D ∈
Dk is a linear map from Rk to the hypothesis class H , and Cγ
is a set of code vectors in Rk satisfying some properties, such
as sparsity.

We apply our analysis scheme to learning to learn by focus-
ing on the performance of one particular task. For simplicity,
we assume there are two tasks. Let denote the domain of the
focused task as the target domain and the other one the source
domain. Learning to learn algorithms then solve the follow-
ing optimization problem:

min
D

∑
k∈{s,t}

min
γ

1

nk

nk∑
i=1

`
(
yki ,
〈
Dγ, xki

〉)
. (16)

1Constraints are needed to control a trade-off between w0 and vl.
Many algorithms encourage w0 to be large.

Let the non-zero parts of the target parameter γt and source
parameter γs have an overlap γ0, i.e., γt = γ0 + ∆γt. Using
a proof method similar to that of Theorem 3, we show that
“source” domain observations can be transferred as a feature
structure to the “target” domain and function as a regulariza-
tion matrix, which enables learning to learn algorithms to be
uniformly stable with respect to the target domain.

Theorem 4 Suppose Assumption 1 holds and ε2 = 0. Let
the loss function ` be c-strongly convex and σ-admissible. Al-
gorithms that solve problem (16) are uniformly stable with
respect to the target domain. For any learned γ0,∆γt ∈ H
and any (xt, yt) drawn from the target domain, the following
holds: ∣∣`(yt, 〈D(γ0,St + ∆γt), xt

〉
) (17)

−`
(
yt,
〈
D(γ0,Sit + ∆γt), xt

〉)∣∣∣ ≤ 2nsσ
2r22

cnt
.

The proof method of Theorem 4 is the same as that of The-
orem 3.

Theorem 4 shows that the learning of the overlapping infor-
mation between source and target tasks will be benefit from
feature structure transfer learning. The discussions on do-
main adaptation apply to learning to learn as well.

6 Conclusion
This paper studied the feature structure transfer learning
problem. We theoretically justified that feature structure can
be transferred, independently of the change of Py|x over do-
mains, to improve the learning performance in the target do-
main. Motivated by self-taught learning, we discussed how
feature structure can be transferred in domain adaptation and
learning to learn settings from a regularization perspective.
Our analysis implies that a tuning parameter is necessary to
help transfer feature structure information from the source
domain to the target domain. We believe that our analysis
scheme applies to many other existing transfer learning set-
tings as well.

The theoretical analyses in this paper stimulate our fu-
ture work in two related directions. First, as we have inter-
preted the function of the transferred feature structure as reg-
ularization, we will consider introducing proper regulariza-
tion parameters to improve the performance of existing trans-
fer learning applications. Second, we plan to learn feature
representation for (semi-supervised) feature structure trans-
fer learning algorithms by designing a new criterion to match
feature structure.
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A Appendix
A.1 Used Tool
We introduce Bregman divergence [Mohri et al., 2012] to
help upper bound the uniform stability.
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Definition 4 (Bregman divergence) Let f : H → R be a
convex function. For all s, t ∈ H, we have

Bf (s‖t) = f(s)− f(t)− 〈s− t,∇f(t)〉 , (18)

where∇f(t) denotes the gradient of function f(t).
Bregman divergence has the following properties. Detailed

discussions can be found in [Mohri et al., 2012].
Lemma 1 Bregman divergence is additive and non-negative.
If f = f1 + f2, and both f1 and f2 are convex, for any s, t ∈
H, we have

Bf (s‖t) = Bf1(s‖t) +Bf2(s‖t) and Bf (s‖t) ≥ 0. (19)

A.2 Proof of Theorem 3
In this subsection, we prove that algorithms solving the fol-
lowing optimization problem:

min
w
Rns+nt,α = αRnt(w) + (1− α)Rns(w), (20)

are uniformly stable with respect to the target domain.
Let

gSt(w) = αRnt(w) =
α

nt

nt∑
i=1

`
(
yti ,
〈
w, xti

〉)
, (21)

gSs(w) = (1− α)Rns(w) = (1− α)

ns∑
i=1

` (ysi , 〈w, xsi 〉) (22)

and

gSt,Ss(w) = Rns+nt,α = gSt(w) + gSs(w). (23)

By abusing the notation a little bit without confusion, we let
w be the solution to optimization problem (20) when the input
training sample is St and w′ be the solution when the input
training sample is Sit . Since the employed loss function is
convex. According to the non-negative and additive proper-
ties of Bregman divergence, we have

BgSt,Ss (w′‖w) +Bg
Sit,Ss

(w‖w′)

≥ BgSs (w′‖w) +BgSs (w‖w′). (24)

To upper bound the left-hand side of inequality (24), we have

BgSt,Ss (w′‖w) +Bg
Sit,Ss

(w‖w′)

= gSt,Ss(w
′)− gSt,Ss(w)− 〈w′ − w,∇gSt,Ss(w)〉

+gSit ,Ss(w)− gSit ,Ss(w
′)−

〈
w − w′,∇gSit ,Ss(w

′)
〉

=
α

nt

(
`
(
yti ,
〈
w′, xti

〉)
− `

(
yti ,
〈
w, xti

〉)
+`
(
y′
t
i,
〈
w, x′

t
i

〉)
− `

(
y′
t
i,
〈
w′, x′

t
i

〉))
≤ ασ

nt

(∣∣〈w − w′, xti〉∣∣+
∣∣∣〈w − w′, x′ti〉∣∣∣)

(Using Assumption 2)

=
ασ

nt

∣∣∣∣∣∣
〈
w − w′,

ns∑
j=1

γjx
s
j

〉∣∣∣∣∣∣+ |〈w − w′, η2〉|

+

∣∣∣∣∣∣
〈
w − w′,

ns∑
j=1

γ′jx
s
j

〉∣∣∣∣∣∣+ |〈w − w′, η′2〉|


(Using Cauchy-Schwarz inequality)

≤
2ασ(r2 +O(ε2))

√∑
j

〈
w − w′, xsj

〉2
nt

. (25)

To lower bound the right-hand side of inequality (24),
we consider two different forms of loss function: (i)
`(y, 〈w, x〉) = `(y − 〈w, x〉) and (ii) `(y, 〈w, x〉) =
`(y 〈w, x〉). When the loss function is of form (i), we have

BgSs (w′‖w) +BgSs (w‖w′)

= −

〈
w′ − w, (1− α)

ns∑
j=1

∇`
(
ysj ,
〈
w, xsj

〉)
xsj

〉

−

〈
w − w′, (1− α)

ns∑
j=1

∇`
(
ysj ,
〈
w′, xsj

〉)
xsj

〉
(Since ` is c-strongly convex)

≥ c(1− α)
∑
j

〈
w − w′, xsj

〉2
. (26)

When the loss function is of form (ii), we have

BgSs (w′‖w) +BgSs (w‖w′)

= −

〈
w′ − w, (1− α)

ns∑
j=1

∇`
(
ysj ,
〈
w, xsj

〉)
xsjy

s
j

〉

−

〈
w − w′, (1− α)

ns∑
j=1

∇`
(
ysj ,
〈
w′, xsj

〉)
xsjy

s
j

〉
≥ c(1− α)

∑
j

〈
w − w′, xsjysj

〉2
= c(1− α)

∑
j

〈
w − w′, xsj

〉2
. (27)

Combining (24), (25), (26) and (27), we have√∑
j

〈
w − w′, xsj

〉2 ≤ 2ασ(r2 +O(ε2))

c(1− α)nt
. (28)

Thus, for any training sample S ∈ (H × R)n, any i ∈
{1, ..., n} and any z ∈ H × R, xt =

∑ns
j=1 γjx

s
j + η2, the

following holds:∣∣`(yt − 〈w, xt〉)− ` (yt − 〈w′, xt〉)∣∣
≤ σ

∣∣∣∣∣∣
〈
w − w′,

ns∑
j=1

γjx
s
j + η2

〉∣∣∣∣∣∣
≤ σ

√∑
j

〈
w − w′, xsj

〉2
(r2 +O(ε2))

≤ 2ασ2(r2 +O(ε2))2

c(1− α)nt
. (29)

This completes the proof of Theorem 4. �
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