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Abstract—Overall energy consumption in modern computing
systems is significantly impacted by idle power. Power gating, also
known as C6, is an effective mechanism to reduce idle power.
However, C6 entry incurs non-trivial overheads and can cause
negative savings if the idle duration is short. As CPUs become
tightly integrated with GPUs and other accelerators, the incidence
of short duration idle events are becoming increasingly common.
Even when idle durations are long, it may still not be beneficial to
power gate because of the overheads of cache flushing, especially
with FinFET transistors.

This paper presents a comprehensive analysis of idleness
behavior of modern CPU workloads, consisting of both consumer
and CPU-GPU benchmarks. It proposes techniques to accurately
predict idle durations and develops power gating mechanisms that
account for dynamic variations in the break-even point caused
by varying cache dirtiness. Accounting for variations in the
break-even point is even more important for FinFET transistors.
In systems with FinFET transistors, the proposed mechanisms
provide average energy reduction exceeding 8% and up to 36%
over three currently employed schemes.

I. INTRODUCTION

Dynamic and leakage power reduction is a first-order
design goal of modern processor architects. Dynamic power
is lowered by reducing the work required for accomplishing
a task [48], or by utilizing dynamic voltage and frequency
scaling (DVFS) to run the task at lower frequency and volt-
age [5]. Leakage power, however, is not related to processor
activity but is more closely tied to the design choices required
to achieve high frequency operation with smaller devices and
lower maximum supply voltages [13]. Leakage power scales
with supply voltage, but reducing the supply voltage only gets
you so far; the only way to eliminate it completely is by
removing or gating the power supply, referred to as power
gating. It is also referred to as entering core-C6 or C6.

Past work has addressed the problem of reducing leakage
power during active times by power gating cores [29] [32] [39],
caches [60], and components within the core [36] [41].
However, as [29] and [56] show, leakage power and global
clock power is also a significant issue when the processor is
idle or halted. In the AMDTM 15h family of processors, for
example, the core power drops significantly when the machine
is halted because the pipeline is idle and the local clocks are
gated. However, global clocks and leakage power from caches
and logic still dissipate 35% of maximum power. The core
power diminishes to near zero only when the module is power
gated with the core and L2 cache entering C6 [29].
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Fully exploiting core idle time requires more than just
power gating the core when it is not running any jobs.
Rather, a large number of important consumer computing
applications have significant idle time while the application
is “running.” Such idle time is characterized by many short
idle events. Idleness while running applications happens for
several reasons, such as the interactive or I/O-intensive nature
of the applications or insufficient parallelism to keep all cores
busy [31] [14]. The inclusion of general purpose programmable
GPUs [32] [39] and hardware accelerators [18] [35] [20] [1]
along with new architectural directions (e.g., addressing the
dark silicon challenge [27]) and software directions [40] are
expected to further increase the appearance of rapid idleness
even in traditional compute intensive application domains.

To achieve energy proportional computing [10], the overall
power of the system should be proportional to the work
accomplished. This is only possible if the system dissipates
little power when idle. However, there are three reasons why
it may be difficult to reduce or eliminate idle power. First,
transitioning between active and C6 requires time and energy
to move state into and out of cores/caches and ramp voltage
supply. Second, much of the idle time in modern applications
is composed of short duration idle events, where it is not
beneficial to enter C6. Third, the amount of state that needs to
be moved varies – depending on workload and how long the
core was active before becoming idle.

Existing power-gating techniques assume the existence of
a break-even point – if the core will be idle longer than that
break-even time, it should be gated, otherwise it should not.
This work demonstrates that no such static point exists, and in
fact the break-even point is dynamic, different for every idle
event. This is because the cost of gating is heavily influenced
by the time to flush the cache, which varies according to the
number of dirty lines.

Fig. 1(a) shows the average number of idle events per
second (line) and average percentage of the cache that is
dirty when the core becomes idle (bar), across a subset of
consumer and CPU-GPU applications discussed in Section II.
For optimal power savings, the idle time of the application
should be characterized by very few idle events. Unfortunately,
most applications have a high frequency of idle events, ranging
from an average of about 110 events per sec (or 9msec
between idle event starts) (VideoScaling) to 3,000 events per
sec (or about 300 usec between idle events) (StartApps). Also,
applications differ significantly in the amount of cache that is
dirty on idle, ranging from nearly 0% (ColorFill) to as much
as 60% (WebBrowser). This makes it difficult to predict when
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Fig. 1: (a) Average number of idle events per sec (line) and average percentage of cache dirty on idle (bar). (b) Impact
of idle management policies on average power (modeled) for 16nm FinFET.

it is advantageous to enter the C6 state.

Fig. 1(b) shows the power associated with each workload
using different idle power management schemes. All bars show
the average power for the application for FinFET transistors at
16nm, broken down into power while active (Active) and power
while idle. The idle power is further segmented into power
when the core is idle but has not entered C6 (Clock Gated)
and the power associated with the core entering and exiting
C6 (C6 Overheads). Results are shown for never entering
C6 (Never), always entering C6 (Always), a perfect duration
predictor for entering C6 (Duration Oracle) that assumes an
exact knowledge of idle durations but cache dirtiness as the
average of actual dirtiness across all benchmarks, and a perfect
duration and dirtiness predictor (Duration & Dirtiness Oracle)
that has precise knowledge of both durations and dirtiness.

The results demonstrate that there can be significant ben-
efit from entering C6. However, if not done carefully, C6
overheads may completely erase the gains from power gating
(StartApps, WebBrowser) and we lose both power and perfor-
mance [45] [12] [46] [55]. Also, even perfect knowledge of
the durations of idle events is not enough (ColorFill, Particles),
unless combined with the knowledge of cache dirtiness.

The era of increasing idleness in CPU cores presents a
set of new challenges to the research and industrial design
community. Traditional architectural research tends to focus
on applications (SPEC R© , PARSEC, etc.) with unrealistically
few idle periods. These are crafted, in large part, to evaluate
the active behavior of the CPU; in that context, CPU idleness
is uninteresting. The modeling infrastructure often artificially
removes I/O latencies, cannot typically account for acceler-
ators such as GPUs, and simulates time frames too short to
capture interesting idle behavior. This paper addresses these
challenges, allowing us to accurately model idle behavior and
its impact on power and performance. Specifically, this paper:

(1) Examines the idleness and cache dirtiness character-
istics of current and emerging applications, especially in the
realm of CPU/GPU heterogeneous applications;

(2) Clearly delineates the overheads associated with power
gating and develops a power and performance model to char-
acterize the costs and benefits of power gating;

(3) Evaluates power gating methodologies in the context

of current technology as well as with future FinFET transis-
tors, where the leakage and dynamic power trade-offs deviate
significantly vs. existing process technologies; and

(4) Using the model, revisits state-of-the-art idle power
management schemes and develops new algorithms that not
only reduce energy, but also significantly reduce the incidence
of large outliers.

The rest of the paper is organized as follows. Section II
presents an idleness and cache dirtiness analysis of current con-
sumer and emerging heterogeneous applications. Section III
describes the process used for power gating cores, along with
measurements of the time and power associated with each
step in the process. In addition, it presents and verifies the
modeling infrastructure developed for analyzing idle power
management algorithms. Section IV describes existing idle
power management algorithms, their key shortcomings, and
describes our proposed enhancements. Section V presents
results. Section VI describes related work, and Section VII
concludes the paper.

II. UNDERSTANDING APPLICATION IDLE BEHAVIOR

Much of the research on power reduction and management
has focused on power during active computation. However,
recent work has shown that idle behavior and idle power
management is as or more important in systems ranging from
single processor clients [56] [29] [61] to large scale data-
centers [10]. Managing idle power for cores is straightfor-
ward if the idleness duration and cache dirtiness behavior is
predictable or if the idle periods are always long enough to
compensate for the power and performance cost of power
gating. However, neither of these conditions hold in many
current and emerging applications. In this section, we present
a set of important consumer and CPU-GPU benchmarks, and
examine their behavior to determine the viability of different
C6 strategies.

A. Applications

If we are going to model and evaluate techniques for
idle-period power reduction, the first thing we need to do is
identify workloads that have realistic idle behavior. For this
study, we composed a suite of 20 benchmarks (see Table I)
derived from (1) a classic consumer application benchmarking
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TABLE I: Benchmark classification, active power (modeled), events per module, and power for different idle management
policies (modeled) using 28nm planar technology. Oracle assumes perfect knowledge of both idle durations and dirtiness.

Benchmark Description Type Active Events Utilization Never Always Oracle
(W) (per Sec) (%) (W) (W) (W)

ColorFill Graphics color filling Consumer graphics [6] 0.3 1001 0.4 27.1 10.7 10.0

TextureFill Graphics texture filling Consumer graphics [6] 0.5 1039 0.9 27.2 11.1 10.2

Heartwall Medical imaging Emerging CPU-GPU [16] 1.6 168 2.7 26.4 6.8 6.2

Particles DirectX R© GPU test Consumer graphics [6] 3.2 1131 5.4 28.9 14.1 13.1

PicStore Importing pictures from disk Consumer storage [6] 10.1 819 16.9 32.4 18.5 17.9

StartApps Starting of PC applications Consumer storage [6] 10.1 2977 17.0 34.3 32.6 24.3

LavaMD Molecular dynamics Emerging CPU-GPU [16] 13.4 1239 22.5 33.6 24.8 18.4

StartGame Storage test on a PC game Consumer storage [6] 16.1 1611 27.1 36.5 29.1 25.7

KMeans Clustering and data mining Emerging CPU-GPU [16] 20.1 261 34.2 37.0 24.3 23.6

Pathfinder Dynamic programming Emerging CPU-GPU [16] 21.6 2266 36.6 38.5 39.1 27.0

Backprop Pattern recognition Emerging CPU-GPU [16] 23.0 5561 38.8 40.1 61.3 30.6

LUD Dense linear algebra Emerging CPU-GPU [16] 23.2 1041 39.4 39.0 32.4 27.3

DirectX9 DirectX 9 graphics test Consumer graphics [6] 23.4 1988 39.8 40.8 39.2 32.8

Leukocyte Medical imaging Emerging CPU-GPU [16] 24.3 3821 41.2 40.6 51.7 31.2

NN Data mining nearest neighbor Emerging CPU-GPU [16] 27.6 3048 46.4 42.2 49.2 33.4

Gaussian Dense linear algebra Emerging CPU-GPU [16] 29.8 1146 50.7 42.7 39.2 33.2

TextEditor Interactive text editing Consumer interactive [6] 42.6 2281 60.1 54.8 59.1 50.8

WebDecrypt Web browsing and data decryption Consumer interactive [6] 61.8 416 87.0 65.3 64.7 62.9

VideoScaling Video downscaling Consumer media [6] 62.7 107 88.2 65.8 63.9 63.6

WebBrowser Multi-tabbed browsing on Chrome Consumer interactive [6] 67.4 530 94.9 68.9 70.2 68.2

suite (PCMark R© [6]) popularly used in industry; and (2)
heterogeneous CPU-GPU applications (Rodinia [16]). Many of
these applications are common to the consumer domain such as
graphics applications (ColorFill, DirectX9 etc.), storage appli-
cations (PicStore, StartApps etc.), and interactive (TextEditor,
WebBrowser). However, others are targeted at heterogeneous
processors such as AMD APUs [56].

Heterogeneous processors with frameworks such as the het-
erogeneous system architecture (HSA) [1] offer opportunities
for tightly-coupled interaction and easy compute offloading
between the CPU, GPU, and other accelerators. Hence, we
expect to see the CPU sharing computation tasks with other
processors and accelerators in the future [35] [20], leading to
finer-grained interaction between compute entities on the chip.
This will produce more idle time and a higher frequency of
idle events on the CPU.

The Events column in Table I shows the number of idle
events per second per CPU module. There are a total of
two CPU modules for the chip under study as described in
Section III. An idle event is defined as the transition from
active execution to idle. The Utilization column shows the
proportion of active to total time for each application. The
higher the utilization, the more active the application and
higher the power attributed to active execution (Active column).
The table is sorted by increasing utilization, and it ranges from
less than 1% to greater than 94%.

The table also shows the total power associated with each
application when C6 entry is never performed (Never), always
performed (Always) and only performed when beneficial using
precise knowledge of durations and cache dirtiness (Oracle).
These values are derived using the modeling infrastructure
described in Section III. In general, the lower the utilization,
the more opportunity for idle power savings, and the more
significant the relative power difference between never entering
C6 and always or perfectly entering C6. Generalities, however,
do not always hold. For instance, both ColorFill and TextureFill
have very low utilization. However, even with a perfect pre-

dictor, the resulting power is still over 10W, with active state
power contributing less than 1W in both cases. For Heartwall,
however, the power can be brought down to less than 7W even
without the Oracle predictor. Similarly, the higher the number
of events, the more power but Leukocyte has almost twice
the number of events and higher utilization than DirectX9,
but still consumes less power with the Oracle predictor. The
relationship between idle time, idle event frequency, and power
savings is complicated, and the next section examines some
of the characteristics that dictate when and by how much
applications benefit from C6.

B. Idle Event Distribution

Table I shows the frequency of events and an estimate
of idle time (100%-Utilization), but it does not provide any
insights into how the events are distributed. For instance,
Backprop, contains many idle events, and we can calculate
the average duration, but the potential for gating will depend
more on the distribution of idle event times than the average
value. This section examines some of those distributions more
closely.

Fig. 2 shows the distribution of idle events of our ap-
plications collected using the AMD A8-5600K APU and the
Xperf tool set as described in Section III. The y-axis shows
the cumulative distribution function (CDF) of idle events, as a
function of the idle event duration, and the x-axis represents the
event duration (in usec). The figure shows several interesting
trends. For example, a large number of applications have
a majority of their events as short idle events of durations
less than 100usec. Graphics applications such as ColorFill
regularly interrupt the CPU at 1msec granularity because of
the use of multimedia timers in Windows R© to maintain system
responsiveness. Lastly, we observe the OS timer tick inducing
activity every 15.6msec for some of the applications.

Power gating is most effective with long idle events, or
at least predictable-duration events. Examples of predictable
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Fig. 2: Cumulative distribution function (CDF) of idle events.

events are where all idle events are of a fixed duration, or the
idle events are bimodal, either very short or very long, or the
short events come in bursts that can be predicted.

Some of the applications do fall into these predictable
categories. A significant portion of the idle events in Backprop
are events of duration less that 100usec. Hence filtering out
the short duration events (e.g., by delaying entry into C6
until some time has passed), which represent about 90% of
the total number of events, will result in good idle power
savings. However, filtering out short duration events might
be detrimental for other applications such as ColorFill, and
TextureFill. These benchmarks do not have many short duration
idle events, and most of the events and idle time are composed
of 1msec events. By having a static algorithm that always
delays entry into C6 in order to respond to the needs of
Backprop, we will not be able to capture the full power savings
possible for ColorFill and TextureFill.

Other applications are less predictable and thus more
problematic. StartApps, which has low utilization and should
be a good candidate for C6 entry, has many short duration idle
events (>95% are 1msec or less). Therefore, there are very few
long duration idle events, and it is difficult to identify those
long duration events since the events in general are widely
distributed with respect to their idle durations.

Another important factor that can significantly impact C6
decisions is the amount of cache dirtiness that is introduced
by the active execution prior to the CPU becoming idle. Next
we will examine active periods and cache dirtiness properties
of different benchmarks.

C. Cache Dirtiness Characterization

Whenever the CPU becomes idle, dirty lines in the de-
activated caches need to be flushed to either main memory
or caches that are not power gated. Cache dirtiness depends
on the benchmark, as well as the duration that the benchmark
was active before the CPU became idle. This section examines
active time periods and the induced dirtiness.

Fig. 3(a) shows the average durations of active events that
are followed by long idle events. For this particular analysis,
we refer to idle events great than 200usec as long, as they
may potentially be C6 entry opportunities. Fig. 3(b) shows

the growth in cache dirtiness as a function of the active time.
Dirtiness was evaluated by collecting memory traces and doing
cache simulation as explained in Section III.

Fig. 3(b) shows that even for the same active execution
period, benchmarks differ in the cache dirtiness that they
induce. VideoScaling and WebBrowser cause more than 50%
of the cache to be dirty for their average active execution
periods (∼10msec). However, StartGame and PicStore exhibit
a very low growth rate and final level of dirtiness. Although,
WebDecrypt exhibits large active times, the maximum dirtiness
it causes in the cache is ∼20%. Benchmarks also vary in the
time when dirtiness stabilizes; however, all benchmarks exhibit
cache dirtiness growth up to 10msec of active time. On average
across all benchmarks, an active time lasts about 3msec and
causes about ∼15% of the cache to be dirty.

To craft an effective power gating application, we must
understand both application behavior and the power gating
mechanism itself. The next section describes the latter.

III. MODELING C6 TIMING AND OVERHEADS

This section first describes the C6 process used in current
hardware to establish the goals and challenges of different
power gating control policies. Next, it explains our modeling
infrastructure and presents results to validate our methodology.
We use the AMD 2nd Generation A-Series APU (formerly
codenamed ”Trinity”) A8-5600K with a 100W TDP running
Windows 7 in performance mode at 3.6GHz (fixed P0 state
when active) in our study. The A8-5600K contains two dual-
core modules and a GPU core. Each module has two cores (for
a total of four), and the cores in a single module share a front
end, the floating-point unit, and a 2MB L2 cache. Each module
can also be power gated, independent of the other module. A
module is a candidate for power gating if both cores within
the module are idle.

A. C6 Entry and Exit Process

Fig. 4 shows the details of the C6 entry and exit process.
The top half of the figure shows the general steps that occur
when a module is halted but does not enter the C6 sleep state.
As soon as the halt occurs, the local clocks for the module are
gated, resulting in some power savings. However, global clocks
are still operational. Next, P-state changes are initialized to
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Fig. 3: (a) Duration of active events preceding long idle events. (b) Growth of cache dirtiness with time.

drop to lower active states in order to reduce voltage and hence
reduce leakage power consumption. The P-State transition time
is dependent on the absolute voltage change, the rate of voltage
drop and minimum P-state residency requirements imposed by
system management. The cores then continue to be in a clock
gated state. Once work arrives, execution restarts with near
negligible overheads.

In the bottom half of Fig. 4, we show the steps necessary
for a core to enter C6 (i.e., be power-gated). Once idle, the
core can choose to continue to remain in a clock gated state
for some time, a state referred to as PreFlush. The PreFlush
state is used by current generation AMD processors from the
15h family to filter out very short duration idle events [7] and
is conceptually equivalent to the IdlePG heuristic proposed
in [46]. Note that the PreFlush timer can be set to values less
than the time it takes to waterfall P-state changes to the lowest
active state.

As soon as the PreFlush timer expires, all modified data
in the caches are flushed to main memory in the CacheFlush
step. In other systems, the dirty data may be flushed to a non-
gated cache (such as an L3 cache). This operation requires
a variable amount of time depending on the number of dirty
lines in the cache. The PreFlush and CacheFlush steps are
both interruptible (i.e., they can be stopped once started).

After the caches are flushed, the core architectural state
including machine state registers (MSRs) are copied into
memory during StateSave and power is ramped down. The
duration of this step depends on the voltage ramp down time
and reliability limits imposed to reduce voltage swings. After
saving the state, the core enters the PowerGate state. Power-
Gate is the lowest possible power state in which header or
footer power transistors are switched off, effectively removing
voltage from the core and its caches. The power consumed in
C6 state is very low but non-zero [60]. The duration of time at
which the module remains in this state is variable depending
on the length of the idle period.

Once work is again available, the process to bring the core
out of C6 is initiated. Depending on the source, the wake up
interrupt propagates through the northbridge or southbridge
controller to the system management unit and initiates a power
ramp up. After power is ramped up, reset, fuse propagation,
and micro-code patches are applied, followed by the StateRe-
store step to complete the C6 exit. StateRestore copies the

saved system state from the back-up location in the main
memory to the core and resumes normal operation.

Note that the time taken to propagate the interrupt, ramp
up power, and perform StateRestore, manifests as delay and
impacts the start of execution of the next available work (Task
1 execution is delayed in Fig. 4).

StateRestore restores only the architectural state of the core.
Cold cache, TLB, and branch effects are an additional cost of
a C6 event and can increase the duration of the post-C6 active
event Task 1 as shown in Fig. 4. The combined effects of
late start and cold miss penalties reduce the responsiveness
of applications, and may manifest as actual delay in overall
program run-time. Thus, the performance and energy cost of
C6 exit is the sum of physical C6 overheads (fairly constant),
cache flush time (dependent on the workload), and cold start
effects (also dependent on the workload).

B. Simulation Model

Architectural simulation of benchmarks under study is
not possible because of the unavailability of timing-accurate
public domain simulation tools that can execute PCMark 7
under Windows 7 or realistically model the execution of CPU-
GPU benchmarks on real hardware, including graphics drivers
and OS activity. Thus, we developed a trace-driven simulator
to estimate the impact of C6 management on performance
and energy. The simulator replays traces of idle and active
states that are captured using runs of these benchmarks on
our target system hardware (the A8-5600K APU) and is able
to quantify the effects of different C6 policies. The trace
driven methodology we employ is similar to that used in [49]
and [12]. This methodology allows us to combine the accuracy
of real traces of complex application behavior collected on
real hardware with the ability to manipulate the power gating
policies implemented in the architecture. The duration and
power cost of power state transitions is assessed based on
measurements on our actual hardware as described below.

Trace Collection. We capture hardware traces using the
Windows Xperf tool [4]. Xperf is an event-based performance
analysis tool provided in the Windows Performance Toolkit.
Xperf captures all idle and active transition events at one
microsecond granularity for each core. We obtain Xperf traces
at the core level and convert them to activity and idleness
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Fig. 4: CPU behavior and steps in clock gated vs. power gated state.

traces at the module level. If either of the cores in the module
is active, the module is modeled as active.

To obtain estimates of cache dirtiness, we use the AMD
SimNowTM [2] simulation infrastructure to model a Windows
7 based AMD A-Series APU system and collect traces of
memory instructions. SimNow is a functionally accurate in-
struction level platform simulator, allowing us to run full
system simulations to completion. However, SimNow is not
timing accurate and hence its role is limited to only collecting
memory traces in this work. After collecting memory traces,
we use an in-house cache simulator to simulate a 2MB sized
cache and generate average statistics on the expected dirtiness
of the cache for a specified active time.

Micro-benchmarking. In order to determine latencies and
power associated with different steps of the C6 process, we
performe a micro-benchmark analysis on our system when
connected to a power measurement infrastructure. We use the
windows multimedia libraries to initiate interrupts every 1msec
and recorded the change in power at a sample rate exceeding
1MHz for the package. We also vary the PreFlush latency
and perform measurements at latencies of 0usec, 300usec and
800usec respectively. The results of our analysis are shown in
Fig. 5. Note that the power shown in the figure is the combined
power of the CPU and on-chip GPU. The figure shows a single
timer interrupt window, but with three different values for the
PreFlush latency.

Fig. 5 enables us to clearly visualize the time and power
associated with the different C6 steps. We observe active
execution that lasts until 125-200usec followed by P-State
changes or direct entry into power gated stated (for PreFlush
0usec). After P-State changes, we see the processor waiting
in the PreFlush state followed by power gating entry on timer
expiry around 400usec or 850usec. This methodology enables
us to capture precise time periods of the various C6 steps. For
example, StateRestore including power ramp-up takes about
80usec to complete and P-state changes last about 125usec.
We also use this analysis to derive average power levels for
different phases on the C6 process. The analysis gives us good
insights into the C6 process. We see the relatively high in-
efficiencies of staying at clock gated state by comparing the
power of active execution, PreFlush state, and power gated
states. Note that the clock gated power is actually much closer

Fig. 5: Measured package power (msec interrupts).

to active power than power-gated state.

To derive the remaining parameters, we use a combina-
tion of measurements and analytical models. For example,
CacheFlush step latencies are modeled using an analytical
analysis that calculates the time required to flush the cache by
estimating the maximum time required to flush a completely
dirty cache and estimated dirtiness based on the active time
prior to becoming idle supplied by the active time trace. The
maximum time to flush the cache is determined by the time
required to flush a total of 32K cache lines (2MB cache with
64byte cache lines) to the main memory. Assuming reasonable
values of dram and queuing latencies, we derived a time value
in the range of 1-1.5msec for the CacheFlush step for a fully
dirty cache. We assume a value of 1msec as a lower bound
for this step. This is consistent with values in [7]. We assume
no extra power to flush the cache lines to memory beyond the
power consumed by the processor in clock gated state. This
gives a lower bound on the energy costs of power gating.

We derive active power associated with the different cores
of the modules by running single and multi-threaded versions
of compute intensive benchmarks. Cold miss time penalties
are derived by building a regression model based on trace
collection. We first collected active times with power gating off
and then compared them with active times with power gating
always on (PreFlush timer 0usec). We derived a single value
of the active time overhead of cold miss penalties using this
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Fig. 6: Hardware measured vs. modeled at PreFlush 0usec (a) Power gates per second. (b) Active times.

approach. Although we model a single value for cold miss
overhead, this value will also vary based on runtime behavior
and cause even greater variance in the ”break-even point.” The
analysis of this effect is reserved for future work. Lastly, the
power consumed during the cold miss period is assumed to be
the same as the active period.

Table II provides a detailed list of values of different
parameters used in our model along with information as to
how they were derived. Note that the module drops to the
voltage level of P-State P5 to save leakage power during the
PreFlush stage.

Lastly, we use process development kit (PDK) information
and ITRS projections to derive dynamic and leakage scaling
factors from planar 28nm to FinFET 16nm technologies. We
are unable to publicly declare the values, but the important
trends to note are the relative scaling values of dynamic and
leakage power for FinFET transistors. While leakage power
reduces significantly vs. planar transistors, dynamic power
does not scale (or increases) because of increased capacitance
of FinFET transistors. Hence the overheads of power gating
that cause dynamic power consumption proportionally increase
for FinFET transistors vs. planar technologies.

TABLE II: Parameters of the trace based simulation model.

Parameter Value Methodology

Active time Variable Captured using Xperf [4]

Idle time Variable Captured using Xperf [4]

P-State change time 125usec Measured in hardware

PreFlush time Variable Design parameter [7]

Max CacheFlush time 1msec Analytically modeled

CacheFlush time Variable Modeled with mem traces [2]

StateSave time 100usec Measured in hardware

StateRestore time 80usec Measured in hardware

Cold miss penalty 25usec Derived using traces

Single core dyn power 10.9W Measured in hardware

Second core dyn power 6.1W Measured in hardware

P5 Leakage power 8.5W Measured in hardware

P0 Leakage power 14.3W Scaled P5 leakage [29]

Constant dyn power 4.2W Global clock estimates [29]

PreFlush power 12.7W P5 leakage + constant dyn

CacheFlush power 12.7W Same as PreFlush

Avg. StateSave power 8.8W Measured in hardware

Avg. StateRestore power 8.8W Measured in hardware

Leakage at C6 2.1W 5% of peak power [29]

FinFET scaling factors - Derived using PDK/ITRS

Model Verification. In order to validate our trace based
simulation infrastructure, we captured active time traces with

power gating turned off and then with PreFlush timer set to
0usec in hardware. We use the former trace (with no power
gating) to drive our simulations of the latter configuration,
for each of our benchmarks. We then validate the simulation
with two different measurements of the real system with power
gating. The first is the frequency of gating events (measured
with counters on the system under test) and the second is the
average event active time gathered from the real trace. Our
simulation of the latter, in particular, must account for cold
start effects, idle events not power gated, etc. The results are
shown in Fig. 6. For both the tests, we see a very good match
between hardware based measurements and modeling. This
confirms the validity of our timing and cold miss models.

IV. TOWARDS ORACLE C6 ENTRY

As described in Section III, whenever an entity idles there
is an option to either stay in clock gated state or initiate
entry into C6. This section first describes the state of the
art algorithms from commercially available implementations
today. Next, we propose algorithms that outperform state of
the art implemented algorithms in energy efficiency.

A. Existing C6 Techniques

We examine three specific C6 entry algorithms, fixed
preflush filtering, autodemotion, and recent value prediction.

Fixed Preflush Filtering (FPF). The FPF algorithm delays
C6 entry for a fixed amount of time, referred to as the PreFlush
latency, in order to filter out the high frequency, low duration
idle events that can be detrimental to performance and energy.
This scheme is used in production in the AMD 15h processor
systems [7].

Autodemotion. The Autodemotion algorithm also tries to
filter out short duration idle events. Autodemotion assumes that
short duration idle events are clustered and come in interrupt
storms [61]. Therefore, the approach taken in Autodemotion is
to either enable or disable C6 entry based on the frequency of
idle events. If the number is greater than or equal to a threshold
of events/sec for the current time interval, C6 is disabled for
the next time interval. Otherwise, C6 is enabled and the system
immediately enters C6 after P-State changes. The Autodemo-
tion scheme is implemented in the Intel SandyBridge family
of processors [61].
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Recent Value Prediction (RVP). The RVP algorithm
predicts the duration of the current idle event by maintaining
a history and taking the moving average of N previous idle
events. Based on the predicted duration of averaged values, a
decision can be made to enter into C6 or remain clock gated.
The RVP algorithm is used as the idle duration prediction
algorithm in the Linux idle governor [3] [53].

All of the above algorithms rely heavily on a threshold to
choose good operating points – FPF on the preflush latency,
Autodemotion on the number of events that constitute a storm,
and RVP on the history length. We choose a value of 200usec
and 5,000 events per second as thresholds for the FPF and
Autodemotion schemes respectively. The selected values were
found experimentally to be near optimal for our hardware and
workloads. For RVP, we found that using the last 64 values
to predict the idle duration provides the best prediction and
energy efficiency.

Using our simulation infrastructure we performed an eval-
uation of the relative energy efficiency of all the existing
schemes as compared to Oracle gating. Oracle gating is the
best possible power gating scheme – it uses precise information
on the length of the idle events and cache dirtiness to power
gate (immediately) only when it saves power. To summarize
our findings, we found that each of the three schemes fell
short of Oracle gating by at least 6% for planar transistors and
at least 11% for 16nm FinFET transistors. We will present
detailed results in Section V. Out of the three schemes, RVP
worked the best and Autodemotion worked slightly better than
FPF. Next we identify the reasons for the relatively poor energy
efficiency of existing schemes.

B. Key Shortcomings

Each of the three schemes suffers from one or more
significant problems. Although simplistic and easy to imple-
ment in hardware, the FPF scheme divides short and long
events with complete accuracy, but does so by taking a power
hit on every long idle event (that should have been power-
gated immediately). The Autodemotion scheme does a crude
prediction (all events are short or all events are long), and
suffers from limited accuracy as it performs an aggregate
prediction to an unknown number of future events.

Amongst the three schemes, RVP performs the best as
it attempts to use recent history to guess the current event
duration. The relative success of RVP shows that idle events are
correlated enough to allow us to do more accurate predictions.
The success of autodemotion over FPF also implies some level
of predictability. However, the fact the RVP falls short of
the Oracle implies that there is potential for more accurate
prediction than provided by this simple mechanism.

Another very significant contributor to the lack of effi-
ciency in all of the three schemes is that all are based on
the assumption of a static break-even point. As discussed in
Section II, cache dirtiness is a function of the benchmark and
active time prior to the idle event. Fig. 7 shows the variation in
the break-even point for one module of our modeled system,
at different cache dirtiness levels, for both planar 28nm and
FinFET 16nm transistors. With no dirtiness in the cache,
the break-even point is about 200usec for planar and about
425usec for FinFET transistors. Since FinFET transistors offer
significantly lower leakage, it makes sense to start in clock

Fig. 7: Variation in energy break-even point.

gated state longer – hence the longer break-even point for
FinFET transistors.

Fig. 7 clearly demonstrates that the break-even point varies
significantly with cache dirtiness. In fact, it varies over an
extremely wide range of 5X to 7X. Hence, any scheme
that only takes into account (predicted) event durations is
still highly likely to make bad decisions even with perfect
prediction.

Next we propose C6 entry algorithms that address the
main shortcomings of existing techniques – lack of prediction
accuracy and not incorporating cache dirtiness information.

C. Proposed Algorithm

We propose a scheme that predicts idle durations at a
finer granularity (a new prediction for each event), using more
careful analysis of past behavior. The proposed scheme is
expected to be implemented in the system control unit and has
to make sleep-state decisions once every few usec – hence the
computational complexity must remain low.

Linear Prediction (LP). The LP algorithm predicts the
duration of the current idle event by maintaining a history and
making a prediction by building linear prediction models [47]
of previous idle event durations. Linear prediction estimates
future events of a time series as linear functions of P prior
observations as shown in equation 1.

Ŷ (t) =
P∑

i=1

a(i)× Y (t− i) (1)

In the above expression, a(i) represent the prediction co-
efficients and P dictates the number of prediction coefficients
used. The error of the prediction, e(t), is:

e(t) = Y (t)− Ŷ (t) = Y (t)−

P∑

i=1

a(i)× Y (t− i) (2)

We use the Levinson-Durbin method [42] [47] to solve
the above equation for the coefficients which minimize the
mean square error of the prediction. Idle event duration history
may be retained for N events (where N ≥ P) over which the
prediction error is minimized for estimating the coefficients.
This computation has a complexity of NP + P

3 multiply-
accumulate (MAC) operations.
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(a) (b)

Fig. 8: Summary of (a) Energy results. (b) Performance results.

The selection of N and P values are design parameters.
Larger values of these could potentially exploit long-term
recurrence patterns at the expense of increased implementation
costs. Larger values of N could also capture un-correlated data
in the model and reduce performance. We performed a design
space evaluation over the space of N and P and found that
N=1024,P=1 yielded the best prediction accuracy.

Although the LP algorithm requires NP + P
3 MAC

operations, or N+1 when P = 1, this only holds when we do a
new calculation from scratch. If we reuse the prior calculation,
we can do an incremental computation when we add one value
to the history buffer, using two multiplications (one for the
new value, one for the old value popped off the stack), one
subtraction, and one addition. Hence for N=1024,P=1, every
incremental calculation of coefficients can be calculated in
less than 20 operations total. Since the prediction operations
typically happen every few usec, a load of 20 MAC operations
represents a trivial load on system management controllers that
run at speeds of hundreds of megahertz.

Mechanics. First, we use the LP scheme to predict the
duration of each new idle event. Next, we obtain an estimate
or exact calculation of cache dirtiness. The latter can be
easily done with a counter that increments when a clean line
transitions to dirty, and decrements when a line is written
back. Then, the system management unit evaluates potential
power savings by evaluating the dynamic break-even point
and comparing it with the predicted duration. If gating is
found to be beneficial based on power estimates, C6 is entered
immediately, otherwise the module stays in clock gated state
till the end of the idle event. The system management unit also
tracks the accuracy of the prediction scheme at the end of the
idle event once the actual idle duration is available. If there
are large prediction errors consistently, the LP schemes default
to the Autodemotion scheme. The modeled RVP scheme does
the same.

V. RESULTS

We implement Never power gating, Always power gating,
the three baseline industry schemes, our proposed LP predictor
using our modeling environment, and generate power and
performance numbers for each application both for 28nm
planar and 16nm FinFET technologies. The RVP and LP
schemes were evaluated both in the context of a static break-
even and a dynamic break-even calculation. For the former,

they assume a break-even latency based on the C6 delays and
costs associated with the fixed average measure (15%) of cache
dirtiness. For the latter, a dynamic break-even is calculated
based on counters that measure actual dirtiness. This could be
a simple linear calculation based on Fig. 7.

Fig. 8 (a) and (b) summarize the energy and performance
findings over the complete set of benchmarks. All results are
shown relative to the 28nm planar and 16nm FinFET specific
Oracle prediction schemes with perfect knowledge of durations
and dirtiness.

As seen in Fig. 8, both Never and Always have significant
penalties vs Oracle gating. Never has a slight performance
advantage of less than 5% but an energy disadvantage exceed-
ing 50%. Always loses about 15% performance. The impact
of always gating is worse for FinFET 16nm as the ratio of
dynamic energy vs. leakage is high for FinFETs vs. planar,
hence, the cumulative power gating entry and exit overheads
become more significant for FinFET transistors.

All of the baseline industry schemes (FPF, Autodemotion,
and RVP) are more energy efficient than Never and Always
gating. For planar transistors, FPF (13.2%) is much worse
than Autodemotion (7.9%) as the leakage energy costs are
higher in planar transistors. However, for FinFET transistors,
FPF (12.6%) and Autodemotion (11.4%) are more similar.

The RVP+Avg Dirtiness and LP+Avg Dirtiness schemes
only offer a very slight or no advantage over Autodemotion.
This implies that any additional accuracy in the estimation of
idle time is of little use given the inaccuracy of the break-
even point. However, when combined with actual measures of
dirtiness, RVP+Dirtiness and LP+Dirtiness schemes improve
significantly. For FinFET transistors, RVP+Dirtiness improves
to within 7.1% of Oracle, an improvement of more than 5%
over RVP+Avg Dirtiness (12.7%).

LP+Dirtiness out performs every other scheme as it com-
bines a very good predictor together with measures of dirt-
iness. To summarize the performance of LP+Dirtiness, it
reaches within 3% of Oracle performance for both planar and
FinFET transistors. This is nearly an 8% energy advantage
over each of FPF, Autodemotion, and RVP+Avg Dirtiness
for FinFET transistors. The benefits for planar transistors are
more than 4% over all three baseline schemes. Performance of
the LP+Dirtiness scheme reaches within +-1% of the Oracle
scheme on average. These results clearly demonstrate the
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(b)
Fig. 9: (a) Energy for FinFET 16nm. (c) Performance for FinFET 16nm.

benefit of having both a good predictor of idle duration and
accurately computing the dynamic break-even point. Having
one of the two is insufficient.

Fig. 9 (a) and (b) show the energy and performance
comparisons between the FPF, Autodemotion, RVP+Dirtiness,
and LP+Dirtiness schemes for the complete set of benchmarks.
The benchmarks are shown in order of increasing processor
utilization, with ColorFill being the lowest, and WebBrowser
being the highest.

We notice some general trends in the energy results.
FPF generally has higher energy than Autodemote when the
utilization is low, but the trend reverses as utilization increases,
indicating that Autodemote is not as effective at filtering short
duration idle events with higher utilization benchmarks. As
utilization increases, so does the average duration of active
events and cache dirtiness; with long active events between
idle events, even if the idle events are all short, they will never
qualify as a “storm.” Hence, Autodemote tends to power gate
more often and lose efficiency.

Another interesting trend is that RVP+Dirtiness is worse
than FPF on several benchmarks with higher utilization (e.g.,
Pathfinder, Backprop, Gaussian etc.). As utilization increases,
with increasing active times, the duration of idle events de-
creases. FPF filters all short duration idle events regardless

of utilization, and is thus less likely to “miss badly” on
shorter idle events. RVP+Dirtiness may suffer from a lack of
prediction accuracy in such cases and hence FPF outperforms
it. With better prediction, the LP+Dirtiness scheme avoids
this and outperforms FPF, Autodemote and RVP+Dirtiness in
almost all cases.

Fig. 9 (b) shows performance results for the different
benchmarks. In general, Autodemote has the worst perfor-
mance amongst all schemes. It suffers penalties exceeding 5%
on several benchmarks (StartApps, DirectX9, TextEditor etc.).
This is consistent with the reasoning described above; Autode-
mote biases towards gating more often. StartApps shows an
anomaly and loses about 10% performance on FPF even when
the FPF scheme is conservative. The reason for this behavior
lies in the event distributions for the StartApps benchmark. As
shown in Fig. 2, StartApps has about 30% of its idle events
distributed between 200-400usec. Since the FPF scheme uses a
threshold of 200usec it wastes energy and yet does not filter out
these medium sized events. Overall, the LP+Dirtiness scheme
matches closest to Oracle performance.

In many cases, we care not only about performance, but
also the distribution (e.g., the outliers can create long tail
distributions, or worse, delay the completion of an entire
parallel computation). The goal of any management scheme
is to maximize the benefit as well as minimize any outliers.
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Fig. 10: Energy efficiency of C6 management schemes
for FinFET 16nm. Benchmarks are sorted by decreasing
utilization.

Fig. 10 shows the power penalty relative to Oracle for all
four schemes sorted by decreasing utilization. The figure
clearly shows that the LP+Dirtiness scheme not only gives the
best average gain, but also significantly decreases variation,
resulting in a more robust power management algorithm.

VI. RELATED WORK

There have been numerous studies examining workload de-
pendent power management strategies for processors [64] [17]
[62] [58] [63] [54] [23], memory systems [21] [22] [25] [28],
and disks [15] [34] [59]. Rather, the focus of this work
is on idle power reduction. Idle power reduction could be
achieved via (1) platform and component leakage power re-
duction [30] [38]; (2) coarse grain system power management
and scheduling [50] [8] [51] [44]; and (3) fine-grained idle
power management during active execution (e.g., [33] [3]).
Our work falls in the last category. Active state, fine-grained
idle power management work can be further classified in to
four main techniques.

Unit level power management. Prior work proposes
techniques to power-gate sub-components [26] [36], but they
deal primarily with execution units and not full cores. We are
primarily interested in core or module-level power gating.

Processor sleep-state selection. Processor sleep-state se-
lection algorithms have been studied extensively in the past.
Pallipadi et al. [57] introduced the use of moving averages
as a mechanism to perform idle duration prediction. We
compare against this baseline and demonstrate better prediction
performance. Min et al. [53] propose a classification scheme
for interrupts and develop different predictors for different
interrupt sources (e.g., separate predictors for deterministic
and irregular interrupts). Those techniques require information
on interrupt sources from the OS and hence are useful for
software-driven power gating. However, the focus of our work
is hardware based power gating in the system management
unit.

Diao et al. [24] propose a machine learning model to
predict optimum state entry. Benini et al. [11] propose Markov
model based modeling techniques to understand system idle
and active state behavior. Chung et al. [19] develop a learning
tree based idle duration prediction mechanism. While these

sophisticated algorithms help improve prediction accuracy,
they incur high computational costs. Our focus is on active
workloads where state decisions need to be made every few
usecs. Moreover, none of these schemes take cache dirtiness
into account. We demonstrate that even Oracle prediction that
does not use cache dirtiness information is insufficient.

Interrupt manipulation. Another approach to idleness
management is to merge, coalesce, or align interrupts via
scheduling and interrupt management. By suitably manipulat-
ing interrupts, a system can create longer or more predictable
idle durations [52] [43] [37] [65]. Amur et al. [9] propose
interrupt batching in the context of VM idle power manage-
ment. Our proposed techniques are orthogonal to interrupt
manipulation proposals and such manipulation techniques can
augment the mechanism we propose.

Mitigating effects of gating. Lungu et al. [45] and Madan
et al. [46] both demonstrate that it is difficult to develop a
robust power-management scheme that works for all cases and
highlight the need for guarded power gating, which disables
power gating when it produces negative results. This is similar
to the strategy used in the Intel Sandy Bridge processor [61]
in which a high idle-to-active transition rate results in an auto-
demotion mechanism that disables C6 entry until a more stable
phase is reached.

Techniques proposed by Min et al. [53] account for the
performance penalties of frequent mis-predictions of various
target predictors. Amur et al. [9] develop a mechanism to
account for and incorporate models of cache cold miss effects
in making deep sleep entry decisions. Although these are
viable mechanisms for facilitating better use of deep-sleep
modes, this research is orthogonal to our work. All of these
techniques can be used in conjunction with the proposed
research.

VII. CONCLUSION

This work provides a comprehensive analysis of idle behav-
ior in emerging applications on CPU-GPU systems. It shows
that there is no fixed break-even point in core power gating
because of the effects of cache dirtiness. It evaluates existing
state-of-the-art systems, and demonstrates new techniques to
predict when to enter the C6 power gated state. These schemes
are shown to provide average energy reduction exceeding 8%
over existing schemes, and sacrifice almost no performance.
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