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Understanding important features of deep learning models

for segmentation of high-resolution transmission electron

microscopy images
James P. Horwath 1, Dmitri N. Zakharov2, Rémi Mégret3 and Eric A. Stach 1✉

Cutting edge deep learning techniques allow for image segmentation with great speed and accuracy. However, application to

problems in materials science is often difficult since these complex models may have difficultly learning meaningful image features

that would enable extension to new datasets. In situ electron microscopy provides a clear platform for utilizing automated image

analysis. In this work, we consider the case of studying coarsening dynamics in supported nanoparticles, which is important for

understanding, for example, the degradation of industrial catalysts. By systematically studying dataset preparation, neural network

architecture, and accuracy evaluation, we describe important considerations in applying deep learning to physical applications,

where generalizable and convincing models are required. With a focus on unique challenges that arise in high-resolution images,

we propose methods for optimizing performance of image segmentation using convolutional neural networks, critically examining

the application of complex deep learning models in favor of motivating intentional process design.

npj Computational Materials           (2020) 6:108 ; https://doi.org/10.1038/s41524-020-00363-x

INTRODUCTION

In situ and operando experimental techniques, where dynamic
process can be observed with high temporal and spatial
resolution, have allowed scientists to observe chemical reactions,
interfacial phenomena, and mass transport processes to give not
only a better understanding of the physics of materials
phenomena, but also a view into how materials react under the
conditions in which they are designed to perform1,2. As the use of
in situ techniques continues to expand, and technology to enable
these experiments continues to develop, we are faced with the
fact that more data can be produced than can be feasibly
analyzed by traditional methods3,4. This is particularly true for
in situ electron microscopy experiments, where high-resolution
images are captured at very high frame rates. In practice,
hundreds of images can be captured per second. However, many
experimental analyses consider less than one frame per second, or
even one frame for every several minutes5. Methods for fast and
efficient processing of high-resolution imaging data will allow for
not only full utilization of existing and developing technologies,
but also for producing results with more statistical insight based
on the sheer volume of data being analyzed.
Simultaneously, the field of computer vision provides well

understood tools for image processing, edge detection, and blob
localization that are helpful for moving from raw image data to
quantifiable material properties. These techniques are easy to
apply in many common computer programming languages and
libraries. However, more recent research highlights the processing
speed and accuracy of results obtained through the use of
machine learning6,7. Previously, a combination of traditional image
processing and advanced statistical analysis has be shown to
successfully segment medical images8,9. Deep learning—generally
using multilayer neural network models—expands on other
machine learning techniques by using complex connections
between learned parameters, and the addition of nonlinear

activation functions, to achieve the ability to approximate nearly
any type of function10. With regards to image segmentation and
classification, the use of convolutional neural networks (CNNs), in
which high-dimensional learned kernels are applied across
grouped image pixels, is widespread. CNNs provide the benefit
that their learned features are translationally equivariant, meaning
that image features can be recognized regardless of their position
in the image. This makes such models useful for processing
images with multiple similar features, and robust against variation
in position or imaging conditions11. Additionally, the feature
richness of high-dimensional convolutional filters and the large
number of connections between hidden layers in a neural
network allows for the learning of features that, conventionally,
are too complex to represent, and that make intuitive interpreta-
tion difficult. Much of the literature studying CNNs focuses on
high-accuracy segmentation/classification of large, complex,
multiclass image datasets or upon improving data quality through
super-resolution inference, rather than quantitative analysis of
high-resolution images12. Though conventionally used to specify
atomic-resolution imaging in the field of electron microscopy, in
this work we use the term high-resolution to refer to the pixel
resolution of the microscope camera. While additional memory
requirements alone make processing of high-resolution images
difficult, the scale of features and possible level of precision also
changes as a function of image resolution. Most importantly, for
the simple case of particle edge detection, the boundary between
classes in a high-resolution image may spread across several
pixels, making segmentation difficult even by hand. Generally,
literature studies of CNNs for image classification are used for
many-class classification with coarse—if any—object localization,
while in the field of electron microscopy fewer individual object
classes exist in a single image, yet precise positioning is required.
Though, it seems, the tools for rapid segmentation of high-

resolution imaging data exist, several points of concern regarding
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the use of deep learning must be acknowledged. First, while the
ease of implementation using common programming tools
enables extension of methods to new applications by nonexperts,
the complexity and still-developing fundamental understanding
of deep learning can lead to misinterpretation of results and poor
reproducibility13,14. Moreover, models can be prone to overfitting
—memorizing the data rather than learning important features
from limited training examples—which can go unnoticed without
careful error analysis15,16. Overfitting occurs when a model has
enough parameters that an unrealistically complex function can
be fit to match every point in a dataset. Thus, a model which
accurately labels data by overfitting will likely fail when shown
new data, since its complex function does not describe the true
variation in the data. Therefore, an overfitted model isn’t useful for
future work. Finally, the high dimensionality of data at inter-
mediate layers of a neural network combined with the compound
connections between hidden layers makes representation, and
therefore understanding, of learned features impossible without
including more assumptions into the analysis. These challenges—
specifically representation and visualization of CNN models—are
areas of active research17,18.
We focus on semantic segmentation of environmental transmis-

sion electron microscopy (ETEM) images of supported gold
nanoparticles19–22. Ensembles of supported nanoparticles are
important for industrial catalysis, deriving their exceptional
catalytic activity from surface energy resulting from the high
amount of under-coordinated surface atoms relative to the
particle’s bulk volume. On a thermodynamic basis, the high
surface energy that allows for effective catalysis also provides a
driving force for nanoparticle sintering through a variety of
mechanisms23,24. Theory exists to describe the mean-field process
of Ostwald ripening and basics of nanoparticle coalescence, yet
local effects and interparticle interactions cause deviations from
our theoretical understanding. Obtaining precise sizes and
locations of nanoparticles as a function of space and time is
imperative to describing nanostructural evolution, and developing
a physical understanding of the processes leading to catalyst
degradation by particle growth. Thus, our high-contrast images of
supported gold nanoparticles provide a simple, yet important,
case study for developing efficient methods of image segmenta-
tion so that individual particle-scale changes can be studied.
Building on previous work on image segmentation, automated

analysis, and merging deep learning within the field of materials
science, we study a variety of CNN architectures to define the
most important aspects for the practical application of deep
learning to our task. We discuss how image resolution affects
segmentation accuracy, and the role of regularization and
preprocessing in controlling model variance. Further, we investi-
gate how image features are learned, so that model architectures
can be better designed depending on the task at hand. By using a
simpler approach to semantic segmentation, in contrast to poorly
understood and highly complex techniques, we intend to show
that conventional tools can be utilized to construct models that
are both accurate and extensible.

RESULTS

High-resolution image segmentation

Particularly in the field of medical imaging, studies regarding
similar image segmentation tasks have been published25,26. In
these cases, an encoder–decoder, or ‘hourglass’-type CNN
architecture was found to be well suited to segmentation tasks,
where spatial positions of features are key. With this approach,
successively deeper convolutional/max-pooling layer pairs (added
to decrease spatial resolution while simultaneously increasing
feature richness) are combined with up-sampling convolutional
layers that aim to rescale the image back to a higher resolution,

while decreasing the feature dimension of the image
source21,27,28. In many cases, however, these tasks are used to
identify whether a specific feature or object is present or absent,
not to measure the size of such features with any level of
precision. Correspondingly, our tests show that this network
structure successfully identifies nanoparticle pixels in our images
with 512 × 512 resolution, yet consistently misses the centers of
the largest particles (Supplementary Fig. 1).
To improve the segmentation performance, we moved to a

more complex architecture inspired by the UNet29. This model,
rather than increasing kernel size with the goal of expanding the
receptive field, uses skip connections to tie activations in the
encoding stage to feature maps in the decoding stage, in order to
improve feature localization. Skip connections work by concate-
nating encoded and decoded images of the same resolution
followed by a single convolutional layer and activation function to
relate unique aspects of both images (see visual representation in
Supplementary Fig. 2). This improves upon the similar hourglass
architecture by maintaining local environments from the original
image to map features to the output. Results using the UNet-type
architecture on our image set show that the model is able to
consistently recognize both large and small particles, and that it is
robust against varied imaging conditions and datasets (Fig. 1
shows results on images from experiments not represented in the
training set).
Using our earlier approach, we trained the same UNet on higher

resolution images (1024 × 1024 pixels), however, as seen in Fig. 2,
this network was not able to accurately label pixels at nanoparticle
edges, showing instead a blur of uncertainty at the edges.
Moreover, we noticed that training the same model on the same
data more than once would produce different results: while in
some cases training produced image segmentation with wide
edge variation, other training instances gave segmentation results
with nearly perfectly identified particles, with little to no variation
at particle edges. These results likely signal overfitting of the
dataset, with the model “memorizing” the noise rather than actual
features, as raw activation maps (Fig. 3) show that in fact no
features of particles are learned by the model and instead only
noise patterns in the background areas are recognized. This
model, therefore, produces a very accurate particle measurement
on the training dataset, but would not generalize to data from
other experiments or with particles of different sizes (i.e., the same
dataset with a different magnification). This is further highlighted
by the instability of the model with respect to the length of
training time.
Rather than solely increasing the width and depth of the model

to improve performance and stability (we used a four-step UNet-
type architecture for 1024 × 1024 images, as depicted in
Supplementary Fig. 2), the greatest improvement in model
performance comes through understanding where the model
fails when increasing image resolution. Fifteen unique UNet
models were tested with architectural modifications inspired by
the errors observed in our tests. These modifications, and the
motivation for each, are described in Table 1. The effect of
learning rate on model performance was also investigated
empirically in order to determine how to best sample the loss
landscape, but in this regard, we found that a learning rate of
0.0001 is practical and effective for all deep models on our dataset.
Results from all fifteen models are shown in Supplementary Fig.

3. Our initial gauge of performance is qualitatively based on the
ability to detect particles of varying size, sensitivity to noise and
illumination variation in the raw image, and the sharpness of the
activation cutoff at particle edges. Based on these criteria, best
performance is seen in models with batch normalization only and
batch normalization combined with extra convolutional layers
(Fig. 4, Norm and TwoConv_Norm, respectively). From this, it
appears that batch normalization is the most important factor for
learning particle features from 1024 × 1024 images. Visual
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inspection of Fig. 4 also shows that, in general, blurred images
detect edges further toward the interior of the nanoparticle, and
models with an additional convolutional layer (and no blurring)
are virtually indistinguishable from those with a single up-
sampling convolution. More importantly, only models without
blur are able to consistently and accurately label small, low-
contrast particles.
Aside from applying batch normalization, we find that the only

way to achieve significant segmentation improvement on high-
resolution images is to increase the size of the convolutional
kernel, here from 3 × 3 pixels to 7 × 7 (Supplementary Fig. 4).
However, this greatly increases the number of trainable para-
meters and training time for the model.
To briefly summarize the practical implications of our findings,

continual batch normalization through successive convolutional
layers has a significant positive effect on the performance. For our
dataset, increasing network depth does not appear to increase the
performance of the CNN. A slow learning rate produces the best
results and most stable models, while preprocessing training
images with Gaussian blur seems to increase the risk of overfitting.

Evaluating detection accuracy

Variation in the color scale at particle edges, as seen Fig. 2, led us
to believe that our particle measurement would vary greatly as a

function of the chosen softmax-activation threshold. Intensity line
profiles, as shown in Fig. 5, are helpful in illustrating this edge
variation for two models compared to the intensity of the raw
image. These plots check how two different models perform in
comparison with the edge contrast in the raw image. As the
intensity approaches 1, both models show a slope toward the
particle center showing the extent of uncertainty in classification
at the particle-support interface. Supplemental Figure 5 collects
precision and recall scores for the batch-normalized CNN as a
function of threshold value, and the amount of Gaussian blur
applied compared to a set of 50 validation set labels. Here, high
precision means that the model produces few false positives
(pixels labeled as particle that actually correspond to background),
while recall measures the proportion of particle pixels that were
successfully identified by the model (see individual plots in
Supplemental Fig. 4). Based on these results, we could expect that
the normalized models with no applied blur, and blur (σ= 1) are
stable with respect to precision and recall at a particle activation
threshold values <0.7. The model trained on blurred images with
σ= 2, shows similar performance over a smaller range of stable
thresholds. For our case of binary classification of an unbalanced
dataset, where recognizing particles pixels is more important than
recognizing background, recall is likely the most important
measure for determining a threshold for use in practice. While
we see convergence with maximum precision for the model
without blur around a threshold of 0.7, we realize that our
empirically selected value of 0.4 gives better recall with essentially
the same precision as compared to thresholding at 0.7.

Learning features with a simpler model

Training stability and model overfitting pose large risk for image
segmentation CNNs that are to be used and continually
developed on varied datasets. While performance often increases
with the addition of tunable model parameters, achieving training
convergence and interpretation of the model’s output become
increasingly difficult. With this in mind, we developed a
significantly pared down CNN, with a single convolutional layer
consisting of a single learnable filter followed by softmax
activation on our training data that produced the segmentation
shown in Fig. 6b. The benefit of such an architecture is that, since
the dimensionality of the kernel is the same as that of the image,
we can easily visualize the learned weights (Fig. 6a). Previous work
confirms that edges and other spatially evident image features are
generally learned in the early convolutional layers of a CNN30.
Repeating the same method with another kernel size, this time
7 × 7 pixels rather than the initial 9 × 9, produces a similar filter,
showing that the results are not an artifact of the feature scale.

Fig. 1 UNet architecture improves particle segmentation compared to encoder–decoder architecture. Segmentation results for UNet-type
architecture on 512 × 512 resolution images. a Raw output from the model overlaid on the raw image; notice the sharp activation cutoff at the
particle edges. b Threshold applied to image to show final segmentation result. Yellow arrows indicate small particles that were successfully
recognized. Scale bar represents 50 nm.

Fig. 2 Application of the UNet architecture in high-resolution
images yields uncertainty at particle edges. Using the same UNet
architecture but increasing image resolution makes it more difficult
for the model to localize edge features. Scale bar represents 50 nm.
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Such a single-layer model with logistic activation can be
compared, in practice, to a sparse convolutional autoencoder, or
even the application of a linear support vector machine for logistic
regression31.
While this model is useful for illustrating the power of simpler

machine learning methods, minimal changes are needed to
extend this idea to a model that provides usable, practical
segmentation. Using one convolutional layer, now with 32 filters,
followed by a second, 1 × 1 convolutional layer to combine the
features into a segmented image, we test a shallow but wide CNN
architecture. Again, aside from the convolutional layer used to
combine the extracted features, filters from this shallow network
can be visualized to see what features are being learned from the
data. The F1 score of this simpler model (Fig. 7a, blue line) is
comparable to the performance of the most accurate deep
network described above (batch normalization with no applied
blur—red line). These results illustrate that a model with
significantly fewer parameters and quicker training time can still
produce a usable segmentation. Indeed, as shown in Fig. 7b, the
edges detected by the simpler CNN are in many cases closer to
the actual particle edge than those of the deep model; in this light,
the decrease F1 score in Fig. 7a is likely due to the high rate of
false positives in the simple model. In practice any false positive
clusters are significantly smaller than true nanoparticles, so
filtering by size to further increase accuracy is possible. Our
results suggest that shallow, wide CNNs have enough expressive
power to segment high-resolution image data32.

DISCUSSION

Our initial experiments revealed the importance of a segmenta-
tion model developing an understanding of a pixel’s broader
environment, rather than simply identifying features based on
intensity or distance to an edge. The fact that the simple,
hourglass-style CNNs cannot identify the interior of particle as
such, can be attributed to an inability of the CNN to learn similar
features with different size scales; we suspect that, in an edge-
detecting model, the lack of variation in the interior of a particle
appears similar to the in the background leading to improper
classification. This clearly indicates the importance of semantic
understanding, in which the local environment is considered in
detail. Indeed, increasing the receptive field (kernel size) of the
network to incorporate more local information improves detection
accuracy, yet this approach drastically increases the number of
learnable parameters in the CNN and the training time required
for convergence. This is reinforced in seeing the improved
performance of the UNet compared to the hourglass CNN. Max-
pooling after each convolutional layer effectively increases the
receptive field of the next convolutional layer; concatenating
encoding and decoding activations serves as a comparison of the
same features over a variety of length scales.

While segmentation of 512 × 512 pixel images is possible and
seemingly accurate, higher measurement precision can be
achieved by utilizing higher resolution cameras available on most
modern electron microscopes. For an image with a fixed side
length, increasing pixel resolution decreases the relative size of
each pixel. Decreasing the pixel size increases the possible
measurement precision, and therefore, high-resolution images
are needed to provide both accurate, and consistent particle
measurements. Along these lines, the error introduced by
mislabeling a single pixel decreases as pixel density (image
resolution) increases. It’s important to note that though the
accuracy of manual particle measurements from images with
different resolutions likely changes very little (assuming accuracy
is mainly dependent on the care taken by the person making
measurements), changes in resolution, particularly around particle
edges, can greatly influence automated labeling performance
since edge contrast decreases as interfaces are spread across
multiple pixels. Thus, a unique challenge for high-resolution image
segmentation is developing a model that is able to recognize
interface pixels, which appear fundamentally different from the
interior of a nanoparticle, as contributing to the particle and not
the background. To account for increased complexity of the
features in higher resolution images, we expanded our network
architecture both in depth and width with the idea that a larger
number of parameters would increase the expressive power of the
model. In fact, this deeper and wider model (seen in Fig. 2)
showed little increase in performance compared to the one for
low-resolution images. A more effective approach would match
the strengths of the segmentation models to the features of the
data. For our case of relatively simple images, increasing the
complexity of the model alone does not achieve this goal.
Our findings show that regularization, in this case by batch

normalization, is vital to accurate labeling of an image. When
training from scratch, i.e., without pretrained weights, it has been
shown that the loss function is smoother and model convergence
is better when using batch normalization, which may have a
significant effect on higher resolution images due to the
combinations of strong noise and lack of visually discriminative
features on the scale of the receptive field33. Properly pairing
regularization, in attempt to maintain the distribution of intensity
values in the image, with an activation function suited to allowing
such a distribution is essential. As such, the dying rectified linear
unit (ReLU) problem, where CNN outputs with a negative value are
pushed to zero, removing a significant portion of the actual
distribution of the data, causes loss of information and difficult
convergence10,34. Our use of ReLU activation functions essentially
produces output values in the range (0,∞), which presents a risk of
activation divergence, and can be mitigated by normalization in
successive convolutional layers before the final softmax activation.
Leaky ReLU allows activations on the range (-∞,∞), and the small
activation for negative pixel values combined with batch

Fig. 3 An overfitting network learns no features of nanoparticles, but recognizes background noise. a The CNN output for a given image.
b, c The raw activation values for layers detecting background and particles, respectively. The softmax function combines these activation
maps to produce (a). The scale bar in a represents 50 nm and applies for all three images.
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normalization works to avoid increasing variance with the number
of convolutional layers. In practice, we find that using Leak ReLU
activation solves the problem seen in Fig. 3, where no activation is
seen for the particle class.
These results suggest that, for a common segmentation task,

regularization is more effective than the depth or complexity of a
CNN. This is easily justified, considering that the proper classifica-
tion of boundary pixels, spread across several pixels in high-
resolution images, requires the sematic information stored in the
total local intensity distribution that is lost as the variance of the
intensity histogram increases.
As shown in Fig. 7, the choice of an activation threshold for

identifying nanoparticles can greatly influence the labeling error.
The steep slope of the softmax-activation function used in the
final CNN layer works to force activation values toward 0 or 1—in
an ideal case the number of pixels with activation values between
these values would be minimal. Our experience shows that the
Otsu threshold, which separates the intensity histogram such that
the intraclass variance is minimized, is a practical choice for
segmenting our data35. This makes sense, since, qualitatively, CNN
output shows a large peak close to 0 activation representing the
background with nearly all pixels with higher activation values
corresponding to particles. However, it can be shown mathema-
tically that the calculated Otsu threshold may mislabel the class
with a wider intensity distribution36. Therefore, thresholding
datasets with a lower signal-to-noise ratio would likely be more
difficult. In these cases, it is imperative that a large dataset—which

is representative of the data in question—is used for training, as
choosing low threshold values, even when they produce usable
results, makes it difficult to recognize overfitting.
An effective machine learning model requires a balance

between the number of learnable parameters, the complexity of
a model, and the amount of training data available in order to
prevent overfitting and ensure deep learning efficiency32,37. In an
efficient model, a vast majority of the weights are used, and vital
to the output. In practice though, deep networks generally have
some amount of redundant or trivial weights38. In addition to
efficiency, several issues have come to light regarding the use of
deep learning for physical tasks that require an interpretable and
explainable model, as this often leads to better reproducibility and
results that generalize well18,37. Even for computer vision tasks,
where feature recognition doesn’t necessarily give physical
insight, an interpretable model is valuable so that sources of
error can be understood when applied to datasets consisting of
thousands of images, each of which cannot feasibly be checked
for accuracy. Our main goal in employing a single-layer neural
network was to provide a method for visualizing learned kernels
that show the most important features of an image for binary
classification. The visualization of our trained kernel (Fig. 6a) can
be interpreted in two ways. First, we can conceive that the
algorithm is learning vertical and horizontal lines (dark lines),
potentially similar to basic Gabor filters for edge detection—
though it is missing the characteristic oscillatory component—
combined with some amount of radially symmetric blur (light
gray). Alternatively, we can envision that the horizontal/vertical
lines could be an artifact of the electron camera or data
augmentation method meaning that the learned filter represents
an intensity spread similar to a Laplacian of Gaussian (LoG) filter,
which is used to detect blobs by highlighting image intensity
contours. As a simple test of our supposition, Supplementary Fig. 6
shows that a sum of a horizonal Gabor filter, vertical Gabor filter,
and Gaussian filter qualitatively produces a pattern similar to our
learned kernel.
As mentioned, increasing the width of a shallow network (in this

case from 1 to 32 filters) is enough to make a simple model more
usable. Though 32 filters (visualized in Supplementary Fig. 7) may
be too many filters to easily compare for visually extracting useful
information, it is possible to see a general trend: filters are learning
faint curved edges. Moreover, taking the mean of all 32 filters
(Supplementary Fig. 8) shows a similar pattern as Fig. 6a with
slight rotation. Further analysis of the set of 32 filters would
require regularization of the entire set of weights to allow for more
direct comparison; however, it is possible to imagine a case where,
with a properly tuned receptive field in the convolutional layer,
more subtle image features than hard lines could be revealed
through visualizing a learned kernel. Based on these results, we
expect that designing a shallower neural network that retains the
local semantics learned in an encoder–decoder or UNet

Table 1. Summary of difficulties in segmenting high-resolution images.

Problem Modification Motivation

Particle features not recognized Additional convolutional layer at each up-
sampling step

Successive convolutional layers work to relate spatial and feature
dimensions, not just concatenate29,30

Unclear boundaries at
particle edges

Preprocessing with Gaussian blur Noise makes actual features difficult to detect, reducing frequency
of variation makes physical features apparent

No activation in particle
output layer

Apply leaky ReLU activation Small activations are pushed towards 0 (“dying ReLU problem”)10,31

Large variation in raw
activation values

Add batch normalization after each
convolutional layer

Regularize model variance at each step to maintain original
intensity distribution32

Each potential problem is described, along with a data-driven approach to a solution.

Fig. 4 Otsu threshold contours of six CNN models overlaid on a
section of a test image. The model with batch normalization only
consistently provides the most accurate segmentation. Each colored
contour refers to a different model output: red—TwoConv_Blur1,
blue—TwoConvNorm_Blur1, green—Norm_Blur1, purple—Two-
Conv, orange—TwoConv_Norm, and yellow—Norm.
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architecture would make a generalizable model for particle
segmentation more realistic.
In summary, we have systematically tested several design

aspects of CNNs with the goal of evaluating deep learning as tool

for segmentation high-resolution ETEM images. With proper
dataset preparation and continual regularization, standard CNN
architectures can easily be adapted to our application. While
overfitting, class imbalance, and data availability are overarching

Fig. 5 Visualizing intensity profiles for specific particles shows segmentation differences between models. Intensity profiles for selected
particles in a training image. Line scans show the intensity variation for each particle in the raw image (solid), network with batch
normalization (dotted), and network with batch normalization and extra convolutional layers (dashed).
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challenges for the use of machine learning in materials science, we
find that knowledge of data features and hypothesis-focused
model design can still produce accurate and precise results.
Moreover, we demonstrate that meaningful features can be
learned in a single convolutional layer, allowing us to move closer
to a balance between state-of-the-art deep learning methods and
physically interpretable results. We evaluate the accuracy of
several deep and shallow CNN models and find evidence that, for
a relatively simple segmentation task, important image features
are learned in the initial convolutional layers. While we apply
common accuracy measures to evaluate our models, we note that
other specially designed metrics may help to define exactly where
mistakes are made, and thereby which features a model is unable
to represent. Whether or not these simplified models reach the
accuracy required for quantification of segmented images, a
learned indication of important low-level image features can help
guide the design of an efficient, parallelizable pipeline for
conventional image processing.
We present a method for simultaneously segmenting images

and visualizing the features most important for a low-level
description of the system. While we don’t derive any physical
insight from the learned features of our images, this approach
could potentially be extended, for example, to a multiclass
classification task where learned kernels could elucidate subtle
pixel-scale differences between feature classes. For our needs, the

interpretability of this basic model helps us to design a
segmentation process where measurement accuracy is limited
by the resolution of our instrumentation, not by our ability to
identify and localize features. Simple segmentation tasks may not
fully utilize a deep CNN’s ability to recognize very rich,
inconspicuous features, but the breadth of literature and open-
source tools from the computer science community are available
for use in other fields and must be applied in order to determine
their limitations. In this regard, we hope to provide a clear
description of how architectural features can be tweaked for best
performance for the specific challenge of segmenting high-
resolution ETEM images.
In all, while computer science research trends toward compli-

cated, yet highly accurate deep learning models, we suggest a
data-driven approach, in which deep learning is used to motivate
and enhance the application of more straightforward data
processing techniques, as a means for producing results that
can be clearly interpreted, easily quantified, and reproducible on
generalized datasets. In practice, the wide availability of technical
literature, programming tools, and step-by-step tutorials simulta-
neously makes machine learning accessible to a wide audience,
while obscuring the fact that application to specific datasets
requires an understanding of unique, meaningful data features,
and of how models can be harnessed to give usable and
meaningful analyses. While common in the field of computer

Fig. 7 An expansion of the simplified CNN produces a segmentation with comparable accuracy to the output of a deep CNN. a Mean
F1 score for UNet (only modified by adding batch normalization) and simple one-layer CNN architectures as a function of Softmax threshold
cutoff. Red and blue curves, and image contours represent results from the UNet and simplified architecture, respectively. Error bands in a
represent the range within a standard deviation of the mean F1 across the validation set. b Visual comparison of nanoparticle detection, using
the Otsu threshold, for the simplified model (blue) and the best performing model (red).

Fig. 6 A one-layer CNN produces a viable segmentation, and the learned kernel is interpretable as an image. The kernel (a) learned by a
single-layer CNN, and the segmentation it produces (b, after softmax activation).
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vision, in practice many of the techniques we discuss are added to
a machine learning model as a black box, with little understanding
of their direct effects on model performance. Framing deep
learning challenges in the light of real physical systems, we
propose means both for thoughtful model design, and for an
application of machine learning where the learned features can be
visualized and understood by the user. In this way, analysis of data
from high-throughput in situ experiments can become feasible.

METHODS

Sample preparation

An ~1 nm Au film was deposited by electron beam assisted deposition in
Kurt J. Lesker PVD 75 vacuum deposition system to form nanoparticles
with an approximate diameter of 5 nm. The film was directly deposited
onto DENSsolutions Wildfire series chips with SiN support suitable for
in situ TEM heating experiments.

TEM imaging

Samples were imaged in an FEI Titan 80–300 S/TEM ETEM operated at
300 kV. Film evolution was studied in vacuum (TEM column base pressure
2 × 10−7 Torr) at 950 °C. High frame rate image capture utilized a Gatan K2-
IS direct electron detector camera at 400 frames per second. Selected
images (Fig. 1, Supplementary Fig. 1) were acquired on a JEOL F200 S/TEM
operated at 200 kV, with images collected on a Gatan OneView camera.

Automated training set generation

Raw ETEM images are processed using a series of Gaussian filters, Sobel
filters, morphological opening and closing, and thresholding algorithms to
produce pseudo-labeled training images (see provided code for reprodu-
cing specifics). All operations are features of the SciKit Image python
package39. As a note, we specify that our dataset is pseudo labeled,
because we take automatically labeled images as ground truth, while
traditionally labeled data is produced manually by experts in the field.
Parameters for each of these processing steps, such as the width of the
Gaussian filter, are chosen empirically, and the same parameters are
applied to all images in the dataset. Depending on the resolution of the
image, and the amount of contrast between the nanoparticles and
background in the dataset (which determines the number of required
processing steps), automated image processing takes between 10 and 30 s
per image. Segmentation by this method is faster than manual labeling for
particle measurement and localization, which would take hours per image.
Training set accuracy is evaluated by overlaying labels on raw images and
visually inspecting the difference, as there is no way to quantitatively check
the ground truth. Examples of processing steps and training data are
shown in Supplemental Fig. 9.
A set of training data was made up of 2400 full ETEM images (1792 ×

1920 pixels), collected during a single experiment, downsized via
interpolation to a resolution of 512 × 512 pixels. Additionally, a second
training set with 1024 × 1024 pixel resolution, made by cropping
appropriately sized sections from a full 1792 × 1920 image, was created
to study the impact of increasing pixel resolution on image segmentation
performance. In practice, it is important to consider artifacts introduced by
resizing images; stretching or compressing images through interpolation/
extrapolation may change local signal patterns. Cropping sections of
images maintains the scale of features in as-collected images, meaning
that a model could potentially be trained on many small images (requiring
less GPU memory), and then directly evaluated on full images since
convolution neural networks do not require specific input/output sizes
once training is complete. Augmentation of the dataset was carried out
using affine transformations and image rotation, as successive images
captured in a short time are not entirely unique/independent.

Programming and training machine learning models

All programming was done in Python, with machine learning aspects using
the PyTorch framework40. The final dataset consisted of 2400 1024 × 1024
pixel images, which was randomly split into training (70%, or 1680 images)
and validation (30%, or 720 images) sets. In order to avoid inherent bias
due to strong correlation between training and test sets in randomly split
consecutive images, a third validation set, collected at a different time but
under the same conditions, should be included; we neglect to use this

extra dataset, as we only work to show trends in performance as a function
of CNN architecture.
In many cases a balanced dataset, where sample sizes of positive and

negative examples are roughly equivalent, is required to avoid systematic
error and bias while training a CNN. In the images considered here, particle
pixels correspond to ~15% of any given image. Though this is quite
unbalanced, we find that the general sparsity of features, and the fact that
clear edges are the most important factor in identification of nanoparticles
in these images, reduce the negative impact of any imbalance.
All CNNs used ReLU activation after each convolutional layer (except

where noted later), the Adam optimizer, and cross-entropy loss
functions41,42. Since cross-entropy loss in PyTorch includes a final softmax
activation, a softmax layer was applied to model outputs for inference. All
models were trained for 25 epochs on our System76 Thelio Major
workstation using four Nvidia GeForce RTX 2080Ti GPUs, with each model
taking 1–2 h to train. We note that longer training periods may be
required; we used this time frame to make experimentation with network
architecture, data preprocessing, and hyper-parameter tuning more
feasible in-house. We gauge that models were stable in this training time
by tracking loss as a function of epoch number and seeing general
convergence. The binary segmentation map that classifies individual pixels
as particle or background was obtained by thresholding predicted softmax
output for each pixel.
To obtain quantitative data on the particles themselves, both the

training set and CNN segmentation output were processed by a connected
components algorithm to produce a labeled image that groups pixels into
particle regions from which properties such as size and position can be
extracted. This labeling, performed on a binary image, generally takes only
one second or less per image
Our base UNet-type architecture for segmenting 512 × 512 images

consisted of three convolutional layers with max-pooling or up-sampling
(where applicable) on both downscaling and upscaling sides29,43. The base
model for 1024 × 1024 images adds an additional level of convolutional
layers to each side of the model. Adding convolutional layers, as described
later to increase segmentation accuracy, refers to adding a successive
convolutional layer after each down-/up-sampling level of a UNet-type
architecture. Supplementary Fig. 2 shows a representation of the CNN
architecture used here.

DATA AVAILABILITY

Contact the corresponding author with requests to view raw data. Sample image sets

and all python code used are publicly available in the GitHub repository for this

project (link provided below).

CODE AVAILABILITY

Python code for training image generation, UNet training, and evaluation of results

are available at https://github.com/jhorwath/CNN_for_TEM_Segmentation.
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