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ABSTRACT

Neural network models have a reputation for being black boxes. We propose
a new method to better understand the roles and dynamics of the intermediate
layers. This has direct consequences on the design of such models and it enables
the expert to be able to justify certain heuristics (such as adding auxiliary losses in
middle layers). Our method uses linear classifiers, referred to as “probes”, where a
probe can only use the hidden units of a given intermediate layer as discriminating
features. Moreover, these probes cannot affect the training phase of a model, and
they are generally added after training. They allow the user to visualize the state
of the model at multiple steps of training. We demonstrate how this can be used
to develop a better intuition about models and to diagnose potential problems.

1 INTRODUCTION

The recent history of deep neural networks features an impressive number of new methods and
technological improvements to allow the training of deeper and more powerful networks.

Despite this, models still have a reputation for being black boxes. Neural networks are criticized for
their lack of interpretability, which is a tradeoff that we accept because of their amazing performance
on many tasks. Efforts have been made to identify the role played by each layer, but it can be hard
to find a meaning to individual layers.

There are good arguments to support the claim that the first layers of a convolution network for
image recognition contain filters that are relatively “general”, in the sense that they would work
great even if we switched to an entirely different dataset of images. The last layers are specific to
the dataset being used, and have to be retrained when using a different dataset. In Yosinski et al.
(2014) the authors try to pinpoint the layer at which this transition occurs, but they show that the
exact transition is spread across multiple layers.

In this paper, we introduce the concept of linear classifier probe, referred to as a “probe” for short
when the context is clear. We start from the concept of Shannon entropy, which is the classic way to
describe the information contents of a random variable. We then seek to apply that concept to un-
derstand the roles of the intermediate layers of a neural network, to measure how much information
is gained at every layer (answer : technically, none). We argue that it fails to apply, and so we
propose an alternative framework to ask the same question again. This time around, we ask what
would be the performance of an optimal linear classifier if it was trained on the inputs of a given
layer from our model. We demonstrate how this powerful concept can be very useful to understand
the dynamics involved in a deep neural network during training and after.

2 INFORMATION THEORY

It was a great discovery when Claude Shannon repurposed the notion of entropy to represent infor-
mation contents in a formal way. It laid the foundations for the discipline of information theory. We
would refer the reader to first chapters of MacKay (2003) for a good exposition on the matter.
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Naturally, we would like to ask some questions about the information contents of the many layers
of convolutional neural networks.

• What happens when we add more layers?

• Where does information flow in a neural network with multiple branches?

• Does having multiple auxiliary losses help? (e.g. Inception model)

Intuitively, for a training sample xi with its associated label yi, a deep model is getting closer to the
correct answer in the higher layers. It starts with the difficult job of classifying xi, which becomes
easier as the higher layers distill xi into a representation that is easier to classify. One might be
tempted to say that this means that the higher layers have more information about the ground truth,
but this would be incorrect.

Here there is a mismatch between two different concepts of information. The notion of entropy fails
to capture the essence of those questions. This is illustrated in a formal way by the Data Processing
Inequality. It states that, for a set of three random variables satisfying the dependency

X → Y → Z

then we have that

I(X;Z) ≤ I(X;Y )

where I(X,Y ) is the mutual information.

Intuitively, this means that the deterministic transformations performed by the many layers of a
deep neural network are not adding more information. In the best case, they preserve information
and affect only the representation. But in almost all situations, they lose some information in the
process.

If we distill this further, we can think of the serious mismatch between the two following ideas :

• Part of the genius of the notion of entropy is that is distills the essence of information to a
quantity that does not depend on the particular representation.

• A deep neural network is a series of simple deterministic transformations that affect the
representation so that the final layer can be fed to a linear classifier.

The former ignores the representation of data, while the latter is an expert in finding good represen-
tations. A deaf painter is working on a visual masterpiece to offer to a blind musician who plays
music for him.

We need a conceptual tool to analyze neural networks in a way that corresponds better to our intuitive
notion of information. The role of data representation is important, but we would also argue that we
have to think about this issue as it relates to computational complexity. A linear classifier is basically
the simplest form of classifier that is neither trivial nor degenerate.

We define a new notion of information that depends on our ability to classify features of a given
layer with an optimal linear classifier. Then we have a conceptual tool to ask new questions and to
get potentially interesting answers.

We end this section with a conceptual example in Figure 1. If X contains an image of the savannah,
and Y ∈ {0, 1} refers to whether it contains a lion or not, then none of the subsequent layers are
truly more informative than X itself. The raw bits from the picture file contain everything.

3 LINEAR CLASSIFIER PROBES

In section 3.1 we present the main concept of this paper. We illustrate the concept in section 3.3.
We then present a basic experiment in section 3.4. In section 3.6 we modify a very deep network
in two different ways and we show how probes allow us to visualize the consequences (sometimes
disastrous) of our design choices.
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(a) hex dump of picture of a lion
(b) same lion in human-readable format

Figure 1: The hex dump represented on the left has more information contents than the image
on the right. Only one of them can be processed by the human brain in time to save their lives.
Computational convenience matters. Not just entropy.

3.1 PROBES

As we discussed the previous section, there is indeed a good reason to use many deterministic layers,
and it is because they perform useful transformations to the data with the goal of ultimately fitting a
linear classifier at the very end. That is the purpose of the many layers. They are a tool to transform
data into a form to be fed to a boring linear classifier.

With this in mind, it is natural to ask if that transformation is sudden or progressive, and whether the
intermediate layers already have a representation that is immediately useful to a linear classifier. We
refer the reader to Figure 2 for a diagram of probes being inserted in the usual deep neural network.

X H
0

H
1 HK Ŷ

Ŷ-1 Ŷ0 Ŷ1 ŶK

Figure 2: Probes being added to every layer of a model. These additional probes are not supposed
to change the training of the model, so we add a little diode symbol through the arrows to indicate
that the gradients will not backpropagate through those connections.

The conceptual framework that we propose is one where the intuitive notion of information is equiv-
alent with immediate suitability for a linear classifier (instead of being related to entropy).

Just to be absolutely clear about what we call a linear classifier, we mean a function

f : H → [0, 1]D

h 7→ softmax (Wh+ b) .

where h ∈ H are the features of some hidden layer, [0, 1]D is the space of one-hot encodings of the
D target classes, and (W, b) are the probe weights and biases to be learned so as to minimize the
usual cross-entropy loss.

Over the course of training a model, the parameters of the model change. However, probes only
make sense when we refer to a given training step. We can talk about the probes at iteration n of
training, when the model parameters are θn. These parameters are not affected by the probes.
We prevent backpropagation through the model either by stopping the gradient flow (done with
tf.stop gradient in tensorflow), or simply by specifying that the only variables to be updated
are the probe parameters, while we keep θn frozen.
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3.1.1 TRAINING THE PROBES

For the purposes of this paper, we train the probes up to convergence with fixed model parameters,
and we report the prediction error on the training set.

It is absolutely possible to train the probes simulatenously while training the model itself. This is a
good approach if we consider about how long it can take to train the model. However, this creates
a potential problem if we optimize the loss of the model more quickly than the loss of the probes.
This can present a skewed view of the actual situation that we would have if we trained the probes
until convergence before updating the model parameters. If we accept this trade off, then we can
train the probes at the same time as the model.

In some situations, the probes might overfit the training set, so we may want to do early stopping on
the validation set and report the performance for the probes on the test set. This is what we do in
section 3.4 with the simple MNIST convnet.

We are still unsure if one of those variations should be preferred in general, and right now they all
seem acceptable so long as we interpret the probe measurements properly.

Note that training those probes represents a convex optimization problem. In practice, this does
mean guarantee that they are easy to train. However, it is reassuring because it means that probes
taken at time θn can be used as initialization for probes at time θn+1.

We use cross-entropy as probe loss because all models studied here used cross-entropy. Other alter-
native losses could be justified in other settings.

3.2 PROBES ON BIFURCATING TOY MODEL

Here we show a hypothetical example in which a model contains a bifurcation with two paths that
later recombine. We are interested in knowing whether those two branches are useful, or whether
one is potentially redundant or useless.

X

co
nca

t

concat

probe prediction error0.75

0.60

0.45

Ŷ

For example, the two different branches might contain convolutional layers with different dimen-
sions. They may have a different number of sublayers, or one might represent a skip connection.
We assume that the branches are combined through concatenation of their features, so that nothing
is lost.

For this hypothetical situation, we indicate the probe prediction errors on the graphical model. The
upper path has a prediction error of 0.75, the lower path has 0.60, and their combination has 0.45.
Small errors are preferred. Although the upper path has “less information” than the lower path, we
can see here that it is not redundant information, because when we concatenate the features of the
two branches we get a prediction error of 0.45 < 0.60.

If the concatenated layer had a prediction error of 0.60 instead of 0.45, then we could declare that
the above branch did nothing useful. It may have nonzero weights, but it’s still useless.

Naturally, this kind of conclusion might be entirely wrong. It might be the case that the branch
above contains very meaningful features, and they simply happen to be useless to a linear classifier
applied right there. The idea of using linear classification probes to understand the roles of different
branches is suggested as a heuristic instead of a hard rule. Moreover, if the probes are not optimized
perfectly, the conclusions drawn can be misleading.

Note that we are reporting here the prediction errors, and it might be the case that the loss is indeed
lower when we concatenate the two branches, but for some reason it could fail to apply to the
prediction error.
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Figure 3: Toy experiment described in section 3.3,
with linearly separable data (two labels), an un-
trained MLP with 32 layers, and probes at ev-
ery layer. We report the prediction error for ev-
ery probe, where 0.50 would be the performence
of a coin flip and 0.00 would be ideal. Note that
the layer 0 here corresponds to the raw data, and
the probes are indeed able to classify it perfectly.
As expected, performance degrades when apply-
ing random transformations. If many more layers
were present, it would be hard to imagine how the
final layer (with the model loss) can get any useful
signal to backpropagate.

3.3 PROBES ON UNTRAINED MODEL

We start with a toy example to illustrate what kind of plots we expect from probes. We use a 32-
layer MLP with 128 hidden units. All the layers are fully-connected and we use LeakyReLU(0.5)
as activation function.

We will run the same experiment 100 times, with a different toy dataset each time. The goal is to use
a data distribution (X,Y ) where X ∈ R

128 is drawn N (0, I) and where Y ∈ {−1, 1} in linearly
separable (i.e. super easy to classify with a one-layer neural network). To do this, we just pick a
w ∈ R

128 for each experiment, and let the label yn be the sign of xT
n
w.

We initialize this 32-layer MLP using glorot normal initialization, we do not perform any training
on the model, and we add one probe at every layer. We optimize the probes with RMSProp and a
sufficiently small learning rate.

In Figure 3, we show the prediction error rate for every probe, averaged over the 100 experiments.
The graph includes a probe applied directly on the inputs X , where we naturally have an error rate
that is essentially zero (to be expected by the way we constructed our data), and which serves as a
kind of sanity check. Given that we have only two possible labels, we also show a dotted horizontal
line at 0.50, which is essentially the prediction error that we would get by flipping a coin. We can
see that the prediction error rate climbs up towards 0.50 as we go deeper in the MLP (with untrained
parameters).

This illustrates the idea that the input signal is getting mangled by the successive layers, so much
that it becomes rather useless by the time we reach the final layer. We checked the mean activation
norm of the hidden units at layer 32 to be sure that numerical underflow was not the cause for the
degradation. Note that this situation could be avoided by using orthogonal weights.

One of the popular explanation for training difficulties in very deep models is that of the explod-
ing/vanishing (Hochreiter, 1991; Bengio et al., 1993). Here we would like to offer another comple-
mentary explanation, based on the observations from Figure 3. That is, at the beginning of training,
the usefulness of layers decays as we go deeper, reaching the point where the deeper layers are
utterly useless. The values contained in the last layer are then used in the final softmax classifier,
and the loss backpropagates the values of the derivatives. Since that derivative is based on garbage
activations, the backpropagated quantities are also garbage, which means that the weights are all
going to be updated based on garbage. The weights stay bad, and we fail to train the model. The
authors like to refer to that phenomenon as garbage forwardprop, garbage backprop, in reference to
the popular concept of garbage in, garbage out in computer science.

3.4 PROBES ON MNIST CONVNET

In this section we run the MNIST convolutional model provided by the tensorflow github repo
(tensorflow/models/image/mnist/convolutional.py) We selected that model for
reproducibility and to demonstrate how to easily peek into popular models by using probes.
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We start by sketching the model in Figure 4. We report the results at the beginning and the end of
training on Figure 5. One of the interesting dynamics to be observed there is how useful the first
layers are, despite the fact that the model is completely untrained. Random projections can be useful
to classify data, and this has been studied by others (Jarrett et al., 2009).

input

images

conv 5x5

32 filters
ReLU

maxpool

2x2

conv 5x5

64 filters
ReLU

maxpool

2x2
matmul ReLU matmul

output

logits

convolution layer convolution layer fully-connected layer fully-connected layer

Figure 4: This graphical model represents the neural network that we are going to use for MNIST.
The model could be written in a more compact form, but we represent it this way to expose all the
locations where we are going to insert probes. The model itself is simply two convolutional layers
followed by two fully-connected layer (one being the final classifier). However, we insert probes on
each side of each convolution, activation function, and pooling function. This is a bit overzealous,
but the small size of the model makes this relatively easy to do.
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(a) After initialization, no training.
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(b) After training for 10 epochs.

Figure 5: We represent here the test prediction error for each probe, at the beginning and at the
end of training. This measurement was obtained through early stopping based on a validation set of
104 elements. The probes are prevented from overfitting the training data. We can see that, at the
beginning of training (on the left), the randomly-initialized layers were still providing useful trans-
formations. The test prediction error goes from 8% to 2% simply using those random features. The
biggest impact comes from the first ReLU. At the end of training (on the right), the test prediction
error is improving at every layer (with the exception of a minor kink on fc1 preact).

3.5 PROBES ON INCEPTION V3

We have performed an experiment using the Inception v3 model on the ImageNet dataset (Szegedy
et al., 2015; Russakovsky et al., 2015). This is very similar to what is presented in section 3.4, but
on a much larger scale. Due to the challenge presented by this experiment, we were not able to do
everything that we had hoped. We have chosen to put those results in the appendix section A.2.

Certain layers of the Inception v3 model have approximately one million features. With 1000
classes, this means that some probes can take even more storage space than the whole model it-
self. In these cases, one of the creative solutions was to try to use only a random subset of the
features. This is discussed in the appendix section A.1.

3.6 AUXILIARY LOSS BRANCHES AND SKIP CONNECTIONS

Here we investigate two ways to modify a deep model in order to facilitate training. Our goal is not
to convince the reader that they should implement these suggestions in their own models. Rather,
we want to demonstrate the usefulness of the linear classifier probes as a way to better understand
what is happening in their deep networks.
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In both cases we use a toy model with 128 fully-connected layers with 128 hidden units in each
layer. We train on MNIST, and we use Glorot initialization along with leaky ReLUs.

We choose this model because we wanted a pathologically deep model without getting involved
in architecture details. The model is pathological in the sense that smaller models can easily be
designed to achieve better performance, but also in the sense that the model is so deep that it is very
hard to train it with gradient descent methods. From our experiments, the maximal depth where
things start to break down was depth 64, hence the choice here of using depth 128.

In the first scenario, we add one linear classifier at every 16 layers. These classifiers contribute to the
loss minimization. They are not probes. This is very similar to what happens in the famous Inception
model where “auxiliary heads” are used (Szegedy et al., 2015). This is illustrated in Figure 6a, and
it works nicely. The untrainable model is now made trainable through a judicious use of auxiliary
classifier losses. The results are shown in Figure 7.

In the second scenario, we look at adding a bridge (a skip connection) between layer 0 and layer 64.
This means that the input features to layer 64 are obtained by concatenating the output of layer 63
with the features of layer 0. The idea here is that we might observe that the model would effectively
train a submodel of depth 64, using the skip connection, and shift gears later to use the whole depth
of 128 layers. This is illustrated in Figure 6b, and the results are shown in Figure 8. It does not work
as expected, but the failure of this approach is visualized very nicely with probes and serves as a
great example of their usefulness in diagnosing problems with models.

In both cases, there are two interesting observations that can be made with probes. We refer readers
to https://youtu.be/x8j4ZHCR2FI for the full videos associated to Figures 5, 7 and 8.

Firstly, at the beginning of training, we can see how the raw data is directly useful to perform linear
classification, and how this degrades as more layers are added. In the case of the skip connection in
Figure 8, this has the effect of creating two bumps. This is because the layer 64 also has the input
data as direct parent, so it can fit a probe to that signal.

Secondly, the prediction error goes down in all probes during training, but it does so in a way that
starts with the parents before it spreads to their descendants. This is even more apparent on the full
video (instead of the 3 frames provided here). This is a ripple effect, where the prediction error in
Figure 6b is visually spreading like a wave from the left of the plot to the right.

X H0
H1 Ŷ

Ŷ-1 Ŷ0 Ŷ1

H2
H3

Ŷ2 Ŷ3

L3

H4
H5

Ŷ4 Ŷ5

H6
H7

Ŷ6 Ŷ7

L7

H8
H9

Ŷ8 Ŷ9

H10
H11

Ŷ10 Ŷ11

L11

H12
H13

Ŷ12 Ŷ13

H14
H15

Ŷ14 Ŷ15

L15

(a) Model with 16 layers, one guide at every 4 layers.
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Ŷ-1 Ŷ0 Ŷ1 Ŷ127

H64
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(b) Model with 128 layers. A skip connec-
tion goes from the beginning straight to the
middle of the graph.

Figure 6: Examples of deep neural network with one probe at every layer (drawn above the graph).
We show here the addition of extra components to help training (under the graph, in orange).

4 DISCUSSION AND FUTURE WORK

We have presented more toy models or simple models instead of larger models such as Inception
v3. In the appendix section A.2 we show an experiment on Inception v3, which proved to be more
challenging than expected. Future work in this domain would involve performing better experiments
on a larger scale than small MNIST convnets, but still within a manageable size so we can properly
train all the probes. This would allow us to produce nice videos showing many training steps in
sequence.

We have received many comments from people who thought about using multi-layer probes. This
can be seen as a natural extension of the linear classifier probes. One downside to this idea is that we
lose the convexity property of the probes. It might be worth pursuing in a particular setting, but as of

7

https://youtu.be/x8j4ZHCR2FI


Under review as a conference paper at ICLR 2017

(a) probes after 0 minibatches (b) probes after 500 minibatches (c) probes after 5000 minibatches

Figure 7: A pathologically deep model with 128 layers gets an auxiliary loss added at every 16
layers (refer to simplified sketch in Figure 6a if needed). This loss is added to the usual model
loss at the last layer. We fit a probe at every layer to see how well each layer would perform if its
values were used as a linear classifier. We plot the train prediction error associated to all the probes,
at three different steps. Before adding those auxiliary losses, the model could not successfully be
trained through usual gradient descent methods, but with the addition of those intermediate losses,
the model is “guided” to achieve certain partial objectives. This leads to a successful training of
the complete model. The final prediction error is not impressive, but the model was not designed to
achieve state-of-the-art performance.

(a) probes after 0 minibatches (b) probes after 500 minibatches (c) probes after 2000 minibatches

Figure 8: A pathologically deep model with 128 layers gets a skip connection from layer 0 to layer
64 (refer to sketch in Figure 6b if needed). We fit a probe at every layer to see how well each
layer would perform if its values were used as a linear classifier. We plot the train prediction error
associated to all the probes, at three different steps. We can see how the model completely ignores
layers 1-63, even when we train it for a long time. The use of probes allows us to diagnose that
problem through visual inspection.

now we feel that it is premature to start using multi-layer probes. This also leads to the convoluted
idea of having a regular probe inside a multi-layer probe.

5 CONCLUSION

In this paper we introduced the concept of the linear classifier probe as a conceptual tool to better
understand the dynamics inside a neural network and the role played by the individual intermediate
layers. We are now able to ask new questions and explore new areas. We have demonstrated how
these probes can be used to identify certain problematic behaviors in models that might not be
apparent when we traditionally have access to only the prediction loss and error.

We hope that the notions presented in this paper can contribute to the understanding of deep neural
networks and guide the intuition of researchers that design them.
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A APPENDIX

A.1 PROPOSAL : TRAIN PROBES USING ONLY SUBSETS OF FEATURES

One of the challenges to train on the Inception v3 model is that many of the layers have more than
200, 000 features. This is even worse in the first convolution layers before the pooling operations,
where we have around a million features. With 1000 output classes, a probe using 200, 000 features
has a weight matrix taking almost 1GB of storage.

When using stochastic gradient descent, we require space to store the gradients, and if we use mo-
mentum this ends up taking three times the memory on the GPU. This is even worse for RMSProp.
Normally this might be acceptable for a model of reasonable size, but this turns into almost 4GB
overhead per probe.

We do not have to put a probe at every layer. We can also train probes independently. We can put
probe parameters on the CPU instead of the GPU, if necessary. But when the act of training probes
increases the complexity of the experiment beyond a certain point, the researcher might decide that
they are not worth the trouble.

We propose the following solution : for a given probe, use a fixed random subset of features instead
of the whole set of features.

With certain assumptions about the independence of the features and their shared role in predicting
the correct class, we can make certain claims about how few features are actually required to assess
the prediction error of a probe. We thank Yaroslav Bulatov for suggesting this approach.

We ran an experiment in which we used data X ∼ N (0, ID) where D = 100, 000 is the number of
features. We used K = 1000 classes and we generated the ground truth using a matrix W of shape
(D,K). To obtain the class of a given x, we simply multiply xTW and take the argmax over the K
components of the result.

x ∼ N (0, ID) y = argmax
k=1..K

(

xTW [:, k]
)

We selected a matrix W by drawing all its individual coefficients from a univariate gaussian.
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Instead of using D = 100, 000 features, we used instead only 1000 features picked at random. We
trained a linear classifier on those features and, experimentally, it was relatively easy to achieve a
4% error rate on our first try. With all the features, we could achieve a 0% error rate, so 4 % might
not look great. We have to keep in mind that we have K = 1000 classes so random guesses yield an
error rate of 99.9%.

This can reduce the storage cost for a probe from 1GB down to 10MB. The former is hard to justify,
and the latter is almost negligible.

A.2 PROBES ON INCEPTION V3

We are interested in putting linear classifier probes in the popular Inception v3 model,
training on the ImageNet dataset. We used the tensorflow implementation available online
(tensorflow/models/inception/inception) and ran it on one GPU for 2 weeks.

As described in section A.1, one of the challenges is that the number of features can be prohibitively
large, and we have to consider taking only a subset of the features. In this particular experiment, we
have had the most success by taking 1000 random features for each probe. This gives certain layers
an unfair advantage if they start with 4000 features and we kept 1000, whereas in other cases the
probe insertion point has 426, 320 features and we keep 1000. There was no simple “fair” solution.
That being said, 13 out of the 17 probes have more than 100, 000 features, and 11 of those probes
have more than 200, 000 features, so things were relatively comparable.

We put linear classifier probes at certain strategic layers. We represent this using boxes in the
following Figure 9. The prediction error of the probe given by the last layer of each box is illustrated
by coloring the box. Red is bad (high prediction error) and green/blue is good (low prediction error).

We would have liked to have a video to show the evolution of this during training, but this experiment
had to be scaled back due to the large computational demands. We show here the prediction errors
at three moments of training. These correspond roughly to the beginning of training, then after a
few days, and finally after a week.
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Figure 9: Inserting a probe at multiple moments during training the Inception v3 model on the
ImageNet dataset. We represent here the prediction error evaluated at a random subset of 1000
features. As expected, at first all the probes have a 100% prediction error, but as training progresses
we see that the model is getting better. Note that there are 1000 classes, so a prediction error of 50%
is much better than a random guess. The auxiliary head, shown under the model, was observed to
have a prediction error that was slightly better than the main head. This is not necessarily a condition
that will hold at the end of training, but merely an observation.
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