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ABSTRACT

We present the concept of network traffic
streams and the ways they aggregate into flows
through Internet links. We describe a method
of measuring the size and lifetime of Internet
streams, and use this method to characterize
traffic distributions at two different sites. We
find that although most streams (about 45 per-
cent of them) are dragonflies, lasting less than 2
seconds, a significant number of streams have
lifetimes of hours to days, and can carry a high
proportion (50-60 percent) of the total bytes on
a given link. We define tortoises as streams that
last longer than 15 minutes. We point out that
streams can be classified not only by lifetime
(dragonflies and tortoises) but also by size (mice
and elephants), and note that stream size and
lifetime are independent dimensions. We sub-
mit that ISPs need to be aware of the distribu-
tion of Internet stream sizes, and the impact of
the difference in behavior between short and
long streams. In particular, any forwarding
cache mechanisms in Internet routers must be
able to cope with a high volume of short
streams. In addition ISPs should realize that
long-running streams can contribute a signifi-
cant fraction of their packet and byte volumes
— something they may not have allowed for
when using traditional “flat rate user bandwidth
consumption” approaches to provisioning and
engineering.

BACKGROUND

MEASURING INTERNET TRAFFIC
The Internet is a global internetwork, sharing
information among millions of computers
throughout the world. Internet users send pack-
ets of information from one machine to another
using various Internet protocols; TCP and UDP
are the most common transport protocols, but
newer standard protocols are starting to appear.

Packets are carried through various links,
from user host to regional Internet service
provider (ISP), regional to backbone ISP, and so
on. Between such links packets are forwarded by

routers using IP; IPv4 is most common, but IPv6
is now beginning to be deployed [1].

Typical users are not interested in packets on
the Internet; they simply run application pro-
grams such as Web browsers, which exchange
packets with other computers as they carry out
user requests. Groups of packets exchanged in
this way are commonly referred to as traffic flows.

To measure traffic flows one examines packet
headers as they pass by on a given link, deter-
mines which flow each packet belongs to using
information extracted from its header, and
counts packets and bytes for each flow. A system
that gathers flow data in this way is called a traf-
fic meter. Such a meter may be free-standing or
built into a device such as a router.

For our investigations we use RTFM, an
Internet standard real-time traffic flow measure-
ment system [2]. The RTFM architecture defines
three entities:
• Meters gather data from packets so as to

produce flow data.
• Meter readers collect flow data from meters.
• Managers specify real-time data reduction by

downloading configuration data (called rule-
sets) to meters, and also specify the intervals
at which meter readers read flow data.
We make our flow measurements with

NeTraMet [3], an open-source implementation of
RTFM. NeTraMet includes an RTFM meter, a
combined manager/meter reader, and a compiler
for SRL (the Simple Ruleset Language, RTFM’s
high-level language for specifying rulesets).

TRAFFIC MIX: MICE AND ELEPHANTS
On any Internet link there is always a mix of
flows from a variety of applications, carried by
various transport protocols, especially TCP and
UDP. UDP provides unreliable datagram deliv-
ery; that is, an application sends UDP packets,
but UDP itself provides no feedback to the
sender. UDP is therefore unaware of any network
congestion; streaming applications often continue
to send data at constant high byte rates.

TCP, on the other hand, not only provides
reliable byte stream delivery, but also uses
feedback from receiving hosts to control its
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sending rate. TCP’s congestion management
algorithms allow a TCP stream to vary its byte
rate, seeking to use the highest possible rate
but lowering the rate when the network
becomes congested. For this reason, TCP is
considered network-friendly.

Early analyses and simulations of TCP behav-
ior focused on steady state behavior, using “infi-
nite source” workloads (e.g., large file transfers),
and assumed that high-volume TCP streams
(network elephants) would not be significantly
affected by the presence of small TCP streams
(network mice). The fundamental difference
between network mice and elephants is that an
elephant’s TCP session extends past TCP’s slow
start phase, so its behavior, including the way it
interacts with other TCP sessions, is controlled
by TCP’s feedback-based congestion manage-
ment algorithms. However, mice cannot be con-
trolled by feedback since they are sent and
received in their entirety before TCP has an
opportunity to apply feedback control.

More recent models of TCP behavior have
increasingly focused on interactions between ele-
phants and mice. For example, Joo et al. [4] ana-
lyzed the expected throughput of TCP streams
and how concurrent streams interact. They found
that multiple elephants can synchronize with each
other, which may cause routers to drop packets.
They state, “although elephants are responsible
for a major proportion of the bytes on the net-
work, the number of packets generated by mice
can be sufficient to create losses from time to
time.” They also examined the dynamics of pack-
et drops and concluded that mice can break up
synchronization effects, leading to more efficient
use of network resources. This breakup effect
may explain why best effort datagram delivery has
served the Internet so well as a lowest common
denominator of network service.

As an alternative to classifying flows by size
(number of bytes), that is, as elephants or mice,
one can also classify flows by their lifetime (in
seconds). Shaikh, Rexford, and Shin [5], using a
60-s timeout, observed flow lifetimes up to 2000
s and found that such “long-lived” flows account-
ed for a high proportion of bytes on a link. They
propose that “load-sensitive” routers might
attempt to find better routes for long-lived flows,
thus improving overall link utilization.

STREAMS, FLOWS, AND TORRENTS:
TRAFFIC KINDS

The term flow has various meanings in different
contexts. For example, in routing a flow is a set
of packets with the same source and destination
IP addresses, all traveling in the same direction.
Internet researchers often use 5-tuples (protocol,
source and destination IP address, and port
number); they refer to these as microflows.

In this article we use the terminology pro-
posed by Brownlee and Murray [6]:
• Streams are individual IP sessions (e.g., TCP

or UDP) between ports on pairs of hosts.
• Flows are sets of packets traveling in either

direction between a pair of endpoints
(which may be hosts, networks, etc.).

• A torrent refers to all the traffic on a given
link.

For our investigations we classify all traffic within
a torrent into four kinds, distinguished by trans-
port protocol: UDP; TCP (the most common); and
other. Because the Web is a dominant application
at some sites, we subdivide TCP into Web (TCP)
and non-Web TCP. We aggregate all streams for
each kind of traffic into one of four flows; we pre-
sent data for these flows in Figs. 1 and 4.

MEASUREMENT METHODOLOGY
The NeTraMet implementation of streams cre-
ates a data structure for each stream within a
flow, and counts each stream’s packets and bytes
until the stream times out, that is, no packets are
observed for a dynamically specified timeout inter-
val [6]. When a stream times out, its packet and
byte counts are used to add a point to its flow’s
stream size and lifetime distributions. Streams
that remain active for long periods of time make
no contribution to the stream distributions.

We have extended the NeTraMet meter to
monitor stream lifetimes, and to automatically
create flows in the meter’s flow table when a
stream remains active for more than a specified
time. Flows created for such long-running (LR)
streams have their packet and byte counters
updated for every packet. We collect data for
these LR stream flows with every meter reading,
so as to obtain time series of packet and byte
counts for each LR stream.

Our NeTraMet ruleset produces one flow for
each of our four traffic kinds. For each flow we
build five distributions:
1-2 To/from bytes: Bytes in each direction of

streams
41 bins, log scale, 30 bytes to 600 kbytes

3-4 To/from packets: Packets in each direction
of streams
41 bins, log scale, 1 to 32,768 packets

5 Flow time: Stream lifetime
41 bins, log scale, 2 s to 15 min

We read our NeTraMet meters every 5 min,
producing a set of five distributions for each 5-
min interval. The counters for each distribution
bin are never reset; instead, we compute the dis-
tribution for each reading interval as the differ-
ence between successive readings. We can
therefore observe variations in the distributions
over periods of hours to days, with a time resolu-
tion of 5 min.

In order to provide higher resolutions for
small and/or short-lived streams we use log
scales for the distributions. Streams with size or
lifetime greater than a distribution’s upper limit
are counted in that distribution’s overflow bin.

Although we collect byte and packet stream
size distributions, in this article we only present
“bytes from” distributions, mainly due to space
limitations, but also because the other distribu-
tions are generally similar to the bytes from ones.
Similarly, the percentage of other traffic we
observe is negligible compared to our other three
traffic kinds; we have not shown it on our plots.

Both our NeTraMet meters run on Linux sys-
tems located at two sites. Our OC3 meter (Auck-
land) observes packet headers using a
commodity 100BaseT Ethernet card via libpcap
[7]; our OC12 meter (UCSD) uses a Dag 3.2
card [8] via direct Linux drivers.

We have

extended the

NeTraMet meter

to monitor

stream lifetimes,

and to

automatically

create flows in

the meter’s flow

table when a

stream remains

active for

more than a

specified time.
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SHORT VS. LONG-RUNNING STREAMS:
DRAGONFLIES AND TORTOISES

When configuring a NeTraMet meter one must
specify a stream-to-flow time; the meter creates
LR flows for all streams lasting longer than
stream-to-flow seconds. In choosing a stream-to-
flow value one must balance the desire to
observe streams lasting for shorter periods
against the costs of collecting and working with
larger data sets. For this investigation we experi-
mented with 5- and 10-min lifetimes before
choosing 15 min as the maximum lifetime of a
short stream; that is, our tortoises are LR streams
with lifetimes greater than 15 min. We find that
15 min is a reasonable compromise, generating
manageable data set sizes that still yield substan-
tial insights into LR stream behavior.

Measuring distributions of shorter flows is
complicated by an “edge effect.” Since a stream is
only counted when it times out, the distribution
counts include streams that started in an earlier
interval but timed out in a given reading interval.
The first bin in our flow time distributions counts
flows with lifetimes up to 2 s, which limits the
edge effect error to a maximum of 0.6 percent.
We find that a high proportion of streams fall in
this first bin, so we describe them as Very-Short
streams (i.e., streams with lifetimes of 2 s or less).

To summarize, we classify streams by lifetime as:
• Very-Short dragonflies, lasting up to 2 s
• Short, lasting up to 15 min
• LR tortoises, lasting more than 15 min
We emphasize that stream size is independent of
stream lifetime.

OBSERVATION SITES
In this section we discuss the Internet traffic
observed at two sites, the University of Auckland
(UA) and the University of California at San
Diego (UCSD). We have collected data at both
sites for eight complete days. Traffic patterns
vary little over those days; our figures show data
for Wednesday, 12 June 2002.

UA runs a campus network serving about
35,000 users. The campus is connected to the
Internet via an OC3 (155 Mb/s) asynchronous
transfer mode (ATM) link; however, this link is
rate-limited to 9 Mb/s by the university’s Inter-
net provider. Our NeTraMet meter is connected
to a 100 Mb/s Ethernet hub located between the
university’s access router and its firewall.

Figure 1a shows stacked bar plots of Web
TCP, non-Web TCP, and UDP traffic at UA vs.
local time. We read our meters every 5 min,
then plot the average bit rate for each 5-min
interval. The bit rate for each kind of traffic is
indicated by the distance between its trace and
the one below it. Furthermore, the topmost
trace shows the whole torrent’s traffic. Figure 1a
shows a typical day for a small enterprise site.
There was little traffic in the early morning
hours, except for a few brief spikes; these proba-
bly indicate periods during which mirroring
servers at UA were updating their content. From
about 7 a.m. the load grew; there was a slight
dip around lunchtime, then the load remained
steady through the afternoon. At about 6 p.m.
the load decreased sharply, rose again slightly in
the early evening, then decreased toward mid-
night. On this link Web traffic was dominant, the
ratio of Web to non-Web TCP traffic remaining
fairly steady at about 80 percent. UDP traffic
contributed few bytes to the load, and there was
almost no traffic other than TCP and UDP.

One distinctive feature of this site is that UA
recovers the costs of Internet connectivity direct-
ly from its users, charging for each megabyte of
data sent or received. Departments are billed
monthly for staff usage, and students are charged
by a real-time access control and billing system.
Clearly the Internet usage patterns of UA users
are influenced by the knowledge that they are
paying for it. For example, UA has not (yet)
seen widespread use of peer-to-peer file sharing.

UCSD is connected to the Internet via an
OC-12 (622 Mb/s) ATM link to the San Diego
Supercomputer Center (SDSC). SDSC has high-

■ Figure 1. Cumulative rate (kilobits per second) for various traffic kinds vs. time of day (HHMM) in 5-min intervals at a) UA and b)
UCSD for 24 h from midnight local time on Wednesday, 12 June 2002.
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speed links to three research networks as well as
a lower-speed connection to the commodity
Internet. Our NeTraMet meter is attached to
UCSD’s OC-12 link via a passive optical splitter.

Figure 1b shows stacked bar plots of UCSD
traffic. UCSD does not attempt to recover per-
byte Internet usage costs, nor does it impose
rate limits on individual Internet connections. In
this environment Internet usage is limited only
by congestion, which will increase as the univer-
sity’s total Internet usage increases. Occasionally
UCSD upgrades its commodity Internet capaci-
ty, historically allowing the load and congestion
cycle to build up again.

UCSD’s total traffic byte volume is 16 times
greater than UA’s nearly all the time, but still
utilizes only about 15 percent of their OC-12
link’s maximum capacity. UCSD also has more
UDP traffic than Auckland; 1 Mb/s at night, ris-
ing to around 10 Mb/s during the day.

At UA Web was the dominant TCP applica-
tion, but UCSD’s Web to non-Web TCP ratio is
only about 50 percent (much less than UA’s 80
percent), indicating that at UCSD a higher pro-
portion of TCP traffic is generated by non-Web
applications.

Overall, the diurnal variations for Web and
UDP traffic suggest that these kinds of traffic fol-
low human activities. Non-Web TCP, however,
has a fairly high background level (about 0.5 Mb/s
at Auckland and 70 Mb/s at UCSD); it varies
about this level, with its UCSD minimum around
8 a.m. and its maximum around 10:30 p.m.

PERCENTAGE OF
STREAMS AND BYTES IN A TORRENT

As well as producing stream packet and byte size
distributions, our NeTraMet ruleset records the
total number of packets and bytes observed in
each traffic flow. For each meter reading we
sum the LR stream byte counts; from these sums
we compute the percentage of bytes in LR

streams. In this section we discuss the LR byte
percentages, together with the percentages of
Very-Short (≤ 2s) and LR (> 15 m) streams at
our two observation sites. Figure 2 plots these
three measures at 5-min intervals over a day for
UA and UCSD.

First, the percentage of LR streams is plotted
with black dots (bottom trace) in Fig. 2, using
the left-hand y-axis scale. At UCSD (Fig. 2b)
about 1.5 percent of the streams were LR, and
this level varied little during the day. At UA
(Fig. 2a) there were only about 0.5 percent LR
streams during the day, but nearly 1.5 percent
from midnight until dawn.

Second, the percentage of Very-Short streams
is plotted with black diamonds (top trace) in Fig.
2, also using the left-hand y-axis scale. At UCSD
(Fig. 2b) there was a clear diurnal variation of
the Very-Short stream percentage from 38 per-
cent around 4 a.m. to about 55 percent around 3
p.m., corresponding well with UCSD’s diurnal
variation in Web traffic shown in Fig. 1b. At
UA, however (Fig. 2a), about 70 percent of the
streams were Very-Short nearly all day. Between
5 a.m. and 7 a.m. the Very-Short stream per-
centage dropped to 50 percent; during that inter-
val there were considerably fewer TCP Web
bytes than non-Web bytes.

Third, the percentage of bytes in LR streams
is plotted with open circles (middle trace) in Fig.
2, using the right-hand y-axis scale. At UCSD
(Fig. 2b) about 50 percent of all bytes were in
LR streams, and this percentage varied little
during the day. At UA (Fig. 2a) only about 5
percent of all bytes were in LR streams, most
likely because UA had much less non-Web TCP
traffic than UCSD.

To summarize:
• About 1.5 percent of UA and UCSD

streams were LR.
• 40 percent (UCSD) to 70 percent (UA) of

the streams were Very-Short, and most of
them appear to be Web traffic.

■ Figure 2. Percentage of Short and LR streams (black symbols using left axis), and percentage of bytes in LR streams (gray symbols
using right axis) vs. time of day (HHMM) in 5 min intervals at a) UA) and b) UCSD for 24 h from midnight local time. Note that
40–70 percent of streams are dragonflies (black diamonds) lasting 2 s or less. About 1.5 percent of streams (black dots) are tortoises
(LR streams lasting more than 15 min)s. They contribute 5–50 percent of a torrent's bytes (gray circles).
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• 5 percent (UA) to 50 percent (UCSD) of all
bytes were in LR streams, and most of them
appear to be non-Web traffic.

SHORT STREAM BEHAVIOR

LIFETIME DISTRIBUTIONS
Figure 3 shows lifetime distributions for short
streams, that is those with lifetimes up to 15
minutes, at UA (Fig. 3a), and UCSD (Fig. 3b).
In both these plots at least 45 percent of the
counted streams lie in the first bin; that is, they
had lifetimes of 2 s or less. We use a logarithmic
scale for the distribution’s y-axis, to reveal the
whole range of percentages. The rest of the dis-
tribution falls away quickly at UA, where there
are few streams with lifetimes above 2.5 min. At
UCSD the lifetime distribution falls away more
slowly, but there are few streams with lifetimes
above 5 min. However, above these lifetimes, the
lifetime distributions slope down gently toward
15 min, our maximum short stream lifetime.

As defined in an earlier section, our LR
streams have lifetimes greater than 15 min.
When an LR stream times out, the meter incre-
ments the overflow bin for its distributions (i.e.,
the distributions for that stream’s flow). The life-
time distribution overflow counts appear as the
high values plotted for y values above 15 min
(i.e., the spikes at the right edge of Figs. 3a and
3b). As we saw on the LR byte percentage plots
(Fig. 2), although there are few LR streams, they
can account for a high percentage of a flow’s
total bytes throughout the day.

The most striking feature of the distributions
in Fig. 3 is that their shapes are similar. At both
sites we observe that the distributions do not
change rapidly with time. At UCSD (Fig. 3b)
there was little change in the shape of the distri-
butions over the eight hours shown. At UA (Fig.
3b), where the link capacity is lower, the propor-
tion of streams with lifetimes between 7.5 and
12.5 min increased during the afternoon. This
increase could indicate that when the UA link’s
byte load is high, not only are there more users,
but those users are working with larger files.

BYTE SIZE DISTRIBUTIONS

Figure 4 shows byte size distributions for short
streams at UCSD; byte size distributions at UA
(not shown) are similar. The distributions are
collected using 41 bins in a log scale from 30
bytes to 600 kbytes. The jagged appearance for
small stream sizes (i.e., below about 300 bytes) is
an artifact of the limited bin resolution for
streams with only a few packets.

For short UDP streams (Fig. 4a), the byte
size distribution has peaks at about 30 and 80
bytes, indicating that a high proportion of UDP
streams have only one or two packets in their
from (i.e., destination to source) direction. Short
UDP stream sizes fall steadily (on a log scale)
from about 300 bytes to 20 kbytes; they also
have a noticeable percentage of streams in the
overflow bin (i.e., with sizes above 600 kbytes).
Successive 5-min distributions vary somewhat
over periods of about 15 min, producing the cor-
rugated effect on the plot.

Short Web streams (Fig. 4b) have high peaks
at 30, 50, 100 and 200 bytes, a local maximum
from about 300 to 800 bytes, a plateau from 1
kbytes to about 40 kbytes, and a fairly steep fall
from there. Since Web streams use TCP, they
require at least two packets in each direction;
hence, the size distribution’s peaks below 300
bytes indicate streams that most likely failed to
establish a TCP session. The local maximum from
300 to 800 bytes is probably for streams carrying
small Web objects (buttons, “file not found” mes-
sages, etc.), and the plateau suggests that Web
objects have a fairly flat file size distribution
below about 40 kbytes, with a power law fall (lin-
ear on the log plot, Fig. 4b) for large files. The 5-
min Web stream size distributions are remarkably
steady, suggesting that Web usage patterns at
UCSD are stable over long periods.

Short non-Web TCP stream distributions
(Fig. 4c) have a stream size peak at 30 and 50
bytes, smaller peaks at 180 and 1500 bytes, and a
steady fall from there to 600 kbytes. The steady
fall suggests that non-Web stream sizes also have
a power law distribution, at least for stream sizes
from about 1500 bytes to 300 kbytes.

■ Figure 3. Stream lifetime distributions at a) UA and b) UCSD. Percent streams vs. lifetime (minutes) for 8 h, 9 a.m. to 5 p.m. local
time on Wednesday, 12 June 2002, in 5-min intervals. Note that although the link data rates differ, the shape of the distribution is simi-
lar for both sites.
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There are also noticeable local maxima at 5
kbyte for Web streams and 90 kbytes for non-
Web streams, indicating transmission of many
objects this size; we have not yet determined
what they were.

To summarize:
• Short stream size distributions for UDP,

non-Web, and Web TCP traffic are distinct-
ly different and stable over periods of hours.

• Our study only reflects data collected at UA
and UCSD, but at this stage we believe
these sites are representative examples of
medium to large Internet-edge networks.

LR STREAM
(TORTOISE) BEHAVIOR

We find that LR streams (i.e., streams lasting
more than 15 min) occur frequently at both UA
and UCSD. To gain a better understanding of
their behavior we selected a representative set of
LR streams and produced thumbnail plots of
their bit rates (kilobits per second) vs. time
(minutes), as shown in Fig. 5. In this section we
comment on the behavior of these streams.
• Figure 5a shows three streams with bit rates

below 60 b/s. At such low bit rates our bit
rate resolution is poor, producing the stepped
effect in the traces. The top trace was an
NTP stream. These are always present, serv-
ing to keep end system clocks synchronized.
The middle trace was an SSH stream that
was mostly quiescent but had occasional
intervals reflecting user activity. The lower
trace was a DNS stream with a diurnal bit
rate pattern, highest during the afternoon.

• Figure 5b shows a 24-h Web stream that
consisted entirely of 20 b/s bursts at half-
hour intervals, suggesting that it was carry-
ing a Web page that was “refreshed”
(redisplayed) every half hour. The apparent
size of the bit rate bursts depends on
whether they happen to fall in one or two
of our 5-min reading intervals.

• Figure 5c shows an FTP file transfer, taking
5 h at a high but variable rate, 50–200 kb/s.
Its high bit rate variance suggests that this
stream was traversing severely congested
Internet paths.

• Figure 5d shows two streams that ran at 180
and 320 kb/s nearly all day, moving about 2.9
and 1.4 Gbytes. Although they were TCP
streams their data rates did not vary much,
indicating that there was little congestion on
their Internet paths. These streams effective-
ly reduced the link’s available capacity by
several hundred kilobits per second.

• Figure 5e shows two near identical Doom
streams that ran for 9 h at 80–200 kb/s.
They were UDP streams, hence their steady
rate for long periods. Their sudden rate
changes presumably correspond to changes
in the state of the game.

• Figure 5f shows a RealAudio stream that
ran at 180 kb/s for 15 h, transferring 1.2
Gbytes. This was a UDP stream; its rate
varied only about +/– 5 kb/s, much less
than the TCP streams in Fig. 5d.

To summarize:

■ Figure 4. Size distributions for short streams at UCSD. Percent of streams vs.
stream size (kbytes) for eight hours, 9 a.m. to 5 p.m. local time on Wednesday,
12 June 2002. Note the clear differences between the three flow kinds.
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• Long, continuous LR streams may be low-
rate (service support or user interaction) or
high-rate (audio/video data streams).

• Brief and medium-duration LR streams
tend to be high-rate, running until some
user-initiated activity is completed.

• TCP LR streams show rate variation as
Internet congestion changes over time, with
rate variations similar for streams sharing
congested links in their Internet paths.

• UDP streams tend to run at fairly constant
bit rates, but these rates change in response
to application dynamics.

LR STREAM LIFETIMES
Figure 6 is a log-log scatter plot showing per-
centage of LR streams vs. LR stream lifetime
(minutes) for Auckland and UCSD. The two
plots cluster around a line, suggesting that
stream sizes follow a power law distribution. The

■ Figure 5. LR stream histories, UA on Thursday 4 April 2002 (b, c) and UCSD on Thursday 28 March 2002 (a, d, e, f). Bit rate (kilo-
bits per second) vs. elapsed time (minutes).
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spread of points around this line is narrow for
lifetimes from 20 to about 100 min; the spread
increases for longer lifetimes.

More points are plotted for UCSD than for
UA, providing more detail for lifetimes above
500 min. Similarly, because there are fewer
points for UA (reflecting the lower traffic rate at
UA), the y-axis has lower resolution for the UA
plot, producing the line at stream percentage
0.06 percent. The two plots are nonetheless simi-
lar, indicating that users at the two sites are run-
ning similar application cross-sections.

CONCLUSION
As recently as July 2000, Zhang et al. [9]
observed that “Internet traffic is now dominated
by mice, that is small objects 10-20 kB in size;
the average web document is only around 30
kB,” but in contrast reported that “the majority
of the packets and bytes belong to elephants.”
Similarly, in April 2001 Brownlee et al. [10] mea-
sured stream byte size distributions and found
that TCP data streams had a 95th percentile of
approximately 15 kbytes.

Since 2000 Internet link speeds have
increased as users migrated to cable modem and
DSL connections, backbone links were upgraded
from OC-3 (155 Mb/s) toward OC-48 (2.4 Gb/s),
and ISPs installed newer faster routers to handle
increasing packet loads. At the same time com-
puter hardware improved; systems with 1 GHz
processors, 512 Mbytes memory, 20 Gbytes disk
drives, and ever-increasing I/O bus speeds
became common. This dramatic increase in net-
work and computer capability has allowed users
to work with ever larger files. As a result we now
observe that the average size of Web objects has
increased considerably, with Web objects up to
50 kbytes becoming common.

Along with increasing file size, the last few
years have seen the rapid growth in usage of an
ever increasing set of peer-to-peer file sharing
systems (e.g., Napster, Gnutella, E-Donkey).
These peer-to-peer applications have significant-
ly changed the traffic mix, so a higher overall
proportion of their streams have large numbers
of bytes. In addition to streaming protocols car-
rying audio and video programs, voice over IP or
multimedia conferencing are increasingly com-
mon. Clearly these trends will continue.

Our current observations confirm that most
streams are very short. At least 45 percent of
streams have lifetimes of 2 s or less (dragonflies),
and about 98 percent of them last less than 15 min.
However, the remaining 1 or 2 percent, which we
call Long-Running streams (tortoises), have life-
times of hours to days and can carry a high propor-
tion (50 to 60 percent) of the total bytes on a link.

We submit that ISPs need to be aware of the
behaviors of short streams. In particular, any for-
warding cache mechanisms in Internet routers
must be able to cope with the high volume, both
absolute and as a percentage, of short streams.
In addition, ISPs should realize that LR streams
can contribute a significant fraction of their
packet and byte volumes, reducing the available
bandwidth of their Internet links.

Lastly, we emphasize that streams can be classi-
fied not only by their size (mice and elephants), but

also by their lifetime (dragonflies and tortoises).
Furthermore, stream size and lifetime are indepen-
dent dimensions; each is of interest in understand-
ing the overall behavior of streams in a torrent.
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■ Figure 6. Stream lifetime distributions, UCSD and UA. Percentage of LR
streams in torrent vs. stream lifetime (minutes).
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