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Accurate approximations to density functionals have recently been obtained via machine learning
(ML). By applying ML to a simple function of one variable without any random sampling, we extract
the qualitative dependence of errors on hyperparameters. We find universal features of the behavior
in extreme limits, including both very small and very large length scales, and the noise-free limit.
We show how such features arise in ML models of density functionals.

I. INTRODUCTION

Machine learning (ML) is a powerful data-driven
method for learning patterns in high-dimensional spaces
via induction. It provides a whole suite of tools for an-
alyzing data, fitting highly non-linear functions, and di-
mensionality reduction [1]. Given a set of training data,
ML algorithms learn via induction to predict new data.
ML methods have been developed within the areas of
statistics and computer science, and have been applied
to a huge variety of data, including neuroscience, image
and text processing, and robotics. We are interested pri-
marily in kernel ridge regression (KRR), which is one
such standard method in ML. In general, the quality of
the KRR learning model performance is highly depen-
dent on the hyperparameters chosen and the size of the
training data.

ML has enjoyed had widespread success in many fields,
and has recently become popular as a tool in quantum
chemistry and materials science [2–10], as shown by the
articles in this special issue. In many of these applica-
tions, many ab-initio calculations are performed, and ML
is applied to various properties of the results of these cal-
culations.

Our primary interest is in creating a much more inti-
mate relation between ML and electronic structure cal-
culations. Many such calculations employ density func-
tional theory, because of its favorable balance between
accuracy and computational efficiency. But all such cal-
culations rely on some approximation of an energy com-
ponent as a functional of the electronic density. In par-
ticular, we wish to explore the applications of ML to the
construction of density functionals [11–15], which have
focused so far on approximating the kinetic energy (KE)
of non-interacting electrons. An accurate, general ap-
proximation to this could make orbital-free DFT a prac-
tical reality. However, the ML methods that have been

developed are quite general and have not been tailored to
account for specific details of the quantum problem. For
example, it was found that KRR could yield excellent re-
sults for the KE functional, while never yielding accurate
functional derivatives [11]. The development of methods
for bypassing this difficulty has been important for ML in
general [14]. In this context, ML provides a completely
different way of thinking about electronic structure. The
traditional ab-initio approach [16] to electronic structure
involves deriving carefully constructed approximations to
solving the Schrödinger equation, based on physical in-
tuition, exact conditions and asymptotic behaviors [17].
On the other hand, ML treats the physics problem as a
stochastic approximation problem and learns by exam-
ple, providing limited interpolation over a specific class
of systems for which training data is available.

A system of N interacting electrons with some exter-
nal potential is characterized by a 3N coordinate wave-
function, which becomes computationally demanding for
large N . In the mid 1960’s, Hohenberg and Kohn proved
a one-to-one correspondence between the external poten-
tial of a quantum system and its one-electron ground-
state density [18], showing that all properties are func-
tionals of the ground-state density alone, which can in
principle be found from a single Euler equation for the
density. Although these fundamental theorems of density
functional theory (DFT) proved the existence of a uni-
versal functional, essentially all modern calculations use
the Kohn-Sham (KS) scheme [19], which is much more
accurate, because the non-interacting KE is found ex-
actly by using an orbital-scheme [20]. This is far faster
than traditional approaches for large N , but remains a
bottleneck. If a sufficiently accurate density functional
for the non-interacting electrons could be found, it could
increase the size of computationally tractable systems by
orders of magnitude.

The Hohenberg-Kohn (HK) theorem guarantees that
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all properties of the system can be determined from the
electronic density alone. The basic tenet of ML is that
a pattern must exist in the data in order for learning to
be possible. Thus, DFT seems an ideal case to apply
ML. ML learns the underlying pattern in solutions to
the Schrödinger equation, bypassing the need to directly
solve it. The HK theorem is a statement concerning the
minimal information needed to do this for an arbitrary
one-body potential.

Some of us recently used ML to learn the non-
interacting KE of fermions in a one-dimensional box
subject to smooth external potentials [11] and of a
one-dimensional model of diatomics where we demon-
strated the ability of ML to break multiple bonds self-
consistently via an orbital-free DFT [12]. Such KE data
is effectively noise-free, since it is generated via determin-
istic reference calculations, by solving the Schrödinger
equation or KS equations numerically exactly. (The
limited precision of the calculation might be considered
“noise,” as different implementations might yield answers
differing on the order of machine precision, but this is
negligble.) There is no noise, in the traditional sense, as
is typically associated with experimental data. Note that
what is considered “noise” depends on what is considered
ground truth, i.e., the data to be learned. In particular,
if a single reference method is used, its error with respect
to a universal functional is not considered noise for the
ML model. A perfect ML model should, at best, precisely
reproduce the single-reference calculation.

As an example, in Fig. 1 we plot a measure of the er-
ror of ML for the KE of up to 4 noninteracting spinless
fermions in a box under a potential with 9 parameters
(given in detail in Ref. 11), fitted for different numbers
of evenly spaced training densities as a function of the
hyperparameter σ (called the length scale), for fixed λ (a
hyperparameter called the regularization strength) and
several different number of training points NT . The scale
is logarithmic,[21] so there are large variations in the fit-
ted error. We will give a more in-depth analysis of the
model performance on this data set in a later section after
we have formally defined the functions and hyperparam-
eters involved, but for now it is still useful to observe
the qualitative behaviors that emerge in the figure. Note
that the curves assume roughly the same shape for each
NT over the range of σ, and that they all possess distinct
features in different regimes of σ.

To better understand the behavior with respect to hy-
perparameters seen in Fig. 1, we have chosen in this pa-
per to apply them to the prototypical regression problem,
that of fitting a simple function of one coordinate. We
also remove all stochastic elements of the procedure, by
considering data points on uniform grids, defining errors
in the continuum limit, etc. This is shown in Fig. 2,
where we plot a measure of the error of ML for a simple
function cosx, fitted in the region between 0 and 1, inclu-
sive, for several NT (represented as values on a grid) as
a function of σ. Note the remarkable similarity between
the features and characteristics of the curves of this fig-
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FIG. 1: The error of the model, ∆T (Hartree), for the
KE of particles in a box (Section IV) as a function of σ,
for fixed λ = 10−10. NT values for each curve are given

in the legend.

ure and those of Fig. 1 (like Fig. 1 before it, we will give
a more in-depth analysis of Fig. 2 later). We explore the
behavior of the fitting error as a function of the number
of training parameters and the hyperparameters that are
used in kernel ridge regression with Gaussian kernel. We
find the landscape to be surprisingly rich, and we also
find elegant simplicities in various limiting cases. After
this, we will be able to characterize the behavior of ML
for systems like the one shown in Fig. 1.

Looking at Fig. 2, we see that the best results (low-
est error) are always obtained from the middle of the
curves, which can become quite flat with enough training
data. Thus, any method for determining hyperparame-
ters should usually yield a length scale somewhere in this
valley. In addition, we also observe that the model error
will decrease with increasing NT . For very small length
scales, all curves converge to the same poor result, re-
gardless of the number of training points. On the other
hand, notice also the plateau structure that develops for
very large length scales, again with all curves converging
to a certain limit. We show for which ranges of hyper-
parameters these plateaus emerge and how they can be
estimated. We also study and explain many of the fea-
tures of these curves. To show the value of this study,
we then apply the same reasoning to the problem that
was tackled in Refs. 11 and 13, which we showcased in
Fig. 1. From the machine learning perspective our study
may appear unusual as it considers properties in data and
problems that are uncommon. Namely there are only a
few noise free data points and all are low dimensional.
Nevertheless, from the physics point of view the toy data
considered reflects very well the essential properties of a
highly relevant problem in quantum physics: the machine
learning of DFT.
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FIG. 2: Dependence of the model error (as a function of
σ) when fitting cosx between 0 and 1 (Section III) for

various NT (shown in the legend) for λ = 10−6.

II. BACKGROUND

In this work, we will first use ML to fit a very simple
function of one variable,

f(x) = cosx, (1)

on the interval x ∈ [0, 1]. We will focus on exploring the
properties of ML for this simple function before proceed-
ing to our DFT cases. We choose a set of x-values and
corresponding f(x) values as the “training data” for ML
to learn from. In ML, the x-values {xj} for j = 1, . . . , NT

are known as features, and corresponding f -values, {fj},
are known as labels. Here NT is the number of training
samples. Usually, ML is applied with considerable ran-
dom elements, such as in the choice of data points and se-
lection of test data. In our case, we choose evenly spaced
training points on the interval [0, 1]: xj = (j−1)/(NT−1)
for j = 1, . . . , NT . To generate the reference data, we
choose 500 evenly spaced points on the interval [0, 1] and
evaluate f(x) over these points; this is our test set.
Using this dataset, we apply KRR, which is a non-

linear form of regression with regularization to prevent
overfitting [1], to fit f(x). The general form of KRR is

fML(x) =

NT
∑

j=1

αjk(x, xj), (2)

where αj are the weights and k is the kernel (which is
a measure of similarity between features). We use the
Gaussian kernel

k(x, x′) = exp
(

−(x− x′)2/2σ2
)

, (3)

a standard choice in ML that works well for a variety
of problems. The hyperparameter σ is the length scale
of the Gaussian, which controls the degree of correlation
between training points.

The weights αj are obtained through the minimization
of the cost function

C(α) =

NT
∑

j=1

(

fML(xj)− fj
)2

+ λαTKα, (4)

where

α = (α1, . . . , αNT
)
T

(5)

and the hyperparameter λ controls the strength of the
regularization and is linked to the noise level of the learn-
ing problem. The exact solution is given by

α = (K + λI)−1f , (6)

where I is the NT × NT identity matrix, K is the ker-
nel matrix with elements Kij = k(xi, xj), and f =
(f1, . . . , fNT

)T .
The two hyperparameters λ and σ not determined by

Eq. (6) must be inferred from the data (see Section III C).
σ can be viewed as the characteristic length scale of the
problem being learned (the scale on which changes of f
take place), as discernible from the data (and thus depen-
dent on, e.g., the number of training samples). λ controls
the leeway the model has to fit the training points. For
small λ, the model has to fit the training points exactly,
whereas for larger λ some deviation is allowed. Larger
values of λ therefore cause the model to be smoother and
vary less, i.e., less prone to overfitting. This can be di-
rectly seen in Gaussian process regression [22], a related
Bayesian ML model with predictions identical to those of
KRR. There, λ formally is the variance of the assumed
additive Gaussian noise in values of f .
KRR is a method of interpolation. Here, we are mainly

concerned with the error of the machine learning approx-
imation (MLA) to f(x) in the interpolation region, which
in this case is the interval x ∈ [0, 1]. As a measure of this
error, we define

∆f =

∫ 1

0

dx (f(x)− fML(x))2. (7)

In the case of the Gaussian kernel, we can expand this
and derive the integrals that appear analytically. To sim-
plify the analytical process, we define

∆f0 =

∫ 1

0

dx f2(x), (8)

as the benchmark error when fML(x) ≡ 0. For the cosine
function in Eq. (1),

∆f0 =

∫ 1

0

dx cos2(x) =
1

2
+

sin(2)

4
≈ 0.7273. (9)

Now we take

∆f =

∫ 1

0

dx f(x)2 − 2

NT
∑

j=1

αj

∫ 1

0

dx f(x)k(x, xj)

+

NT
∑

i,j=1

αiαj

∫ 1

0

dx k(x, xi)k(x, xj). (10)
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where the first integral is given in Eq. (9). Next

∫ 1

0

dx f(x)k(x, xj) =

√

π

8
σe−(γσ)2/2(Cj + C∗

j ), (11)

where

Cj = eiγxj

(

erf

(

xj − iγσ2

σ
√
2

)

+ erf

(

1− xj + iγσ2

σ
√
2

))

,

(12)
erf is the error function, and C∗ denotes the complex
conjugate of C. The last integral is

∫ 1

0

dx k(x, xi)k(x, xj) =
σ
√
π

2
e−(xi−xj)

2/(4σ2)

×
(

erf

(

xi + xj

2σ

)

− erf

(

xi + xj − 2

2σ

))

. (13)

Our goal is to characterize the dependence of the per-
formance of the model on the size of the training data set
(NT ) and the hyperparameters of the model (σ, λ). For
this simple model, we discuss different regions of qual-
itative behavior and derive the dependence of ∆f for
various limiting values of these hyperparameters; we do
all of this in the next few sections. In Section IV, we
discuss how these results can be qualitatively generalized
for the problem of using ML to learn the KE functional
for non-interacting fermions in the box for a limited class
of potentials.

III. ANALYSIS

We begin by analyzing the structure of ∆f as a func-
tion of σ for fixed λ and NT . Fig. 2 shows ∆f as a
function of σ for various NT while fixing λ = 10−6.
The curves have roughly the same “valley” shape for all
NT . The bottom of the valley is an order of magnitude
deeper than the walls and may have multiple local min-
ima. These valleys are nearly identical in shape for suf-
ficiently large NT , which indicates that this particular
feature arises in a systematic manner as NT increases.
Moreover, this central valley opens up to the left (i.e.,
smaller σ) as NT increases— as the training samples be-
come more densely packed, narrower Gaussians are bet-
ter able to interpolate the function smoothly. Thus, with
more training samples, a wider range of σ values will
yield an accurate model.
In addition, a “cusp” will begin to appear in the region

to the left of the valley, and its general shape remains the
same for increasing NT . This is another recurring feature
that appears to develop systematically like the valley. For
a fixed NT , and starting from the far left, the ∆f curve
begins to decrease monotonically to the right, i.e., as σ
increases. The cusps mark the first break in this mono-
tonic behavior, as ∆f increases briefly after reaching this
local minimum before resuming its monotonic decrease
for increasing σ (until this monotonicity is interrupted
again in the valley region). The cusps shift to the left

as NT increases, following the trend of the valleys. This
indicates that they are a fundamental feature of the ∆f
curves and that their appearances coincide with a par-
ticular behavior of the model as it approaches certain σ
values. Note that ∆f decreases nearly monotonically as
NT increases for all σ. This is as expected, since each
additional training sample adds another weighted Gaus-
sian, which should improve the fit.
Fig. 3a again shows ∆f as a function of σ, but for var-

ious λ with NT fixed at 33. As λ decreases, ∆f again de-
creases nearly monotonically and the central region opens
up to the right (i.e., larger σ). Note that the curves
for each λ coincide up to a certain σ before they split
off from the rest, with the lower λ-valued curves break-
ing off further along to the right than those with larger
λ. This shows a well-known phenomenon, namely that
regularization strength λ and kernel length scale σ both
give rise to regularization and smoothing [23]. Addition-
ally, we observe the emergence of “plateau”-like struc-
tures on the right. These will be explored in detail in
Section IIIA 2. Fig. 3b is a contour plot showing a sim-
ilar situation, with the behavior of ∆f for a range of σ
and λ and NT again fixed at 33.

A. Regions of qualitative behavior

In Fig. 4, we plot ∆f as a function of σ for fixed λ
and NT . The three regions labeled I, II, and III denote
areas of distinct qualitative behavior. They are delin-
eated by two arbitrary boundaries we denote by σs (s for
small, between I and II) and σl (l for large, between II
and III). In region I, ∆f decreases significantly as σ in-
creases. The region ends when there is significant overlap
between neighboring Gaussians (i.e., when k(xj , xj+1) is
no longer small). Region II is a “valley” where the global
minimum for ∆f resides. Region III begins where the
valley ends and is populated by “plateaus” that corre-
spond to fML(x) assuming a polynomial form (see Sec-
tion IIIA 2). In the following sections, we examine each
region separately. In particular, we are interested in the
asymptotic behavior of ∆f with respect to NT , σ and λ.

1. Length scale too small

The ML model for f(x), given in Eq. (2), is a sum
of weighted Gaussians centered at the training points,
where the weights αj are chosen to best reproduce the
unknown f(x). Fig. 5 shows what happens when the
width of the Gaussian kernel is too small—the model is
incapable of learning f(x). We call this the “comb” re-
gion, as the shape of fML(x) arising from the narrow
Gaussians resembles a comb. In order for fML(x) to ac-
curately fit f(x), the weighted Gaussians must have sig-
nificant overlap. This begins when σ is on the order of
the distance between adjacent training points. A corre-
sponding general heuristic is to use a multiple (e.g., four
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FIG. 3

times) of the median nearest neighbor distance over the
training set [12]. For equally spaced training data in one
dimension, this is ∆x ≈ 1/NT , so we define

σs = 1/NT (14)

to be the boundary between regions I and II. In Fig. 6, as
the overlap between neighboring Gaussians becomes sig-
nificant the model is able to reproduce the model well but
still with significant error. Note that the common heuris-
tics of choosing the length scale in radial basis function
networks [24] are very much in line with this finding. In
the comb region, ∆f decreases as σ increases in a char-
acteristic way as the Gaussians begin to fill up the space
between the training points. For λ → 0, the weights are
approximately given as the values of the function at the
corresponding training points:

αj ≈ fj , σ ≪ σs. (15)

Thus, for small σ, the weights are independent of σ. Let
∆fσ≪σs

be the error of the model when αj = fj . This
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I II III

FIG. 4: Model error ∆f as a function of σ for NT = 20
and λ = 10−6. We divide the range of σ into three
qualitatively distinct regions I, II and III. The

boundaries between the regions are given by the vertical
dashed lines.

0.0 0.5 1.0
x

0.0

0.5

1.0
f(x)

fML (x)

αjk(x,xj )

(xj ,αj )

σ≪σs NT =5

FIG. 5: Comparison of the function f(x) (black
dot-dashed) and the ML model fML(x) (red dashed),
for NT = 5, σ = 0.05 ≪ σs (σs = 0.2), and λ = 10−6.
When summed, the weighted Gaussians, αjk(x, xj)
(blue solid), give fML(x). The blue dots show the
location of the training points and the value of the

corresponding weights. In this case, the model is in the
“comb” region, when σ ≪ σs. The width of the
Gaussians is much smaller than the distance ∆x

between adjacent training points, and so the model
cannot reproduce the exact function.

approximation, shown in Fig. 7, captures the initial de-
crease of ∆f as σ increases, but breaks down before we
reach σs. The qualitative nature of this decay is inde-
pendent of the type of function f(x), but its location
and scale will depend on the specifics.
As σ → 0 (for fixed λ and NT ), f

ML(x) becomes the
sum of infinitesimally narrow Gaussians. Thus, in this
limit, the error in the model becomes

lim
σ→0

∆f = ∆f0. (16)
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FIG. 6: Same as Fig. 5, but for σ = σs = 0.2. Here, the
model is in region II, the optimum region for the model.

The error in the model is very small for all x in the
interpolation region. The width of the Gaussians is
comparable to the size of the interpolation region.
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FIG. 7: Same as Fig. 4, but comparing the exact ∆f
against our approximation of ∆f for σ ≪ σs (red

dashed), where we have taken αj ≈ fj . The vertical
dashed line shows the boundary σs between regions I
and II. The red dashed curve breaks down before we

reach σs, as the approximation that αj ≈ fj is no longer
valid.

Note that this limit is independent of λ and NT .

Fig. 8 shows what happens when the regularization
becomes too strong. (Although shown for σ in region
I, the qualitative behavior is the same for any σ.) The
regularization term in Eq. (4) forces the magnitude of
the weights to be small, preventing fML(x) from fitting
f(x). As λ → ∞, the weights are driven to zero, and so
we obtain the same limit as in Eq. (16):

lim
λ→∞

∆f = ∆f0. (17)

0.0 0.5 1.0
x

0.0

0.5

1.0 f(x)

fML (x)

αjk(x,xj )

(xj ,αj )

large λ

NT =5

FIG. 8: Same as Fig. 5, but for σ = 0.1, and λ = 5. In
this case, known as over-regularization, λ is too large,

forcing the magnitude of the weights αj to be small and
preventing the model from fitting f(x).

2. Length scale too large

We define the boundary σl between regions II and III
as the last local minimum of ∆f (with respect to σ).
Thus, in region III (see Figs. 2 and 3a) ∆f is monotoni-
cally increasing. As σ becomes large, the kernel functions
become wide and flat over the interpolation region, and
in the limit σ → ∞, fML(x) is approximately a constant
over x ∈ [0, 1]. For small λ, the optimal constant will be
the average value over the training data

lim
λ→0

lim
σ→∞

fML(x) =
1

NT

NT
∑

j=1

f(xj). (18)

Note that the order of limits is important here: first σ →
∞, then λ → 0. If the order is reversed, fML(x) becomes
the best polynomial fit of order NT . We will show this
explicitly for NT = 2. For smaller σ in region III, as
λ decreases, the emergence of “plateau”-like structures
can be seen (see Fig. 3a). As will be shown, these flat
areas correspond to the model behaving as polynomial
fits of different orders. These can be derived by taking
the limits σ → ∞ and λ → 0 while maintaining σ in
certain proportions to λ, which we show in this section.
a. NT = 2 : In this case, the ML function is

fML(x) = α1 e
−x2/2σ2

+ α2 e
−(x−1)2/2σ2

, (19)

and the weights are determined by solving

(

α1

α2

)

=





1 + λ e−1/2σ2

e−1/2σ2

1 + λ





−1
(

f1
f2

)

. (20)

The solution is

α1 = (f1(1 + λ)− e−1/2σ2

f2)/D, (21)

α2 = (f2(1 + λ)− e−1/2σ2

f1)/D, (22)
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where D = det(K + λI) = 1 + 2λ + λ2 − e−1/σ2

. First,
we expand in powers of σ as σ → ∞, keeping up to first
order:

α1 ≈ ((f1 − f2) + f1λ+ f2/2σ
2)/D, (23)

α2 ≈ ((f2 − f1) + f2λ+ f1/2σ
2)/D, (24)

where

D ≈ 2λ+ λ2 + 1/σ2. (25)

Finally

fML(x) ≈ ᾱ+ (α2(2x− 1)− ᾱx2)/2σ2, (26)

where ᾱ = α1 + α2. Next, we take λ → 0. In this limit
D vanishes and the weights diverge. The relative rate
at which the limits are taken will affect the asymptotic
behavior of the weights. The form of D suggests we take

β =
1

2λσ2
, (27)

where β is a constant.
Taking σ → ∞, we obtain a linear form:

fML
β (x) =

βf1 + f + β(f2 − f1)x

β + 1
, (28)

where f = 1
2 (f1 + f2). The parameter β smoothly con-

nects the constant and linear plateaus. When β → 0, we
recover the constant form fML(x) = f ; when β → ∞, we
recover the linear form fML(x) = f1 + x(f2 − f1).
We can determine the shape of the transition between

plateaus by substituting Eq. (28) for fML(x) into Eq. (7)
for ∆f . For simplicity’s sake, we first define

hij =

∫ 1

0

dx xif j(x), (29)

since expressions of this form will show up in subsequent
derivations in this work. Finally, we obtain

∆fβ =
−2(f + f1β)h01

1 + β
+

2β(f1 − f2)h11

1 + β

+
(3 + 6β + 4β2)f

2 − f1f2β
2

3(1 + β2)
+ h02. (30)

In Fig. 9, we compare our numerical ∆f with the ex-
pansion Eq. (30) showing the transition between the lin-
ear and constant plateaus. In the case of NT = 2, only
these two plateaus exist. In general, there will be at most
NT plateaus, each corresponding to successively higher
order polynomial fits. However, not all of these plateaus
will necessarily emerge for a given NT ; as we will show,
the plateaus only become apparent when λ is sufficiently
small, i.e., when the asymptotic behavior is reached, and
when σ and λ are proportional in a certain way similar to
how we defined β. This analysis reveals the origin of the
plateaus. In the series expansion for σ → ∞, λ → 0, cer-
tain terms corresponding to polynomial forms becomes
dominant when σ and λ remain proportional.

2 0 2 4
log σ

4

3

2

1

0

lo
g
∆
f

NT =2, λ=10−6

∆f

∆fβ

FIG. 9: Comparing the numerical ∆f (black solid), for
NT = 2 and λ = 10−6, with our asymptotic form ∆fβ
(red dashed) given by Eq. (30). The asymptotic form
accurately recovers the behavior of ∆f in the plateau

regions, but fails for small σ as expected.
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FIG. 10: Comparing the numerical ∆f (black solid), for
NT = 3 and λ = 10−6, with our asymptotic form ∆fβ
(red dashed). The asymptotic form accurately recovers
the behavior of ∆f in the plateau regions, but fails for

small σ as expected.

b. NT = 3 : We proceed in the same manner for
NT = 3, using β and substituting into the analytical
form of fML(x) for this case to obtain an expression for
∆fβ (Eq. (A1), shown in the appendix). This expression
is plotted in Fig. 10.
To derive the limiting value of ∆f at each plateau for

large NT and small λ, we minimize the cost function
Eq. (4) (which is equivalent to Eq. (7) in this limit),
assuming an n-th order polynomial form for fML(x):

fML(x) =

n
∑

i=0

ωix
i, (31)

where the ωi’s are the polynomial coefficients that Eq. (7)
must be minimized with respect to. We define cn as the
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limiting value of ∆f for the n-th order plateau:

cn = lim
NT→∞

[

min
ωi

∫ 1

0

dx (f(x)−
n
∑

i=0

ωix
i)2

]

. (32)

For the constant plateau, fML(x) assumes the constant
form a; to minimize Eq. (7) with respect to a, we solve

d

da

∫ 1

0

dx (f(x)− a)2 = 0 (33)

for a, obtaining

a =

∫ 1

0

dx f(x), (34)

so that

fML(x) = h01. (35)

Thus, we obtain

c0 = −h2
01 + h02. (36)

For our case with f(x) = cos(x), c0 = 0.0193.
For the linear plateau, fML(x) assumes the linear form

ax + b; minimizing Eq. (7) with respect to a and b, we
find that

fML(x) = (12h11 − 6h01)x+ 4h01 − 6h11, (37)

yielding, via Eq. (32),

c1 = h02 − 4
(

h2
01 − 3h01h11 + 3h2

11

)

. (38)

For our case with f(x) = cos(x), c1 = 1 × 10−3. The
same procedure yields c2 = 2.25× 10−6.

Next, we define

ǫ =
1

2λ1/2σ2
(39)

as another parameter to relate σ and λ. We choose to de-
fine this using the same motivation as for β, i.e., we exam-
ined our analytical expression for fML(x) and picked this
parameter to substitute in order for σ and λ to remain
proportional in a specific way as they approach certain
limits and to see what values ∆f takes for these limits
(in particular, we are interested to see if we can obtain
all 3 plateaus for NT = 3). In doing this, we obtain an
expansion analogous to that of Eq. (30) (shown as ∆fǫ
in Eq. (B1) in the appendix).
We plot this expression in Fig. 11, alongside our numer-

ical ∆f and the plateau limits, for NT = 3 and varying
λ. Note that the curves of the expansions are contingent
on the value of λ; we do not retrieve all 3 plateaus for
all of the expansions. Only the expansion curves corre-
sponding to the smallest λ (10−10, the blue curve) and
second smallest λ (10−6, the yellow curve) show broad,
definitive ranges of σ where they take the value of each

2 0 2 4
log σ

6

4

2

0

lo
g
∆
f

c0

c1

c2

NT =3

10−2

10−6

10−10

FIG. 11: The dependence of the model error on σ, for
NT = 3 and varying λ. The solid curves are numerical;
the dashed curves are expansions derived by using our

expression for ǫ in Eq. (39) and substituting into
fML(x) in Eq. (7). The legend gives the colors (for both
the dashed and solid curves) corresponding to each λ.

of the 3 plateaus (for the dashed blue curve, this is ev-
ident for c1 and c2; the curve approaches c0 for larger
σ ranges not shown in the figure), suggesting a specific
proportion between σ and λ is needed for this to occur.
For the solid numerical curves, only the blue curve mani-
fests all 3 plateaus (like its expansion curve counterpart,
it approaches c0 for larger σ ranges not shown); the other
two do not obtain all 3 plateaus, regardless of the range
of σ (the solid red curve does not even go down as far as
c2). However, there appears to be a singularity for each
of the expansion curves (the sharp spikes for the dashed
curves) at certain values of σ (ǫ) depending on λ. This
singularity emerges because our substitution of ǫ leads to
an expression with ǫ in the denominator of our ∆f ana-
lytical form, which naturally has a singularity for certain
values of ǫ depending on λ. Following the precedent set
for NT = 2 and NT = 3, we can proceed in the same
way for larger NT and perform the same analysis, where
we expect to find higher order plateaus and the same
behavior for limiting values of the parameters, including
specific plateau values for ∆f when σ and λ are varied
with respect to each other in certain ways analogous to
that of the previous cases. We would like to remark that
plateau-like behaviors are well-known in statistical (on-
line) learning in neural networks [25]. However, those
plateaus are distinct from the plateau effects discussed
here since they correspond to limits in the (online) learn-
ing behavior due to symmetries [26, 27] or singularities
[28, 29] in the model.

3. Length scale just right

In the central region (see Fig. 4), ∆f as a function of
σ has the shape of a valley. The optimum model, i.e., the
model which gives the lowest error ∆f , is found in this
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∆f(σ̃)∝λ

FIG. 12: The dependence of ∆f(σ̃) on λ for various NT .
Here, σ̃ minimizes ∆f for fixed NT and λ. NT values
for each curve are given in the legend. The dashed line
shows a linear proportionality between ∆f(σ̃) and λ.

region. For fixed NT and λ, we define the σ that gives
the global minimum of ∆f as σ̃. In Fig. 12, we plot the
behavior of ∆f(σ̃) as a function of λ. Again, we observe
three regions of different qualitative behavior. For large
λ, we over-regularize (as was shown in Fig. 8), giving
the limiting value ∆f0 in Eq. (17). For moderate λ, we
observe an approximately linear proportionality between
∆f(σ̃) and λ:

∆f(σ̃) ∝ λ. (40)

However, for small enough λ, there is vanishing regular-
ization

αNF = lim
λ→0

(K + λI)−1f , (41)

yielding the noise-free limit of the model:

fML
NF (x) =

NT
∑

j=1

αNFjk(x, xj). (42)

In this case (for the Gaussian kernel), this limit exists for
all σ. The error of the noise-free model is

∆fNF = lim
λ→0

∆f. (43)

B. Dependence on function scale

We now introduce the parameter γ into our simple one
variable function, so that Eq. (1) becomes

f(x) = cos(γx). (44)

For large values of γ, Eq. (44) becomes highly oscilla-
tory; we extend our analysis here in order to observe the
behavior of the model in this case.
Fig. 13 shows ∆f as a function of γσ for various NT

while fixing λ = 10−6 and γ=10 (solid lines), γ = 1

5

9

17

33

FIG. 13: Same as Fig. 2, except with σ replaced by γσ,
where γ = 10 for the solid curves and γ = 1 for the

dashed curves. The labels give the value of NT for each
curve.

(dashed lines). This is the same as that of Fig. 2, except
with the additional γ parameter. This figure demon-
strates that the qualitative behaviors we observed in
Fig. 2 persist with the inclusion of the γ parameter, com-
plete with the characteristic “valley” shape emerging in
the moderate σ region for each NT . Similarly, we see that
∆f decreases nearly monotonically for increasing NT for
all γσ, while opening up to the left as the Gaussians
are better able to interpolate the function. The cusps,
though not as pronounced, are still present to the left of
the valleys, and their general shapes remain the same for
increasing NT .
Fig. 14 shows ∆f as a function of γσ for various λ

while fixing NT = 33 and γ=10 (solid lines), γ = 1
(dashed lines). This is the same as Fig. 3a, except with
the γ parameter included. Like in Fig. 3a, as λ decreases
∆f decreases nearly monotonically. The same qualita-
tive features still hold, including the splitting-off of each
lower-valued λ curve further along σ.
Next, we look at how the optimal model depends on

NT . In Fig. 15, we plot ∆f(σ̃) as a function of NT ,
for various γ. For small NT , there is little to no im-
provement in the model, depending on γ. For large γ,
fML(x) is rapidly varying and the model requires more
training samples before it can begin to accurately fit the
function. At this point, ∆f(σ̃) decreases as N−c

T , where
c ≈ 27 is a constant independent of γ. This fast learn-
ing rate drops off considerably when ∆f is on the order
of λ (i.e., at the limit of machine precision), and ∆f(σ̃)
levels off (as λ corresponds to the leeway the model has
for fitting training f(x) values, i.e., to the accuracy with
which the model can resolve errors during fitting, it can-
not improve the error much beyond this value). In fact,
it is known that the learning rate in the asymptotic limit
is 1/NT for faithful models (i.e., models that capture the
structure of the data) and 1/

√
NT for unfaithful models

[1, 30]. However, before the regularization kicks in ∆f
is approximately the noise-free limit ∆fNF. If the noise-
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FIG. 14: Same as Fig. 3a, except with σ replaced by
γσ, where γ = 10 for the solid curves and γ = 1 for the
dashed curves. The labels give the value of λ for each

curve.
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FIG. 15: The dependence of ∆f(σ̃) on NT for various
γ. Here, σ̃ minimizes ∆f for fixed NT and λ. The solid
portion of the line represents the limit at λ → 0 (the
noise-free curve), while the dot-dashed continuation

shows the decay for finite λ (λ = 10−14 is shown here).
For large enough NT and λ → 0, ∆f has the asymptotic
form given approximately by the linear fit here (dashed

line). Note that, although this asymptotic form is
independent of γ, for larger γ the asymptotic region is

reached at larger NT .

free limit were taken for all NT , it appears that ∆f(σ̃)
would decrease continually at the same learning rate:

∆fNF ∝ N−c
T . (45)

The learning rate here resembles the error decay of an
integration rule, as our simple function is smooth and
can always be approximated locally by a Taylor series
expansion with enough points on the interval. However,
the model here uses an expansion of Gaussian functions
instead of polynomials of a particular order, and the error
decays much faster than a standard integration rule such
as Simpson’s, which decays as N−4

T in the asymptotic

limit. Additionally, Eq. (45) is independent of γ since, for
large enough NT , the functions appear no more complex
locally. The larger y-intercepts for the larger γ curves in
Fig. 15 arise due to the larger number of points needed
to reach this asymptotic regime, so the errors should be
comparatively larger.

C. Cross-validation

In previous works (Refs. 11 and 13) applying ML to
DFT, the hyperparameters of the model were optimized
in order to find the best one, i.e., we needed to find
the hyperparameters such that the error for the model
is minimal on the entire test set, which has not been
seen by the machine in training [9]. We did this by us-
ing cross-validation, a technique whereby we minimize
the error of the model with respect to the hyperparame-
ters on a partitioned subset of the data we denote as the
validation set. Only after we have chosen the optimal
hyperparameters through cross-validation do we test the
accuracy of our model by determining the error on the
test set. We focus our attention on leave-one-out cross-
validation, where the training set is randomly partitioned
into NT bins of size one (each bin consisting of a distinct
training sample). A validation set is formed by taking
the first of these bins, while a training set is formed from
the rest. The model is trained on the training set, and
optimal hyperparameters are determined by minimizing
the error on the singleton validation set. This procedure
is repeated for each bin, so NT pairs of optimal hyper-
parameters are obtained in this manner; we take as our
final optimal hyperparameters the median of each hyper-
parameter on the entire set of obtained hyperparameters.
The generalization error of the model with optimal hy-
perparameters will finally be tested on a test set, which
is inaccessible to the machine in cross-validation.
Our previous works [11–13] demonstrated the efficacy

of cross-validation in producing an optimal model. Our
aim here is to show how this procedure optimizes the
model for our simple function on evenly-spaced training
samples. We have thus far trained our model on evenly
spaced points on the interval [0, 1]: xj = (j−1)/(NT −1)
for j = 1, . . . , NT . We want to compare how the model
error determined in this way compares to the model er-
rors using leave-one-out cross-validation to obtain opti-
mal hyperparameters. In Fig. 16, we plot the model er-
ror over a range of σ values (we fix λ = 10−6 and we
use NT = 9 and NT = 33; compare this with Fig. 2).
For each NT , we perform leave-one-out cross-validation
(using our fixed λ so that we obtain optimal σ), yield-
ing NT optimal σ values; we plot the model errors for
each of these σ. We also include the global minimum
error ∆f(σ̃) for each NT to show how they compare to
the errors for the optimal σ. Looking at Fig. 16, we see
that the optimal σ values all yield errors near ∆f(σ̃) and
within the characteristic “valley” region, demonstrating
that leave-one-out cross-validation indeed optimizes our
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FIG. 16: The dependence of ∆f on σ, for λ = 10−6 and
NT = 9 (curve shown in red with dashed lines) and 33
(curve shown in blue with solid lines). The crosses
denote ∆f for the optimized σ values found from

performing leave-one-out cross-validation (some of these
are degenerate, so there are less than NT distinct

crosses shown), while the dots denote ∆f(σ̃), the global
minimum of ∆f over σ (the crosses and dots are
matched in color with the curves for each NT ).

model. With this close proximity in error values estab-
lished, we can thus reasonably estimate the error of the
model for the optimal σ (for a given λ) by using σ̃.

IV. APPLICATION TO DENSITY
FUNCTIONALS

A canonical quantum system used frequently to ex-
plore basic quantum principles and as a proving ground
for approximate quantum methods is the particle in a
box. In this case, we confine one fermion to a 1d box
with hard walls at x = 0, 1, with the addition of the ex-
ternal potential v(x) in the interval x ∈ [0, 1]. The equa-
tion that governs the quantum mechanics is the familiar
one-body Schrödinger equation in atomic units

(

−1

2

∂2

∂x2
+ v(x)

)

φ(x) = ǫφ(x). (46)

A solution of this equation gives the orbitals φj(x) and
energies ǫj . For one fermion, only the lowest energy level
is occupied. The total energy is E = ǫ1, the potential
energy is

V =

∫

dxn(x)v(x) (47)

(where n(x) = |φ(x)|2 is the electron density), and the
KE is T = E − V . In the case of one particle, the KE
can be expressed exactly in terms of the electron density,
known as the von Weizsäcker functional [31]

TW =

∫

dx
n′(x)2

8n(x)
, (48)

where n′(x) = dn/dx. Our goal here in this section is
not to demonstrate the efficacy of ML approximations
for the KE in DFT (which is the subject of other works
[11, 12]), but rather to study the properties of the ML
approximations with respect to those applications.
We choose a simple potential inside the box,

v(x) = −D sin2 πx, (49)

to model a well of depth D, which has also been used
in the study of semiclassical methods [32]. To generate
reference data for ML to learn from, we solve Eq. (46)
numerically by discretizing space onto a uniform grid,
xj = (j − 1)/(NG − 1), for j = 1, . . . , NG, where NG is
the number of grid points. Numerov’s method is used to
solve for the lowest energy orbital and its corresponding
eigenvalue. We compute T and n(x), which is represented
by its values on the grid. For a desired number of training
samples NT , we vary D uniformly over the range [0, 100],
inclusive, generating NT pairs of electron densities and
exact KEs. Additionally, a test set with 500 pairs of
electron densities and exact KEs is generated.
As in the previous sections, we use KRR to learn the

KE of this model system. The formulation is identical to
that of Ref. 11:

TML[n] =

NT
∑

j=1

αjk[n, nj ], (50)

where k is the Gaussian kernel

k[n, n′] = exp(−‖n− n′‖2/(2σ2)), (51)

and

‖n− n′‖2 = ∆x

NG
∑

j=1

(n(xj)− n′(xj))
2, (52)

where ∆x = 1/(NG− 1) is the grid spacing. The weights
are again given by Eq. (6), found by minimizing the cost
function in Eq. (4).

In analogy to Eq. (7), we measure the error of the
model as the total squared error integrated over the in-
terpolation region

∆T =

∫ 100

0

dD (TML[nD]− T [nD])2, (53)

where nD is the exact density for the potential with well
depth D, and T [nD] is the exact corresponding KE. We
approximate the integral by Simpson’s rule evaluated on
D sampled over the test set (i.e., 500 values spaced uni-
formly over the interpolation region). This sampling is
sufficiently dense over the interval to give an accurate
approximation to ∆T .
In Fig. 17, we plot ∆T as a function of the length

scale of the Gaussian kernel, σ, for various training set
sizes NT . Clearly, the trends are very similar to Fig. 2:
the transition σs between the regions I and II becomes
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FIG. 17: The error of the model, ∆T (Hartree), as a
function of σ, for fixed λ = 10−6. NT values for each

curve are given in the legend.

smaller as NT increases, the valley in region II widens,
and region III on the right remains largely unchanged.
The dependence of σs on NT appears to follow the same
power law σs ∝ Np

T , but the value of p is different in
this case. A rough estimate yields p ≈ −0.8, which is
similar to p = −1 for the simple cosine function explored
in the previous sections, but the details will depend on
the specifics of the data.
Similarly, Fig. 18 shows the same plot but with NT

fixed and λ varied. Again, the same features are present
as in Fig. 3a, i.e., three regions with different qualitative
behaviors. In region I, ∆T has the same decay shape as
the kernel functions (Gaussians) begin to overlap signif-
icantly, making it possible for the regression to function
properly and fit the data. For large values of the regu-
larization strength λ, the model over-regularizes, yielding
high errors for any value of σ. As λ decreases, the weights
are given more flexibility to conform to the shape of KE
functional. Using the same definition for the estimation
of σs in Eq. (14), the median nearest neighbor distance
over this training set gives σs = 0.019. We then have
log σs = −1.72, which matches the boundary between re-
gions I and II in Fig. 18. In region III, the same plateau
features emerge for small λ. Again, these plateaus occur
when polynomial forms of the regression model become
dominant for certain combinations of the parameters σ,
λ, and NT .
From Eq. (16) and Eq. (17), we showed that the model

error will tend to the benchmark error while σ → 0 or
λ → ∞. Similarly to Eq. (8), we can also define the
benchmark error when TML[n] ≡ 0 for this data set as

∆T0 =

∫ 100

0

dD T 2[nD]. (54)

Evaluating the above integral numerically on the test set,
we obtain log∆T0 = 3.7. This matches the error when
σ → 0 in Fig. 17 and Fig. 18.

We define the σ that gives the global minimum of ∆T
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FIG. 18: The error of the model, ∆T (Hartree), as a
function of σ, for various λ with NT = 33. The labels

give the value of λ for each curve.
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FIG. 19: The dependence of ∆T (σ̃) on λ for various
NT . Here, σ̃ minimizes ∆T for fixed NT and λ. NT

values for each curve are given in the legend.

as σ̃; similarly to Fig. 12, we plot the optimal model
error ∆T (σ̃) as a function of λ in Fig. 19. For large λ,
we overregularize the model; the model error tends to the
benchmark error in Eq. (54). For moderate λ, we observe
the same linear proportionality ∆T (σ̃) ∝ λ as in Fig. 12.
In this toy system, the prediction of the KE from KRR

models shares properties similar to those that we ex-
plored in learning the 1d cosine function. Now we will
consider up to 4 noninteracting spinless fermions under
a potential with 9 parameters as reported in Ref. 11.

v(x) = −
3

∑

i=1

ai exp
[

−(x− bi)
2/(2c2i )

]

. (55)

These densities are represented on NG = 500 evenly
spaced grid points in 0 ≤ x ≤ 1. Here a model is built
using NT /4 pairs of electron densities and exact KEs for
each particle number N = 1, 2, 3, 4, respectively. Thus,
the size of the training set is NT . 1000 pairs of electron
densities and exact KEs are generated for each N , so the
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FIG. 20: Dependence of the model error (as a function
of σ) for various λ. The labels give the value of λ for

each curve. The λ = 3.2× 10−14 curve is not plotted for
log σ > 5.5 due to the numerical instability that occurs

when λ is small for large σ.

size of the test set is S = 4000. Since there are 9 param-
eters in the potential, we cannot define the error as an
integral, so we use summation instead. Thus, the error
on the test set is defined as the mean square error (MSE)
on the test densities

∆T =
S
∑

j=1

(TML[nj ]− T [nj ])
2/S. (56)

Fig. 1 shows the error of the model as a function of
σ with various NT for fixed λ = 10−10. Although this
system is more complicated than the previous two sys-
tems discussed in this paper, the qualitative behaviors in
Fig. 1 are similar to Fig. 2 and Fig. 17. Table I in Ref. 11
only shows the model error with optimized hyperparam-
eters for NT = 400. In Fig. 20, model errors varying
with a wide range of σ values are shown for 4 different
values of λ.[33] The qualitative properties in Fig. 20 are
similar to Fig. 3a and Fig. 18. For example, the exis-
tence of three regions with distinctly different behavior
for the model error can be ascertained just like before.
In region I, error curves with different λ will all tend
to the same benchmark error limit when σ → 0. The
median nearest neighbor distance over this training set
gives σs = 0.022. In Fig. 20, the boundary between re-
gion I and region II is well estimated by log σs = −1.66.
In region III, the familiar plateau features emerge. In
region II, where σ is such that the model is optimal or
close to it, we find that the model with hyperparame-
ters σ = 1.86, λ = 3.2 × 10−14 performs the best. The
MSE for this model is 1.43×10−7 Hartree. Another com-
mon measure of error is the mean absolute error (MAE),
which is also used in Ref. 11. The MAE of this model is
1.99×10−4 Hartree = 0.12 kcal/mol. This result is consis-
tent with the model performance reported in Ref. 11.[34]

V. CONCLUSION

In this work, we have analyzed the properties of KRR
models with a Gaussian kernel applied to fitting a simple
1d function. In particular, we have explored regimes of
distinct qualitative behavior and derived the asymptotic
behavior in certain limits. Finally, we generalized our
findings to the problem of learning the KE functional of
a single particle confined to a box and subject to a well
potential with variable depth. Considering the vast dif-
ference in nature of the two problems compared in this
work, a 1d cosine function and the KE as a functional of
the electron density (a very high-dimensional object), the
similarities of the measures of error ∆f and ∆T between
each other are remarkable. This analysis demonstrates
that much of the behavior of the model can be rational-
ized by and distilled down to the properties of the kernel.
Our goal in this work was to deepen our understanding
of how the performance of KRR depends on the param-
eters qualitatively, in particular in the case that is rele-
vant for MLA in DFT, namely the one of noise-free data
and high-dimensional inputs, and how one may deter-
mine a-priori which regimes the model lies in. From the
ML perspective the scenario analyzed in this work was
an unusual one: small data, virtually no noise, low di-
mensions and high complexity. The effects found are not
only interesting from the physics perspective, but are also
illuminating from a learning theory point of view. How-
ever, in ML practice the extremes that contain plateaus
or the “comb” region will not be observable, as the prac-
tical data with its noisy manifold structure will confine
learning in the favorable region II. Future work will fo-
cus on theory and practice in order to improve learning
techniques for low noise problems.
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Appendix A: ∆fβ for NT = 3

∆fβ = h01

(

1

3
(−5f1 − 2f2 + f3) +

f1 − f3
β + 1

)

+
2β h11(f1 − f3)

β + 1
+ h02 + C, (A1)
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where

C = (β2(7f2
1 + 2f1(4f2 + f3) + 4f2

2 + 8f2f3

+ 7f2
3 ) + 36(2β + 1)f

2
)/(36(β + 1)2), (A2)

and where f = 1
3 (f1 + f2 + f3).

Appendix B: ∆fǫ for NT = 3

∆fǫ = C1 h01 + C2 h11 + C3 h21 + h02 + C4, (B1)

where

C1 = ((
√
λ(48f − ǫ2(17f1 + 4f2 + f3))

− 2ǫ(f1(ǫ
2 − 20)− 8f2 + 4f3)− 4λǫ(f2 + 4f3)))/

((
√
λ+ ǫ)(−8(λ+ 3) + ǫ2 + 8

√
λǫ)), (B2)

C2 = (2ǫ(2
√
λǫ(9f1 + 2f2 + f3) + 3f1ǫ

2 − 24f1

+ 8λ(f2 + 2f3)− 4f2ǫ
2 + f3ǫ

2 + 24f3))/

((
√
λ+ ǫ)(−8(λ+ 3) + ǫ2 + 8

√
λǫ)), (B3)

C3 =
4ǫ

(

ǫ(−f1 + 2f2 − f3)− 12f
√
λ
)

−8(λ+ 3) + ǫ2 + 8
√
λǫ

, (B4)

C4 = (2
√
λǫ(ǫ4(75f2

1 + 2f1(58f2 − 5f3) + 48f2
2

+ 116f2f3 + 75f2
3 )− 480ǫ2(5f2

1 + 5f1f2

+ 2f1f3 + 2f2
2 + 5f2f3 + 5f2

3 ) + 34560f
2
)

+ 3λ(ǫ4(273f2
1 + 232f1f2 + 226f1f3 + 48f2

2

+ 232f2f3 + 273f2
3 )− 160ǫ2(7f2

1 + 15f1(f2

+ 2f3) + 4f2
2 + 15f2f3 + 7f2

3 ) + 11520f
2
)

+ 8λ3/2ǫ(ǫ2(40f2
1 + 91f1f2 + 400f1f3 + 16f2

2

+ 91f2f3 + 40f2
3 )− 240f(4f1 + f2 + 4f3))

+ 4ǫ6(2f2
1 + 2f1f2 − f1f3 + 8f2

2 + 2f2f3 + 2f2
3 )

− 80ǫ4(5f2
1 + 10f1f2 − 2f1f3 + 8f2

2 + 10f2f3

+ 5f2
3 ) + 16λ2ǫ2(48f2

1 + 16f1(f2 + f3) + 3f2
2

+ 16f2f3 + 48f2
3 ) + 960ǫ2(7f2

1 + 2f1(4f2 + f3)

+ 4f2
2 + 8f2f3 + 7f2

3 ))/

(60(
√
λ+ ǫ)2(−8(λ+ 3) + ǫ2 + 8

√
λǫ)2), (B5)

and where f = 1
3 (f1 + f2 + f3).
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