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In modern retail contexts, retailers sell products from vast product assortments to a
large and heterogeneous customer base. Understanding purchase behavior in such a
context is very important. Standard models cannot be used due to the high dimen-
sionality of the data. We propose a new model that creates an efficient dimension
reduction through the idea of purchase motivations. We only require customer-level
purchase history data, which is ubiquitous in modern retailing. The model han-
dles large-scale data and even works in settings with shopping trips consisting of
few purchases. As scalability of the model is essential for practical applicability,
we develop a fast, custom-made inference algorithm based on variational inference.
Essential features of our model are that it accounts for the product, customer and
time dimensions present in purchase history data; relates the relevance of moti-
vations to customer- and shopping-trip characteristics; captures interdependencies
between motivations; and achieves superior predictive performance. Estimation re-
sults from this comprehensive model provide deep insights into purchase behavior.
Such insights can be used by managers to create more intuitive, better informed,
and more effective marketing actions. We illustrate the model using purchase history
data from a Fortune 500 retailer involving more than 4,000 unique products.
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1. Introduction

The value of purchase history data to improve marketing activities has since long been recognized
by the field (Rossi et al.|1996). An explanation for the popularity of such data is that it is one
of the few data sources about revealed customer preferences that is ubiquitous. It is available at
virtually any retailer. Yet, the exponential growth in assortment size in many parts of the retail
landscape — especially in online retailing — has made it difficult to extract valuable managerial
insights from such data. Existing methods no longer suffice.

The primary challenge in analyzing a modern retailer’s purchase history data is accounting for
the number and variety of products sold. On the one hand, the added value of using data to
better understand customer needs and preferences increases with assortment size and diversity.
Such understanding can improve marketing actions and support personalized communication.
Examples are product recommendations, aiding navigation through and categorization of the
assortment, and targeting activities such as personalized direct (e)mail campaigns. On the
other hand, the large variety of products offered to — and purchased by — customers makes it
increasingly difficult to understand and analyze such purchase behavior.

In this article we introduce a new model that enables marketers to gain in-depth insights from
purchase history data in the context of large and varied assortments, while accounting for
heterogeneity across customers and shopping trips. To ensure that the model can be applied
to large, realistic, retailing settings we derive a custom-made scalable variational inference
algorithm. We demonstrate the model using purchase history data from a Fortune 500 retailer
that contains purchases from a large product assortment consisting of more than 4,000 products
and close to 50,000 shopping trips.

Traditional applications of purchase history data have often involved fast-moving consumer
goods (FMCG), for example, using scanner panel data in a supermarket, e.g. |Guadagni and
Little (1983), Guptal (1988), Manchanda et al| (1999). These three studies analyzed purchase
behavior for only a small subset of the product assortment, considering respectively 8, 11, and
4 alternatives. Modern retail applications involve many more products and directly applying
these methods to a large assortment is certainly not trivial, if not impossible. In retail settings
outside of the FMCG context, two additional challenges surface. First, repeat purchases of
the same product either occur very infrequently or will be non-existent for most customersEI
For example, consider buying products at a home improvement store, ordering products from
Amazon, or watching content on Netflix. Second, often only a few products are purchased
per shopping trip, both online and ofﬂineEI The phenomenon of few products being purchased
per shopping trip is further exacerbated by services like Amazon Prime, which guarantees free
shipping with no minimum spending requiredﬁ Taken together, these developments in modern
retailing require new methods to harvest the value embedded in purchase history data.

In order to accurately describe purchase behavior, any quantitative method needs to account
for at least three dimensions in the data (see Manchanda et al.| (1999) for a similar argument).
The first two dimensions are the products and the customers, with preferences varying across
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customers. The third dimension relates to time, as a customer’s preferences and purchase be-
havior may vary across shopping trips. Such preference shifts could be intrinsic to the customer,
e.g. due to evolving personal tastes, or driven by extrinsic contextual factors such as seasonality.
These three dimensions (product, customer, and time) need to be accounted for simultaneously
to properly capture the richness and complexity of purchase behavior.

Ideally, sufficient information is available to directly infer customer preferences at the prod-
uct/customer/shopping trip-level. In practice, this is impossible as purchase data is very sparse
across these dimensions due to several factors. First, product assortments are large and varied
in modern retail environments. Second, a typical customer only purchases a very limited num-
ber of products from the complete assortment. Third, the scarce data that is available for a
customer is spread out across shopping trips. The sparsity of the data, together with the size
of the assortment and the need for interpretable outcomes, implies that the dimensionality of
the problem needs to be reduced. This could easily be done by aggregating across products,
customers or time. However, this eliminates the ability to learn anything about the removed
dimension and requires ad-hoc aggregation rules, which may bias conclusions. For example, if
the time dimension is ignored, seasonal products will be averaged out over time and as a result
these products will be underexposed when they are in season.

In this paper we introduce a model that keeps all three dimensions at the original granularity,
while specifying relations between products, customers and time in a lower dimensional space.
This space consists of latent dimensions that each describe a salient pattern in the purchase
data. Our identification of these dimensions is inspired by probabilistic topic models (Blei
2012)), a modeling framework from the machine learning literature for text analysis. |Jacobs
et al| (2016) were the first to adapt this framework to purchase history data and labeled the
resulting dimensions (topics) as latent purchase motivations. The idea is that motivations drive
the observed purchase behavior in the customer base. For example, a motivation related to
bathroom renovation would lead to purchases of products like PVC pipes, tiles, paint, and a
bath tub, while a motivation related to gardening would lead to purchases of gardening supplies.
The identification of such purchase motivations enables a marketing manager to reason about
purchase behavior at a higher level, which can generate more insights than analyzing individual
products separately, especially in the context of a large assortment.

In contrast to |Jacobs et al.| (2016)), who aggregate over the time dimension, our model distin-
guishes between a customer’s shopping trips to provide a more nuanced and realistic represen-
tation of purchase behavior. This enables us to generate more detailed insights for retailers. For
example, at the shopping-trip level our model can capture time-related effects like seasonality,
where some products are more relevant during a certain time of the year. The obtained insights
can be even more fine grained, such as concerning the day-of-the-week or time-of-day. Dynamic,
autoregressive-like dependencies across shopping trips are modeled as well, where the products
bought in one trip may be informative about the products that will be purchased next. In
the end, the insights generated by such a comprehensive model allow for more informed and
better targeted marketing actions, connecting a customer to the relevant products, at the right
time. To deal with the increased complexity of the model, we replace the inference method-
ology of Jacobs et al. (2016|) by a custom-made variational inference algorithm that achieves
computationally and statistically efficient estimates.

Industry demand for such a comprehensive and scalable method is highlighted in a research
opportunity set up by Wharton Customer AnalyticsEI In this research opportunity a Fortune
500 Specialty Retailer calls for the development of tools to identify so-called “projects” from
purchase history data. In this setting, a project is described as “..gathering ingredients for a
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special meal or assembling the tools and supplies needed for a craft project, customers frequently
purchase a collection of products that they need to complete a specific project”. This aligns with
the conceptualization of a purchase motivation. In addition, it is mentioned that “..today’s
marketers have few tools to help identify collections of products that are associated with projects,
or customers who seem to be engaged in such an activity” and “..customer segmentations are
typically static and basket analysis seldom straddles multiple purchase occasions that might be
associated with the same project”. The method we propose in this paper is able to identify
such projects from purchase history data, and to determine the dynamics in relevance of these
projects across customers and shopping trips.

The remainder of the paper is structured as follows: Section [2] introduces the conceptual and
technical details of our model, and positions it in the existing literature. We describe our scalable
variational inference algorithm in Section [3] The data and results of our empirical application
are described in Sections [4] and [f] Managerial implications are discussed in Section [6] and we
wrap up with conclusions and avenues for further research in Section

2. Modeling large-scale purchase behavior

In this section we introduce our model for large-scale customer purchase behavior that relies on
the topic modeling framework. To show the versatility of this framework, we start with a review
of topic modeling applications in marketing. We then describe purchase motivations, i.e. topics
in a shopping context, at a conceptual level. After that, we introduce the formal statistical
model and highlight the essential improvements compared to the LDA-X model introduced in
Jacobs et al.| (2016). Finally, we discuss alternative approaches to modeling dynamic purchase
behavior. Throughout this section we illustrate parts of the model using examples for a hardware
store which is the context of our empirical application, but naturally our model extends to other
contexts as well.

2.1. Marketing applications of topic models

To develop our large-scale purchase behavior model we build on the machine learning literature,
more specifically the research on probabilistic topic models in text analysis (Blei 2012)). Several
articles in the recent marketing literature apply and adapt methods based on topic models, most
notably latent Dirichlet allocation (LDA) (Blei et al. |2003), to provide insight in marketing
problems. Most of these papers involve analyzing textual data (Tirunillai and Tellis 2014,
Buschken and Allenby| 2016, [Rutz et al. 2017, [Puranam et al. |2017, |Liu and Toubia) 2018,
Biischken and Allenby 2020), which is the traditional application of a topic model. Other
papers use methods based on LDA that do not directly model text, but instead leverage the
fact that LDA can model data that consists of sets of discrete data points.

Purchase history data was first modeled using a topic model by |Jacobs et al. (2016)), where
purchase behavior of the customer base is described using a small set of purchase motivations
(topics), and the relevance of each of these motivations is heterogeneous across customers. Our
model extends this work in several ways and overcomes two of its major limitations. First,
the time dimension is excluded in |Jacobs et al| (2016), as the shopping trips of a customer
are aggregated into a “single-basket” purchase history. This prohibits the inclusion of any
time-specific effects, identification of dynamics present in purchase behavior, and shopping-trip
specific idiosyncrasies. Second, the way in which customer-level heterogeneity in motivation
relevance is modeled in |Jacobs et al.| (2016)) is very restrictive, assuming all correlations between
the activation of motivations to be negative. Capturing a richer correlation structure not only



provides additional insights, but is also particularly useful in a context with sparse information.
We emphasize that lifting these limitations, while conceptually attractive, results in a large
increase in the computational costs of traditional inference algorithms. We resolve this issue by
developing a custom-made variational inference algorithm, outlined in Section

Trusov et al. (2016]) provide another application of LDA in marketing. They model website
browsing behavior using an adaptation of LDA, where each household’s browsing history is
divided into smaller time periods. For each of these periods, the relevance over the topics is
a function of both observed and unobserved heterogeneity and a lagged effect of the previous
browsing period. Although the modeling approach in Trusov et al. (2016)) is conceptually similar
to ours, the scale of their application is several orders of magnitude smaller. They aggregate
the browsing data to 29 website categories, where we consider an assortment that contains
over 4,000 products in our application. Similar to us, they consider correlations between topic
relevance at the customer level. However, their estimation procedure does not scale to a large
number of topics, reflected by the presence of only 7 topics in their application. This is in stark
contrast to the 100 topics we consider in our application. The need for computationally efficient
algorithms to estimate models involving large-scale data was also recently highlighted in [Wedel
and Kannan| (2016).

Dew et al. (2019)) provides another example of modeling heterogeneity using LDA. To study the
evolution of product reviews, they extend LDA with a dynamic heterogeneity structure that is
modeled using Gaussian processes. Although Dew et al.| (2019) provide a flexible approach to
capturing dynamic heterogeneity, they mention in their conclusion that their proposed method
does not scale to large applications. In contrast, we introduce an inference algorithm that
enables fast Bayesian inference in large retailing settings.

2.2. Connecting topic models to purchase behavior

In our model we analyze and describe purchase behavior using a relatively small set of latent
dimensions. Each of these dimensions describes a specific pattern in the purchase data. Follow-
ing the nomenclature introduced in [Jacobs et al.| (2016), these dimensions correspond to latent
purchase motivations that drive the observed purchase behavior in the customer base. Pur-
chase motivations enable a marketing manager to reason about purchase behavior at a higher
abstraction level, which can generate more insights than analyzing individual products sepa-
rately. Not only do these motivations shed light on relationships between products spanning
different product categories, they also serve as input for marketing actions, e.g. through per-
sonalization of such actions (Ansari and Mela|2003). In addition, a managerial model-based
dashboard (Dew and Ansari2018)) can be constructed to help answer specific customer-behavior
questions, e.g. why customers visit the store during certain time periods. Targeted advertising
can also be improved, based on insights derived from the purchase motivations. A final example
is improvements in store layout and how products are positioned relative to each other in the
store, either online or offline, depending on the motivations the products are connected with.

To infer the set of purchase motivations from purchase history data, we build a new model based
on the framework of probabilistic topic models (Blei et al. 2003, Blei 2012)). Topic models are
typically used to identify and learn about latent topics that are present in written documents.
The high-level analogy between modeling text and purchase behavior is as follows: a document
contains words, while a customer’s purchase history contains products. Each word stems from
a predefined dictionary, while each product is purchased from a predefined assortment. A
collection of documents can be summarized using a small set of topics, where each topic describes
some latent theme in the text corpus; the purchase history for all customers can be summarized
using a small set of motivations, where each motivation describes some preference for products.



A document can be succinctly described as a mixture of topics; a customer’s purchase history
can be succinctly described as a mixture of purchase motivations. Such a mix of motivations
enables a low-dimensional representation of a customer’s preferences over the products in the
assortment.

Strictly following this analogy, purchase history data would be analyzed at the customer level
with the time dimension being ignored (Jacobs et al.[2016|). This implies that purchases made
by a customer are exchangeable across purchase trips, which is unrealistic. Variation in a
customer’s purchase behavior over time is to be expected and should be accounted for. For
example, a customer could first visit the store for a bathroom renovation, while the next trip is
for pool maintenance. We capture this systematic variation by modelling a customer’s purchases
at each shopping trip, accounting for the interdependencies across a customer’s trips.

2.3. Modeling purchase behavior using motivations

Throughout the paper we use the following notation for the data. Products are indexed by
j =1,...,J, where J is the assortment size. Customers are indexed by ¢ = 1,...,I, where
I is the number of customers. Customer ¢ makes B, shopping trips. During shopping trip b
customer ¢ purchases Ny, products, collected in the set y;;,. Each element in y;, corresponds
to the index of a product: vy, € {1,...,J} for n = 1,...,N;,. We purposefully ignore the
purchase quantity of a product, as it is a measure that is difficult to meaningfully compare
across different products and will (unintentionally) overemphasize products with high purchase
quantities, e.g. consider that only a single hammer is needed versus many nails. However, in
case purchase quantity contains relevant information, the model can trivially be extended by
allowing the same product to occur repeatedly in y;,. Characteristics that are specific to the
bth shopping trip made by customer i, such as time-of-day and day-of-the-week of the trip,
are captured in the K y-dimensional vector x;,. Similarly, variables specific to customer i, like
demographics or customer profile information, are captured in the Ky;,-dimensional vector w;.

Conceptually, purchase motivations drive — either intrinsically or by extraneous factors — the
preference of a customer for a certain subset of products in the assortment. In this sense the
motivation drives a customer to the store. Examples of such motivations are the plan to organize
a barbecue, resulting in a preference for products related to barbecuing, or an ongoing home
renovation project, resulting in a need for paint and drywall material. The underlying idea
of our model is to identify a set of M purchase motivations to describe the common purchase
patterns present in the customers’ purchase histories (Jacobs et al.|2016]). A given motivation
induces the same type of purchase behavior across all customers. However, the relevance of
each of the motivations naturally varies across shopping trips and customers. In practice, only
very few motivations will be relevant at a single shopping trip, while most other motivations
will not be active at all at that moment. Differences in purchase behavior across customers and
shopping trips then result from variation in activated motivations.

An important feature of motivations is that they generally do not match with traditional product
categorizations, like product groups or product classes. Many retailers use, or at least have
used, such product categorizations, usually in the form of a product hierarchy tree. Motivations
however, often span multiple product groups, as complementary products are jointly needed to
achieve a goal, for example a pen and paper, or a hammer and nails. At the same time, a single
product can be linked to more than one motivation. For example, working gloves can be used
for gardening and for construction work.

This conceptualization of a motivation is captured in the model through a motivation-specific
vector of purchase probabilities for the complete product assortment. Products that are strongly
linked to the motivation will receive high purchase probabilities, while the other, less relevant



products will have probabilities close to zero. That is, each motivation m = 1,..., M is charac-
terized by ¢,,, a J-dimensional probability vector, where ¢,,; > 0 denotes the probability that
product j will be purchased if motivation m is activated, and > ; Om; = 1.

Customers do not always shop with a single motivation in mind. Instead, they might go shopping
for multiple motivations, e.g. the kitchen and bathroom could be renovated simultaneously. The
set of products a customer buys in a single trip will then be driven by a mix of motivations.
The presence of multiple motivations in a single shopping trip is captured by assuming that
each shopping trip is driven by a mixture of motivations. The mixture weights that govern the
importance of each of the M motivations for the bth shopping trip of customer i are given by a
vector O, = [0, - - -, Oipps), Where 0, > 0 and Y 6, = 1. Motivations that are irrelevant
receive a weight close to zero. Variation in the motivation mixture weights across customers
and shopping trips creates heterogeneity in purchase behavior.

In sum, customer ¢ selects a purchase motivation for each purchase decision n = 1,..., Ny, in
her bth shopping trip, denoted by z;,, € {1,..., M}. The selection of these motivations follows
the motivation mixture weights for this shopping trip — i.e. the reasons for being in the store —
such that:

Pr [z, = m|63p] = iy (1)

Subsequently customer ¢ buys a product based on the purchase probability vector that charac-
terizes the motivation that drives this purchase decision, z;,,. The probability that product j
is purchased, given that the underlying motivation for this purchase decision is motivation m,
therefore equals:

Pr [yibn = j‘zibn =m, ¢)] = (rbmj‘ (2)

The probability vector over the assortment (¢,,) that is connected to a motivation is unknown
to the researcher and needs to be inferred from the data. Central to the identification of these
probabilities are the observed co-purchases of products within shopping trips. If a certain
set of products tends to be purchased together in a shopping trip, and this co-occurrence is
present in many different shopping trips, then these products are likely to align with some
particular motivation to shop. When motivations are active across multiple shopping trips of
a specific customer, the co-purchases of products across trips of this customer also help in the
identification of such motivations. This is especially relevant for retail contexts that have many
shopping trips, each consisting of very few purchases.

The above exposition connects the observed purchase behavior y to the M purchase motivations.
It extends the LDA-X model introduced in|Jacobs et al.| (2016)), which only considers purchases
made at the customer level and does not retain separate shopping trips. As a result, the b
dimension related to the shopping trips is not present in the LDA-X model and information on
the impact of shopping-trip specific variables x;;, on purchase behavior is lost.

2.4. Modeling activation of purchase motivations

With purchase motivations driving purchase behavior, the next step is to model the relevance
of purchase motivations across customers and shopping trips. In the standard LDA model (Blei
et al.2003), the mixture weights 6;;, are draws from a Dirichlet distribution: 8, ~ Dirichlet(c).
However, when modelling customer purchase behavior this has two major disadvantages.

First, the Dirichlet distribution specifies a very restrictive correlation structure. It imposes
negative correlations between all pairs of motivations and these correlations are completely
determined by the mean of the distribution. This stems from the fact that the Dirichlet dis-
tribution is characterized by a single parameter vector «, unlike, for example, a multivariate



Normal distribution that has separate parameters for its mean and covariance. This restrictive
correlation structure is unlikely to reflect that of the motivation mixture weights. Some moti-
vations are expected to be positively correlated, e.g. a gardening motivation and a swimming
pool motivation, while others might be negatively correlated.

The second drawback relates to the complexity of estimating «. If plenty of information is
available, i.e. if y;, contains many elements on average, the exact value of a is less important.
Hence, in many traditional (text) applications of LDA this parameter is either fixed to some
predefined value or set using heuristics (Wallach et al.|2009). In the context of purchase data,
the number of products purchased in a given shopping trip is very small. Therefore, when
analyzing purchases at the shopping trip level, the parameter vector of the Dirichlet distribution
plays an important role and should be estimated (Jacobs et al.|2016). From a computational
perspective, however, this estimation does not scale to applications that involve a large number
of motivations, as the density of the Dirichlet involves a product of multiple gamma functions.
This is further exacerbated when a customer-specific «; is specified, for example as in the
LDA-X model.

Instead, we opt for an alternative approach to model 6;, that circumvents these drawbacks. In
particular, we are inspired by the correlated topic model (CTM), which replaces the restrictive
Dirichlet distribution on 6;, by a more flexible logistic Normal distribution that allows for
correlations between the motivations (Blei and Lafferty|[2007). To be more precise, 6y, is the
softma of an unrestricted stochastic parameter vector o, € R™:

0,, = softmax(ay,) = M. (3)
Zm eXp(aibm)

The softmax function is a natural choice here as it outputs a probability vector given any input
vector of real numbers. The scalar parameter oy, can be interpreted as a measure of the (latent)
relevance of motivation m in the bth shopping trip of customer 4, similar to latent utilities in
market share attraction models (Bronnenberg et al.|2000]) or the utility-based specification of
the multinomial logit model (Train/2009)).

Many factors relate to the relevance of each of the M motivations in a given shopping trip. Some
of these factors can be attributed to a customer’s innate preferences and observed characteristics,
while others may be driven by a shopping trip’s contextual factors such as the time the trip takes
place. However, after accounting for these factors, some variation in the motivation relevance
remains unexplained. To account for all this, we specify a linear model for oy, that includes
a predictable component p;y,,, and a random, unpredictable component e

ibm*

Qipm = Kibm + €ibm (4)

T T T
= Kim + Qb 1Pm + Xip By + Wi Yy + Eipn.-

The customer-specific intercept x;,, captures the innate preferences, i.e. the baseline relevance
of motivation m for customer ¢ across all shopping trips. The M intercepts for customer i are
collected in the vector k; = [K;1, ..., Kijpr]. For k; we specify a multivariate Normal distribution
with mean p, and covariance 3,.. The vector u,. describes the prevalence of each of the M
motivations in the customer base, while the motivation correlations are captured in X,..

The inclusion of these motivation correlations at the customer level is a major improvement over
the commonly used Dirichlet distribution, as it enables the identification of complementarity
across motivations. Knowledge of such correlations is particularly relevant for customers with

®In the marketing literature the softmax function is better known as the multinomial logit function, but we
want to avoid confusion with the equivalent named multinomial logit model.



only a few observed shopping trips, for whom little information is available to determine their
preferences. After observing a single shopping trip, we are able to identify the most likely
motivation(s) from that trip, but also the motivations that are most (cor)related to them. Let us
illustrate this by foreshadowing our empirical findings: we discover multiple distinct motivations
related to gardening, e.g. buying plants during springtime and trash bags in fall. Intuitively
these gardening motivations are correlated at the customer level and observing purchases in
spring can be used to improve marketing actions by focusing on the correlated motivations
relevant in fall.

Explanatory variables that are specific to the shopping trip, such as seasonality dummies, are
included in the x;;, vector, while customer-specific variables that are time invariant, e.g. gender,
are described in w;. Naturally the relevance of each motivation will be affected differently by
these explanatory variables, and therefore the corresponding parameter vectors 3,,, and ~,, are
motivation specific. For example, the relevance of some motivations may have strong seasonal
fluctuations, whereas other motivations will hardly vary by season.

Dynamics in the model are captured by the first-order vector autoregressive, VAR(1), term
ain_lpm, where the relevance of each of the M motivations in the previous shopping trip
directly affects the relevance of motivation m in the current shopping trip. The persistence of
motivation m is described by p,,,,,. The cross effect of motivation m’ on m, with m’ # m, is
described by p, . and in general this effect is not symmetric, i.e. p, + # p, . Hence the
model contains a full M x M matrix with VAR(1)-effects. Note that for a customer’s first
shopping trip, the lagged a;;_; term is not available. We specify an alternative specification
for pi;1,, which can be found in Appendix [A]

Any variation in the relevance of motivation m that is left after accounting for all factors men-
tioned above is absorbed in the stochastic component €;,,,. We make the following assumptions
about €;,,: 1) Across customers, €;, is independent. ii) For a given customer, the specification
of w;,, captures state dependence and variation across time. Therefore there is no autocor-
relation between €, for b = 1,..., B;. iii) The relevant motivation correlations are captured
by 3, in the model. After controlling for these correlations, and given the small number of
purchases per shopping trip in our application, any remaining motivation correlation at the
shopping trip level can be ignored. As a result, there is no correlation across motivations €;,,,
for m = 1,..., M. Combining these assumptions, we specify for ¢;,, a Normal distribution
with zero-mean and motivation-specific variance azm. This allows for heteroscedasticity, as the
relevance of some motivations may be more variable than others. The model specification is
completed with prior distributions for all population-level parameters, details are provided in

Appendix [A]

Our model nests the LDA-X model (Jacobs et al. 2016), where only the Dirichlet distribution
is replaced with a logistic Normal distribution, cf. Blei and Lafferty (2007). Specifically, LDA-
X assumes the motivation mixture weights to depend only on a population-level motivation
activation parameter x,, and customer-specific variables w;,. This restricted specification results
from our model specification in Equation when we assume K, = Ky, = fygm, 2 = 0,
Pm = 0, and B,,, = 0. This shows that, apart from the distributional assumption for 8,;, the
LDA-X model is nested within — and a much simpler version of — our model.

2.5. Alternative approaches to modeling dynamic purchase behavior

In the product recommendation literature, matrix factorization techniques are often used to
study dependencies in preferences among large sets of products (Koren et al. 2009). Such
techniques however do not allow for the inclusion of customer or shopping-trip characteristics.



One must also choose to either aggregate over shopping trips or to treat each shopping trip
completely independent of all other trips by the same customer. Ideas from matrix factorization
are also present in dynamic factor models. Here the factorization is used inside a statistical
or econometric model. For example Bruce et al.| (2012)) use such methodology to study the
dynamic effects of advertising on sales. However, extending such ideas to a large scale and to
discrete dependent variables is not trivial.

Ruiz et al. (2020]) present a probabilistic model of consumer choice that also contains matrix
factorization ideas. Similar to our model, it uses purchase history data, relies on variational
inference, and allows for customer heterogeneity and dependencies across products. One impor-
tant difference is that it allows for product-specific characteristics such as a product’s price. To
model the dependencies across products, Ruiz et al.| (2020) rely on the order in which products
are chosen in a shopping trip. Interdependencies then arise with the current product choice
depending on the products already bought in a trip.

This approach brings several challenges. First, the order of purchases is often not observed.
Ruiz et al| (2020) solve this by integrating over all possible permutations using a simulation
approach. Second, the dependence between products may not directly follow the sequence in
time, as the order of purchases is to a large extent driven by the store layout. Ruiz et al.| (2020)
acknowledge this and allow the customer to “think one-step ahead”. However, this substantially
adds to the complexity of the model and is only illustrated using a small-scale example in the
paper. Third, our model accounts for dynamics across shopping trips, which is not possible in
the approach of Ruiz et al.| (2020).

Our model also differs substantially from Ruiz et al. (2020)) in terms of the interpretation of
the latent spaces. We build on the idea of motivations and specify probabilities for customers
to have a certain motivation and for a product purchase to be driven by a motivation. [Ruiz
et al.[ (2020) use matrix factorization inside a multinomial logit model. Their model represents
products and customers as vectors in a latent space, with purchase probabilities depending on
the inner products of these vectors. Therefore, a customer will have a preference for products
that appear in a certain region of the latent space, but a customer cannot prefer two regions of
the latent space that are far apart. Under the concept of motivations such behavior is possible
as a customer can have a high probability for two different motivations. In addition, our
motivations have a direct interpretation, whereas matrix factorization requires post-processing
to facilitate interpretation.

In sum, Ruiz et al.| (2020) provide a strong and useful model, especially when marketers want to
intervene during a shopping trip. It allows for characteristics such as price and gives insights in
terms of complements and substitutes. We believe that our model provides easier interpretation,
is more valuable when targeting customers who are not yet in the store, and is computationally
more efficient.

3. Inference

The proposed model contains many latent variables and parameters that need to be estimated,
we refer to this set of unknown components as €. The information that is available to infer
Q are the product purchases yﬂ We apply Bayesian statistical inference and the goal is to
examine the posterior distribution of €: p(f]y). As in most models, it is not tractable to
directly evaluate this distribution. Traditionally, this problem has been circumvented by using
Markov chain Monte Carlo (MCMC) methods (Rossi and Allenby|2003)), in which the posterior

®In our notation we implicitly condition on other exogenous information that is available, i.e. the parameters
describing the prior distribution p(§2) and the explanatory variables x and w.
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is approximated by sampling from a Markov chain of which the stationary distribution is the
posterior of interest. Asymptotically it is guaranteed that the Markov chain produces samples
from the target posterior distribution. For practical purposes however, convergence of the chain
to the posterior distribution can be too slow, especially for model structures that result in
complex posteriors (Carpenter et al. 2017). Given the hierarchical structure of our model and
the large number of customer-specific parameters, using Hamiltonian Monte Carlo (HMC) (Neal
2011) is also ineffective. The complexity of HMC scales with the size of the parameter space
and this complexity cannot be simplified using conditional independence assumptions present
in hierarchical models.

Variational inference (VI) is an alternative inference technique that is fast and scalable. VI
stems from the machine learning literature and works particularly well for large-scale models
(Blei et al.|2017). The general idea is to transform posterior inference into an optimization
problem. The objective here is to find the distribution that best approximates the true posterior,
from a prespecified class of distributions. By limiting the class of distributions to those that
are computationally convenient, one can closely approximate the posterior in a computationally
efficient way (Jordan et al.[|1999). Typically, the output of VI accurately describes posterior
means, but underestimates posterior variances (Blei et al./[2017)).

The fact that VI yields an approximation of the true posterior distribution is a theoretical dis-
advantage compared to the asymptotically exact sampling methods. However, there are several
practical advantages that justify its use. First, convergence in VI is typically fast — much faster
compared to sampling-based methods — and it is possible to monitor this convergence reliably
(Ormerod and Wand|2010). Second, the output of VI is a distribution that is parameterized
by a set of parameters. This is in contrast to the sampling-based methods, where for each
unknown model component a long chain of samples is needed to accurately approximate the
posterior, creating a large memory burden for models with many unknowns. Third, VI can be
sped up using advances from the optimization literature. Examples are stochastic subsampling,
stochastic gradients, and parallelization of computations (Hoffman et al.|2013| [Kucukelbir et al.
2017). These optimization techniques lend themselves well for the estimation of large hierar-
chical Bayesian models.

To date, VI has been adopted in few marketing papers (Braun and McAuliffe| 2010, [Dzyabura,
and Hauser||2011} |Ansari et al. 2018, Xia et al. 2019). Given the scale of our application and
the complexity of our model, we turn to VI as well. We derive an inference algorithm that is
customized to our model structure and is computationally highly efficient. In Section we
discuss VI in general and describe our implementation of this inference technique. Compared
to a straightforward application of standard VI techniques our implementation yields a better
approximation to the posterior distribution, but potentially comes at a high computational
cost. The need for a repeated (numerical) calculation of the inverse of a large matrix lies at
the root of this. We derive an analytical solution for the inverse that completely alleviates
this computational burden in Section Section discusses further ways to increase the
computational efficiency in the context of very large data sets. In Section we describe how
to interpret the effect sizes of the explanatory variables in our model.

3.1. Estimation using variational inference

In variational inference, the posterior inference problem is cast as an optimization problem
where the search space is constructed of probability distributions. We define Q as a set of
joint probability distributions over the unknown model components €2. A specific distribution
— and corresponding density — is denoted by ¢, i.e. ¢(2) € Q. We refer to ¢ as a variational
distribution. The objective is to find the distribution ¢ in Q that best matches the posterior
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distribution p(€2]y). In VI the match between two probability distributions is typically measured
using the Kullback-Leibler (KL) divergence. The KL divergence from some distribution ¢(x) to
another distribution p(z) is given by:

KL{q(7)||p(z)} = / log Zggq(w)dw = E{log q(z) — logp(z)}, (5)

where E denotes an expectation under the variational distribution g(x). The objective of VI is to
find the distribution ¢*(€2) in Q that minimizes the KL divergence to the posterior distribution

p(Qy):

¢"(Q) = arg min KL{q(2)||p(Qy)}- (6)
a(Q)eQ

The KL divergence can be rewritten as follows:

logp(y) — KL{g(2)||p(2y)} = E{log p(y, 2)} + ENTROPY{q(2)}. (7)

The machine learning literature refers to the right-hand side of Equation as the evidence
lower bound, or ELBO (Blei et al.[2017). This is a lower bound for log p(y), as the KL divergence is
non-negative by definition. Furthermore, Equation ([7)) shows that minimizing KL{q(Q2)||p(Q2]y)}
is equivalent to maximizing the ELBO, because log p(y) is constant with respect to ¢(€2). Hence,
the objective of VI is to find the variational distribution ¢(€2) that maximizes the variational
expectation of the model’s log joint density, E{logp(y, )}, while simultaneously spreading its
density across different parameter configurations, as the entropy term ENTROPY{q(€2)} penalizes
for a variational distribution that centers all its probability mass around a single configuration
for Q, i.e. if ¢(2) resembles a point mass.

In case no constraints are placed on Q, the solution ¢*(£2) is equivalent to the posterior dis-
tribution p(Q|y). However, this is not a computationally feasible solution as p(€2]y) cannot
be evaluated directly. Instead, constraints should be imposed on Q such that the resulting set
of distributions is tractable and yet, still results in a good fit to the posterior distribution of
interest. A popular restriction in the machine learning literature is to rely on the mean-field
assumption (Bishop [2006), which states that each joint distribution in Q factorizes over the
unknown parameters £2 according to some partitioning F'(£2), with (J,¢pq)w = €2, such that:

q(82) = H q(w). (8)

weF ()

Given the partitioning F'(€2), the variational distribution that maximizes the ELBO can be
found by employing a coordinate ascent algorithm that iterates over the subsets of parameters
w € F(§2), and updates each corresponding variational distribution ¢(w) (Bishop|[2006]). This
algorithm is guaranteed to reach at least a local optimum (Boyd and Vandenberghe|2004)).

In general, by imposing this mean-field assumption, Q no longer contains the true posterior
distribution. As a result, g(w) should be interpreted as the variational approximation of the
marginal posterior distribution of w: p(wly) = fﬂ\w p(w, 2\, ly)d,, (Jordan et al.|[1999),
where €2\, refers to all elements of €2 except w. Note that the mean-field assumption does
not imply that the solution for the optimal variational distribution for w, ¢*(w), is independent
from the variational distributions for £2,,,. This follows from the fact that we are trying to find
the variational distribution that best fits the complete posterior distribution p(€2|y), in which
the parameters depend on each other according to the model specification, irrespective of the
partitioning F'(€2).
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When selecting the partitioning F'(€2), a trade-off is required between computational feasibility
and the quality of the variational approximation. A finer partitioning is computationally easier
but also less accurate, while no partitioning results in the exact posterior distribution as the
optimal variational distribution, but this is computationally intractable. The most fine-grained
partitioning has each w as a singleton set containing one (scalar) parameter. This implies that
q(2) factorizes across the elements of a multivariate parameter as well, removing any posterior
correlation between these elements; an unrealistic assumption in practice. To improve the
quality of the variational approximation, the partitioning F'(£2) should not split the multivariate
parameters in the model.

VI has been implemented for the standard LDA model without partitioning the Dirichlet dis-
tributed parameters (Blei et al. 2003, Hoffman et al.2013). In contrast, in the CTM model,
Blei and Lafferty) (2007) factorize the variational distribution for each multivariate Normal
parameter into a set of independent univariate Normal distributions. This simplifying assump-
tion facilitates estimation but reduces the quality of the variational approximation, particularly
when there is substantial estimation uncertainty. In our case this is expected for the customer
and shopping-trip specific parameters, as most customers tend to buy only a few products per
trip.

We therefore specify a partitioning F'(2) that retains all elements of a multivariate parameter
within a single subset, w, for all multivariate parameters in the model, including the customer-
specific multivariate Normal parameter k;. Details of the resulting variational inference algo-
rithm are provided in Appendix [Bl and Online Appendix [D]

3.2. Computational efficiency

The partitioning F'(€2) in our implementation of variational inference is guaranteed to improve
the quality of the variational solution, but is computationally costly. Specifically, it involves the
optimization of many multivariate Normal variational distributions. For example, each k; has a
customer-specific variational distribution ¢(r;) = MVN(ji;, 3;). Determining the optimal value
for f]i in each iteration of the optimization routine involves computing the inverse of an M x M
matrix that is specific to customer i of the following form (cf. Equations and ([D.7)):

Ei = (E{An} + d(E{Ta})Si)_l ) (9)

where s, is a customer-specific scalar, A,, = 2;1, and T, = [0;12, e ,0;12%]. E denotes an expec-
tation under the marginal variational distribution for a parameter, e.g. E{A.} = Eqa 1Ak},

and d() is a function that outputs a diagonal matrix based on an input vector.

Therefore, in a naive implementation, each iteration of the optimization algorithm has a com-
putational complexity of at least O(I x M 3), which clearly does not scale well with the number
of customers I nor the number of motivations M. As a result, our improved partitioning would
render this approach computationally infeasible in large applications of the model.

We completely remove this computational burden by exploiting a special mathematical struc-
ture in the optimal value for ¥;. Note that E{A,} and d(E{r,}) are non-singular precision
matrices that are specified at the population level and hence, shared between all customers
i=1,...,1. The only customer-specific part is s;, the scaling factor for d(E{7,}). Our compu-
tational shortcut is obtained from the fact that 3, can be rewritten as:

=L HUd(v+s) HuL (10)

(2

where L is the lower triangular (in this case diagonal) Cholesky root of d(E{r,}) and Ud(v)U"
is the singular value decomposition of Lflﬁ{A,{}(Lfl)T. Appendix [C| provides a proof of this
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result. This equivalence shows that ii can be computed for any customer ¢ without directly
taking the inverse of a customer-specific M x M matrix. Similar results can be obtained for
the covariance matrices of ¢(p,,), ¢(3,,), and q(7,,). This result enables us to obtain a better
approximation for the posterior distribution, without incurring insurmountable computational
costs when many customers and motivations are involved. This result is also an addition to the
variational inference literature and can directly be applied to other hierarchical models involving
multivariate Normals, such as the CTM.

3.3. Scalability of the inference algorithm to very large data sets

Because of the efficient matrix inverse identity presented in Section [3.2] the vast majority of
the computation time of our inference algorithm is spend on the update of the variational
distributions that are specific to a product purchase or a shopping trip, i.e. z;,, and ay,. For a
given number of motivations M, the computation time of a single iteration scales linearly with
the number of shopping trips and purchases. In other words, if a large data set doubles in size,
the required computational time will approximately double as well.

However, because the customers are conditionally independent in the model, there are multiple
ways to improve scalability. First, the customer-specific optimizations can be parallelized over
the customers, so the available computing power can be easily increased by using a computing
cluster. Second, stochastic optimization techniques can be used, e.g. Hoffman et al,| (2013),
which reduce the number of epochs needed to achieve convergence, especially for large datasets.
This lets our inference algorithm scale to data sets of virtually any size, which is an important
advantage of estimation using variational inference. Note that even without such extensions
the required computational time of our model is relatively low. For the empirical application in
this paper estimation is completed in a matter of hours on a standard laptop. In this time we
complete 1,000 iterations of the algorithm for M = 100, while model convergence was already
achieved within the first few hundred iterations.

3.4. Quantifying the effects of explanatory variables

Our model contains several explanatory variables — both latent (ay;_q) and observed (x;;, w;)
— that affect the relevance of motivations at the shopping-trip level. To interpret the model
results, the effect sizes of these explanatory variables should be judged. The corresponding
coefficients (P, B, Ym), could be evaluated directly to learn about the linear effects of the
explanatory variables on the relevance of motivation m: ay,,. However, motivation relevance
is an abstract latent construct that is not straightforward to interpret. A more tangible model
component is the vector of motivation-activation probabilities 6;,, defined as the softmax of
oy, cf. Equation . Understanding how these probabilities are affected by the explanatory
variables enables us to answer managerially relevant questions such as: “How does gender affect
motivation activation?” or “How does time of the day shift the likelihood of various motiva-
tions?”. To this end we calculate odds ratios for the motivation-activation probabilities, where
we contrast the motivation probabilities corresponding to a certain value of the characteristics
to those of the “average” shopping trip.

Because 6,;,,, is a non-linear function of o, the effect of a focal explanatory variable depends on
Wibm = Fim + a;_lpm + X;IF,,Bm + w;—'ym and the disturbance term €, cf. Equation (4). Hence,
to provide an interpretation to the effect of a focal explanatory variable, sensible baseline values
for all explanatory variables need to be specified and integration over the distribution of €, is
needed. We use the “average” shopping trip as a natural baseline. For this baseline we set the
exogenous explanatory variables x;, and w; to their sample means, the motivation intercepts
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in k; to their population-level mean (u,.), and the lagged a;;,_; to the average posterior mean
over all a;. We use the posterior means for the population-level parameters, as the information
available for those parameters is large, and therefore their posterior variance is small. Together,
this set of baseline values is used to compute uB.

Next, we consider a particular characteristic and, ceteris paribus, change its value relative to
the baseline. For a continuous characteristic we consider a shock relative to its baseline value,
while for a discrete characteristic we simply consider a particular level and set the explanatory
variables accordingly. These shifted values are used to compute [LS.

The odds ratio of a characteristic is then defined by taking the ratio of the probability of
motivation m after the corresponding shift in variables (951) and the baseline probability (05),
while integrating out the disturbance, that is:

“ [951] . / exp(tim + €m)/ S exp(pg + Ef)p(s)ds’ (11)

Bl — B M B
O, exXP (i, + €m)/ Dp—1 eXD(py + €¢)

where p(g) denotes the density of e, i.e. g, ~ N(0, O‘im) form=1,..., M. This odds ratio can

be computed for — and is comparable across — all characteristics, as the baseline uB is the same
for each.

4. Data

We apply our model to in-store purchase history data recorded at the shopping-trip level that
is made available to us by a Fortune 500 Specialty Retailerm The data contains purchases
made by customers in one of their retail stores in Florida during a 24-month period that ranges
from March 5, 2012 to March 4, 2014. Customers are known to the retailer, such that different
shopping trips can be linked to the same customer. In addition to purchase behavior some
information on customer demographics is available, including age, gender, and household size.
Descriptive statistics for these variables are presented in Online Appendix [E]

The raw data contains information on purchase incidence for 29,027 distinct products by 2,259
distinct customers. The majority of these products is purchased very infrequently: 25,726
products are purchased in less than 10 shopping trips during the 24-month time span. In
principle our model works for very infrequent products as well. However, we are interested in
gaining substantive insights from the data instead of capturing purchase patterns that are driven
by just a few co-occurrences between infrequently purchased products. Instead of removing the
infrequently purchased products from the data altogether, we aggregate the infrequent products
according to the firm’s product taxonomy

The product taxonomy defines a product as a unique combination of [Group, Class, Subclass,
Description|. For example a product in the data is [Group = BUILDING MATERIALS, Class
= GYPSUM, Subclass = BOARD, Description = “1/2”X4’X8 USG MOLDTOUGH DRY-
WALL”]. Another product within the same [Group, Class, Subclass]-combination but with a
(slightly) different description such as “1/2”X4’X8 USG ULTRALIGHT DRYWALL” is con-
sidered to be a different product in the data. Products that are purchased very infrequently are
aggregated according to this product taxonomy as follows. For each [Group, Class, Subclass]

"We are grateful to Wharton Customer Analytics (WCA) for setting up the research opportunity that has
connected us to this retailer.

SWe emphasize that the product taxonomy is only used to aggregate infrequent products in the data. More
specifically, the product taxonomy is not used in the model and the identification of motivations does not rely
on the product taxonomy.
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combination, the corresponding infrequent products are merged. If the aggregate product is
still infrequently purchased, the same step is repeated for each [Group, Class] combination and,
if necessary, subsequently at the [Group] level. At the end of this aggregation process, only 19
infrequent products remain that are purchased less than 10 times, corresponding to 34 purchases
in the data. These products have been removed from the data.

The resulting data set contains 139,622 purchases out of an assortment of 4,266 distinct prod-
ucts. The purchases are made by 2,259 unique customers across 47,568 shopping trips. Some
descriptive statistics of the purchase data are displayed in Table The statistics illustrate a
loyal customer base, with on average 21.06 shopping trips per customer. However, the amount
of information per shopping trip is small. The average number of products purchased per shop-
ping trip is only 2.94 and on average a product in the assortment is purchased in 32.73 shopping
trips. Such figures are representative for other modern retailing environments, where the cost
of holding a large product assortment is low and customers are encouraged to place many small
orders with low shipping costs, e.g. consider the subscription service Amazon Prime. At the
product level the data is sparse, with more than half of the products being purchased less than
20 times across the almost 50,000 shopping trips.

Mean Mode Min 25% perc. Median 75% perc. Max

Purchases per trip 2.94 1 1 1 2 4 50
Purchases per product 32.73 10 10 12 18 31 724
Trips per customer 21.06 1 1 8 16 28 257
Purchases per customer 61.81 1 1 21 46 85 645

Table 1: Descriptive statistics of the purchase history data.

We split the data set in two parts: an in-sample part — used to estimate the model parameters
— and an out-of-sample part — used to determine the model’s predictive performance. As out-
of-sample data we take the last shopping trip for every customer that has visited the store more
than once. Characteristics of the different data sets are displayed in Table

Products Customers Trips Purchases

Complete 4,266 2,250 47,568 139,622
Estimation 4,266 2,250 45,473 134,049
Out-of-sample 2,396 2,005 2,095 5,573

Table 2: Characteristics of the different sets of purchase history data.
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5. Results

The results in this section are organized as follows. We first describe some high-level charac-
teristics of the inferred set of purchase motivations in Section Using these motivations, we
describe and visualize the customer journey for two customers in Section In Section [5.3
we enrich our understanding of the motivations by examining how the relevance of motivations
are affected by both the timing of the trip and customer characteristics. The relations between
motivations based on the correlations and VAR(1)-effects are discussed in Section We
conclude in Section by comparing the predictive performance of our model against several
benchmarks.

The results in this section are based on the inferred variational posterior distribution of the
model parameters. Generally, closed-form solutions do not exist for non-linear functions of
parameters under the posterior distribution. As an abundance of information is available for
the population-level parameters, and hence very little posterior uncertainty, we use the posterior
mean value when evaluating functions that involve these parameters. In contrast, for parameters
that relate to either a shopping trip or a customer, much less information is available, and we
rely on Monte Carlo integration with 250,000 samples to account for the posterior uncertainty.

5.1. Purchase motivations

Based on the large number of customers, products, and shopping trips, we expect substantial
heterogeneity in purchase behavior. In the model we can account for this by setting the number
of purchase motivations, M, to a large value. At the same time we are interested in gaining
substantive insights from the data, i.e. identifying motivations that are relevant from both a
managerial and a customer perspective. This implies that M should also not be too large.

One approach to determine M is to use some performance measure, e.g. predictive performance
on hold-out data. However, this does not factor in interpretability of the model and one could
end up with too many motivations for the model to be of practical use. Instead we set M = 100.
We anticipate that this configuration allows us to identify the salient purchase patterns in the
data, as well as more specific patterns that may only be relevant for a small subset of the
shopping trips or customers. Furthermore, Jacobs et al.| (2016) have shown that specifying
a value for M that exceeds the actual number of motivations does not significantly impede
predictive performance, as long as the proportions for the motivations are estimated at the
population level, which is the case for our model. In addition, the ability to deal with such a
large number of latent motivations also exhibits the scalability of our model.

The size of each of the M purchase motivations is displayed in Figure |1, which reports the
expected number of purchases for each motivation under the posterior distribution, ranging
from 4021.36 purchases (3.00%) for motivation 10 to 717.48 purchases (0.54%) for motivation
9. This shows that there is variety in motivation size, and that all motivations are relevant.

Each motivation m is characterized by ¢,,, a vector of purchase probabilities for all products
in the assortment. For a motivation to be managerially useful, it should relate to a clear and
relatively small subset of the assortment, i.e. ¢,, should be a sparse probability vector with
many values close to zero and a limited number of large purchase probabilities. Figure [2| shows,
for each motivation m, the minimum number of distinct products needed to account for at least
50% of the product purchases under that motivation. The vast majority of the motivations is
very sparse as more than half of their product purchases are covered by fewer than 10 products,
which is a very small fraction of the 4,266 products in the whole assortment. The largest
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Figure 1: Size of motivations (expected number of purchases assigned to each motivation).

motivation identified (m = 10) is also the motivation that is least sparse. Intuitively this makes
sense, as a broad motivation is more likely to appeal to a large part of the customer base.
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Figure 2: Sparsity of motivations (minimum number of products needed to account for the
majority (> 50%) of the probability mass in ¢,),).

Motivations are characterized by the products that are most likely under that particular moti-
vation. The larger the cumulative probability of these products, the better they summarize the
whole motivation. However, summarizing and labelling a motivation is subjective. An expert’s
opinion, such as that of a product manager at the retailer, will facilitate this task. In absence
of such an expert we rely on the available product taxonomy and introspection for labeling the
M motivations. We emphasize that the product taxonomy is not used in the model to identify
the motivations, but is solely used to facilitate interpretation of the model output.

Table |3| presents the labels we assigned to the 10 largest motivations based on the most likely
products for each motivation. It also shows the cumulative purchase probability covered by the
10 most likely products under each motivation, which varies substantially across motivations.
For the largest motivation (m = 10) it is 23.42%, again indicating that this is a broad motivation
with probability mass allocated to a relatively large number of products. On the other hand,
for the fourth largest motivation (m = 60) the cumulative purchase probability for the 10
most likely products purchased under that motivation is 84.69%, so these 10 products almost
completely describe this motivation.

An important message from this paper is that marketers should use motivations instead of — or
at least besides — existing product categories, because customer purchase behavior spans across
multiple product categories. To illustrate this we display the 10 most likely products with
information from the product taxonomy for motivation 51 (rank 12) in Table EI and motivation
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Rank m Label Cum. Prob. Top 10

1 10 Painting: Paint tools and supplies 23.42%
2 30 Cleaning: General cleaning supplies 38.78%
3 88 Gardening: Annuals and perennials 59.63%
4 61 Hardware: Fasteners (screws, nuts, bolts, washers) 84.69%
5 87 Gardening: Landscaping (mulch and top soils) 87.87%
6 28 DIY: Wall plates 50.88%
7 91 DIY: Electrical installations 48.73%
8 83 DIY: Tile installation 59.43%
9 5 Gardening: Seeds, vegetables, herbs 66.56%
10 19 Cleaning: Floors 56.48%

Table 3: Labels for the 10 largest motivations with the cumulative purchase probability of the
10 most likely products under each motivation.

28 (rank 6) in Table Motivation 51 is related to do-it-yourself projects concerning deck and
fence installations. Motivation 28 leads to purchases of wall plates, that is, the installation of
light switches and power outlets. Table {4 shows that the 10 most likely products for motivation
51 are spread out across 3 groups, 6 classes, and 8 subclasses. This motivation is an example
of a purchase pattern that clearly covers products from multiple product categories. Table
for motivation 28, on the other hand, tells a different story: the 10 most likely products are
contained in a single group and two classes, although still spread out over 5 different subclasses.
Hence, this purchase pattern is more in line with the existing product taxonomy. Our modeling
approach has the flexibility to capture both scenarios.

Prob. Group Class Subclass Description

7.30 Lumber Pressure trtd wood PT dimensional lumber 2x4-8ft #2 prime pt weathershield
6.37 Building materials Metal products Metal prod/simpson -

4.93 Hardware Fasteners Deck screws -

4.88 Hardware Builder’s hardware Gate hardware -

4.47 Lumber Fencing Pressure treated pickets 5/87x5-1/2"x6’ pt pine dog ear pckt
4.32 Lumber Pressure trtd wood PT timbers 4x4-8ft #2 pt

3.55 Lumber Pressure trtd wood PT dimensional lumber 2x4-8ft #2 pt

3.44 Building materials Concrete Concrete mixes 501b sakrete fast-set concrete

3.01 Hardware Fasteners Construction/frming nail —

2.88 Lumber Pressure trtd wood PT dimensional lumber -

Table 4: 10 most likely products (cum. prob. 45.15%) for m = 51 (“DIY: Deck and fence instal-

lation”).
Prob. Group Class Subclass Description
11.58 Electrical Wiring devices Wall plates (commodity) —
10.02 Electrical Wiring devices Receptacles -
7.65 Electrical Wiring devices Switches -
6.32  Electrical Wiring devices Wall plates (decorative) —
3.89 Electrical Wiring devices Wall plates (commodity) 1g wht nyl midway outlet wallplt
2.66 Electrical Wiring devices Wall plates (commodity) lg wht duplex wallplt
2.47 Electrical Wiring devices Wall plates (commodity) 1lg wht decora wallplt
2.38 Electrical Wiring devices Wall plates (commodity) 1g wht nyl midway decora wallplt
2.15 Electrical Wiring devices Switches 20/10a nkl decor on/offsp tggl swtch

1.76  Electrical Conduit/boxes/fittings PVC box/covers/access Old work 1g 14cu

Table 5: 10 most likely products (cum. prob. 50.88%) for m = 28 (“DIY: Wall plates”).

W »

9Missing information in the product taxonomy, e.g. a description for an aggregated product, is indicated by
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Some of the motivations highlight products that are not very frequently purchased, while other
motivations are of course driven by high volume products. To illustrate this, we consider the
purchase-frequency ranks of the most likely products under each motivation. The product
with rank = 1 has the highest purchase volume in the data, which is a bag of fasteners (e.g.
screws, nuts, bolts). It is the most likely product under motivation 61, which indeed relates
to fastener products. More interestingly, motivation 7, which relates to exterior paint jobs and
waterproofing, places the highest purchase probability on an exterior paint product, which only
has a rank of 588 in the data. Descriptive statistics of the ranks for the five most likely products
under each motivation are given in Table [6] For the most likely product, the average rank of
116.49 indicates that other motivations also highlight products that are relatively infrequently
purchased. If we look beyond the single most likely product under each motivation, we notice
that even more products in the tail of the assortment are identified as highly relevant for a
motivation. This shows that by using the motivations, our model is able to highlight purchase
patterns that also involve low-volume products.

Mean Min 25% perc. Median 75% perc. Max

Rank of most likely product 116.49 1 31 78 166 588
Rank of second most likely product 206.03 3 78 177 277 626
Rank of third most likely product 296.56 4 156 277 382 755
Rank of fourth most likely product  413.28 61 235 382 571 1128
Rank of fifth most likely product 528.71 25 301 464 713 1676

Table 6: Descriptive statistics of the purchase-frequency rank of the five most likely products
under each motivation. The statistics are computed across the M motivations.

Another advantage of our method is that it results in soft clusters of products, that is, the same
product can be relevant for more than one purchase motivation. For example, we identified
several motivations related to plumbing, each involving pipes of different widths. For each
of these motivations the “1/2”X260” PTFE THRD SEAL TAPE” (PTFE Thread Seal Tape)
product receives a relatively high purchase probability, which intuitively makes sense as it is
needed in different plumbing projects. In a hard clustering approach this product could only
have been assigned to a single motivation. Similar examples in our empirical application are
identified for multi-use products such as paint brushes, caulks, and cement mixes.

5.2. Customer journey

A customer’s journey at the retailer can be succinctly described and visualized using the iden-
tified motivations. In Figures [3| and [4] we illustrate the journey for two customers at the re-
tailer that each have made 10 shopping trips. For each shopping trip the motivation-activation
probabilities are displayed as a stacked bar plot, where we focus on motivations that have a
substantial probability in at least one of the shopping trips for a customer. From these figures
several distinct patterns can be identified.

Customer 144 in Figure |3|is primarily interested in gardening activities, combined with a DIY
project related to kitchen renovation. Note that the kitchen renovation motivation is only active
for three purchase trips in a row in June 2013. In contrast, the gardening motivations are more
persistent across the shopping trips.

Similarly, customer 211 in Figure [4] is interested in gardening as well, but has different needs
compared to customer 144. This is reflected by the activation of different gardening motivations.
Customer 211 seems to be more focused on landscaping and is not interested in DIY projects.
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On the other hand, motivations related to Christmas, cleaning, and rust preventative spray
paints are relevant to this customer as well.

The journeys of these two customers also highlight the necessity for modeling purchase behavior
at the shopping trip level, instead of the customer level. Each customer could be described by
some general customer profile, or a mix of those, for example a “gardener” or a “do-it-yourselfer”.
However, within these profiles there is substantial variation across shopping trips and between
customers. By modeling purchase behavior at the shopping trip level, we are able to capture this
variation, which in turn enables us to find more nuanced motivations that describe a customer’s

profile more accurately.
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Figure 3: Journey for customer with ID 144.
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Figure 4: Journey for customer with ID 211.
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5.3. Effects of explanatory variables

The relevance of motivation m in shopping trip b of customer i is, among other things, a
function of explanatory variables specific to the shopping trip, x;,, and the observed customer
characteristics, w;. In our application, the variables in x;, relate to the timing of the trip, e.g.
month, weekday vs. weekend, daytime vs. evening. The available customer characteristics w;
are age brackets, gender, and a proxy for household size. For these explanatory variables we
measure the effect on motivation relevance by considering odds ratios as defined in Section
where the baseline is the average shopping trip.

We report descriptive statistics across the different motivations for the odds ratios related to
x;;, in Table [7l These statistics show that the shopping-trip specific variables have substantial
effects on motivation relevance. For example, the weekend dummy increases the likelihood for
motivation 79 by 26.6% (odds ratio 1.266). Further inspection shows that this motivation relates
to grills and patio furniture. On the other hand, motivation 42, which is about key and lock
replacements, becomes 17.8% less likely during the weekend (odds ratio 0.822). At the same
time, this motivation has a large positive shift of 23.9% for shopping trips after work hours,
which seems intuitively plausible. The largest odds ratios are obtained for November (29.449)
and December (34.194), both for motivation 68. These extreme odds ratios make sense, as
motivation 68 is about Christmas and holiday decorations.

Characteristic Mean Min 5% perc. Median 95% perc. Max
Year 1 1.002 0.791 0.883 0.994 1.115 1.319
Year 2 1.000 0.792 0.911 1.002 1.106 1.212
January 0.999 0.383 0.598 1.022 1.377 1.880
February 1.001  0.480 0.706 1.007 1.295 1.659
March 1.009 0.533 0.723 0.978 1.490 1.968
April 1.021 0.298 0.690 0.923 1.749 2.081
May 1.011  0.357 0.715 0.947 1.459 1.770
June 1.008 0.319 0.736 0.997 1.403 1.864
July 1.011  0.286 0.703 0.988 1.518 1.912
August 0.994 0.321 0.683 0.960 1.393 1.818
September 1.001 0.345 0.718 1.011 1.238 1.518
October 1.005 0.650 0.752 1.000 1.263 1.614
November 1.230 0.571 0.625 0.940 1.260 29.449
December 1.274  0.405 0.588 0.864 1.523 34.194
Weekday 1.000 0.878 0.905 1.010 1.085 1.125
Weekend 1.003 0.799 0.855 0.977 1.196 1.266
Daytime (before 5pm)  1.001  0.902 0.939 0.999 1.063  1.089
Evening (after 5pm) 1.001 0.723 0.789 0.995 1.250 1.451

Table 7: Descriptive statistics of the posterior means of the odds ratios for each shopping trip
characteristic. The statistics are computed across the M motivations.

A similar analysis can be made for the customer characteristics in w; using Table[§] Again we see
a substantial spread of effect sizes for the different characteristics, indicating that demographics
are informative of motivation relevance. For example, for customers that are 65 years or older,
the largest positive shift in motivation relevance is an 74.7% increase for a gardening motivation
that involves fertilizers and flower care (m = 52). An interesting find is that large odds ratios
are obtained for the dummy variables that correspond to missing values for a customer’s age
and gender. This shows that customers who do not provide this information, differ a lot from
those who do.

In Figure |5l we zoom in on the odds ratios corresponding to a specific customer characteristic.
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Characteristic Mean Min 5% perc. Median 95% perc. Max

Gender: Female 0.997 0.660 0.820 1.004 1.222 1.334
Gender: Male 1.003 0.804 0.883 0.999 1.150 1.236
Gender: Unknown 1.038 0.416 0.572 0.991 1.677 2.108
Age [1, 35) 1.005 0.517 0.707 0.993 1.410 1.836
Age [35, 45) 1.007 0.662 0.781 0.980 1.288 1.490
Age [45, 55) 1.009 0.650 0.822 1.004 1.207 1.458
Age [55, 65) 1.003 0.717 0.821 0.998 1.184 1.283
Age [65, 93) 1.011  0.597 0.701 1.015 1.405 1.747
Age: Unknown 0.990 0.391 0.615 0.993 1.457 1.608
Household: Small 0.999 0.763 0.855 0.996 1.131 1.242
Household: Large 1.002 0.857 0.915 1.000 1.114 1.207

Table 8: Descriptive statistics of the posterior means of the odds ratios for each customer char-
acteristic. The statistics are computed across the M motivations.

The odds ratios for the male dummy variable show that some of the technical motivations re-
lated to DIY and plumbing are more relevant for males. This approach of finding (ir)relevant
motivations for a given characteristic, can be applied to all explanatory variables. In the same
vein the model results could be used to determine the likely motivations for a specific demo-
graphic profile, e.g. female customers in the age of 35-45 living in a large household. Such
data-driven insights can be useful to further understand the customer base and to help better
target specific groups of customers. In addition, the demographic profile could be extended
by considering a particular time frame, for example a weekend in October. Such model-based
odds ratios can be integrated into model-based dashboards that support marketing managers
in identifying relevant motivations for targeted customer segments.

91 - DIY: Electrical installations |
72 - Other: Rental charges and waivers |
33 - Plumbing: PVC pipes: 1" and 1-1/4" |
29 - Hardware: Rope and chains |
69 - Gardening: Equipment (trimmer, mower, chainsaw) |
| 31 - Gardening: Landscaping (plants)
| 81 - Gardening: Landscaping (lights) & misc. items
| 12 - Painting: Interior paint
| 46 - Gardening: Tropical plants
| 88 - Gardening: Annuals and perennials

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Odds ratio

Figure 5: Odds ratios corresponding to the “Gender: Male” customer characteristic. The poste-
rior mean and 95% highest posterior density interval is displayed for the motivations
with the 5 largest and 5 smallest odds ratios for this variable.

Up to this point we have provided interpretations from the perspective of the explanatory vari-
ables describing a customer and shopping trip, in order to identify the most relevant motivations.
Turning this idea around makes a motivation the unit of analysis. This supports managers in
identifying the likely demographics and time periods for a motivation of interest. There are
two advantages to this approach. First, this enables marketers to identify the segments in the
customer base for which the focal motivation is relevant, and to identify the time period during
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which its relevance peaks. Second, the explanatory variables can aid in the task of describing
and interpreting a motivation, in addition to the most likely products for a motivation. This is
especially useful when no detailed product taxonomy is available.

Evening (after 5pm) | July |
Age: Unknown | Weekend |
Age [35, 45) | Age [55, 65) |
Age [1, 35) | Evening (after 5pm) |
June | Age [35, 45) |
| May | Age: Unknown
| February | Age [65, 93)
| Gender: Unknown | Age [1, 35)
| Age [55, 65) | August
| Age [65, 93) | October
0.4 06 08 1.0 1.2 1.4 16 0.6 08 1.0 1.2 14
Odds ratio Odds ratio

(a) Motivation 50 - Food products

(b) Motivation 79 - Grills and patio furniture

April | July |
Age [65, 93) | June |
March | August |
Gender: Female | September |
May | Age [45, 55) {
| January | March
| Age: Unknown | November
| December | January
| Gender: Unknown | February
| Age [1, 35) | December
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Odds ratio Odds ratio

(¢) Motivation 17 - Gardening: Mulch and soils

(d) Motivation 69 - Gardening: Large equipment

Figure 6: Odds ratios corresponding to the explanatory variables for four selected motivations.
The posterior mean and 95% highest posterior density interval is displayed for the 5
largest and 5 smallest odds ratios.

In Figure [6] we display the odds ratios of a set of explanatory variables for four selected moti-
vations. Motivation 50 in Figure [6a] is about food products, like sodas and snacks. We observe
a large positive shift for this motivation for shopping trips that take place during the evening
and for younger customers. Motivation 79 is about grills and patio furniture and has a strong
seasonality component where the motivation is more likely in July and during weekend shopping
trips, see Figure [6b] Motivations 17 and 69 in Figures [6c| and [6d] both relate to gardening. The
seasonality patterns however, are different. Motivation 17 is about soils and mulch and this
motivation is more likely in the period from March — May and for older customers. On the
other hand motivation 69, which is about landscaping equipment such as trimmers, mowers,
and chainsaws, is more likely later in the year from June — September. This shows that even if
one would have identified that a customer is interested in gardening, the relevance of specific
motivations related to gardening is different across time and individuals. In contrast, if our
model for purchase behavior would have aggregated shopping trips to the customer level, these
separate motivations would have been aggregated into a single overarching gardening motiva-
tion and as a result, these seasonality effects would have been lost. By accounting for dynamics
in shopping behavior, i.e. by not aggregating across the shopping trips of a customer in the
model, we have enabled the identification of such sub-goals within a broader motivation such
as gardening.
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5.4. Relations between motivations

The model captures correlations across the relevance of motivations at the customer level
through ¥, with corresponding correlation matrix Corr(X,). Not only do these correlations
lead to better predictive distributions (Blei and Lafferty|2007)), they also provide additional
insight in the relations between motivations. Such insights can help identify cross-selling op-
portunities, or assist in targeting customers that have not yet engaged in a motivation that is
likely for them, based on their activities in (cor)related motivations.

The results reveal strong positive correlations of up to 0.844 for a pair of motivations that
are both related to gardening (m = 17 and m = 88). The most negative correlation is -0.758
between again motivation 17 and motivation 36, which is about drywall materials. A histogram
of the elements in the lower-triangular part of the correlation matrix Corr(X,,) is displayed in
Figure[7} A sizable portion of the correlations is relatively large, for example about 3.1% of the
pairwise correlations exceeds 0.50 and about 3.3% falls below -0.50. This shows that substantial
correlations exist between the motivations.
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Figure 7: Histogram of the correlations in the lower-triangular part of Corr(3,).

To interpret the correlation structure among motivations, one can zoom in on a focal motivation
and analyze which motivations correlate with that motivation. As an example, Table[9]lists the
motivations that correlate most strongly with motivation 23, which is about concrete mixes.
Again the results show interesting insights that have high face validity. A motivation for concrete
mixes positively correlates with certain do-it-yourself projects and hardware, but negatively
correlates with motivations related to cleaning products.

m  Motivation label Correlation
51 DIY: Deck and fence installation 0.579
49 DIY: Lumber (studs, strips, sheathing) 0.564
54  Plumbing: PVC pipes: 1-1/2” and 2” 0.559

1 Cleaning: Chemicals -0.424
19 Cleaning: Floors -0.428
30 Cleaning: General cleaning supplies -0.538

Table 9: Most extreme correlations for motivation 23 (“concrete mixes”).
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The previous analysis examines a one-to-many relationship for each motivation in isolation.
An alternative approach is to directly visualize the relationships between all M motivations as
captured by the correlation matrix. Multidimensional scaling (MDS) is a technique that maps
objects to a lower-dimensional space based on their pairwise dissimilarities. The correlation
matrix corresponding to 3, can be converted to an M x M dissimilarity matrix D with elements:
D, =./2—-2Corr(%,), . (cf. Borg and Groenen (2005)). With dissimilarity defined in this
way, motivations that have a strong positive correlation will be placed close together in the
MDS space, while motivations with small or negative correlations will be positioned further
apart.

Figure [§| displays a two-dimensional MDS solution based on the dissimilarity matrix D. Most of
the motivations can be roughly categorized in broad overarching themes such as “Gardening”,
“Plumbing”, or “Painting”. Each of the six subfigures in Figure [8] accentuates such a theme.
This reveals that most of the themes are concentrated in different regions in the graph, suggest-
ing positive correlations between the corresponding motivations. For example, the gardening
motivations can be found at the top-left of the MDS plot (Figure, while the south/south-east
covers the more technical do-it-yourself projects (Figure , e.g. those that involve electrical
installations, drywalls, and woodworking.

Note that “Plumbing” and “Hardware” overlap in location with the “DIY projects”. This could
be expected, as plumbing can be seen as a special case of a do-it-yourself project, and hardware
is needed to complete a DIY project. The two DIY motivations that are close to the gardening
space are about the installation of an irrigation sprinkler system (m = 48) and the installation
of screens and rodent control measures (m = 90). Indeed, such activities are expected to be
related to gardening. The outlying DIY project (m = 94) relates to small bathroom repairs to
the sink, drain, or toilet. Such a small-scale project is indeed less similar to the other more
involved and technical DIY projects.

An interesting result is shown in Figure for the motivations related to painting. All but
one of these motivations are placed close together. Inspecting the outlying motivation 7 more
closely reveals that it is a paint motivation dealing with exterior painting and waterproofing
structures. Such a project differs in many aspects from an ordinary paint job like painting an
indoor wall, explaining its distinctive position.

In summary, if one has a particular motivation in mind it can suffice to analyze the motivations
that strongly correlate with that motivation. On the other hand, if one is interested in gaining
insights about groups of motivations and how these relate, a visualization method such as MDS
can be more appropriate as it reduces the high-dimensionality of the pairwise correlations to an
interpretable graphical representation. The common denominator is that these results have high
face validity and are mostly according to intuition. Even in case the position of a motivation
is surprising at first, it typically can be placed in context by examining the motivation in more
detail, as we have illustrated above. However, this does not mean that one would be able to
identify and quantify these relations without the aid of our model.
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Figure 8: Two-dimensional MDS solution based on the motivation correlation matrix Corr(%,,).
Each subplot accentuates a different group of motivations from the same MDS solu-
tion.
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In addition to the covariance matrix X, relations between motivations are modeled by the
VAR(1)-effects in the specification of motivation relevance a;,. The VAR(1)-coefficient vector
Pm gives the effect of the lagged motivation relevance vector (ay;,_1) on the relevance of motiva-
tion m: ayp,,. Similar to the coefficients for the other explanatory variables, the impact of the
VAR(1)-coefficients can be assessed using the odds ratio as defined in Equation (11]). The effect
for a single lagged motivation m on the odds ratios of all M motivation activation probabilities is
measured by increasing the lagged relevance of m (; j_1 ,,) by two standard deviations (QJam),
ceteris paribus. We can split the resulting odds ratios in an “own” AR-effect, for motivation m
on itself, and “cross” AR-effects, for motivation m on the other M — 1 motivations.

The posterior mean and 95% highest posterior density interval for each own AR-effect is dis-
played in Figure [9] The posterior means range from 1.019 to 1.186, with an average of 1.057.
We note that each of these effects is larger than 1, indicating at least some persistence for all
motivations. A number of motivations have a relatively large own AR-effect. Examples are
motivation 10 (effect 1.186), related to painting supplies, motivation 83 (effect 1.175), related
to tile setting, and motivation 91 (effect 1.144) which is related to electrical installations. These
motivations seem to correspond to large or persistent projects, as they are more likely to be
activated across consecutive shopping trips. Other motivations have smaller own AR-effects,
suggesting that these motivations are less persistent.
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Figure 9: Posterior means and 95% highest posterior density interval for the odds ratios of the
“own” AR-effects of the motivations.

There are a few cross AR-effects that have a reasonable impact: the largest odds ratio of 1.254
is from motivation 60 on 72. Motivation 72 relates to rental charges and waivers, while the most
likely product in motivation 60 is an e-deposit product with purchase probability 0.499. It is
very plausible that if motivation 60 is activated it becomes more likely that motivation 72 will
become active in the next shopping trip. Note that this does not hold the other way around, as
the asymmetric cross AR-effect from motivation 72 on 60 is much closer to unity (1.035). The
next largest cross AR-effect that we find is much smaller, 1.048, and relates to motivation 2
(Plumbing - PVC pipes: 1/2” and 3/4”) and motivation 48 (installation of irrigation systems).
Again, it seems reasonable that these two motivations are related. Furthermore, this relationship
is more symmetric as the cross AR-effect from motivation 48 on motivation 2 is 1.045.

Even though there is some variation among the cross AR-effects, the majority of the odds ratios
is around unity. Hence, in our application we do not find many cases where one motivation
starkly increases — or decreases — the probability of another motivation at the next shopping trip.
A potential explanation is that in our empirical application, relationships between motivations
mainly exist at the customer level, and not over time within a customer. Such relationships are
absorbed in the heterogeneity covariance matrix 3i,.. In other empirical applications, however,
path dependence in motivation activation could be more important.
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5.5. Predictive performance

To determine the predictive performance of the model we use the hold-out data set that contains
the last shopping trip for every customer that has visited the store more than once. This data
set is denoted by y . We measure predictive performance of a model on this hold-out data
by evaluating log p(yoOS ly): the log predictive likelihood of yoOS conditional on the estimation
data y.

We contrast the predictive performance of our model against several competing methods. First,
to better assess the added value of the VAR(1) effects, we consider our own model without these
effects. Second, we consider a version of the LDA-X model (Jacobs et al.[[2016)) that is nested
within our model, see Section which aggregates over trips and therefore does not include
any trip-specific information. It also ignores correlations between the motivations. Finally, to
place the performance of these models into perspective, we consider two model-free benchmarks
without customer heterogeneity: a marginal probability vector where the probabilities are based
on the relative purchase frequencies in the estimation data, and a naive flat probability vector
where each product has a purchase probability of J -1

The predictive performance results are displayed in Table Our model clearly outperforms the
alternatives. The LDA-X model is outperformed by a margin of over 1,000 log-likelihood points.
A large driver of this performance increase are the time effects and motivation correlations that
result in a more realistic model. Furthermore, the VAR(1) effects in our model provide a positive
contribution to the model’s predictive performance as well, which validates their inclusion in
the model. In addition, the results clearly show that all models outperform the model-free
benchmarks.

0O0S

Model w; X; Correlations VAR(1) logp(y ly)
Complete model be b be X -40,517.69
Model without VAR effects  x X be - -40,541.65
LDA-X X - - - -41,545.51
Marginal probability vector — — - - - -43,814.22
Flat probability vector - - - - -46,581.54

Table 10: The log predictive likelihood of the hold-out data for different methods.

6. Managerial implications

One of the key strengths of our model is that it identifies purchase motivations from purchase
history data alone. These motivations provide a novel view on purchase behavior, exposing the
salient purchase patterns and how these differ across customers and shopping trips. This is
especially useful for retailers with large product assortments, in which such purchase patterns
can be obfuscated due to the volume of purchases and variety of the product assortment. In
such cases, considering customer behavior expressed through purchase motivations is simpler,
more intuitive, and may lead to better insights. In this section we discuss how the model results,
and in particular the motivations, can serve as input to managerial decisions.

Managerial dashboards: all the insights we generated in the previous section are helpful in
managerial decision making. The model results provide company experts detailed, quantified
knowledge on the customer base and product assortment. To facilitate the discovery of relevant
insights one could easily build a managerial model-based dashboard around the model results.
The focal perspective of such a dashboard may be based on a product, a motivation, a time
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period, or even an individual customer. A dashboard for a specific product may contain a
ranking of motivations, e.g. displaying the five most likely motivations for that product.

A dashboard can also be constructed for a specific motivation. Naturally, the most likely
products under that motivation can be displayed, which allows for the creation of intuitive labels
for the motivations. In addition, the motivations that correlate most strongly with the focal
motivation can be listed. Yet another insight in a specific motivation is given by seasonality and
the effects of the explanatory variables such as customer age and gender. Such effects provide
a detailed picture on when — and for whom — a motivation is most likely active. Conversely, it
is possible to list the most relevant motivations for a given customer segment at a certain point
in time.

Explainable product recommendations: the model structure can serve as the basis for
explainable product recommendations at a retailer. At the highest level, an explanation for
the recommended products can be provided through a link with the activated motivations that
drive the product recommendation. At a more detailed level, the model output can be used to
explain the predicted relevance of the motivations for the customer’s shopping trip. Specifically,
a selection of the most important explanatory variables such as a customer’s innate preferences,
demographics, the context of the shopping trip, or the contents of the previous shopping trip, can
be used to explain why these motivations are predicted to be active. This provides a detailed,
yet understandable explanation why certain motivations are active for a customer and hence,
why certain products are expected to be relevant for that customer. Common recommendation
systems, such as matrix factorization techniques, cannot provide such insights.

Targeted advertising: the inferred motivations also provide opportunities for targeted adver-
tising and the specific timing of such actions. Targeted advertising can even be applied within
the store. As an example of such a real-time action, consider a “smart shopping cart”. This
shopping cart may contain a device that registers when a customer places a product in her
shopping cart. The relevant motivations corresponding to this product can be identified and
this information can be directly communicated to the customer, e.g. on the shopping cart or on
their mobile phone.

In the context of a hardware store, such information can be an instructional video that explains
how to complete a do-it-yourself project corresponding to the motivation. More generally, a
list of relevant products, based on the motivation, or a promotion tailored to the motivation
can be shown. Opportunities for personalized communication continue after a shopping trip
has ended. For example, consider timely follow-up (e)mails that promote motivations that have
become more relevant after a shopping trip. Such motivations can be determined using the
inferred motivation-correlations and the VAR(1)-effects.

Knowing which motivations are (ir)relevant for a customer can also improve communication with
the customer. If a customer is likely to engage in do-it-yourself home improvement projects but
has shown little interest in gardening motivations, marketing campaigns directed as this cus-
tomer can be adjusted accordingly. Reaching out to customers at the level of their motivations
is preferred over communication at the product level for at least two reasons. First, given
the large size of the product assortment, it is quite unlikely to accurately predict the specific
product the customer wants to buy. Predicting the correct motivation is much more realistic
and hence this might be more effective in engaging the customer. Second, communicating at a
higher level in terms of the purchase motivations — instead of at the detailed product level — is
more appreciated by customers, especially when the communication is not immediately linked
to a purchase decision (da Costa Hernandez et al.|2015).

Improving store layout: insights about the relevant motivations can be used to improve
store layouts, both for online and offline stores. First consider a brick-and-mortar store: small
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products that are relevant across multiple motivations can be positioned strategically at multiple
places within the store to improve the shopping experience. As an example, work gloves are
relevant for gardening activities, but also for renovation jobs. By placing the work gloves in both
locations in the store, they become easier to locate for customers. Additionally, the correlations
between motivations could be used to position product categories in a store relative to each
other. For example, if certain PVC pipes are most often used in a bathroom renovation, it may
make sense to position those PVC pipes relatively close to products such as toilets, bath tubs,
and showers.

Similarly, inferred motivations can be used in an online store. For example, for each motivation
a landing page can be created, containing both products and other motivations which are
related to the focal motivation. As an example, consider a landing page specific to a barbecue
motivation. Not only would the relevant products be displayed, such as grills and utensils, but
relevant motivations could be linked as well, such as motivations related to insect repellents or
an outdoor pool. Our model is able to identify the most related motivations. In a similar vein,
a product page can refer to motivations under which the product is likely to be purchased. As
one of these motivations is likely to be relevant, linking to that motivation can create promising
cross-selling opportunities.

Another approach is to link (sponsored) search queries to motivations. For each search query
that does not exactly match a specific product, one can identify the best matching motivation.
A landing page related to a motivation will likely outperform a landing page that only lists a
single product. In this way, one would directly connect the customer to the full set of products
the customer is interested in, which again provides clear opportunities for cross-selling.

There are other benefits to identifying purchase motivations that are not directly connected to
marketing actions. As an example, consider inventory management. A promotion for a certain
product may create spillover effects to other products. Using motivations, these spillover effects
can be anticipated. This example, and those presented above, all seem to benefit from a succinct
representation of purchase behavior, expressed using a small set of motivations. We consider
the actual application of motivation-assisted marketing decision making a very exciting and
fruitful avenue for further research.

7. Conclusions and further research

In this paper we have introduced a novel model that efficiently analyzes large-scale purchase
history data, consisting of product purchase decisions made by many customers — in an even
larger number of shopping trips — out of a product assortment consisting of thousands of prod-
ucts. Using the model we extract insights relevant for marketing decision makers and help
determine the salient purchase patterns to improve understanding of purchase behavior in the
customer base. The fundamental idea is to represent the high-dimensional purchase data in
a lower-dimensional space, spanned by latent purchase motivations. The motivations are in-
corporated in the model as probability distributions over the product assortment, which are
identified using only observational purchase history data — data that is ubiquitous in modern
retail applications. The model results can be used to formalize and quantify how probabili-
ties for motivation activation and product purchases are linked to and affected by explanatory
variables, such as seasonality or customer demographics.

The model is designed such that it scales well to realistic retail settings, ensuring that it can be
used to generate valuable insights in practice. We have achieved this in several ways. First, the
model is built on the class of topic models, which is known to scale well to large applications.
Second, to estimate the model parameters we rely on an estimation technique from the machine
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learning literature called variational inference. This technique has proven successful for esti-
mating large and complex models in a reasonable time frame. Third, we extend results from
the variational inference literature, by deriving a novel algorithm that can be used to efficiently
estimate a large motivation-covariance matrix for applications with many motivations.

In the current model we only rely on off-the-shelf purchase history data to identify the purchase
motivation structure. While this modeling decision makes the model easy to adopt in practice, it
also has some limitations. Purchases made by customers are partially affected by factors under
the control of a retailer, e.g. product prices, promotion strategies, and store layout. Controlling
for these factors in the inference of the motivations is a promising avenue for further research.

Another direction for further research are product recommendations based on the inferred mo-
tivations. In this paper we have shown that our model is able to accurately predict purchases
in the next shopping trip. A next step would be to incorporate these predictions in a product
recommendation system. The benefit of such a recommendation system is that it leads to prod-
uct recommendations that can be explained in terms of motivations and explanatory variables.
However, a product that is likely to be purchased by a customer is not necessarily an effective
recommendation (Bodapati [2008)). The effectiveness of recommendations based on purchase
motivation is an empirical question.

Developing and implementing marketing actions based on the inferred motivations provides
another direction for further research. In this paper we have shown that our model is able
to capture meaningful motivations at the customer level and across the shopping trips of a
single customer. The inferred motivation structure also results in accurate predictions of a
customer’s purchases in the next shopping trip. Future research could implement and study
the effectiveness of marketing actions that build on the insights generated by our model, such
as landing pages tailored to the most likely motivation, or a recommendation system that is
based on accurate, explainable predictions. In sum, we see our model as an important tool for
the analysis of purchase behavior in high-dimensional retail settings and as a stepping stone for
motivation-based marketing actions at retailers with large assortments.
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A. Additional model details

This appendix describes additional model details: a specification of the motivation relevance
for the first shopping trip and the prior distributions for all population-level parameters in the
model.

The motivation relevance for shopping trip b made by customer i, oy, is modeled as a function
of the previous shopping trip: a;,_q, cf. Equation (4)). This lagged value is not available if b
refers to the first (observed) shopping trip of a customer. For these shopping trips we specify
an adjusted model for the expected motivation relevance:

T T
Hitm = O + Oxhim + 05%X1 B, + 04 W5 Yy, (A.1)

where d,,, is a motivation-specific intercept. In addition, ¢, dg and J, are scalar factors that
allow for shifts in effect sizes that are specific to the first shopping trip of a customer. Note
that as these three parameters reflect proportional shifts, their priors are centered around unity
instead of zero.

For the specification of the prior, we transform variance parameters to their inverse, i.e. precision
. . 2 . ..
parameters. More specifically, the variance for €, o , is transformed to a precision 7, =

To..]. The covariance matrix for k;, X, is transformed to a precision

-2 .
L, with 7, = [Ta,, -+ -5 Tay,

Oa

matrix A, = 2;1. For each population parameter the prior is chosen such that it is conjugate
to the parameter’s full-conditional distribution. The parameters of the prior distributions are
set such that they represent relatively uninformative distributions. Note that large parameters
inside a softmax function tend to result in implausible outcomes, see Table 1 in |Pachali et al.
(2020)) for a related conclusion, so a prior variance of 1 is already substantial. I denotes an
identity matrix, and 0 and 1 are vectors of zeros and ones respectively. The priors for the
population-level parameters are:

Form=1,..., M:
¢y, ~ Dirichlet j (e = 1)
Pm ~ MVN,(p=0,2=1)
By ~ MVNg, (n=0,2=1)
Ym ~ MVNg (p=0,3=1)
8,, ~ Normal(p = 0,0° = 1)
o, ~ Gamma(a = 1,8 = 1)

00,0, ~ Normal(y = 1,0 =1)

e ~ MVN (= 0,5 = T)

A, ~ Wisharty;(n = 2M,V = I(2M) 1)
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B. Pseudocode for estimation routine

This appendix contains the pseudocode for our estimation routine that uses variational inference
(VI) to estimate the unknown model components.

Algorithm 1 Pseudocode for VI coordinate ascent optimization algorithm
1: Initialize q(2)

2: while ELBO has not converged do

3: fori=1,...,1 do

4: for{=1,...,L do

5: forb=1,...,N; do
6: Update q(zi), g(cvip)
7 end for

8: Update ¢(k;)

9: end for

10: end for

11:  Update q(¢),4(8),q(7),4(p),q(8),q(3.),a(05),q(d1), q(Ta), a(1rs); (A )
12: end while

Algorithm 2 Pseudocode for variational update for q(a;,)

. .o =2 i log &
1: InplIt' Hib; Oiby SSips SSip 5 SSfactors SSminy SSmax) q(MBaib)

N

Compute current ELBO contribution: ELBO;, = ELBO( [, &fb, q(MBg,,))

Create candidate for fi;: [l.;rb = fi;p + ssfbvﬂib ELBO(f1;, &fb, q(MBg,,))

Compute candidate ELBO contribution: ELBO!, = ELBO(fi},, &7, ¢(MB,,, )

if ELBOL, > ELBO,;;, then
T

Py = ﬁib and ELBOy, = ELBO;,
Increase ssfy: ss = Min(sSpuciorSShy, SSmax)
else
B, B _ -1 .
Decrease ssiy: ssh, = max(SSgactorSSip, SSmin)

: end if

—_

—_
—_

: Create candidate for log 6;;: log &;Lb =log &y + ssli?,g52&ib . V&ngLBO(ﬂib, G2, q(MBg,,))
12: Create candidate for &3 (cNJ'?b)Jr = exp(2log &Ib)

13: Compute candidate ELBO contribution: ELBOL, = ELBO(fi;3, (&fb)T,q(MBaib))

14: if ELBO], > ELBO;;, then

. 52 a2t
15: o = (o) _ _
log & log & . log &
16: Increase ss;;° 78S, = MiN(SStactorSSip > SSmax)
17: else
logs, _ logd -1 log &
18: Decrease ss,5°7: 85,57 = max(SSgactorSSin- s+ SSmin)
19: end if

. Lo~ ~ 2 I log &
20: Output: fi;,, Gy, SSips SS;p

The objective of VI is to minimize the KL divergence from ¢(€2) to p(£2|y) with respect to the
parameters of the variational distribution. This is equivalent to maximizing the corresponding
ELBO. The pseudocode to maximize the ELBO of our model is given in Algorithm [} After each
update step in the algorithm, the ELBO is guaranteed to not decrease. Per iteration and for
each customer ¢ we take L = 25 subiterations to jointly optimize the variational distributions
specific to customer i. The optimization is completed once the ELBO has converged.

The pseudocode for the update for ¢(a;,) = Normaly, (pu = Py, 0 = 6'2-2,)), is given in Algo-

rithm [2} where ¢(MB,,, ) refers to the variational distributions for the parameters in the Markov
10

blanke ll

of a;,. The algorithm uses adaptive step sizes ssfb and ssizg&. If a step in the direction

The Markov blanket for a parameter is defined as its parents, children, and the co-parents of its children in
the directed acyclical graph (DAG) representation of the model (Pearl |2009).
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of the gradient results in an increase (decrease) of the ELBO, the step size is multiplied (divided)
by SSgactor- Furthermore, the adaptive step sizes are bounded between ss,,;, and ss;,,,. In our
implementation we take sSgyctor = 1.125, S0 = 10_67 S$Smax = 1.

Details for the update steps in Algorithms [I| and [2] are provided in Online Appendix [Dl The
closed-form analytical solutions for the updates of all variational distributions except q(ay;,) are
given in Appendix@ The ELBO function and gradients used in the update step for ¢(a;;) are
described in Appendix E Details on the initialization of ¢(£2) are provided in Appendix
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C. Proof for efficient covariance matrix inverse and (log)
determinant

Let M, be a K x K covariance matrix that is composed of two non-singular K x K precision
matrices P and C, where C is multiplied by a non-negative scalar s;:

M, =(P+Cs;)"". (C.1)
Both M; and its determinant can be computed without inverting a K x K matrix that depends

on s;.

Proof M,

Step 1: Compute a Cholesky decomposition of C: C = LL' and rewrite M, as:

M, = (P + LLT51->71 - (L <L*1P(L’1)T + Isi) LT) - (C.2)

Step 2: Compute a singular value decomposition of L_lP(L_l)T: L_lP(L_l)T = Ual(v)UT7
where d(v) creates a diagonal matrix out of the vector v. By design, U =Ultand UU' =
UU ' =1 This enables us to further rewrite M;:

-1

M, = (L (Ud(V)UT T UUTSz) LT) (LUd(V - Si)UTLT>_1

(C.3)
=LY Ud((v+s) Hu'L ™
|
Proof determinant
Using the general properties of the determinant and the identity that UU' =1
det(M,) = det ((L*l)TUd((v + si)*l)UTLfl)
— det ((L_I)T> det (U) det (d((v + si)_l)) det (UT) det (L_1>
— det (UUT) det (L*l(Lfl)T) det (d((v v si)*l)) (C.4)
K
=det (C) " [ (wx + )"
k=1
The corresponding log determinant is given by:
K
log det(M;) = —logdet (C) — Zlog(vk + 5;). (C.5)
k=1
|
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D. Online Appendix: Implementation details estimation routine

This appendix contains the implementation details for the variational inference coordinate as-
cent optimization algorithm, which is used to determine the parameters of the optimal varia-
tional distribution ¢*(€2).

The specification of €3, = Qpm — Mipm a0d €5 = [€15- - -, €pnr] Plays a central role in the
variational updates for o, and the parameters in the Markov blanket for a;,. The relevant
variational expectations of €, are defined as:

E{€itm } = E{pm | — E{tipm }»

~r 2 _ ~ 2 ~ 2 ~ - (D.l)
E{eibm} = E{aibm} + E{Mzbm} - 2E{aibm}E{Mibm}'
Based on the specification of u,;,, in Equation we obtain:
E{ppt = B{r;} + E{R}E{c_1 } + E{B}xy + E{G}w;, (D.2)
with g, = [ty - - - ipas) and where the p,,, B,,, and =, vectors have been collected in the

matrices R, B, and G that are respectively of dimensions M x M, M x Kx, and M x Ky.
In other words, the mth row of each matrix corresponds to parameters p,,, B,,, and ~,,,
respectively.

We start by introducing notation to facilitate exposition of our results. We often need to
compute o, cleaned from the explained effect of all but one of the factors in p,. To illustrate
this with an example, we can clean oy, of the effect of everything except &, as follows: oy, —
Ra,_1 — Bxy, — Gw; = oy — (g, — Ki) = €3 + K; = €3\ (k;). From the left-hand-side of this
equality we see that €;\(k;) is not a function of k; and is therefore constant with respect to
q(k;). In general, we will denote this “cleaned disturbance term” as €;,\(cy®?), where ¥ is a
placeholder for a focal parameter and cy the coefficient (scalar, vector, or matrix) corresponding
to this parameter. By construction €;\(cy?) is not a function of ¥ and is hence a constant
with respect to ¢(9).

In addition we introduce notation to stack the x;,, w;, €, and ay, vectors into matrices. Xy
stacks the I x;, vectors that correspond with a first shopping trip in an I x Ky matrix. The
same notation applies for w; (W y)) and €;, (E(;)). Similarly, X (o, stacks the remaining x,
vectors that do not correspond with a first shopping trip in an ((Zle B;) — I) x Kx matrix.
Again, the same notation applies for €;, (E4)) and w; (W (o)), where W 5 contains B; — 1
duplicated rows w; for each customer i. Lastly, A _) stacks all lagged values of a, i.e. all the

vectors oy, that do not correspond to a last shopping trip, in a ((21121 B;) —I) x M matrix.
Finally, we use the following notation in the remainder of this appendix:

e [z]: Iverson Bracket, equal to 1 if z is True, else 0

e Z[z] with z € {1,..., M}: Generates an M-dimensional “one-hot” vector filled with zeros,
except for the zth element which is equal to 1

e d(v): creates a diagonal matrix out of the vector v

e E{¥}: expectation of parameter ¥ under its variational distribution ¢(4), i.e. E{¥} =

By(9) {9}

I: identity matrix; 1: vector of ones; 0: vector of zeros
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D.1. Closed-form solutions for the variational updates

Our model specification only consists of distributions from the exponential family and we apply
mean-field variational inference (VI) with a partitioning F'(£2) that retains all elements of a mul-
tivariate parameter within a single subset, w, for all multivariate parameters in the model. This
allows us to use known results from the VI literature to directly write down a general expression
for the optimal variational distribution ¢*(w) for each conditionally conjugate parameter w in
Q. In our model this set includes all parameters except ay.

More specifically, we use the general form of the optimal variational distribution under the
mean-field assumption (Bishop 2006)), applied to distributions in the exponential family (Blei
et al.[2017). That is, given that w refers to a conditionally conjugate parameter, and that w is
distributed according to a distribution from the exponential family in the model, it holds that
the optimal variational distribution for w is given by:

0" (@) o hw) exp (Hw) Byp {n(MB,)}) (D-3)

Here h and t are functions that match the functional form corresponding to the base measure and
the sufficient statistic of the prior distribution for w in the model, and MB,, refers to the Markov
blanket for w. n(MB,,) is the natural parameter corresponding to the full-conditional distribution
p(w|MB,,). Its variational expectation, Eyp_{n(MB,,)}, is the natural parameter corresponding to
the optimal variational distribution ¢*(w). Note that evaluating this expectation only requires
the variational distributions of the parameters in the Markov blanket for w.

Update ¢(z;,): M-dimensional Categorical with probability vector p;,. The probability that
Zivn, = M under the variational distribution is given by:

~ €xp (E{azbm} + E{log ¢m Yib })
ibm = - — 1oibn . D.4
bt Zg]\il exp (E{aype} + E{log ¢y, ) -9

Update ¢(¢,,): J-dimensional Dirichlet with J-dimensional parameter vector a,,. The jth
element of a,, is defined as:

In the updates for ¢(k;), ¢(pm), ¢(Bm), and q(7y,,), the variational parameters can be derived
using a functional form that is related to the normal equations used in multiple regression,
i.e. by using terms £{X ' X} and #{X 'y}. Here the specification of X and y depends on the
focal variational parameter 9. Given expressions for E{XTX} and E{XTy}, the solution of
the variational distribution can be written down as a multivariate Normal distribution with
covariance and mean:

»=p{X'X}"!, p=3E{Xy}. (D.6)

Update ¢(k;): M-dimensional multivariate Normal with:

B;
B{X,, ¥} = E{AJB{p} +B{7o} - | B{0)E{en\(Kid,)} + D Elen\(ki)} | .
p—t (D.7)

B{X,, X, } = B{A} +d(E{m, ) (B{5} + B; - 1).
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Update ¢(3,,): Kx-dimensional multivariate Normal with:

B{Xp,¥5,} = 0, + B{7a, YE{05} X () E{E ) m\ (X (1)Bm0s)} + X2 BB 2) m\ (X 24)8m) }

B{X5, X, } = Tiey + (XX (03} + Xoy Xo) ) L7, )
(D.8)

Update ¢(4,,): Ky ~dimensional multivariate Normal with:

E{X,, Y3} = Oy + 5470, JE{0 3 W (BB 1) i \(W (1) Ym0,) } + W 2 ) BB 24) i \(W2)7m)

X X, } =T, + (Wi W B0} + Wy Wy ) Bir,, )
(D.9)
Update ¢(p,,): M-dimensional multivariate Normal with:
B{X,, Yo} = Onr + B{7a, JE{A 1)} B{E@i)m\(AC1pm)}, (D.10)
E{Xanpm} =TI+ E{A DA }E{Ta }.
Update ¢(d,,): Normal with parameters:
I
is, = 0, (0 +B{7e, } Y E{ﬁum\@m)}) oy = (1+TIR{r, )7 (D.11)
i=1
Update ¢(d,,): Normal with parameters:
M I
ﬂém = &z?n (1 + Z E{Tam} (Z E{”zm}ﬁ{ezlm\(’%zméﬁ)}>> ’
m=1 =1
u , 1 (D.12)
53 = <1 + Y B{7a,} (Z é{f;?m}» :
m=1 i=1
Update ¢(d3): Normal with parameters:
M
~ ) - ~ TxT =
fis, = 035, <1 + Z E{T, JE{Bn} X(1)E{E(1),m\(X(1)ﬂm5ﬁ)}> :
m=1
y » (D.13)
53, = (1 + trace (Z E{Tam}ﬁ{gmﬂ;}xg)x(l)»
m=1
Update ¢(d.,): Normal with parameters:
M
~ ~ ~ ~ T ~
Hs, = O-g,y (1 + Z E{Tam}E{'Ym} W(Tl)E{E m\( 1)Tm 'y)}>
m (D.14)

M -1
&?ﬁ = (1 + trace (Z E{Tam}ﬁ{'ym’yl}wa)w(l)>> )

m=1
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Update ¢(7,, ): Gamma with parameters:

I I B
- 1 ~ 1 “ .
aTam =1 + 5 ZBw ﬁTam =1 + 5 Z Z E{ezzbm}‘ <D15)
i=1 i=1 b=1
Update ¢(u,,): M-dimensional multivariate Normal with parameters:
I
. S - ~ < ~ ~1
Ry, = Eun <OM + E{AH}ZE{K"Z}> ’ Zun = (IM + IE{AR}) . (D16)
i=1

Update ¢(A,): M x M-dimensional Wishart with parameters:
fin, = 2M + 1,

i I - (D17
Y, = (<2M>IM+Z(E{WZ}+@{W? ) B )Els] }—ﬁ{m}ﬁ{ul})> o

i=1

D.2. Variational update for ¢(a)

Because o, is not a conditionally conjugate parameter in the model, an analytical solution for
its optimal variational distribution does not exist. Instead, we place g(cy;,) in the prior family
for ay, i.e. a set of independent Normal distributions, with variational parameters fi,, and &?b.
In the optimization algorithm, we rely on gradient information to update these fi;, and &;
parameters.

To derive the gradients corresponding to f;, and &Z-Qb, we first denote the part of the ELBO that
depends on the variational parameters fi;;, and 6'1»25, of q(ay) as ELBO,:

1. T (.2 | ~2 ~ ~ T -
pLBoy, =~ B{ra} ' (6 + i) + (B{ma) - Blua}) T fin
T

Ny M
. . - 1.
[ D B{Zlzipnl} | — Niplog Y exp(figp, + §Uz‘2bm)
n=1 m=1
1 u (D.18)
+ b # Biltrace (—2 (a(&5) + A (Z E{Tam}ﬁ{pmpl}»
m=1

M
% B (B(ra)} - Bl \Re)) | B{RYig + 2 3 loga?,

m=1

where we have applied Jensen’s Inequality to lowerbound —E{log Z%zl exp Qp, }, which is the

variational expectation of the log of the denominator of the softmax function, with — log Zj\m/[:1 E{exp a;p, }

(Braun and McAuliffe/ 2010).
The gradient of (D.18)) with respect to fi;, is given by:
Vi, ELBOy, =E{T,} - (E{psp} — fzp)
Ny ~ 12
- exp(fip + 503)
+ Z E{Z[zitn]} — N 2
n=1

M ~ ~2
Zm:l eXp(Mibm + %Uz'bm)

y (D.19)
+[b# Bj] (Z E{Tam}ﬁ{pmp;}> Rib

m=1

+ [0 # BE{R} (B{7a} - Bfens1\(Raw)}).
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The gradient of (D.18) with respect to G2 is given by:

1.
V&izbELBOib =— §E{Ta}
~ ~ 2
1 exp(fLip + 307)

- b <M ~ ~2
2 Zm:l eXp(:“‘z'bm + %Uz’bm)

1 M
- i[b 75 Bz]l (Z E{Tam }E{p?nm}>

m=1

(D.20)

~ 2
o .

| =

+

D.3. Initialization of ¢(2)

This appendix contains the initialization settings for ¢(€2) used in Algorithm In general,
we can divide the Normally distributed parameters in two groups: one group for which the
initialization of the variational variance has an effect on the outcome of the optimization; and
for the other group this initialization has no effect. This independence of the initialization is
due to the order in which the variational updates are performed in the optimization algorithm.
For the population parameters for which the initialization of the variational variance matters,
we initialize this variance to a small conservative value M 2 to allow for a smooth optimization
path. Additionally, the posterior distributions of these population parameters are expected to
be sharply peaked, as a lot of information is available to estimate parameters at the population
level. For the variance of g(ay,) we specify an initial value of 1, as less information is available
at the level of an individual shopping trip. Full details of the variational initialization per
parameter are provided below.

e ¢(¢,,) = Dirichlet ;: the parameter vector of the Dirichlet distribution is initialized accord-
ing to the pseudocounts extracted from the output of a Collapsed Gibbs LDA algorithm
applied to the data

e ¢(zypn) = Categoricaly, (p = [M™',..., M~ ']): this initialization has no effect as q(z;,) is
updated before ¢(¢) is updated in the coordinate ascent algorithm

e q(ay,,) = Normal(p = 0,0° = 1)

e ¢(k;) = MVN,,;(pp = 0,3 =I): initial covariance has no effect as ¢(k;) is updated before
4(6,),q(7a)

i Q(pm) = MVNM(/J‘ =0, = IM_2>

* ¢(B,) = MVNg_ (u = 0,% = I): initial covariance has no effect as q(83,,) is updated
before q(d3), q(T,)

® ¢(Ym) = MVNg, (p = 0,3 = I): initial covariance has no effect as g(7,,) is updated
before ¢(6.,), q(7s,)

e ¢(6,,) = Normal(u = 0,0” = 1): initial variance has no effect as ¢(d,,) is updated before

q(7a)

e ¢(6,.) = Normal(p =1,0" = M2
q(0g) = Normal(p = 1,0 = M™%

e q(d,) = Normal(u = 1, o> =M?)
q(7o,,) = Gamma(a = 1, 8 = 1): only the ratio o/ affects the outcome of the optimiza-
tion

e ¢(p,.) = MVN,,(p = 0,3 =1I): initial covariance has no effect as ¢(pu,.) is updated before
a(Ay)

e ¢(A,) = Wishart;(n = 2M,V = I(2M) ™)
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E. Online Appendix: Description of explanatory variables

This appendix describes the exogenous explanatory variables in the data. The only information
available at the shopping trip level besides the IDs for the purchased products and the customer
is the date and time of the trip. This information can be used to construct a set of dummy
variables that all relate to the timing of the shopping trip. The frequencies of these variables
are displayed in Table The levels ‘Year 1°, ‘March’, ‘Weekday’ and ‘Daytime (00:00-17:00)’
are taken as the reference levels, such that 14 dummy variables remain in x; for which the
effects have to be estimated in the model. For all variables the 0/1 dummy coding is demeaned
such that >, x;, = 0.

Dummy level Frequency Percentage
Year 1 20,704 43.53%
Year 2 26,864 56.47%
January 3,803 7.99%
February 3,559 7.48%
March 4,140 8.70%
April 4,195 8.82%
May 4,168 8.76%
June 3,825 8.04%
July 3,802 7.99%
August 3,858 8.11%
September 3,700 7.78%
October 3,823 8.04%
November 4,410 9.27%
December 4,285 9.01%
Weekday 30,844 64.84%
Weekend 16,724 35.16%
Daytime (00:00-17:00) 37,474 78.78%
Evening (17:00-00:00) 10,094 21.22%

Table 11: Frequencies of the explanatory variables at the shopping trip level.

The information available at the customer level is related to age, gender, and household size of
the customer and contains missing values. Age is summarized in five age brackets. Gender is
a binary variable indicating whether a customer is male or female. A missing value for age or
gender is included as a separate dummy variable. A proxy for household size of a customer is
available as well, from which a dummy is created indicating if this a small household (proxy < 2)
or a large household (proxy > 2). The frequencies of these variables are displayed in Table
The levels ‘Age 45-55’, ‘Gender: Male’, and ‘Household: Small’ are taken as the reference levels,
such that 8 dummy variables remain in w; for which the effects have to be estimated in the
model. For all variables the 0/1 dummy coding is demeaned such that >, w; = 0.

Dummy level Count Percentage
Age: Unknown 228 10.09%
Age: 0-35 234 10.36%
Age: 35-45 325 14.39%
Age: 45-55 458 20.27%
Age: 55-65 495 21.91%
Age: 65+ 519 22.97%
Gender: Unknown 168 7.44%
Gender: Female 857 37.94%
Gender: Male 1,234 54.63%
Household: Small 932 41.26%
Household: Large 1,327 58.74%

Table 12: Frequencies of the explanatory variables at the customer level.
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