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Abstract 

This paper reports about our investigation on action understanding in the brain. We are 

taking a three-pronged approach based on some recent results of the neurophysiology, on 

the modeling from recording of human movement, and on the implementation of the 

model on a robotic setup interacting in a natural environment. 

 

1 Introduction 

Animals continuously act on objects, interact with other individuals, clean their fur or 

scratch their skin and, in fact, actions represent the only way they have to manifest their 

desires and goals. However, actions do not constitute a semantic category such as trees, 

objects, people or buildings: the best way to describe a complex act to someone else is to 

demonstrate it directly (Jeannerod, 1988). This is not true for objects such as trees or 

buildings that we describe by using size, weight, color, texture, etc. In other words we 

describe ‘things’ by using visual categories and ‘actions’ by using motor categories. 

Actions are defined as ‘actions’ because they are external, physical expressions of our 

intentions. It is true that often actions are the response to external contingencies and/or 

stimuli but it is also certainly true that – at least in the case of human beings – actions can 

be generated on the basis of internal aims and goals; they are possibly symbolic and not 

related to immediate needs. Typical examples of this last category are communicative 

actions. 

 



Perhaps one of the first attempts of modeling perception and action as a whole was 

started decades ago by Alvin Liberman who initiated the construction of a ‘speech 

understanding’ machine (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967; 

Liberman & Mattingly, 1985; Liberman & Wahlen, 2000). As one can easily imagine, the 

first effort of Liberman’s team was directed at analyzing the acoustic characteristics of 

spoken words, to investigate whether the same word, as uttered by different subjects, 

possessed any common phonetic invariant. Soon Liberman and his colleagues realized 

that speech recognition on the basis of acoustic cues alone was beyond reach with the 

limited computational power available at that time. Somewhat stimulated by the negative 

result, they put forward the hypothesis that the ultimate constituents of speech are not 

sounds but rather articulatory gestures that have evolved exclusively at the service of 

language. Accordingly, a cognitive translation into phonology is not necessary because 

the articulatory gestures are phonologic in nature. This elegant idea was however strongly 

debated at the time mostly because it was difficult to test, verification through the 

implementation on a computer system was impossible, and in fact only recently the 

theory has gained support from experimental evidence (Fadiga, Craighero, Buccino, & 

Rizzolatti, 2002; Kerzel & Bekkering, 2000). 

 

Why is it that, normally, humans can visually recognize actions (or, acoustically, speech) 

with a recognition rate of about 99-100%? Why doesn’t the inter-subject variability 

typical of motor behavior pose a problem for the brain while it is troublesome for 

machines? Sadly, if we had to rank speech recognition software by human standards, 

even our best computers would be regarded at the level of an aphasic patient. One possibe 

alternative is for Liberman to be right and that speech perception and speech production 

use a common repertoire of motor primitives that during production are at the basis of the 

generation of articulatory gestures, and during perception are activated in the listener as 

the result of an acoustically-evoked motor “resonance”. 

 

Perhaps it is the case that if the acoustic modality were replaced, for example, by vision 

this principle would still hold. In both cases, the brain requires a “resonant” system that 

matches the observed/listened actions onto the observer/listener motor repertoire. It is 



interesting also to note that an animal equipped with an empathic system of this sort 

would be able to automatically “predict”, to some extent, the future development of 

somebody else’s action on the basis of the incipit of the action and the implicit 

knowledge of its evolution. Recent neurophysiological experiments show that such a 

motor resonant system indeed exists in the monkey's brain. Most interesting, this system 

is located in a premotor area where neurons not only discharge during action execution 

but to specific visual cues as well. 

 

In the next section we will describe the basic properties of this area. Then we will 

propose a biologically plausible model on how action recognition may be achieved by 

motor-resonant mechanisms similar to those observed in the monkey. Finally, somewhat 

inspired and fascinated by Liberman's idea, we started implementing part of the model in 

two different experimental platforms with the goal of validating the model and of 

understanding the variables at play in action recognition in the brain. 

 

2 Physiological properties of monkey rostroventral premotor 
area (F5) 

Area F5 forms the rostral part of inferior premotor area 6 (Figure 1). Electrical 

microstimulation and single neuron recordings show that F5 neurons discharge during 

planning/execution of hand and mouth movements. The two representations tend to be 

spatially segregated with hand movements mostly represented in the dorsal part of F5, 

whereas mouth movements are mostly located in its ventral part. Although not much is 

known about the functional properties of “mouth” neurons, the properties of “hand” 

neurons have been extensively investigated. 

 



 

Figure 1: Lateral view of monkey right hemisphere. Area F5 is buried inside the arcuate sulcus 

(posterior bank) and emerges on the convexity immediately posterior to it. Area F5 is bidirectionally 

connected with the inferior parietal lobule (areas AIP, anterior intraparietal, PF and PFG). Areas F5 

sends some direct connections also to hand/mouth representations of primary motor cortex (area F1) 

and to the cervical enlargement of the spinal cord. This last evidence definitely demonstrates its 

motor nature. 

 

2.1 Motor neurons 

Rizzolatti and colleagues (Rizzolatti et al., 1988) found that most of the hand-related 

neurons discharge during goal-directed actions such as grasping, manipulating, tearing, 

and holding. Interestingly, they do not discharge during finger and hand movements 

similar to those effective in triggering them, when made with other purposes (e.g., 

scratching, pushing away). Furthermore, many F5 neurons are active during movements 

that have an identical goal regardless of the effector used to attain them. Many grasping 

neurons discharge in association with a particular type of grasp. Most of them are 

selective for one of the three most common monkey grasps: precision grip, finger 

prehension, and whole hand grasping. Sometimes, there is also specificity within the 

same general type of grip. For instance, within the whole hand grasping, the prehension 



of a sphere is coded by neurons different from those coding the prehension of a cylinder. 

The study of the temporal relation between the neural discharge and the grasping 

movement showed a variety of behaviors. Some F5 neurons discharge during the whole 

action they code; some are active during the opening of the fingers, some during finger 

closure, and others only after the contact with the object. A typical example of a grasping 

neuron is shown in Figure 2. In particular, this neuron fires during precision grip (Figure 

2, top) but not during whole hand grasping (Figure 2, bottom). Note that the neuron 

discharges both when the animal grasps with its right hand and when the animal grasps 

with its left hand. 

 

Taken together, these data suggest that area F5 forms a repository (a “vocabulary”) of 

motor actions. The “words” of the vocabulary are represented by populations of neurons. 

Each indicates a particular motor action or an aspect of it. Some indicate a complete 

action in general terms (e.g., take, hold, and tear). Others specify how objects must be 

grasped, held, or torn (e.g., precision grip, finger prehension, and whole hand 

prehension). Finally, some of them subdivide the action in smaller segments (e.g., fingers 

flexion or extension). 

 



 

Figure 2: F5 grasping neurons. In the uppermost part of each panel eight successive trials are 

represented. Each dot represents an action potential. In the lowermost part the sum histogram is 

drawn. Trials are aligned with the moment at which the monkey touches the object (vertical lines 

across histograms). Ordinates: spikes/second; Abscissa: time (20 ms bins); from (Rizzolatti et al., 

1988). 

 

2.2 Visuomotor neurons 

Some F5 neurons in addition to their motor discharge, respond also to the presentation of 

visual stimuli. F5 visuomotor neurons pertain to two completely different categories. 

Neurons of the first category discharge when the monkey observes graspable objects 

(“canonical” F5 neurons, (Murata et al., 1997; Rizzolatti et al., 1988; Rizzolatti & Fadiga, 

1998)). Neurons of the second category discharge when the monkey observes another 

individual making an action in front of it (Di Pellegrino, Fadiga, Fogassi, Gallese, & 

Rizzolatti, 1992; Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Rizzolatti, Fadiga, Gallese, 

& Fogassi, 1996). For these peculiar “resonant” properties, neurons belonging to the 

second category have been named “mirror” neurons (Gallese et al., 1996). 

The two categories of F5 neurons are located in two different sub-regions of area F5: 

"canonical" neurons are mainly found in that sector of area F5 buried inside the arcuate 



sulcus, whereas "mirror" neurons are almost exclusively located in the cortical convexity 

of F5 (see Figure 1). 

 

2.3 Canonical neurons 

Recently, the visual responses of F5 “canonical” neurons have been re-examined using a 

formal behavioral paradigm, which allowed testing the response related to object 

observation both during the waiting phase between object presentation and movement 

onset and during movement execution (Murata et al., 1997). The results showed that a 

high percentage of the tested neurons, in addition to the “traditional” motor response, 

responded also to the visual presentation of 3D graspable object. Among these 

visuomotor neurons, two thirds were selective to one or few specific objects. 
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Figure 3: Responses of a visuomotor “canonical” neuron of area F5. Each panel shows the neuron 

activity recorded during the observation and grasping (A) or the mere observation (B) of three 

different three-dimensional objects. The alignment of the single trials coincides with the moment in 

which the object becomes visible (thin line through histograms). In A, the first gray marker following 

the alignment bar represents the appearance of the signal which commands the beginning of 

grasping movement. In B, the monkey had to merely observe the object and the first gray bar after 

alignment represents the moment at which the animal had to release a bar to receive reward. The 

conventions used in the visualization of the responses are the same as those used in Figure 2. 

Modified from (Murata et al., 1997). 



 

Figure 3A (grasping in light) shows the responses of an F5 visually selective neuron. 

While observation and grasping of a ring produced strong responses, responses to the 

other objects were modest (sphere) or virtually absent (cylinder). Figure 3B (object 

fixation) shows the behavior of the same neuron of Figure 3A during the fixation of the 

same objects. In this condition the objects were presented as during the task in 2A, but 

grasping was not allowed and, at the go-signal, the monkey had simply to release a key. 

Note that, in this condition, the object is totally irrelevant for task execution, which only 

requires the detection of the go-signal. Nevertheless, the neuron strongly discharged at 

the presentation of the preferred object. To recapitulate, when visual and motor properties 

of F5 neurons are compared, it becomes clear that there is a strict congruence between the 

two types of responses. Neurons that are activated when the monkey observes small sized 

objects discharge also during precision grip. On the contrary, neurons selectively active 

when the monkey looks at large objects discharge also during actions directed towards 

large objects (e.g. whole hand prehension). 

 

2.4 Mirror neurons 

Mirror neurons are F5 visuomotor neurons that activate when the monkey both acts on an 

object and when it observes another monkey or the experimenter making a similar goal-

directed action (Di Pellegrino et al., 1992; Gallese et al., 1996). Recently, mirror neurons 

have been found also in area PF of the inferior parietal lobule, which is bidirectionally 

connected with area F5 (Fogassi, Gallese, Fadiga, & Rizzolatti, 1998). Therefore, mirror 

neurons seem to be identical to canonical neurons in terms of motor properties, but they 

radically differ from the canonical neurons as far as visual properties are concerned 

(Rizzolatti & Fadiga, 1998). The visual stimuli most effective in evoking mirror neurons 

discharge are actions in which the experimenter's hand or mouth interacts with objects. 

The mere presentation of objects or food is ineffective in evoking mirror neurons 

discharge. Similarly, actions made by tools, even when conceptually identical to those 

made by hands (e.g. grasping with pliers), do not activate the neurons or activate them 

very weakly. The observed actions which most often activate mirror neurons are 



grasping, placing, manipulating, and holding. Most mirror neurons respond selectively to 

only one type of action (e.g. grasping). Some are highly specific, coding not only the type 

of action, but also how that action is executed. They fire, for example, during observation 

of grasping movements, but only when the object is grasped with the index finger and the 

thumb. 

 

Typically, mirror neurons show congruence between the observed and executed action. 

This congruence can be extremely precise: that is, the effective motor action (e.g. 

precision grip) coincides with the action that, when seen, triggers the neurons (e.g. 

precision grip). For other neurons the congruence is somehow weaker: the motor 

requirements (e.g. precision grip) are usually stricter than the visual ones (any type of 

hand grasping). One representative of the highly congruent mirror neurons is shown in 

Figure 4. 

 



 

 

Figure 4: Highly congruent F5 visuomotor “mirror” neuron. Behavioral situations are schematically 

represented in the upper part of each panel above a series of consecutive rasters and relative 

response histograms. A, the monkey observes the experimenter who rotates his hands around a raisin 

alternating clockwise and counterclockwise movements. The response is present only in one rotation 

direction. B, the experimenter rotates a piece of food held by the monkey who opposes the 

experimenter movement making a wrist rotation movement in the opposite direction. C, monkey 

grasps food using a precision grip. Four continuous recordings are shown in each panel. Small 

arrows above the records indicate the direction of rotations. Note that in C the response is almost 

absent demonstrating a high degree of motor specificity. From (Rizzolatti et al., 1996). 

 



3 A model of area F5 and the mirror system 

Our model of area F5 revolves around two concepts that are likely related to the 

evolution and development of this unique area of the brain. Firstly, we posit that the 

mirror neuron system did not appear brand new in the brain but evolved from a pre-

existing structure devoted solely to the control of grasping actions. The reason for this 

claim are to be found in the large percentage of motor neurons in F5 (70%) compared to 

those that have also visual responses. Secondly, if we pose the problem in terms of 

understanding how such a neural system might actually be autonomously developed 

(shaped and learned by/through experience during ontogenesis), then the role of 

canonical neurons – and in general that of contextual information specifying the goal of 

the action – has to be reconsidered. Since purely motor, canonical, and mirror neurons are 

found together in F5, it is very plausible that local connections determine part of the 

activation of F5. For explanatory purpose, the description of our model of the mirror 

system can further be divided in two parts. The first part describes what happens in the 

actor’s brain, the second what happens in the observer’s brain when watching the actor 

(or another individual). As we will see the same structures are used both when acting and 

when observing an action. 

 

We consider first what happens from the actor’s point of view (see Figure 5): in her/his 

perspective, decision to undertake a particular grasping action is attained by the 

convergence in area F5 of many factors including context and object related information. 

The presence of the object and of contextual information bias the activation of a specific 

motor plan among many potentially relevant plans stored in F5. The one which is most fit 

to the context is then enacted through the activation of a population of motor neurons. 

The motor plan specifies the goal of the motor system in motoric terms and, although not 

detailed here, we can imagine that it also includes temporal information. Contextual 

information is represented by the activation of F5’s canonical neurons and by additional 

signals from parietal (AIP for instance) and frontal areas as in other models of the mirror 

system (Fagg & Arbib, 1998; Oztop & Arbib, 2002). 

None of these contributing neural activities (parietal, temporal, frontal, etc.) can bring, if 

considered in isolation, F5 over threshold and thus elicit action execution. Instead, 



activity in different brain areas represents separate unspecific components that become 

specific only when converging in F5. In this context, the activity of F5 canonical neurons 

should not be underestimated since it contributes to the definition of the goal of the action 

and without a goal there is no mirror neurons response as pointed out in (Gallese et al., 

1996). 

 

In fact, we can surely start asking what two individuals have in common: what do they 

share when mutually interacting? What information can be shared in interacting with 

objects? We claim that it is exactly the goal of the action that is shared among individuals 

since it is independent of the viewpoint: that is, the final abstract consequences of a given 

action are, unlike its exact visual appearance, viewpoint independent. The fact that the 

goal of the action is shared among individuals allows two conspecifics to eventually 

develop mirror-like representations from the observation of each other’s actions and from 

their own knowledge of actions. In fact, in this model, key to proper development of a 

mirror representation is the ability to recognize that a specific goal is approximately 

achieved by employing always the same action. Canonical neurons act as “filters” 

reducing the probability of generating implausible actions given the context and target 

object and, thus, actually filtering out irrelevant information. A similar role with respect 

to the specification of the hand posture would be appropriate to the hand responsive 

neurons of STS (Perrett, Mistlin, Harries, & Chitty, 1990). 

 

With reference to Figure 5, our model hypothesize that the intention to grasp is initially 

“described” in the frontal areas of the brain in some internal reference frame and then 

transformed into the motor plan by an appropriate controller in premotor cortex (F5). The 

action plan unfolds mostly open loop. A form of feedback (closed loop) is required 

though to counteract disturbances and to learn from mistakes. This is obtained by relying 

on a forward or direct model that predicts the outcome of the action as it unfolds in real-

time. The output of the forward model can be compared with another signal derived from 

sensory feedback, and differences accounted for (the cerebellum is believed to have a role 

in this). A delay module is included in the model to take into account the different 

propagation times of the neural pathways carrying the predicted and actual outcome of 



the action. Note that the forward model is relatively simple, predicting only the motor 

output in advance: since motor commands are generated internally it is easy to imagine a 

predictor for this signals. The inverse model (indicated with VMM for Visuo-Motor 

Map), on the other hand, is much more complicated since it maps sensory feedback 

(vision mainly) back into motor terms. Visual feedback clearly includes both the hand-

related information and the contextual information so important for action recognition. 

Finally the predicted and the sensed signals arising from the motor act are compared and 

their difference (feedback error) sent back to the controller. 

There are two ways of using the mismatch between the planned and actual action: i) 

compensate on the fly by means of a feedback controller, and ii) adjust over longer 

periods of time through learning (not explicitly indicated in the model). 
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Figure 5: Model schematics of a forward-inverse model of F5 and mirror neurons. The response of 

the mirror system is seen as an adaptation of a feedback loop controlling the execution of grasping. 

The model only contains details of some brain areas while it is known that many others participate to 

the specification and control of grasp (which are indicated generically in the diagram). Please, refer 

to the text for the detailed description of the model. 

 

The output of area F5, finally activates the motor neurons in the spinal cord (directly or 

indirectly through motor synergies) to produce the desired action. This is indicated in the 

schematics by a connection to appropriate muscular synergies. 



Learning in the direct and inverse models can be carried out during ontogenesis by a 

procedure of self-observation and exploration of the state space of the system: grossly 

speaking, simply by “detecting” the sensorial consequences of motor commands – 

examples of similar procedures are well known in the literature of computational motor 

control (Jordan & Rumelhart, 1992; Kawato, Furukawa, & Suzuki, 1987; Wolpert, 1997; 

Wolpert, Ghahramani, & Flanagan, 2001). 

Learning of context specific information (e.g. the affordances of objects with respect to 

grasping) can also be achieved autonomously by a trial and error procedure, which 

explores the consequences of many different actions of the agent's motor repertoire 

(different grasp types) to different objects. This includes things such as discovering that 

small objects are optimally grasped by a pinch or precision grip, while big and heavy 

objects require a power grasp. 

In addition, the model includes the concept of “motor vocabulary”, since control of action 

is realized by a “graded” controller but the selection of which fingers to use (what grasp 

type to apply) is “discrete” and involves the activation of one of the “action” modules 

described above. 

 

A slightly different activation pattern is hypothesized in the observer situation (see Figure 

6). In this case clearly motor and proprioceptive information is not directly available. The 

only readily available information is vision. The central assumption of our model is that 

the structure of F5 could be co-opted in recognizing the observed actions by transforming 

visual cues into motor information as before. In practice, the inverse model is accessed by 

visual information and since the observer is not acting herself, visual information is 

directly reaching in parallel sensori-motor primitives in F5. Only some of them are 

actually activated because of the “filtering” effect of the canonical neurons and other 

contextual information (possibly at a higher level, knowledge of the actor, etc.). A 

successive filtering is carried out by considering the actual visual evidence of the action 

being watched (implausible hand postures should be weighed less than plausible ones). 

This procedure could be used then to recognize the action by measuring the most active 

motor primitive (from the vocabulary). In probabilistic terms this is easily obtained by 



evaluating all evidence with its likelihood and looking for the maximum a-posteriori 

probability (Cabido Lopes & Santos-Victor, 2003). 

 

Comparison is theoretically done, in parallel, across all the active motor primitives 

(actions); the actual brain circuitry is likely to be different with visual information setting 

the various F5 populations to certain equilibrium states. The net effect can be imagined as 

that of many comparisons being performed in parallel and one motor primitive resulting 

predominantly activated. 

 

Relying on motor information seems to facilitate the organization (clustering) of visual 

information: that is, the organizational principle of visual information becomes a motoric 

one. Clearly invariance from the point of view is much better achieved if the analysis of 

the action is done in motor terms (Cabido Lopes & Santos-Victor, 2003). 
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Figure 6: Action and observation activity. The model of Figure 5 is replicated to describe the 

observer’s brain. The observation of a certain action activates the same feedback path used in 

executing that action (thick solid lines). Many details as shown in Figure 5 were dropped here for 

clarity of presentation. 

 

The presence of a goal is fundamental to elicit mirror neuron responses (Gallese et al., 

1996) and we believe it is also particularly important during the ontogenesis of the mirror 

system. Supporting evidence is described in the work of Woodward and colleagues 

(Woodward, 1998) who have shown that the identity of the target is specifically encoded 

during reaching and grasping movements: in particular, already at nine months of age, 

infants recognized as novel an action directed toward a novel object rather than an action 



with a different kinematics, thus showing that the goal is more fundamental than the 

enacted trajectory. 

 

Developing mirror neurons thus might likely go through the initial maturation of the 

neural circuitry devoted to the understanding of the actor’s goal (involving as we already 

mentioned F5 canonical neurons) and only afterward to the association of the observed 

action to one’s internal representation of that same action. If this picture is consistent then 

we can construct an answer to the question of how mirror neurons originate: the actor 

first learns how to grasp objects and only subsequently associate its own representation of 

the action to the observed action in all those cases where the goal is the same. This view 

on mirror neurons has the advantage of not requiring an ‘external teacher’: that is, 

learning can proceed completely unsupervised and consistently with the model schematic 

of Figure 5. 

 

Experiments probing different aspects of the model were conducted on two different 

setups: i) the grasping data acquisition setup described next, and ii) a humanoid robot 

described later in section 5. The reason for experimenting on two different platforms 

resides in the fact that accurate manipulation is still beyond the state of the art of robotic 

systems – not to mention the difficulty of appropriately learning to grasp generic objects 

– while, on the other hand, the complete model, including learning, is better tested on a 

fully autonomous system. 

 

4 A machine with hands 

The rationale for the grasping data acquisition setup is to build a machine that embeds 

some of the principles of operation that we identified in the model to perform action 

recognition. Clearly, this requires to access both motor and visual information in the 

operation of learning to recognize gestures. The simplest way to provide “motor 

awareness” to a machine is by recording grasping actions from multiple sources of 

information including joint angles, spatial position of the hand/fingers, vision, and touch. 

For this purpose we assembled a computerized system composed of a cyber glove 



(CyberGlove by Immersion), a pair of CCD cameras (Watek 202D), a magnetic tracker 

(Flock of bird, Ascension), and two touch sensors (FSR). Data was sampled at frame rate, 

synchronized, and stored to disk by a Pentium class PC. The cyber glove has 22 sensors 

and allows recording the kinematics of the hand at up to 112Hz. The tracker was mounted 

on the wrist and provides the position and the orientation of the hand in space with 

respect to a base frame. The two touch sensors were mounted on the thumb and index 

finger to detect the moment of contact with the object. Cameras were mounted at 

appropriate distance with respect to their focal length to acquire the execution of the 

whole grasping action with maximum possible resolution. 

 

The glove is lightweight and does not limit anyhow the movement of the arm and hand as 

long as the subject is sitting not too far from the glove interface. Data recording was 

carried out with the subject sitting comfortably in front of a table and enacting grasping 

actions naturally toward objects approximately at the center of the table. Data recording 

and storage were carried out through a custom-designed application; Matlab was 

employed for post processing. 

 

Recording human movements for either teaching robots or animating robotic avatars is 

certainly not new (Mataric, 2000; Nakanishi, Morimoto, Endo, Schaal, & Kawato, 2003). 

Our setup though is not merely using this information for re-enacting precise trajectories 

or simply interpolating from exemplar movements as in (Rose, Cohen, & Bodenheimer, 

1998). While the emphasis on previous work was on creating novel movements similar 

(according to certain criteria) to observed ones, it is our intendment to use motor 

information as an aggregating principle to determine which visual features are important 

and to actually select appropriate visual features for action recognition. Grossly speaking, 

in designing a classifier which uses visual information, it is crucial to choose a set of 

features (i.e. what to measure from images) that maximizes the distance between 

categories and minimizes the spread within each category. This guarantees large margins 

which are then related to generalization and potentially simplifies the task of the classifier 

(or simplifies the classifier itself, a bit along the line of the Statistical Learning Theory 

(Vapnik, 1998)). That this is the case is still to be shown by the ongoing experimental 



activity. In addition, since actions are coded by transforming visual information in motor 

terms we expect to obtain a much larger invariance to changes in the visual appearance of 

the action. 

 

We simply want to point out here that even when acting is not strictly required, 

possessing a hand is not optional in at least two different ways: i) in humans where visual 

features have to develop autonomously; since there’s no “engineer within the brain” 

deciding what is important for visual classification, and ii) in building machines; since 

the actual optimal features might be far from obvious and, simultaneously, the chance of 

selecting a sufficiently optimal set are exceedingly low (the space of possible visual 

features is large). In both situations what is important is the unsupervised (autonomous) 

acquisition of the visuo-motor representation. What we would like to characterize is the 

sequence of events that allows learning a visuo-motor representation starting from lesser 

elements and without assuming unreasonable pre-specification of the structures. Also, 

what is important in our model is to show how much the same learned representation can 

be subsequently co-opted in recognizing other individuals’ actions (as for area F5). A 

more thorough discussion is given in the following section. 

 

 

Figure 7: The recording setup. The user wears the cyber glove and reaches for an object. Cameras in 

this image are places behind the person and see a good portion of the table. The visual environment 



for the experiments was well controlled (e.g. illumination) and the background was made uniform in 

color. 

 

At this stage we have collected the data set for further off-line processing. The selected 

grasping types approximately followed Napier’s taxonomy (Napier, 1956) and for our 

purpose they were limited to only three types: power grasp (cylindrical), power grasp 

(spherical), and precision grip. Since the goal was to investigate how much invariance 

could be learned by relying on motor information for classification, the experiment 

included gathering data from a multiplicity of viewpoints. The database contains objects 

which afford several grasp types to assure that recognition cannot simply rely on 

exclusively extracting object features. Rather, according to our model, this is supposed to 

be a confluence of object recognition with hand visual analysis. Two exemplar grasp 

types are shown in Figure 8: on the left panel a precision grip using all fingers; on the 

right one a two-finger precision grip. 

 
 

 

Figure 8: Exemplar grasp types as recorded during data collection. The topmost row shows two types 

of grasp applied to the same object (the small glass ball) from different points of view. The bottom 

images show two very different grasp types from the same point of view. 

 

The objects were also three: a small glass ball, a parallelepiped which affords multiple 

grasps, and a large sphere requiring power grasp. Each grasping action was recorded 



from six different subjects (right handed, age 23-29, male/female equally distributed), 

and moving the cameras to 12 different locations around the subject including two 

different elevations with respect to the table top which amounts to 168 sequences per 

subject. Each sequence contains the vision of the scene from the two cameras 

synchronized with the cyber glove and the magnetic tracker data. This is the data set that 

is presently being used for building a Bayesian classifier in motor space (Cabido Lopes & 

Santos-Victor, 2003). An early analysis yielded promising results, especially in terms of 

generalization, and results that are, at the moment, subject of further investigation. 

 

5 Robotic experiment 

Following the insight that it might be important to uncover the sequence of 

developmental events that moves either the machine or humans to a motoric 

representation of observed actions, we set forth to the implementation of a complete 

experiment on a humanoid robot called Cog (Brooks, Brezeal, Marjanovic, & Scassellati, 

1999). This is an upper-torso human shaped robot with 22 degrees of freedom distributed 

along the head, arms and torso. It lacks hands, it has instead simple flippers that could use 

to push and prod objects. It can’t move from its stand so that the objects it interacted with 

had to be presented to the robot by a human experimenter. The robot is controlled by a 

distributed parallel control system based on a real-time operating system (QNX) and 

running on a set of Pentium based computers. The robot is equipped with cameras (for 

vision), gyroscopes simulating the human vestibular system, and joint sensors providing 

information about the position and torque exerted at each joint. 
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Figure 9: Experimental robotic setup. Cog, the humanoid robot platform developed at MIT, AI-Lab; 

for further details see (Brooks et al., 1999). 

 

The aim of experimenting on the humanoid robot was that of showing that a mirror 

neuron-like representation could be acquired by simply relying on the information 

exchanged during the robot-environment interaction. This proof of concept can be used to 

analyze the gross features or evidence any lacuna in our model. We were especially 

interested in determining a plausible sequence that starting from minimal initial 

hypotheses steers the system toward the construction of units with responses similar to 

mirror neurons. The resulting developmental pathway should gently move the robot 

through probing different levels of the causal structure of the environment. Table 1 shows 

four level of this causal structure and some intuition about the areas of the brain related to 

these functions. It is important to note as the complexity of causation evolves from strict 

synchrony to more delayed effects and thus it becomes more difficult to identify and 

learn anything from. Naturally, this is not to say that the brain develops following this 

step-like progression. Rather, brain development is thought to be fluidic, messy, and 

above all dynamic (Lungarella, Metta, Pfeifer, & Sandini, 2003; Thelen & Smith, 1998); 

the identification of “developmental levels” here simplifies though our comprehension of 

the mechanisms of learning and development. 

 



Table 1: degrees of causal indirection, brain areas and function in the brain. 

Level Nature of causation Brain areas Function and behavior Time profile 

1 Direct causal chain VC-VIP/7b-

F4-F1 

Reaching Strict synchrony 

2 One level of indirection VC-AIP-F5-

F1 

Poking, prodding, 

grasping 

Fast onset upon contact, 

potential for delayed 

effects 

3 Complex causation 

involving multiple 

causal chains 

VC-AIP-F5-

F1+STS+IT 

Mirror neurons, mimicry Arbitrarily delayed onset 

and effects 

4 Complex causation 

involving multiple 

instances of 

manipulative acts 

STS+TE-

TEO+F5-AIP 

Object recognition Arbitrarily delayed onset 

and effects 

 

The first level in Table 1 suggests that learning to reach for externally identified objects 

requires the identification of a direct causal chain linking the generation of action to its 

immediate and direct visual consequences. Clearly, in humans the development of full-

blown reaching requires also the contemporary development of visual acuity, binocular 

vision and, as suggested by Bertenthal and von Hofsten (Bertenthal & von Hofsten, 

1998), the proper support of the body freeing the hand and arm from its supporting role. 

 

Only when reaching has developed then the interaction between the hand and the external 

world might start generating useful and reliable responses from touch and grasp. This 

new source of information requires simultaneously new means of detecting causally 

connected events since the initiation of an action causes certain delayed effects. The 

payoff is particularly rich, since interaction with objects leads to the formation of a “well 

defined” concept of objecthood – this is a tricky concept as it has been discussed for 

example in (Metta & Fitzpatrick, 2003). 

It is interesting to study subsequently whether this same knowledge about objects and the 

interaction between the hand and objects could be exploited in interpreting actions 

performed by others. It leads us to the next level of causal understanding where the delay 

between the acquisition of object knowledge and the exploitation of this knowledge when 



observing someone else might be very large. If any neural unit is active in these two 

situations (both when acting and observing) then it can be regarded in all respect as a 

“mirror” unit. 

Finally we mention object recognition as belonging to an even higher level of causal 

understanding where object identity is constructed by repetitive exposition and 

manipulation of the same object. In the following experiments we concentrate on step 2 

and 3 assuming step 1 is already functional. We shall not discuss any longer about step 4 

which is relatively sideways with respect to this paper. The robot also possesses, and we 

are not going to enter much into the details here, some basic attentional capabilities that 

allows selecting relevant objects in the environment and tracking them if they move, 

binocular disparity which is used to control vergence and estimate distances, and enough 

motor control abilities to reach for an object. In a typical experiment, the human operator 

waves an object in front of the robot which reacts by looking at it; if the object is dropped 

on the table, a reaching action is initiated, and the robot possibly makes a contact with the 

object. Vision is used during the reaching and touching movement for guiding the flipper 

toward the object, to segment the hand from the object upon contact, and to collect 

information about the behavior of the object caused by the application of a certain action. 

 

6 Learning object affordances 

Since the robot does not have hands, it cannot really grasp objects from the table. 

Nonetheless there are other actions that can be employed in exploring the physical extent 

of objects. Touching, poking, prodding, and sweeping form a nice class of actions that 

can be used for this purpose. The sequence of images acquired during reaching for the 

object, the moment of impact, and the effects of the action are measured following the 

approach of Fitzpatrick (Fitzpatrick, 2003a). An example of the quality of segmentation 

obtained is shown in Figure 10. Clearly, having identified the object boundaries allows 

measuring any visual feature about the object, such as color, shape, texture, etc. 

Unfortunately, the interaction of the robot’s flipper with objects does not result in a wide 

class of different affordances. In practice the only possibility was to employ objects that 

show a characteristic behavior depending on how they are approached. This possibility is 



offered by rolling affordances: in our experiments we used a toy car, an orange juice 

bottle, a ball, and a colored toy cube. 

The robot’s motor repertoire besides reaching consists of four different stereotyped 

approach movements covering a range of directions of about 180 degrees around the 

object. 

 

 

 

Figure 10: Example of segmentation obtained by reaching and poking an object sitting on a table in 

front of the robot; adapted from (Fitzpatrick & Metta, 2003). The first two pictures show the 

moment of impact with the object, the third picture is a color-coded version of the motion detection 

filter that shows the object motion and the robot flipper in different colors. The fourth image shows 

the segmented area obtained by further processing the motion information in the third picture. 

 

The experiment consisted in presenting repetitively each of the four objects to the robot. 

During this stage also other objects were presented at random; the experiment run for 

several days and sometimes people walked by the robot and managed to make it poke 

(and segment) the most disparate objects. The robot “stored” for each successful trial the 

result of the segmentation, the object’s principal axis which was selected as 

representative shape parameter, the action – initially selected randomly from the set of 

four approach directions –, and the movement of the center of mass of the object for 

some hundreds milliseconds after the impact was detected. We grouped (clustered) data 

belonging to the same object by employing a color based clustering techniques similar to 

Crowley et al. (Schiele & Crowley, 2000). In fact in our experiments the toy car was 

mostly yellow in color, the ball violet, the bottle orange, etc. In different situations the 

requirements for the visual clustering might change and more sophisticate algorithms 

could be used (Fitzpatrick, 2003b). 

Figure 11 shows the results of the clustering, segmentation, and examination of the object 

behavior procedure. We plotted here an estimation of the probability of observing object 



motion relative to the object own principal axis. Intuitively, this gives information about 

the rolling property of the different objects: e.g. the car tends to roll along its principal 

axis, the bottle at right angle with respect to the axis. The training set for producing the 

graphs in Figure 11 consisted of about 100 poking actions per object. This “description” 

of objects is fine in visual terms but do not really bear any potential for action since it 

does not yet contain information about what action to take if it happens to see one of the 

objects. 

For the purpose of generating actions a description of the geometry of poking is required. 

This can be easily obtained by collecting many samples of generic poking actions and 

estimating the average direction of displacement of the object. Figure 12 shows the 

histograms of the direction of movement averaged for each possible action. About 500 

samples were used to produce the four plots. Note, for example, that the action labeled as 

“backslap” (moving the object outward from the robot) gives consistently a visual object 

motion upward in the image plane (corresponding to the peak at –100 degrees, 0 degrees 

being the direction parallel to the image x axis). A similar consideration applies to the 

other actions. 

Having built this, the first interesting question is then whether this information 

(summarized collectively in Figure 11 and Figure 12) can be re-used when acting to 

generate anything useful showing exploitation of the object affordances. In fact, it is now 

possible to make the robot “optimally” poke an observed and known object. In practice 

the same color clustering procedure is used for localizing and recognizing the object, to 

determine its orientation on the table, its affordance, and finally to select the action that it 

is most likely to elicit the principal affordance (roll). 
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Figure 11: Probability of observing a roll along a particular direction with respect to the object 

principal axis. Abscissas are in degrees. Note as the toy car and the bottle show a very specific 

behavior: they possess a preferred rolling direction with respect to their principal axis. 
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Figure 12: Histogram of the direction of movement of the object for each possible action. Abscissas 

are in degrees. This set of plots show that each action would generate on average a typical 

consequence on the approached object. The direction of motion expressed in angles is referred from 

the robot’s point of view and it is relative to the image reference frame. 



 

A simple qualitative test of the performance determined that out of 100 trials the robot 

made 15 mistakes. Further analysis showed that 12 of the 15 mistakes were due to poor 

control of reaching (e.g. the flipper touched the object too early bringing it outside the 

field of view), and only three to a wrong estimate of the orientation. 

Although crude, this implementation shows that with little pre-existing structure the robot 

could acquire the crucial elements for building object knowledge in terms of their 

affordances. Given a sufficient level of abstraction, our implementation is close to the 

response of canonical neurons in F5 and their interaction with neurons observed in AIP 

that respond to object orientation (Sakata, Taira, Kusunoki, Murata, & Tanaka, 1997). 

Another interesting question is whether knowledge about object directed actions can be 

reused in interpreting observed actions performed perhaps by a human experimenter. It 

leads directly to the question of how mirror neurons can be developed from the 

interaction of canonical neurons and some additional processing. 

 

To link with the concept of feedback from the action system, here, after the actual action 

has unfolded, the robot applied exactly the same procedure employed to learn the object 

affordances to measure the error between the planned and executed action. This feedback 

signal could then be exploited to incrementally update the internal model of the 

affordances. This feedback signal is fairly similar to the feedback signal identified in our 

conceptual model in section 3 (Figure 5). 

 

7 Developing mirror neurons 

In answering the question of what is further required for interpreting observed actions, we 

could reason backward through the chain of causality employed in the previous section. 

Whereas the robot identified the motion of the object because of a certain action applied 

to it, here it could backtrack and derive the type of action from the observed motion of 

the object. It can further explore what is causing motion and learn about the concept of 

manipulator in a more general setting (Fitzpatrick & Metta, 2003). 



In fact, the same segmentation procedure cited in section 6 could visually interpret 

poking actions generated by a human as well as those generated by the robot. One might 

argue that observation could be exploited for learning about object affordances. This is 

possibly true to the extent passive vision is reliable and action is not required. 

Unfortunately passive observation could never learn (autonomously) the link to motor 

control as we showed in the affordance experiments. Also, in the active case, the robot 

can always tune/control the amount of information impinging on its visual sensors by, for 

instance, controlling the speed and type of action, which might be especially useful given 

the limitations of artificial perceptual systems. 

Thus, observations can be converted into interpreted actions. The action whose effects are 

closest to the observed consequences on the object (which we might translate into the 

goal of the action) is selected as the most plausible interpretation given the observation. 

Most importantly, the interpretation reduces to the interpretation of the “simple” 

kinematics of the goal and consequences of the action rather than to understanding the 

“complex” kinematics of the human manipulator. The robot understands only to the 

extent it has learned to act. 

One might note that a refined model should probably include visual cues from the 

appearance of the manipulator into the interpretation process. This is possibly true for the 

case of manipulation with real hands where the configuration of fingers might be 

important. Given our experimental setup the sole causal relationship was instantiated 

between the approach/poking direction and the object behavior; consequently there was 

not any apparent benefit in including additional visual cues. 

The last question we propound to address is whether the robot can imitate the “goal” of a 

poking action. The step is indeed small since most of the work is actually in interpreting 

observations. Imitation was generated in the following by replicating the latest observed 

human movement with respect to the object and irrespective of its orientation. For 

example, in case the experimenter poked the toy car sideways, the robot imitated him/her 

by pushing the car sideways. Figure 13 shows an extended mimicry experiment with 

different situations originated by playing with a single object. 

In humans there is now considerable evidence that a similar strict interaction of visual 

and motor information is at the basis of action understanding at many levels, and if 



exchanging vision for audition, it applies unchanged to speech (Fadiga et al., 2002). This 

implementation, besides serving as sanity check to our current understanding of the 

mirror system, provides hints that learning of mirror neurons can be carried out by a 

process of autonomous development. 

However, these results have to be considered to the appropriate level of abstraction and 

comparing too closely to neural structure might even be misleading: simply this 

implementation was not intended to reproduce closely the neural substrate (the neural 

implementation) of imitation. Robotics, we believe, might serve as a reference point from 

which to investigate the biological solution to the same problem – although it cannot 

provide the answers, it can at least suggest useful questions. 
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Figure 13: An extended imitation experiment. Here two different type of experiments are shown: 

acting according to an affordant behavior (left), or against the principal affordance (right). Further, 

for each situation we show the demonstrated action, the mimicry obtained when the object is 

oriented similarly to the demonstration, and when the object is oriented differently from the 

demonstration. 

 

8 Conclusions 

This paper put forward a model of the functioning of the mirror system which considers 

at each stage plausible unsupervised learning mechanisms. In addition, the results from 

our experiments seem to confirm two facts of the proposed model: first, that motor 

information plays a role into the recognition process – as would be following the 



hypothesis of the implication of feedback signals into recognition – and, second, that a 

mirror-like representation can be developed autonomously on the basis of the interaction 

between an individual and the environment. 

The outcome from a first set of experiments using the data set collected with the cyber 

glove setup has shown that there are at least two effects whether the action classification 

is performed in visual rather than motor space: i) simpler classifier, since the 

classification or clustering is much simpler in motor space, and ii) better generalization, 

since motor information is invariant to changes of the point of view. Some of these 

aspects are discussed in (Cabido Lopes & Santos-Victor, 2003). 

The robotic experiment shows, on the other hand, that indeed only minimal initial skills 

are required in learning a mirror neuron representation. In practice, we only had to 

assume reaching to guarantee interaction with objects and a method to visually measure 

the results of this interaction. Surely, this is a gross simplification in many respects since, 

for example, aspects of the development of grasping per se were not considered at this 

stage. Though, this shows that, in principle, the acquisition of the mirror neuron structure 

is the almost natural outcome of the development of a control system for grasping. Also, 

we have put forward a plausible sequence of learning phases involving the interaction 

between canonical and mirror neurons. This, we believe, is well in accordance with the 

evidence gathered by neurophysiology. In conclusion, we have embarked in an 

investigation that is somewhat similar to the already cited Liberman’s speech recognition 

attempts. Perhaps, also this time, the mutual rapprochement of neural and engineering 

sciences might lead to a better understanding of brain functions. 
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