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Abstract: Atherosclerosis is a disease of increased oxidative stress characterized by protein and lipid
modifications in the vessel wall. One important oxidative pathway involves reactive intermediates
generated by myeloperoxidase (MPO), an enzyme present mainly in neutrophils and monocytes.
Tandem MS analysis identified MPO as a component of lesion derived high-density lipoprotein
(HDL), showing that the two interact in the arterial wall. MPO modifies apolipoprotein A1 (apoA-I),
paraoxonase 1 and certain HDL-associated phospholipids in human atheroma. HDL isolated from
atherosclerotic plaques depicts extensive MPO mediated posttranslational modifications, including
oxidation of tryptophan, tyrosine and methionine residues, and carbamylation of lysine residues.
In addition, HDL associated plasmalogens are targeted by MPO, generating 2-chlorohexadecanal,
a pro-inflammatory and endothelial barrier disrupting lipid that suppresses endothelial nitric oxide
formation. Lesion derived HDL is predominantly lipid-depleted and cross-linked and exhibits a
nearly 90% reduction in lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity.
Here we provide a current update of the pathophysiological consequences of MPO-induced changes
in the structure and function of HDL and discuss possible therapeutic implications and options.
Preclinical studies with a fully functional apoA-I variant with pronounced resistance to oxidative
inactivation by MPO-generated oxidants are currently ongoing. Understanding the relationships
between pathophysiological processes that affect the molecular composition and function of HDL
and associated diseases is central to the future use of HDL in diagnostics, therapy, and ultimately
disease management.

Keywords: myeloperoxidase; HDL; post-translational modification; paraoxonase; cholesterol efflux
capacity

1. Introduction

Atherosclerosis is a chronic, lipid-driven inflammatory disease of the arteries charac-
terized by increased oxidative stress leading to modified lipids and proteins in the vessel
wall [1] accompanied by a chronic, inflammatory response that attracts cells of the innate
and adaptive immune systems into the atherosclerotic plaque [2]. One of the most impor-
tant enzymes released by neutrophils through degranulation is myeloperoxidase (MPO).
MPO is a tetrameric, highly glycosylated, basic (PI > 10) heme protein of ~150 kDa abun-
dant in neutrophils and monocytes [3]. The heme protein is stored in primary azurophilic
granules of leukocytes and, after activation of phagocytes by various agonists, is secreted
into both the extracellular milieu and the phagolysosomal compartment [4]. The release
of MPO by activated leukocytes is critical to the innate immune system as it generates
reactive oxidants that help kill bacteria, parasites, fungi, and other invading pathogens [5,6].
In patients with elevated levels of circulating MPO, increased cardiovascular events are
observed [7]. In atherosclerotic lesions, MPO exerts its oxidative potential by using various
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co-substrates with H2O2 to generate reactive intermediates [8–10]. The presence of MPO in
plaques has been associated with endothelium apoptosis, superficial erosion, and lesion
rupture [11].

Of particular interest, the major HDL associated apolipoprotein A1 (apoA-I) is highly
enriched (approximately 100-fold) in advanced human atherosclerotic plaques when com-
pared with normal arterial walls [12]. ApoA-I is a selective target for myeloperoxidase-
catalyzed oxidation and functional impairment in individuals with cardiovascular dis-
ease [13–17]. This is of particular importance, because HDL normally removes choles-
terol from lipid-laden macrophages and reduces inflammation by (i) modulating immune
cell function, (ii) promoting vasodilation, and (iii) enhancing endothelial barrier func-
tion [18–21]. Moreover, by modulating cholesterol content in sphingolipid- and cholesterol-
enriched plasma membrane domains (lipid rafts), which play a crucial role in compart-
mentalizing signaling pathways, HDL suppresses immune cell activation [22–24]. All
these favorable characteristics point to an atheroprotective role of HDL. However, apoA-I
isolated from plaques is oxidatively modified by MPO, predominantly lipid-depleted, and
cross-linked [12], depicting a markedly decreased cholesterol efflux capacity and lecithin-
cholesterol acyltransferase activity. Therapeutic improvement of the quality and biological
activity of HDL particles is therefore a challenge.

2. Sources and Release of MPO

MPO makes up to 5% and 1% of the total cell protein content in neutrophils and
monocytes, and in some tissue macrophages in vascular lesions [1,3,25,26]. MPO is found
predominantly in the primary (azurophilic) granules of neutrophils [27]. Compared to
murine neutrophils, human neutrophils contain approximately 5–10 times higher amounts
of MPO [28]. MPO accounts for about 1% of total cellular protein in human monocytes [29].
Macrophages can ingest extracellular MPO directly or acquire MPO by phagocytosis of
apoptotic neutrophils [30]. In addition, MPO transcription in macrophages can be re-
activated under some conditions [31]. Following priming and activation by inflammatory
mediators, MPO can be released either by degranulation, apoptosis, necrosis [32,33] or via
the extrusion of neutrophil extracellular traps [34].

3. MPO in Health and Disease

Under physiological and pathophysiological conditions, MPO activity is associated
with neutrophil accumulation, particularly during heavy neutrophil infiltration and acute
or chronic inflammation. High MPO concentrations reside in the extracellular space in close
proximity to degranulated or apoptotic neutrophils. Although oxidant formation by MPO
is beneficial for the immune response to invading pathogens, there is ample evidence that
inappropriate stimulation of oxidant formation by MPO can lead to host tissue damage.
MPO is involved in numerous physiological processes, including microbial clearance,
polymorphonuclear leukocytes recruitment, neutrophil extracellular trap formation and
apoptosis, as well as protein, DNA and lipid modifications [5]. The effects of MPO in the
context of cancer have gained attention recently, and MPO has been associated with various
pro- and antitumor properties, but most evidence indicates that MPO is a molecule that
promotes tumorigenesis and progression [35].

Enzymatic reaction of MPO with H2O2 and halide or pseudohalide (thiocyanate ions)
produces hypohalous acids: hypochlorous acid (HOCl), hypobromous acid, hypoiodous
acid, and hypothiocyanic acid [5]. These oxidants are generally believed to be responsible
for much of the antibacterial activity of neutrophils, although other oxidants including
nitric oxide (NO) and peroxynitrite clearly also play important roles [6,8]. Interestingly, it
was reported that MPO scavenges peroxynitrite, which may overcome the uncontrolled per-
oxynitrite decomposition and formation of reactive species in the inflamed vessel wall [36].
The most important reactive species produced by the MPO under physiological conditions
are HOCl and hypothiocyanic acid, and the ratio of these oxidants depends critically on the
concentration of thiocyanate ions [37]. The reactivity and selectivity of HOCl and hypothio-
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cyanic acid for biological targets differ substantially, therefore thiocyanate ions have the
potential to modulate both the extent and nature of oxidative damage in vivo [38]. MPO,
can use thiocyanate ions and H2O2 as co-substrates to produce cyanate [17,39], promoting
protein carbamylation [17,39]. Moreover, MPO was also shown to directly catalyze the
oxidation of cyanide to cyanate [40], or indirectly via MPO-derived HOCl, which rapidly
decomposes urea and thiocyanate, promoting cyanate formation [17]. In addition, nitrite,
a product of nitric oxide radical metabolism, can be converted by MPO to a nitrogen diox-
ide radical, which can trigger lipid peroxidation and generate nitrotyrosine and/or nitrated
lipids [38]. Alternatively, nitrite can react with HOCl to form nitrosyl chloride [41].

4. MPO in the Subendothelium

Elevated MPO levels have been associated with cardiovascular disease [42–46]. In
the sub-endothelium, MPO can originate from two main sources. It either originates
directly from infiltrated neutrophils or a subset of macrophages, where the granulocyte-
macrophage colony-stimulating factor acts as an endogenous regulator of macrophage
MPO expression [26,31]. Considering that endothelial dysfunction precedes the formation
of atherosclerotic lesions, it is reasonable to assume that MPO triggers the pathophysiology
of atherosclerosis early on by affecting endothelial homeostasis. Recent research has
highlighted the importance of a direct interaction of MPO with the endothelium and
subsequent transcytosis through the endothelium. Levels of MPO in the circulation increase
highly during inflammation, mainly derived from degranulation of activated neutrophils.
A unique feature of MPO is its basic nature, with an isoelectric point of >10 and a high
cationic charge at physiological pH [47]. In serum, MPO is inactivated by the plasma
protein ceruloplasmin, but it interacts with negatively charged components of serum and
the extracellular matrix [48].

Studies have demonstrated that MPO released in the circulation quickly localizes
in and around the endothelium [49,50]. Endothelial cells are covered by glycoproteins
and proteoglycans linked to negatively charged glycosaminoglycans called glycocalyx,
which forms the interface between flowing blood and the vessel wall [51]. The positively
charged MPO rapidly binds to the negatively charged glycosaminoglycans on the luminal
side of endothelial cells. The importance of this interaction was demonstrated when
glycosaminoglycans were enzymatically removed from the glycocalyx which completely
abolished binding and internalization of MPO [49,52]. The binding of MPO towards the
glycocalyx lead to several detrimental effects. The cationic charge of MPO destabilizes
the negatively charged endothelial glycocalyx, leading to glycocalyx collapse, allowing
for neutrophil recruitment and subsequent activation [47]. Interestingly, the relatively
negatively charged serum protein albumin (isoelectric point of ≈5) [53] increases the
binding of MPO to endothelial cells by two-fold and the rate of transendothelial flux of
MPO in cultured monolayers and intact vessels [54].

Albumin is the predominant plasma protein responsible for maintaining transendothe-
lial pressure gradient and regulating the transport of fatty acids, steroids and many other
proteins [55]. The albumin concentration in plasma is up to 5000 times higher than that of
MPO, so the formation of this complex in the bloodstream is probably predominant [54].
Transcytosis of the albumin-MPO complex was found to be caveolae-dependent and confo-
cal imaging indicated rapid internalization of MPO and its colocalization with albumin-
labeled vesicles [49,54]. In line with the efficient transcytosis of MPO through endothelial
cells, MPO-derived oxidants are enriched in endothelial and sub-endothelial compart-
ments of vessels of patients with cardiovascular disease [25,56–58]. These modifications
compromise cell-matrix interactions and may promote endothelial cell dysfunction.

5. HDL and Its Transport through the Endothelium

Recent research has provided compelling evidence for the atheroprotective activities of
HDL at the vessel wall and within the extracellular space [59]. To perform these protective
functions, HDL must interact with endothelial cells and gain access to the subendothelium.
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Endothelial cells are often considered as inert, but in fact, they are highly metabolically
active far beyond the dogmatic view that metabolism drives cell growth and activity [60].
The endothelium plays an integral role in many physiological functions, including control
of vasomotor tone, blood cell trafficking, hemostatic balance, permeability, proliferation,
and innate and adaptive immunity [60,61]. Multiple metabolic pathways act in parallel with
genetic signaling/growth factors to maintain appropriate endothelial cell behavior [60].

While the majority of HDL is present within the circulation, a fraction is constantly
interacting with the endothelium or traveling through the extracellular space. Previous
research investigated two principal pathways by which molecules can pass the endothelium
barrier, being passive filtration through pores or by active transcytosis [62]. Early studies
investigating the infiltration of lipoproteins into the aortic intima found that the size of the
lipoprotein was the greater determinant than the interaction between the macromolecules
and the arterial intimal surface. These findings suggested that the quantitatively most
important mechanism for transfer of plasma lipoproteins into the arterial intima involves
nonspecific molecular sieving through pores in the endothelial monolayer [63,64]. However,
the so called “pore theory” had major weaknesses, including those pores large enough for
lipoproteins have not been identified in endothelial monolayers and lipoproteins have not
been observed in tight junctions. More recent studies have provided convincing evidence
for a more active transport of lipoproteins, including HDL, through the endothelium, by a
process called transcytosis [62].

Studies using transwell systems with human aortic endothelial cells have shown
that transendothelial transport is an active process that can be blocked by lowering the
temperature [65]. Moreover, when fluorescently labeled HDL was added to endothelial
barriers, HDL was found only within cells but not between cells in areas associated with
tight junctions [66,67]. Which pathway is used by HDL for transcytosis is not yet clear. Phar-
macological inhibition of key factors involved in endocytosis of primary bovine endothelial
cells and primary mouse hepatocytes suggested that HDL transcytosis is independent of
clathrin and caveolin-1 [68], while it requires dynamin, which is needed for the formation
of vesicles [67]. However, in human umbilical vein endothelial cells, it was reported that
HDL transcytosis is clathrin-dependent, similar to LDL [66]. Further studies are needed
to clarify which endocytic pathway HDL uses or whether HDL may even use different
pathways depending on its composition.

At least three different proteins are involved in the current model for the transport of
HDL through endothelial cells: scavenger receptor class B (SR-BI), endothelial lipase (EL),
and ATP-binding cassette G1 (ABCG1) [68]. SR-BI contributes to the endocytosis, transcy-
tosis and resecretion of HDL. Confocal and electron microscopic analyses of hepatocytes
have shown that HDL particles enter cells in parallel with the movement of SR-BI [68].
Interestingly, this uptake leads to secretion of HDL-derived cholesterol at the apical side
and ultimately to resecretion of HDL [69]. Furthermore, adenovirus-mediated transfection
of endothelial cells with catalytically active or inactive EL has shown that EL facilitates
endothelial attachment and transport by bridging and lipolysing HDL [70]. Subsequently,
HDL is internalized by SR-BI and ABCG1 is transported via endosomes and multivesicular
bodies before being exocytosed via an unknown mechanism [59].

Attached to the endothelium and during its passage through the endothelium, HDL
promotes a number of vasoprotective functions. Specifically, HDL induces endothelial
nitric oxide synthase (eNOS) activity resulting in vascular relaxation. HDL promotes
endothelial barrier function and inhibits endothelial apoptosis. Moreover, HDL promotes
endothelial repair and suppresses the expression of endothelial adhesion molecules such
as vascular adhesion molecule 1 (VCAM-1) (Figure 1). In addition, HDL is an antioxidant
and excellent reviews are available on this topic [21,59,71,72]. Whether HDL contributes to
MPO transcytosis in a manner similar to albumin [49,54] is not known.
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Figure 1. Endothelium-protective activities of HDL. HDL particles exert several protective effects
on the endothelium, including reduction of reactive oxygen species (ROS), the improvement of
endothelial barrier function, and promotion of vascular relaxation by increasing endothelial nitric
oxide synthase (eNOS) activity. Moreover, HDL inhibits endothelial cell apoptosis, suppresses the
expression of endothelial adhesion molecules, and stimulates endothelial cell repair. In addition,
HDL promotes reverse cholesterol transport, by uptake of cholesterol from macrophages and other
peripheral cells. Transendothelial transport of HDL is mediated by scavenger receptor B1 (SR-BI),
ATP-binding cassette G1 (ABCG1), and endothelial lipase (EL).

6. MPO Modifies HDL in Human Atherosclerotic Plaques

Of particular interest, apoA-I is highly enriched (approximately 100-fold) in human
atherosclerotic plaques compared with normal arterial walls [12]. First evidence that MPO
modifies HDL in the vessel wall was demonstrated in 2002, showing that proteins oxidized
by HOCl localize with apoA-I in human atheroma [16]. Two subsequent papers then
provided direct evidence that MPO oxidizes HDL in the vessel wall. These studies demon-
strated that 3-chlorotyrosine content of apoA-I (a specific fingerprint of MPO oxidation) is
markedly enriched in lesion-derived HDL [13,14], showing that MPO selectively targets
HDL for oxidative modification in atherosclerotic lesions. 3-chlorotyrosine is an acid stable
oxidation product of tyrosine that is not formed by artificial mechanisms. These character-
istics make it highly useful as a specific molecular marker for MPO-catalyzed oxidation.
Co-isolation of MPO with HDL-like particles extracted from human atheromas [13], and
identification of a putative contact site between the apoA-I moiety of HDL and MPO [14]
demonstrate that the two interact in the arterial wall. Interestingly, the binding affinity
of MPO to HDL increases significantly when HDL is oxidized by the myeloperoxidase
product HOCl [73], which is additional evidence that MPO promotes HDL oxidation in
the human arterial wall. HOCl modification reduces the positive charge of lysine residues,
through the formation of uncharged N-chloramines, which is expected to further increase
the interaction between HDL and the positively charged MPO.

Subsequent studies revealed that protein carbamylation is a major post-translational
modification of HDL in the atherosclerotic vessel wall [17,74]. Since the content of 3-chloro-
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tyrosine correlated significantly with the carbamyllysine content of HDL, it can be taken
as evidence that the carbamylation of HDL is mediated largely by the MPO. The car-
bamyllysine content of lesion-derived HDL was more than 20-fold higher in comparison to
3-chlorotyrosine levels and 5 to 8-fold higher when compared to lesion LDL and increased
with lesion severity. These studies clearly demonstrated that MPO catalyzes the formation
of multiple oxidizing reactive species that selectively alter the structure and function of
HDL in the inflamed vessel wall [3,25,26,75]. More recent studies reported that ∼20% of
human apoA-I recovered from aortic plaques is modified by MPO-mediated oxidation at
tryptophan residue 72 [15]. ApoA-I isolated from atherosclerotic plaques is predominantly
lipid-depleted and highly oxidatively modified and cross-linked [12], suggesting low lipid
binding affinity and loss of function. Studies reporting MPO mediated modification in the
vessel wall are summarized in Table 1.

Table 1. Summary of studies evaluating MPO-mediated protein oxidation in humans.

Study Subjects Sample Type 3-Chlorotyrosine/Tyrosine
(µmol/mol) p

Zheng et al. [14]

Healthy (n = 44) plasma protein 1.6 (0.6–2.4)
Coronary vascular disease (n = 45) plasma protein 1.9 (1.3–3.1) 0.070

Healthy (n = 44) plasma apoA-I 186 (114–339)
Coronary vascular disease (n = 45) plasma apoA-I 500 (335–650) <0.001

Aorta (n = 10) total protein 63 (25–128)
Aorta (n = 10) apoA-I 678 (299–1311) <0.001

Aortic atherosclerotic tissue (n = 22) total protein 232 (111–431)
Aortic atherosclerotic tissue (n = 22) apoA-I 3930 (1679–7005) <0.001

Bergt et al. [13]

Healthy (n = 8) plasma HDL 3 ± 2
Coronary artery disease (n = 9) plasma HDL 39 ± 7 <0.0001
Atherosclerotic patients (n = 17) plasma HDL 22 ± 7
Atherosclerotic patients (n = 10) lesion HDL 177 ± 27 0.0001

Study Subjects Sample Type Homocitrulline/lysine (µmol/mol) p

Wang et al. [39]

Healthy (n = 300) plasma protein 0.11 (0.00–0.52)
Coronary artery disease (n = 137) plasma protein 0.3 (0.02–0.80) <0.001
Peripheral artery disease (n = 62) plasma protein 0.33 (0.0–0.95) <0.001

Coronary and Peripheral artery disease
(n = 49) plasma protein 0.39 (0.15–0.96) <0.001

Control, event-free (n = 275) plasma protein 0.18 (0.00–0.84)
Revascularization (n = 224) plasma protein 0.33 (0.02–0.93) <0.001

Myocardial infarction or stroke (n = 38) plasma protein 0.33 (0.04–0.84) <0.001
Death (n = 55) plasma protein 0.34 (0.03–0.94) <0.001

Holzer et al. [74]

Atherosclerotic patients (n = 5) plasma HDL 215 ± 27
Healthy control vessel (n = 5) lesion HDL 229 ± 32

Atherosclerotic lesion, Type I (n = 5) lesion HDL 1098 ± 189 0.001
Atherosclerotic lesion, Type II/III (n = 5) lesion HDL 1238 ± 84 0.0002
Atherosclerotic lesion, Type IV/V (n = 5) lesion HDL 2270 ± 283 <0.0001

Study Subjects Sample Type 3-NO2-Tyrosine (µmol/mol) p

Pennathur et al. [76]

Healthy (n = 5) total protein 8 ± 6
Healthy (n = 5) plasma HDL 57 ± 10 0.010
Healthy (n = 8) plasma HDL 68 ± 7

Coronary vascular disease (n = 9) plasma HDL 136 ± 11 <0.01
Atherosclerotic patients (n = 17) plasma HDL 104 ± 39
Atherosclerotic patients (n = 10) lesion HDL 619 ± 178 <0.01

Zheng et al. [16]

Healthy (n = 44) plasma protein 6 (4–8)
Coronary vascular disease (n = 45) plasma protein 9 (6–13) <0.001

Healthy (n = 44) plasma apoA-I 438 (335–598)
Coronary vascular disease (n = 45) plasma apoA-I 629 (431–876) 0.005

Human aorta (n = 10) total protein 55 (24–143)
Human aorta (n = 10) lesion apoA-I 401 (185–637) <0.001

Aortic atherosclerotic tissue (n = 22) total protein 108 (51–346)
Aortic atherosclerotic tissue (n = 22) lesion apoA-I 2340 (1665–5050) <0.001

Shao et al. [77] Atherosclerotic patients (n = 11) plasma HDL 19 ± 13
Atherosclerotic patients (n = 8) lesion HDL 242 ± 160 0.006
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Table 1. Cont.

Study Subjects Sample Type 3-NO2-Tyrosine166 (% of Total) p

DiDonato et al.
[78]

Healthy (n = 5) plasma protein 0.14 ± 0.02
Healthy (n = 5) plasma HDL n.d.
Healthy (n = 5) plasma LPD 0.13 ± 0.02
Healthy (n = 5) plasma apoA-I 0.12 ± 0.18 n.r.

Atherosclerotic patients (n = 5) tissue protein 7.79 ± 5.57
Atherosclerotic patients (n = 5) lesion HDL 0.23 ± 0.37
Atherosclerotic patients (n = 5) lesion LPD 9.05 ± 4.86 n.r.

LPD, lipoprotein-deficient fraction; n.r., not reported.

7. MPO Affects Endothelial Protective Activities of HDL

A critical factor in the development of cardiovascular disease is an alteration in
endothelial cell function. This includes decreased endothelial nitric oxide availability, de-
creased endothelial barrier function, increased apoptosis, and adhesion molecule/chemokine
expression. It is well established that HDL from healthy subjects (but also reconstituted
HDL) positively affect endothelial cell functions effects [21,79]. Oxidation of HDL by MPO
results in loss of HDL’s ability to activate endothelial nitric oxide synthase (eNOS) activity.
HDL modified by the MPO product HOCl promotes dislocation of eNOS from the plasma
membrane and perinuclear region of human endothelial cells.

2-Chlorohexadecanal was identified as an active component mediating this inhibitory
activity, which is formed during HOCl-mediated oxidative cleavage of HDL-associated
plasmalogens [80]. Plasmalogens are a unique class of membrane glycerophospholipids
containing a fatty alcohol with a vinyl-ether bond at the sn-1 position and represent up to
20% of the total phospholipid mass in humans [81]. Plasmalogens are a preferred target of
MPO-derived reactive chlorinating species within human atheroma [82]. The generated
species, alpha-chloro-fatty aldehydes and unsaturated lysophospholipids, are potent lipid
mediators [82]. Unsaturated lysophospholipids are important homeostatic mediators
involved in all stages of vascular inflammation [83]. Interestingly, HDL enriched with
saturated lysophospholipids shows potent anti-inflammatory activities and suppresses
platelet and neutrophil effector responses [84,85]. On the other side, 2-chlorohexadecanal
was shown to suppress endothelial nitric oxide formation and to severely compromise
endothelial barrier function, suggesting potent pro-inflammatory activities [80,82,86].

A subsequent study showed that MPO modification of reconstituted HDL contain-
ing only apoA-I and phosphatidylcholine also impaired eNOS activity, suggesting that
oxidized apoA-I itself also affects eNOS activity [87]. MPO-modified HDL also acquires
other proinflammatory functions, as seen by upregulation of VCAM-1 protein in endothe-
lial cells and NF-κB activation and loss of anti-apoptotic properties of HDL [87]. HDL
modified by the MPO product HOCl shows specific binding to lectin-like oxidized LDL
receptor [16,88] and SR-BI [16]. It should be noted that one study failed to demonstrate
binding of MPO-modified HDL to SR-BI [87]. MPO-modified HDL is dysfunctional in
preventing an enhancement of endothelial proliferation/migration and subsequent wound
healing [89–91] (Figure 2).



Antioxidants 2022, 11, 556 8 of 20

Antioxidants 2022, 11, x FOR PEER REVIEW  8  of  21 
 

an enhancement of endothelial proliferation/migration and subsequent wound healing 

[89–91] (Figure 2). 

 

Figure 2. Effect of MPO‐induced oxidative modifications on HDL function. In the atherosclerotic 

vessel wall, HDL/apoA‐I is a target for MPO‐catalyzed oxidation. Specifically, the MPO products 

hypochlorus acid  (HOCl−), cyanate  (OCN−) and peroxynitrite  (ONOO−)  lead  to chlorination, car‐

bamylation, nitration and the formation of the plasmalogen oxidation product 2‐Chlorohexadecanal 

(2‐ClHDA). Oxidative modifications of HDL by MPO  results  in  loss of HDL’s ability  to activate 

endothelial nitric oxide synthase (eNOS). Moreover, MPO modified HDL compromises endothelial 

barrier  function  and upregulates  endothelial  adhesion molecule  expression. Further, MPO‐cata‐

lyzed oxidation of HDL impairs cholesterol efflux capacity via ABCA1, whereas affinity for SR‐BI 

increases. MPO also targets PON1 and leads to decreased activity. Oxidative modifications of apoA‐

I result in a profoundly decreased activity of LCAT. ApoA‐I, apolipoprotein A1; MPO, myeloperox‐

idase; ABCA1, ATP‐binding cassette transporter A1. 

8. MPO Induced Oxidation of apoA‐I Impairs Cholesterol Export by ATP Binding 

Cassette Subfamily A1 (ABCA1) 

HDL transports cholesterol from peripheral cells to the liver. The ATP‐binding cas‐

sette transporter A1 (ABCA1) mediates the first step of reverse cholesterol transport by 

transferring cellular cholesterol and phospholipids to lipid‐poor HDL precursors [92]. The 

important role of ABCA1 in maintaining cellular lipid homeostasis is well established [93]. 

More recently, a novel role of ABCA1 in directly regulating inflammation has been recog‐

nized. It was shown that the interaction of apoA‐I with ABCA1‐expressing macrophages 

suppresses the ability of lipopolysaccharide to induce the inflammatory cytokines inter‐

leukin‐1β, interleukin‐6, and tumor necrosis factor‐α [94]. The apoA‐I/ABCA1 pathway 

functions  anti‐inflammatory  in  macrophages  through  activation  of  JAK2/STAT3, 

Figure 2. Effect of MPO-induced oxidative modifications on HDL function. In the atherosclerotic
vessel wall, HDL/apoA-I is a target for MPO-catalyzed oxidation. Specifically, the MPO products
hypochlorus acid (HOCl−), cyanate (OCN−) and peroxynitrite (ONOO−) lead to chlorination, car-
bamylation, nitration and the formation of the plasmalogen oxidation product 2-Chlorohexadecanal
(2-ClHDA). Oxidative modifications of HDL by MPO results in loss of HDL’s ability to activate
endothelial nitric oxide synthase (eNOS). Moreover, MPO modified HDL compromises endothelial
barrier function and upregulates endothelial adhesion molecule expression. Further, MPO-catalyzed
oxidation of HDL impairs cholesterol efflux capacity via ABCA1, whereas affinity for SR-BI increases.
MPO also targets PON1 and leads to decreased activity. Oxidative modifications of apoA-I result in a
profoundly decreased activity of LCAT. ApoA-I, apolipoprotein A1; MPO, myeloperoxidase; ABCA1,
ATP-binding cassette transporter A1.

8. MPO Induced Oxidation of apoA-I Impairs Cholesterol Export by ATP Binding
Cassette Subfamily A1 (ABCA1)

HDL transports cholesterol from peripheral cells to the liver. The ATP-binding cassette
transporter A1 (ABCA1) mediates the first step of reverse cholesterol transport by transfer-
ring cellular cholesterol and phospholipids to lipid-poor HDL precursors [92]. The impor-
tant role of ABCA1 in maintaining cellular lipid homeostasis is well established [93]. More
recently, a novel role of ABCA1 in directly regulating inflammation has been recognized. It
was shown that the interaction of apoA-I with ABCA1-expressing macrophages suppresses
the ability of lipopolysaccharide to induce the inflammatory cytokines interleukin-1β,
interleukin-6, and tumor necrosis factor-α [94]. The apoA-I/ABCA1 pathway functions
anti-inflammatory in macrophages through activation of JAK2/STAT3, providing a direct
link between the cardioprotective effects of cholesterol export from arterial macrophages
and suppressed inflammation.
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In vitro and in vivo studies showed that with increasing MPO mediated oxidation of
apoA-I, ABCA1-dependent cholesterol efflux from cholesterol-loaded macrophages was
functionally impaired [13,14]. The presence of amphipathic helices of apolipoproteins,
in addition to phospholipids, determines the high lipid binding affinity of HDL promoting
efficient microsolubilization of cellular cholesterol [95]. All epitopes involved in apoA-I-
mediated cellular cholesterol efflux [96] contain amino acids highly sensitive to MPO
modification [97].

The functional consequences of oxidation or posttranslational modification of single
amino acid residues are complex and not fully understood. MPO mediated carbamylation
of apoA-I lysine residues does affect cholesterol efflux capacity of apoA-I [74]. In line with
that observation, it was observed that lysine modification by reactive carbonyls do not
affect cholesterol efflux capacity of apoA-I. Only the di-aldehydes malondialdehyde and
isolevuglandins impaired the ability of apoA-I to mobilize cholesterol, the mechanism
likely involves dialdehyde induced cross-linking of lysine residues, especially in repeats 9
and 10 in the C terminus [98,99].

Loss of ABCA1-dependent cholesterol efflux activity has been associated with in-
creased chlorotyrosine and nitrotyrosine content of apoA-I. Specifically, chlorination of
Tyr 192 and oxidation of methionine 148 have been reported to impair cholesterol efflux
capacity of apoA-I, since regeneration of methionine sulfoxide using methionine sulfox-
ide reductase recovered the functionality of oxidized apoA-I [100]. More recent studies
now suggest that MPO mediated oxidation of Trp72 residue is more relevant in impairing
cholesterol acceptor activity in vivo [101]. Of note, also the treatment of apoA-I with the
major MPO oxidant species hypothiocyanous acid resulted mainly in the oxidation of
tryptophan residues [102]. ApoA-I containing oxTrp72-apoA-I accounts for up to 20% of
apoA-I in arteries with atherosclerosis [15]. ApoA-I, which contains oxTrp72 has virtually
no cholesterol acceptor activity and, consistent with lost cholesterol efflux capacity, is only
very poorly lipidated [15]. Interestingly, chlorination (but not nitration) of apoA-I impairs
its ability to interact directly with ABCA1 [103] in sharp contrast to the increased binding
of chlorinated HDL to SR-BI as described in more detail below.

9. MPO Converts HDL into a High-Affinity, but Dysfunctional Ligand of the Major
HDL Receptor Scavenger Receptor B1 (SR-BI)

SR-BI is an 82-kDa membrane glycoprotein with a large extracellular and two trans-
membrane domains [104]. SR-BI is expressed primarily in the liver and steroidogenic
glands, but SR-BI is also present in other tissues and cells such as the brain, intestine,
macrophages and endothelial cells. Importantly, direct evidence for the implication of
SR-BI expressed on lymphatic vessels in the initial steps of reverse cholesterol transfer was
provided [105]. SR-BI mediates the selective uptake of lipids from HDL into cells, a mech-
anism that is fundamentally different from classical receptor-mediated endocytic uptake
(e.g., the LDL receptor pathway) because it involves efficient receptor-mediated transfer
of lipids, but not outer coat proteins, from HDL to cells [104]. In endothelial cells, SR-BI
is found on apical and basolateral plasma membranes as well as intracellularly, binding
multiple macromolecules in addition to the canonical ligand HDL, including native and
modified forms of LDL and HDL, as well as viruses such as SARS-CoV-2 [106].

In addition to mediating selective cholesteryl ester uptake from HDL [68], SR-BI
also mediates free cholesterol efflux from cells [93]. In endothelial cells in particular,
SR-BI exerts additional functions. In addition to transendothelial transport, binding of
HDL to SR-BI triggers several intracellular signaling events. Subsequent activation of
serine/threonine protein kinase B (Akt) and mitogen-activated protein kinase (MAPK)
leads to downstream activation of eNOS, which results in vascular relaxation via NO [59].
Oxidation/modification of HDL consistently diminishes cholesterol efflux capacity. Only
oxidative tyrosylation seems to be an exception, as tyrosyl radical modification of HDL
enhances cholesterol mobilization and efflux [107]. Mutations in helices 4 and 6 of apoA-I
can lead to increased high-affinity binding of reconstituted HDL particles to SR-BI [108];
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however, these mutations in helices 4 and 6 of apoA-I appear to lead to “nonproductive”
binding to SR-BI and cholesterol efflux is severely impaired. Methionine and tryptophan
residues in apoA-I and apoA-II, respectively, are completely oxidized even at low concentra-
tions of HOCl. Therefore, it appears that MPO modification of HDL results in high-affinity
but “nonproductive” binding of HDL to SR-BI. Multiple site-specific tryptophan, methion-
ine, and lysine modifications in apoA-I isolated from human atheroma were reported [109].
Removing the positive charge by modification/oxidation of lysine residues alters the
structural characteristics of proteins, affecting protein-water interaction or protein-protein
interaction. The twenty-one lysine residues of apoA-I and the N-terminus react rapidly
with hypochlorous acid to form chloramines. Native plasma albumin is not recognized by
SR-BI, but exposure of albumin to HOCl creates high-affinity ligands for SR-BI [110,111].

Interestingly, when reductively methylated albumin was oxidized with HOCl, it
did not bind to SR-BI, despite oxidation of cysteine, methionine, tyrosine, histidine, and
arginine residues. This supports the idea that alterations in the particular distribution of
charged lysine residues of proteins increases binding affinity to SR-BI. In line with that
assumption, also carbamylation of apoA-I lysine residues increases affinity to SR-BI [74].
Remarkably, one carbamyllysine residue per HDL-associated apoA-I was sufficient to
increase binding affinity to SR-BI and to induce cholesterol accumulation and lipid droplet
formation in macrophages [74]. Principally, it can be concluded that the binding affinity of
HDL increases significantly after MPO modification. However, MPO-modified HDL does
not seem to bind productively to SR-BI. Therefore, it can be assumed that MPO-modified
HDL (as well as other MPO-modified lipoproteins or even MPO-modified albumin) are
high affinity ligands of SR-BI and impair SR-BI mediated cholesterol uptake/efflux.

10. MPO Affects Paraoxonase 1 (PON1) Activity

PON1 is an HDL-associated enzyme considered as a potential therapeutic for car-
diovascular disease, but the precise mechanisms by which PON1 exerts its systemic anti-
inflammatory and antioxidant effects are not well understood or defined. The HDL complex
is a repository for potentially toxic, hydrophobic components of plasma, notably oxidized
lipids, which may be optimal for PON1 substrates. Many lipoprotein lipids cycle through
HDL during the course of metabolic processes including lipolysis of triglyceride-rich
lipoproteins transport bringing HDL–PON1 into contact with exogenous, dietary lipids,
which can be a rich source of oxidized lipids [112]. Moreover, the size of the HDL complex
does not limit its ability to interact in close contact with tissues and cell membrane lipids.
These properties of HDL would provide an attractive vehicle from which PON1 could exert
a protective, antioxidant function.

Studies in mice [113,114] and humans [115] demonstrated an antioxidant function of
the protein. Interestingly, systemic PON1 activity levels can vary over orders of magnitude,
whereas PON1 mass varies less [116]. In vitro studies revealed that the MPO product HOCl
dose-dependently decreases PON1 activity paralleled by a dose-dependent decrease in
monomeric PON1 [117]. HOCl-induced changes to PON1 activity occurred at concen-
trations lower than those that lead to apoA-I aggregation [117]. MPO modification of
HDL leads to chlorotyrosine modification of PON1 tyrosine71, which has been detected in
PON1 isolated from human atherosclerotic plaque [114]. MPO also generates the oxidant
nitrogen dioxide, which drives lipid peroxidation, leading to the formation of reactive
lipid dicarbonyls such as malondialdehyde and isolevuglandins which modify PON1 and
lower its activity [118]. In addition, carbamylation of HDL markedly suppresses PON1
mediated paraoxonase and arylesterase activity [17]. These results demonstrate that in
the human atherosclerotic plaque, where site-specific oxidation of apoA-I by chlorination,
nitration and carbamylation by MPO has been demonstrated, HDL-associated PON1 is
also modified by MPO (Figure 2).
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11. MPO Affects Lecithin-Cholesteryl-Acyltransferase (LCAT) Activity

Reverse cholesterol transport is complex and involves numerous steps, including
efflux of cholesterol from peripheral cells into the nascent discoidal HDL and maturation
of the discoidal HDL into a cholesterol-laden spherical particle. ApoA-I is critical for
both the transfer of cholesterol and phospholipids from peripheral tissues into the nascent
discoidal HDL and the activation of LCAT, an enzyme critical for cholesterol esterification
and maturation of HDL [119]. ApoA-I is oxidatively modified in the arterial wall at
tyrosine 166 [78], a solvent-exposed region interacting with LCAT [120]. NO2-Tyr166-
apoA-I was detected in atherosclerotic human coronary arteries and accounted for 8% of
total apoA-I within the artery wall [78]. NO2-Tyr166-apoA-I obtained from atherosclerotic
lesions exhibited a nearly 90% reduction in lecithin-cholesterol acyltransferase activity, but
other concomitant oxidative modifications are expected to contribute to reduced LCAT
activity [78]. In vitro data also demonstrated that carbamylation of HDL significantly
impairs its ability to activate LCAT [17]. Previous studies have shown that mutation of
charged residues in apoA-I results in a reduction in LCAT activity [17]. Importantly, cyanate
not only targets lysine residues but also phosphatidylethanolamine [74] and interacts with
cysteine groups with even higher reactivity [121]. Therefore, the decrease in the ability of
HDL to activate LCAT after cyanate exposure could be the result of a change in several
reactive groups in HDL-associated apoproteins, enzymes, and phospholipids.

12. HDL as Therapeutic Target

HDL cholesterol-raising therapeutics are currently controversial, as most phase 3 trials
of therapies to chronically raise HDL cholesterol concentrations by inhibiting cholesterol
ester transfer protein have shown insufficient efficacy [122–125]. It has to be noted that
cholesterol ester transfer protein inhibitors are not HDL-specific drugs and in addition
interfere with normal HDL metabolism. The often disappointing and conflicting results of
clinical studies of HDL-cholesterol and apoA-I levels underscore the complexity and incom-
plete knowledge of the relationship between circulating HDL forms and the pathogenesis
of coronary artery disease and therapeutic manipulation [126–128]. Low HDL might just
be an integrated biomarker of adverse metabolic processes, such as abnormal metabolism
of triglyceride-rich lipoproteins, insulin resistance, and persistent tissue inflammation. The
focus of research has now shifted from increasing plasma HDL cholesterol concentrations
to the function of HDL particles, which are known to be both complex and heterogeneously
composed. Interventions shown to improve particular aspects of HDL functionality include
lifestyle changes, especially weight loss achieved through bariatric surgery and functional
diets [129,130]. Decades of research have examined immune-modulatory strategies to
protect the heart after an acute myocardial infarction and prevent progression to heart
failure but have failed to translate to clinical benefit.

Of particular interest, a single intravenous dose of human apoA-I reconstituted with
phosphatidylcholine (CSL111), delivered immediately postcardiac ischemia at the onset
of reperfusion, improved heart function in mice [131]. Moreover, CSL111 reduced sys-
temic and cardiac inflammatory responses by direct action on ischemic myocardium and
leukocytes [132]. Studies in mice with HDL infusion [133] or increased apoA-I expression
showed atheroprotective effects [134,135] motivating the initiation of infusion studies in
humans with apoA-I mimetics or reconstituted HDL particles to stimulate cholesterol
efflux from vascular atheroma and to reduce atherosclerotic cardiovascular disease. In
summary, the preclinical data convincingly demonstrate the ability of functional HDL and
lipid-poor apoA-I particles to promote the regression of atherosclerosis by effects on the
number and the inflammatory state of plaque macrophages [134]. These data highlight
the anti-inflammatory effects of apoA-I formulations and provide preclinical support for
investigating its use in the treatment of acute coronary syndromes in the setting of primary
percutaneous coronary interventions. This has prompted the concept that increasing lev-
els of circulating apoA-I may be a new therapeutic target for preventing atherosclerotic
cardiovascular disease.
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Similar to with HDL-cholesterol, there is a strong inverse observational relationship
between apoA-I concentrations and risk of atherosclerotic cardiovascular disease [126].
However, the clinical translation of the pleiotropic effects of apoA-I formulations need to
be validated, given that recent phase II randomized controlled trials of apoA-I infusions
have not shown beneficial effects on regression of coronary atherosclerosis measured by
intravascular ultrasound [136,137]. Final conclusions can be drawn following the results of
an ongoing multicenter phase 3 study to evaluate the efficacy and safety of CSL112 (new
formulation of apoA-I reconstituted with phosphatidylcholine) on reducing the risk of
major adverse cardiovascular events in subjects with acute coronary syndrome. The current
AEGIS-II study (Study to Investigate CSL112 in Patients with Acute Coronary Syndrome,
NCT03473223) is addressing critical questions regarding the efficacy CSL112 infusions in
patients with acute coronary syndromes to reduce recurrent severe cardiovascular events,
and potential impact on hospitalization for heart failure.

13. Dysfunctional apoA-I/HDL in the Inflammatory Vessel Wall: Implications for
Therapeutic Manipulation

As outlined above, apoA-I colocalizes with MPO in the atherosclerotic tissue [13,16]
and the majority of apoA-I in arterial tissue is oxidized, carbamylated and cross-
linked [13–15,74,78]. The function and structure (HDL-particle association) of apoA-I ob-
tained from human arterial tissue are remarkably distinct from those in plasma (Figure 2) [12,15].
In contrast to plasma, >90% of apoA-I in normal and atherosclerotic human arterial tis-
sue are predominantly lipid-depleted. This poor lipidation of apoA-I is explained by
the fact that aorta-derived apoA-I was found to be dysfunctional, with an 80% reduc-
tion in the ability to activate lecithin-cholesterol acyltransferase and to promote choles-
terol efflux. MPO oxidation of HDL also leads to the expression of endothelial adhesion
molecules, reduction of eNOS synthase activity, and barrier function/wound healing
of endothelial cells [80,82,87,89]. In addition, proteomic studies also showed quite con-
clusively that inflammation profoundly alters the composition of HDL particles in the
circulation [128,138–146] and that plasma levels of HDL cholesterol are not necessarily
functionally relevant. Therefore, studies focusing on the biological activities of plasma- or
serum-derived HDL do not reflect the biology of apoA-I in the arterial wall.

These studies suggest oxidation-resistant forms of apoA-I or apoA-I mimetics as
new compounds for pharmacological therapy. One study demonstrated that the apoA-I
mimetic 4F promoted endothelial repair and restored the re-endothelialization impaired
by the presence of MPO-modified HDL [90]. In vivo, 4F stimulated cell proliferation and
re-endothelialization in the carotid artery after treatment with MPO modified-HDL in
a carotid artery electric injury model but failed to do so in SR-BI deficient mice. These
findings highlight that 4F promotes endothelial cell migration and demonstrates therapeutic
potential against early endothelial injury in cardiovascular diseases. Intriguingly, 4F also
serves as a reactive substrate for the MPO product HOCl, an antioxidant reaction that does
not affect the lipid binding and cholesterol efflux capacities of the peptide [147].

Replacing 4 apoA-I tryptophan residues with phenylalanine (4WF) was shown to lead
to formation of a fully functional apoA-I variant with marked resistance against oxidative
inactivation by MPO-generated oxidants [109]. Importantly, the structure and function of
HDL from 4WF transgenic mice was not different to HDL derived from human apoA-I
transgenic mice [148].

On the other side, MPO inhibition itself could be effective to inhibit the formation of
dysfunctional forms of HDL. There is accumulating evidence has implicated MPO in the
pathophysiology of different diseases besides cardiovascular disease, including rheumatoid
arthritis [149], kidney disease [150], pulmonary fibrosis [151], Alzheimer’s disease [152],
Parkinson’s disease [153], multiple sclerosis [154], liver diseases [155] cancer [35]. Thus,
MPO is an interesting drug target [156] and inhibitors have been developed but have thus
far not been successful [156–158]. MPO is stored in a crystalline form within leukocytes
granules and is released only upon activation [159], making it resistant to inactivation
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in its storage form. Moreover, MPO has a broad spectrum of functionality, including an
important role in innate immunity and anti-microbial effects, therefore pan inhibition may
cause negative effects. Therefore, instead of a global MPO inhibitor, targeted inactivation at
the level of the arterial wall is ideally a more viable option. If damage has already occurred,
such as in myocardial infarction and stroke, a targeted MPO inhibitor approach could be
therapeutically useful to prevent further damage from the MPO-induced inflammatory
responses.

14. Conclusions

HDL is a selective in vivo target for MPO-catalyzed oxidation in the atherosclerotic
vessel wall, and extensive MPO mediated posttranslational modifications, including oxida-
tion of tryptophan, tyrosine and methionine residues, as well as carbamylation of lysine
residues are detected in apoA-I isolated from atherosclerotic plaques. Interestingly, MPO
has not been detected in proteomic studies of plasma HDL [160]. This may indicate that
only very small amounts of MPO circulate bound to HDL, and the sensitivity of the mass
spectrometry analysis is too insensitive to detect MPO. Alternatively, it is quite possible
that MPO detaches from HDL when HDL is purified by ultracentrifugation or immunopre-
cipitation.

Lesion derived HDL is predominantly lipid-depleted in line with low lipid binding
affinity and loss of function of lesion derived apoA-I. MPO-modified HDL is dysfunc-
tional with respect to promote cholesterol efflux from macrophages and to activate lecithin
cholesteryl-acyltransferase. MPO modified HDL lost its ability to induce endothelial nitric
oxide synthesis and to promote endothelial wound healing. Therefore, it is likely that
therapeutic elevation of HDL or apoA-I in the inflamed vessel wall (in the presence of high
MPO activity) will not achieve the expected benefit. Unspecific antioxidant therapies have
generally been ineffective, potentially due to ineffective doses but also due to interference
with critical host defense and signaling processes [161]. A targeted MPO inhibitor approach
could be therapeutically useful to inhibit oxidation of apoA-I in the vessel wall. MPO
derived reactive oxygen species generate reactive lipid dicarbonyls, aldehydes such as mal-
ondialdehyde, 4-hydroxy-nonenal, 4-oxo-nonenal, and isolevuglandins. In the past decade
small-molecule compounds have been developed to selectively and effectively scavenge
these reactive lipid dicarbonyls. Preclinical data support the efficacy of novel dicarbonyl
scavengers in treating or preventing disease, such as 2-aminomethylphenol [161].

Intriguingly, the apoA-I mimetic peptide 4F also serves as a reactive substrate for the
MPO product HOCl, an antioxidant reaction that does not affect the lipid binding and
cholesterol efflux capacities of the peptide [90]. Another approach could be to generate
oxidation-resistant forms of apoA-I. It has already been shown that the replacement of four
apoA-I tryptophan residues by phenylalanine leads to the formation of a fully functional
apoA-I variant (4WF-apoA-I) with pronounced resistance to oxidative inactivation by MPO-
generated oxidants [109,148]. Both human apoA-I and the oxidant-resistant 4WF-apoA-I
delay lesion progression and promote lesion regression in LDL receptor-deficient mice,
however, the 4WF isoform was not superior to the unmodified isoform in promoting lesion
regression [162]. One possible reason for the lack of superiority of the 4WF isoform is
that mice express much lower levels of MPO compared to humans [163]. Therefore, the
4WF isoform might have only an advantage over the wild-type isoform in a high MPO
context. Further studies are needed to test the superiority of the 4WF isoform in delaying
atherosclerosis progression and promoting lesion regression when compared with human
wild-type apoA-I. Perhaps these new approaches will find their way into the clinic, but
this cannot be foreseen at this time, as biochemical concepts are not predictive of clinical
trial outcomes. The development of monoclonal antibodies that identify specific forms of
dysfunctional apoA-I may be a promising approach for monitoring pathophysiological
processes in the arterial wall. These monoclonal antibodies could be used to evaluate
targeted HDL/apoA-I therapies aimed at attenuating or even preventing MPO-induced
HDL modifications.
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