Understanding NMR spectroscopy

James Keeler

Senior Lecturer in the Department of Chemistry and
Fellow of Selwyn College, Cambridge

Copyright (C) 2005

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley \& Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley \& Sons Inc., 111 River Street, Hoboken, NJ 07030, USA
Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA
Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany
John Wiley \& Sons Australia Ltd, 42, McDougall Street, Queensland 4064, Australia
John Wiley \& Sons (Asia) Pte Ltd, 2 Clementi Loop \#02-01, Jin Xing Distripark, Singapore 129809
John Wiley \& Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library
ISBN-13 978-0-470-01786-9 (Cloth) 978-0-470-01787-6 (Paper)
ISBN-10 0-470-01786-4 (Cloth) 0-470-01787-2 (Paper)
Typeset by the author using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$
Printed and bound in Great Britain by Antony Rowe, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

1 What this book is about and who should read it 1
1.1 How this book is organized 2
1.2 Scope and limitations 3
1.3 Context and further reading 3
1.4 On-line resources 4
15 Abbreviations 4
2 Setting the scene 5
2.1 NMR frequencies and chemical shifts 5
2.1.1 Chemical shift scales 6
2.1.2 Conversion from shifts to frequencies 7
2.1.3 The receiver reference frequency and the offset frequency 8
2.2 Linewidths, lineshapes and integrals 9
2.3 Scalar coupling 10
2.3.1 Tree diagrams 10
2.4 Weak and strong coupling 12
2.5 The basic NMR experiment 14
2.5.1 Heteronuclear NMR and broadband decoupling 15
2.6 Frequency, oscillations and rotations 17
2.6.1 Motion in a circle 17
2.6.2 Frequency 17
2.6.3 Angular frequency 18
2.6.4 Phase 19
2.6.5 Representation using complex numbers 21
2.7 Photons 21
2.8 Moving on 22
2.9 Further reading 22
2.10 Exercises 23
3 Energy levels and NMR spectra 25
3.1 The problem with the energy level approach 26
3.1.1 Wavefunctions and mixed states 26
3.1.2 Energy levels in NMR 27
3.2 Introducing quantum mechanics 28
3.2.1 Wavefunctions 28
3.2.2 Operators 29
3.2.3 Eigenfunctions and eigenvalues of operators 30
3.2.4 Measurement 30
3.2.5 Hamiltonians and angular momentum 31
3.2.6 Eigenfunctions and eigenvalues of \hat{I}_{z} 31
3.2.7 Eigenvalues for the one-spin Hamiltonian 32
3.2.8 Summary 33
3.3 The spectrum from one spin 33
3.3.1 Energy levels 33
3.3.2 The Larmor frequency 34
3.3.3 Writing the energies in frequency units 35
3.4 Writing the Hamiltonian in frequency units 36
3.5 The energy levels for two coupled spins 37
3.5.1 Introducing scalar coupling 39
3.6 The spectrum from two coupled spins 40
3.6.1 Multiple-quantum transitions 42
3.7 Three spins 43
3.7.1 The Hamiltonian and energy levels 43
3.7.2 Single quantum spectrum 44
3.7.3 Multiple quantum transitions 44
3.7.4 Combination lines 46
3.8 Summary 46
3.9 Further reading 47
3.10 Exercises 48
4 The vector model 51
4.1 The bulk magnetization 51
4.1.1 Axis systems 53
4.1.2 The equilibrium magnetization 53
4.2 Larmor precession 54
4.3 Detection 55
4.4 Pulses 56
4.4.1 Rotating frame 57
4.4.2 Larmor precession in the rotating frame 59
4.4.3 The effective field 59
4.4.4 The effective field in frequency units 60
4.4.5 Summary 61
4.5 On-resonance pulses 62
4.5.1 Hard pulses 63
4.6 Detection in the rotating frame 64
4.7 The basic pulse-acquire experiment 64
4.7.1 Spectrum with several lines 65
4.8 Pulse calibration 66
4.9 The spin echo 67
4.9.1 $\quad 180^{\circ}$ pulses as refocusing pulses 68
4.9.2 How the spin echo works 68
4.10 Pulses of different phases 70
4.11 Off-resonance effects and soft pulses 71
4.11.1 Excitation of a range of shifts 73
4.11.2 Selective excitation 73
4.11.3 Selective inversion 75
4.12 Moving on 75
4.13 Further reading 76
4.14 Exercises 77
5 Fourier transformation and data processing 81
5.1 How the Fourier transform works 82
5.1.1 Mathematical formulation of the Fourier transform 85
5.2 Representing the FID 86
5.3 Lineshapes and phase 87
5.3.1 Absorption and dispersion lineshapes 88
5.3.2 Phase 90
5.3.3 Phase correction 92
5.3.4 Frequency dependent phase errors 92
5.4 Manipulating the FID and the spectrum 94
5.4.1 Noise 94
5.4.2 Sensitivity enhancement 96
5.4.3 The matched filter 98
5.4.4 Resolution enhancement 98
5.4.5 Defining the parameters for sensitivity and resolution enhancement functions 100
5.4.6 'Lorentz-to-Gauss' transformation 102
5.4.7 Other weighting functions 102
5.5 Zero filling 103
5.6 Truncation 104
5.7 Further reading 105
5.8 Exercises 106
6 The quantum mechanics of one spin 109
6.1 Introduction 109
6.2 Superposition states 110
6.3 Some quantum mechanical tools 111
6.3.1 Dirac notation 111
6.3.2 Normalization and orthogonality 112
6.3.3 Expectation values 113
6.3.4 The x - and y-components of angular momentum 115
6.3.5 Matrix representations 115
6.4 Computing the bulk magnetization 116
6.4.1 The ensemble average 117
6.4.2 Populations 119
6.4.3 Transverse magnetization 120
6.5 Summary 121
6.6 Time evolution 123
6.6.1 Free evolution 123
6.6.2 Effect of free evolution 126
6.7 RF pulses 127
6.7.1 Effect on the components of angular momentum 128
6.7.2 Effect on the components of the bulk magnetization 129
6.8 Making faster progress: the density operator 130
6.8.1 Introducing the density operator 131
6.8.2 Calculating the components of the bulk magnetization 132
6.8.3 Equilibrium density operator 132
6.8.4 Time evolution of the density operator 133
6.8.5 Representing the density operator using a basis of operators 133
6.8.6 The equilibrium density operator - again 135
6.8.7 Summary 137
6.9 Coherence 138
6.10 Further reading 139
6.11 Exercises 140
7 Product operators 143
7.1 Operators for one spin 143
7.1.1 Hamiltonians for free precession and pulses 144
7.1.2 Rotations 145
7.2 Analysis of pulse sequences for a one-spin system 147
7.2.1 Pulse-acquire 147
7.2.2 The spin echo 149
7.3 Speeding things up 150
7.3.1 $\quad 90^{\circ}$ and 180° pulses 150
7.3.2 Diagrammatic representation 151
7.3.3 The $1-\overline{1}$ sequence 152
7.4 Operators for two spins 153
7.4.1 Effect of coupling 154
7.5 In-phase and anti-phase terms 156
7.5.1 In-phase terms 157
7.5.2 Anti-phase terms 158
7.5.3 Observable terms 160
7.6 Hamiltonians for two spins 161
7.7 Notation for heteronuclear spin systems 161
7.8 Spin echoes and J-modulation 162
7.8.1 Spin echo in a homonuclear spin system 163
7.8.2 Spectra from a J-modulated spin echo 166
7.8.3 Spin echoes in heteronuclear spin systems 168
7.9 Coherence transfer 170
7.10 The INEPT experiment 171
7.10.1 Why the experiment was developed 171
7.10.2 Analysis of the INEPT experiment 172
7.10.3 Decoupling in the INEPT experiment 174
7.10.4 Suppressing the signal from the equilib- rium magnetization on the S spin 174
7.11 Selective COSY 176
7.12 Coherence order and multiple-quantum coherences 178
7.12.1 Raising and lowering operators: the clas- sification of coherence order 178
7.12.2 Generation of multiple-quantum coherence 180
7.12.3 Evolution of multiple-quantum coherence 180
7.13 Summary 182
7.14 Further reading 183
7.15 Exercises 184
8 Two-dimensional NMR 187
8.1 The general scheme for two-dimensional NMR 188
8.1.1 How two-dimensional spectra are recorded 189
8.1.2 How the data are processed 189
8.2 Modulation and lineshapes 190
8.2.1 Cosine amplitude modulated data 191
8.2.2 Sine amplitude modulated data 192
8.2.3 Mixed cosine and sine modulation 193
8.3 Axes and frequency scales in two-dimensional spectra 194
8.4 COSY 194
8.4.1 Overall form of the COSY spectrum 195
8.4.2 Detailed form of the two-dimensional multiplets 196
8.4.3 Phase properties of the COSY spectrum 201
8.4.4 How small a coupling can we detect with COSY? 202
8.4.5 The problem with COSY 203
8.5 Double-quantum filtered COSY (DQF COSY) 204
8.6 Double-quantum spectroscopy 208
8.6.1 Detailed analysis of the pulse sequence 209
8.6.2 Interpretation and application of double- quantum spectra 210
8.6.3 INADEQUATE 211
8.7 Heteronuclear correlation spectra 213
8.7.1 Normal or inverse correlation 213
8.8 HSQC 214
8.8.1 Coupled or decoupled acquisition 216
8.8.2 Suppressing unwanted signals in HSQC 216
8.8.3 Sensitivity 217
8.9 HMQC 217
8.10 Long-range correlation: HMBC 220
8.10.1 Suppressing one-bond peaks in HMBC spectra 222
8.11 HETCOR 225
8.12 TOCSY 226
8.12.1 TOCSY for two spins 227
8.12.2 TOCSY for more extended spin systems 230
8.13 Frequency discrimination and lineshapes 231
8.13.1 Obtaining cosine and sine modulated data 232
8.13.2 P- and N-type selection: phase-twist lineshapes 233
8.13.3 The States-Haberkorn-Ruben method 235
8.13.4 The TPPI or Redfield method 236
8.13.5 The States-TPPI method 239
8.13.6 Phase in two-dimensional spectra 240
8.14 Further reading 242
8.15 Exercises 243
9 Relaxation and the NOE 245
9.1 What is relaxation? 246
9.1.1 Behaviour of individual magnetic moments 247
9.1.2 Local fields 248
9.1.3 Coming to equilibrium with the lattice 250
9.1.4 Transverse relaxation 251
9.1.5 Summary 252
9.2 Relaxation mechanisms 253
9.2.1 The dipolar mechanism 254
9.2.2 Chemical shift anisotropy 254
9.2.3 Relaxation by paramagnetic species 255
9.3 Describing random motion - the correlation time 255
9.3.1 The correlation function 257
9.3.2 The spectral density 260
9.3.3 Motional regimes 262
9.3.4 Transverse relaxation and the spectral den- sity at zero frequency 263
9.3.5 Summary 263
9.4 Populations 264
9.4.1 The z-magnetization in terms of populations 264
9.4.2 Relaxation in terms of populations 266
9.5 Longitudinal relaxation behaviour of isolated spins 268
9.5.1 Estimating the rate constant for longitudi- nal relaxation 270
9.5.2 Making a quick estimate of the relaxation rate constant 271
9.5.3 How long do I have to leave between experiments? 271
9.6 Longitudinal dipolar relaxation of two spins 273
9.6.1 Energy levels and transition rates 273
9.6.2 Rate equations for the populations and z - magnetizations 274
9.6.3 Relaxation rate constants 277
9.6.4 Cross relaxation in the two motional regimes 278
9.7 The NOE 279
9.7.1 The transient NOE experiment 280
9.7.2 The steady-state NOE experiment 284
9.7.3 Heteronuclear steady-state NOE 285
9.7.4 Two-dimensional NOESY 286
9.7.5 The NOE in more extended spin systems 290
9.8 Transverse relaxation 291
9.8.1 Different contributions to transverse relaxation 293
9.8.2 Relaxation by random fields 293
9.8.3 Transverse dipolar relaxation of two spins 295
9.8.4 Transverse cross relaxation: ROESY 296

CONTENTS

CONTENTS xiii
9.9 Homogeneous and inhomogeneous broadening 299
9.9.1 Describing inhomogeneous broadening: T_{2}^{\star} 302
9.9.2 Measuring the transverse relaxation rate constant 303
9.10 Relaxation due to chemical shift anisotropy 303
9.10.1 Specifying the CSA 303
9.10.2 Relaxation rate constants due to CSA 304
9.11 Cross correlation 305
9.11.1 Cross correlation in longitudinal relaxation 305
9.11.2 Cross correlation in transverse relaxation 308
9.12 Summary 310
9.13 Further reading 310
9.14 Exercises 312
10 Advanced topics in two-dimensional NMR 317
10.1 Product operators for three spins 318
10.1.1 Interpretation of the product operators for three spins 319
10.1.2 Evolution due to offsets and pulses 321
10.1.3 Evolution of couplings 321
10.2 COSY for three spins 323
10.2.1 Structure of the cross-peak multiplets 324
10.3 Reduced multiplets in COSY spectra 328
10.3.1 COSY for a three-spin system containing one heteronucleus 328
10.3.2 Determining the relative signs of the pas- sive coupling constants 331
10.3.3 Measuring the size of the passive coup- ling constants 332
10.3.4 Reduced multiplets in homonuclear spin systems 334
10.4 Polarization operators 335
10.4.1 Construction and interpretation of polar- ization operators 335
10.4.2 Free evolution 336
10.4.3 Pulses 337
10.4.4 Small flip angle COSY 338
10.5 ZCOSY 343
10.6 HMBC 345
10.7 Sensitivity-enhanced experiments 347
10.7.1 Sensitivity-enhanced HSQC 348
10.8 Constant time experiments 352
10.8.1 Constant time COSY 352
10.8.2 Constant time HSQC 355
10.9 TROSY 357
10.9.1 Line-selective transfer 358
10.9.2 Implementation of line-selective 180° pulses 360
10.9.3 A TROSY HSQC sequence 361
10.9.4 Processing the TROSY HSQC spectrum 362
10.10 Further reading 365
10.11 Exercises 366
11 Coherence selection: phase cycling and field gradient pulses 369
11.1 Coherence order 370
11.1.1 Possible values of the overall coherence order 371
11.1.2 Evolution of operators of particular coher- ence orders 372
11.1.3 The effect of pulses 373
11.1.4 Observables 374
11.2 Coherence transfer pathways 375
11.2.1 Coherence transfer pathways in heteronu- clear experiments 376
11.3 Frequency discrimination and lineshapes in two- dimensional spectra 377
11.4 The receiver phase 379
11.5 Introducing phase cycling 383
11.5.1 Selection of a single pathway 384
11.5.2 Combining phase cycles 387
11.6 Some phase cycling 'tricks' 388
11.6.1 The first pulse 389
11.6.2 Grouping pulses together 389
11.6.3 The final pulse 390
11.6.4 High-order multiple-quantum terms 390
11.6.5 Refocusing pulses 390
11.7 Axial peak suppression 391
11.8 CYCLOPS 392
11.9 Examples of practical phase cycles 393
11.9.1 COSY 393
11.9.2 DQF COSY 394
11.9.3 Double-quantum spectroscopy 395
11.9.4 NOESY 395
11.9.5 HMQC 395
11.10 Concluding remarks concerning phase cycling 396
11.10.1 Summary 396
11.10.2 Deficiencies of phase cycling 396
11.11 Introducing field gradient pulses 397
11.11.1 The spatially dependent phase 399
11.11.2 Selection of a single pathway using two gradients 401
11.11.3 The spatially dependent phase in heteronu- clear systems 402
11.11.4 Shaped gradient pulses 403
11.11.5 Dephasing in a field gradient 403
11.12 Features of selection using gradients 405
11.12.1 Selection of multiple pathways 405
11.12.2 Obtaining absorption mode lineshapes when gradients are used in t_{1} 405
11.12.3 Refocusing pulses 406
11.12.4 180° pulses in heteronuclear experiments 407
11.12.5 Phase errors due to gradient pulses 407
11.12.6 Selection of z-magnetization 408
11.13 Examples of using gradient pulses for coherence pathway selection 409
11.13.1 DQF COSY 409
11.13.2 HMQC 410
11.13.3 HSQC 413
11.14 Advantages and disadvantages of coherence selec- tion with gradients 414
11.15 Suppression of zero-quantum coherence 415
11.15.1 The z-filter 416
11.15.2 Implementation of z-filters in two-dimensional experiments 418
11.15.3 Zero-quantum dephasing 418
11.16 Selective excitation with the aid of gradients 420
11.16.1 The double pulsed field gradient spin echo 421
11.16.2 The DPFGSE NOE experiment 421
11.17 Further reading 423
11.18 Exercises 425
12 How the spectrometer works 429
12.1 The magnet 429
12.1.1 Shims 430
12.1.2 The lock 431
12.2 The probe 432
12.3 The transmitter 432
12.3.1 Power levels and ' dB ' 433
12.4 The receiver 434
12.5 Digitizing the signal 435
12.5.1 The analogue to digital converter 435
12.5.2 Sampling rates 436
12.5.3 Mixing down to a lower frequency 437
12.6 Quadrature detection 437
12.7 The pulse programmer 438
12.8 Further reading 439
12.9 Exercises 440
A Some mathematical topics 441
A. 1 The exponential function and logarithms 441
A. 2 Complex numbers 443
A.2.1 The complex exponential 444
A. 3 Trigonometric identities 445
A. 4 Further reading 446
Index 447

