Understanding NMR spectroscopy

James Keeler

Senior Lecturer in the Department of Chemistry and Fellow of Selwyn College, Cambridge

C 14 f / 195

66

A friedrich-Bonhoeffer-Institu

Otto-Hahn-Bibliothek

for blophysikalische Chem

5

Copyright © 2005

John Wiley & Sons Ltd, The Atrium, Southern Gate And Kester J West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 42, McDougall Street, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library ISBN-13 978-0-470-01786-9 (Cloth) 978-0-470-01787-6 (Paper) ISBN-10 0-470-01786-4 (Cloth) 0-470-01787-2 (Paper)

Typeset by the author using LATEX Printed and bound in Great Britain by Antony Rowe, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

1	Wha	t this be	ook is about and who should read it	1
	1.1	How the	nis book is organized	2
	1.2	Scope	and limitations	3
	1.3	Contex	t and further reading	3
	1.4	On-lin	e resources	4
	1.5	Abbrev	viations	4
2	Setti	ng the s	cene	5
	2.1	NMR 1	frequencies and chemical shifts	5
		2.1.1	Chemical shift scales	6
		2.1.2	Conversion from shifts to frequencies	7
		2.1.3	The receiver reference frequency and the	
			offset frequency	8
	2.2	Linewi	idths, lineshapes and integrals	9
	2.3	Scalar	coupling	10
		2.3.1	Tree diagrams	10
	2.4	Weak a	and strong coupling	12
	2.5	The ba	sic NMR experiment	14
		2.5.1	Heteronuclear NMR and broadband decoupling	15
	2.6	Freque	ency, oscillations and rotations	17
		2.6.1	Motion in a circle	17
		2.6.2	Frequency	17
		2.6.3	Angular frequency	18
		2.6.4	Phase	19
		2.6.5	Representation using complex numbers	21
	2.7	Photor	18	21
	2.8	Moving on		
	2.9	Furthe	r reading	22
	2.10	Exerci	ses	23
3	Ener	gy level	ls and NMR spectra	25
	3.1	The pr	oblem with the energy level approach	26
		3.1.1	Wavefunctions and mixed states	26
		3.1.2	Energy levels in NMR	27
	3.2	Introdu	ucing quantum mechanics	28
		3.2.1	Wavefunctions	28

vii

		3.2.2 Operators	29
		3.2.3 Eigenfunctions and eigenvalues of operators	30
		3.2.4 Measurement	30
		3.2.5 Hamiltonians and angular momentum	31
		3.2.6 Eigenfunctions and eigenvalues of \hat{I}_z	31
		3.2.7 Eigenvalues for the one-spin Hamiltonian	32
		3.2.8 Summary	33
	3.3	The spectrum from one spin	33
		3.3.1 Energy levels	33
		3.3.2 The Larmor frequency	34
		3.3.3 Writing the energies in frequency units	35
	3.4	Writing the Hamiltonian in frequency units	36
	3.5	The energy levels for two coupled spins	37
		3.5.1 Introducing scalar coupling	39
	3.6	The spectrum from two coupled spins	40
		3.6.1 Multiple-quantum transitions	42
	3.7	Three spins	43
		3.7.1 The Hamiltonian and energy levels	43
		3.7.2 Single quantum spectrum	44
		3.7.3 Multiple quantum transitions	44
		3.7.4 Combination lines	46
	3.8	Summary	46
	3.9	Further reading	47
	3.10	Exercises	48
			F 1
4		vector model	51
	4.1	The bulk magnetization	51
		4.1.1 Axis systems	53 53
	10	4.1.2 The equilibrium magnetization	53 54
	4.2 4.3	Larmor precession Detection	54 55
	4.5 4.4	Pulses	56
	4.4	4.4.1 Rotating frame	50 57
		4.4.1 Kotating frame 4.4.2 Larmor precession in the rotating frame	59
		4.4.2 Lamoi precession in the rotating frame 4.4.3 The effective field	59 59
		4.4.4 The effective field in frequency units	60
		4.4.5 Summary	61
	4.5	On-resonance pulses	62
	4.5	4.5.1 Hard pulses	63
	4.6	Detection in the rotating frame	64
	4.7	The basic pulse-acquire experiment	64
	т./	4.7.1 Spectrum with several lines	65
	4.8	Pulse calibration	66
	4.9	The spin echo	67
	7.7	4.9.1 180° pulses as refocusing pulses	68
		4.9.2 How the spin echo works	68
	4 10		
	4.10	Phises of different bhases	
	4.10 4.11	Pulses of different phases Off-resonance effects and soft pulses	70 71
	4.10 4.11	Off-resonance effects and soft pulses	70 71

CONTENTS

s

ix

		4.11.1 Excitation of a range of shifts	73
		4.11.2 Selective excitation	73
		4.11.3 Selective inversion	75
		Moving on	75
		Further reading	76
	4.14	Exercises	77
5		ier transformation and data processing	81
	5.1	How the Fourier transform works	82 6
	~ ~	5.1.1 Mathematical formulation of the Fourier trans	
	5.2	Representing the FID	86 87
	5.3	· ·	87 88
		5.3.1 Absorption and dispersion lineshapes	00 90
		5.3.2 Phase	90 92
		5.3.3 Phase correction	92
	~ ^	5.3.4 Frequency dependent phase errors	92 94
	5.4	Manipulating the FID and the spectrum	
		5.4.1 Noise	94 96
		5.4.2 Sensitivity enhancement	
		5.4.3 The matched filter	98
		5.4.4 Resolution enhancement	98
		5.4.5 Defining the parameters for sensitivity and	100
		resolution enhancement functions	100
		5.4.6 'Lorentz-to-Gauss' transformation	102 102
	سر بر	5.4.7 Other weighting functions	
	5.5	8	103 104
	5.6		
	5.7	6	105
	5.8	Exercises	106
6		quantum mechanics of one spin	109
	6.1	Introduction	109 110
	6.2	Superposition states	110
	6.3	Some quantum mechanical tools	
		6.3.1 Dirac notation	111
		6.3.2 Normalization and orthogonality	112
		6.3.3 Expectation values	113
		6.3.4 The <i>x</i> - and <i>y</i> -components of angular momentu	
	6.4	6.3.5 Matrix representations	115
	6.4	Computing the bulk magnetization	116
		6.4.1 The ensemble average	117
		6.4.2 Populations	119
	65	6.4.3 Transverse magnetization	120
	6.5	Summary	121
	6.6	Time evolution	123
		6.6.1 Free evolution	123
	(7	6.6.2 Effect of free evolution	126
	6.7	RF pulses	127

x

		6.7.1	Effect on the components of angular momentum	128
		6.7.2	Effect on the components of the bulk magnetization	129
	6.8		g faster progress: the density operator	130
		6.8.1	Introducing the density operator	131
		6.8.2	Calculating the components of the bulk	
			magnetization	132
		6.8.3	Equilibrium density operator	132
		6.8.4	Time evolution of the density operator	133
		6.8.5	Representing the density operator using a	
			basis of operators	133
		6.8.6	The equilibrium density operator – again	135
		6.8.7	Summary	137
	6.9	Cohere		138
			r reading	139
	6.11	Exercis	ses	140
7	Prod	uct ope	rators	143
	7.1		ors for one spin	143
		7.1.1	Hamiltonians for free precession and pulses	144
		7.1.2	Rotations	145
	7.2	Analys	is of pulse sequences for a one-spin system	147
		7.2.1	Pulse-acquire	147
		7.2.2	The spin echo	149
	7.3		ng things up	150
		7.3.1		150
		7.3.2		151
		7.3.3	The $1 - \overline{1}$ sequence	152
	7.4		ors for two spins	153
		7.4.1	Effect of coupling	154
	7.5	In-phas	se and anti-phase terms	156
		7.5.1	In-phase terms	157
		7.5.2	Anti-phase terms	158
		7.5.3	Observable terms	160
	7.6	Hamilt	onians for two spins	161
	7.7	Notatio	on for heteronuclear spin systems	161
	7.8		hoes and J-modulation	162
		7.8.1	Spin echo in a homonuclear spin system	163
		7.8.2	Spectra from a J-modulated spin echo	166
		7.8.3	Spin echoes in heteronuclear spin systems	168
	7.9	Cohere	nce transfer	170
	7.10	The IN	EPT experiment	171
		7.10.1	Why the experiment was developed	171
		7.10.2	Analysis of the INEPT experiment	172
		7.10.3	Decoupling in the INEPT experiment	174
		7.10.4	Suppressing the signal from the equilib-	
			rium magnetization on the S spin	174
	7.11	Selectiv	ve COSY	176
	7.12	Cohere	nce order and multiple-quantum coherences	178

CONTENTS	С	ONTE	NTS		xi
ntum 128			7.12.1	Raising and lowering operators: the clas-	
etization 129				sification of coherence order	178
130			7.12.2	Generation of multiple-quantum coherence	180
131				Evolution of multiple-quantum coherence	180
		7 13	Summa		182
132				reading	183
132			Exercis		184
133		1120			
	8	Two-	dimensi	onal NMR	187
133		8.1	The ger	neral scheme for two-dimensional NMR	188
135			8.1.1	How two-dimensional spectra are recorded	189
137			8.1.2	How the data are processed	189
138		8.2	Modula	ation and lineshapes	190
139			8.2.1	Cosine amplitude modulated data	191
140			8.2.2	Sine amplitude modulated data	192
			8.2.3	Mixed cosine and sine modulation	193
143		8.3	Axes a	nd frequency scales in two-dimensional spectra	194
143	•	8.4	COSY		194
s 144			8.4.1	Overall form of the COSY spectrum	195
145			8.4.2	Detailed form of the two-dimensional multiplets	196
147			8.4.3	Phase properties of the COSY spectrum	201
147			8.4.4	How small a coupling can we detect with COSY?	202
149			8.4.5	The problem with COSY	203
150		8.5	Double	-quantum filtered COSY (DQF COSY)	204
150		8.6		-quantum spectroscopy	208
151			8.6.1	Detailed analysis of the pulse sequence	209
152			8.6.2	Interpretation and application of double-	
153				quantum spectra	210
154			8.6.3	INADEQUATE	211
156		8.7	Heteron	nuclear correlation spectra	213
157			8.7.1	Normal or inverse correlation	213
158		8.8	HSQC		214
160			8.8.1	Coupled or decoupled acquisition	216
161			8.8.2	Suppressing unwanted signals in HSQC	216
161			8.8.3	Sensitivity	217
162		8.9	HMQC	-	217
163		8.10		ange correlation: HMBC	220
166			8.10.1	Suppressing one-bond peaks in HMBC spectra	222
168		8.11	HETCO	OR	225
170		8.12	TOCSY	Ý	226
171			8.12.1	TOCSY for two spins	227
171			8.12.2	TOCSY for more extended spin systems	230
172		8.13	Freque	ncy discrimination and lineshapes	231
174			-	Obtaining cosine and sine modulated data	232
				P- and N-type selection: phase-twist lineshapes	233
174				The States–Haberkorn–Ruben method	235
176			8.13.4		236
178			8.13.5	The States-TPPI method	239
1					

	8.13.6	Phase in two-dimensional spectra	240			
8.14	Further	reading	242			
8.15	Exercis	es	243			
Rela	xation a	nd the NOE	245			
9.1	What is	s relaxation?	246			
	9.1.1	Behaviour of individual magnetic moments	247			
	9.1.2	Local fields	248			
	9.1.3	Coming to equilibrium with the lattice	250			
	9.1.4	Transverse relaxation	251			
	9.1.5	Summary	252			
9.2	Relaxat	ion mechanisms	253			
	9.2.1	The dipolar mechanism	254			
	9.2.2	Chemical shift anisotropy	254			
	9.2.3	Relaxation by paramagnetic species	255			
9.3	Describ	oing random motion – the correlation time	255			
	9.3.1	The correlation function	257			
	9.3.2	The spectral density	260			
	9.3.3	Motional regimes	262			
	9.3.4	Transverse relaxation and the spectral den-				
		sity at zero frequency	263			
	9.3.5	Summary	263			
9.4	Populat	tions	264			
	9.4.1	The z-magnetization in terms of populations	264			
	9.4.2	Relaxation in terms of populations	266 268			
9.5	Longitudinal relaxation behaviour of isolated spins					
	9.5.1	Estimating the rate constant for longitudi- nal relaxation	270			
	9.5.2	Making a quick estimate of the relaxation				
		rate constant	271			
	9.5.3	How long do I have to leave between experiments?	271			
9.6		idinal dipolar relaxation of two spins	273			
	9.6.1	Energy levels and transition rates	273			
	9.6.2	Rate equations for the populations and z -				
		magnetizations	274			
	9.6.3	Relaxation rate constants	277			
	9.6.4	Cross relaxation in the two motional regimes	278			
9.7	The NC		279			
	9.7.1	The transient NOE experiment	280			
	9.7.2	The steady-state NOE experiment	284			
	9.7.3	Heteronuclear steady-state NOE	285			
	9.7.4	Two-dimensional NOESY	286			
	9.7.5	The NOE in more extended spin systems	290			
9.8	Transve	erse relaxation	291			
	9.8.1	Different contributions to transverse relaxation	293			
	9.8.2	Relaxation by random fields	293			
	9.8.3	Transverse dipolar relaxation of two spins	295			
	9.8.4	Transverse cross relaxation: ROESY	296			

xii

9

xiii	
299	
[*] 302	
$\frac{2}{2}$ onstant 303	
303	
303	
304	
305	
n 305	
308	
310	
310	
310	
512	
317	
318	
010	
319	
321	
321	
323	
324	
328	
520	
328	
526	
331	
551	
332	
stems 334	
335	
555	
335	
335	
330 337	
337	
338	
343 345	
343 347	
347	
348	
352	
355	
357	
358	
es 360	
361	
365	
	362 365

COI	NT	EN	TS

	10.11	Exercis	es	366	
11	Coherence selection: phase cycling and field gradient pulses				
			nce order	369 370	
		11.1.1	Possible values of the overall coherence order	371	
		11.1.2	Evolution of operators of particular coher-		
			ence orders	372	
		11.1.3	The effect of pulses	373	
			Observables	374	
	11.2	Cohere	nce transfer pathways	375	
			Coherence transfer pathways in heteronu-		
			clear experiments	376	
	11.3	Freque	ncy discrimination and lineshapes in two-		
			ional spectra	377	
	11.4	The rec	eiver phase	379	
	11.5	Introdu	cing phase cycling	383	
			Selection of a single pathway	384	
		11.5.2	Combining phase cycles	387	
	11.6	Some p	hase cycling 'tricks'	388	
		11.6.1	The first pulse	389	
		11.6.2	Grouping pulses together	389	
		11.6.3	The final pulse	390	
		11.6.4	High-order multiple-quantum terms	390	
		11.6.5	Refocusing pulses	390	
			eak suppression	391	
	11.8	CYCLO	DPS	392	
	11.9		les of practical phase cycles	393	
			COSY	393	
			DQFCOSY	394	
			Double-quantum spectroscopy	395	
			NOESY	395	
			HMQC	395	
	11.10		ding remarks concerning phase cycling	396	
			Summary	396	
			Deficiencies of phase cycling	396	
	11.11		cing field gradient pulses	397	
			The spatially dependent phase	399	
			Selection of a single pathway using two gradients	401	
		11.11.3	The spatially dependent phase in heteronu-		
			clear systems	402	
			Shaped gradient pulses	403	
			Dephasing in a field gradient	403	
	11.12		s of selection using gradients	405	
			Selection of multiple pathways	405	
		11.12.2	Obtaining absorption mode lineshapes when		
			gradients are used in t_1	405	
			Refocusing pulses	406	
		11.12.4	180° pulses in heteronuclear experiments	407	

xiv

CONTE	ĘNTS	CONT	ENTS	xv
	366		11.12.5 Phase errors due to gradient pulses	407
			11.12.6 Selection of z-magnetization	408
pulses	369	11.	3 Examples of using gradient pulses for coherence	
	370		pathway selection	409
der	371		11.13.1 DQF COSY	409
			11.13.2 HMQC	410
	372		11.13.3 HSQC	413
	373	11.	4 Advantages and disadvantages of coherence selec-	
	374		tion with gradients	414
	375	11.	5 Suppression of zero-quantum coherence	415
		_	11.15.1 The z-filter	416
	376		11.15.2 Implementation of z-filters in two-dimensional	
			experiments	418
	377		11.15.3 Zero-quantum dephasing	418
	379	11.	6 Selective excitation with the aid of gradients	420
	383		11.16.1 The double pulsed field gradient spin echo	421
	384		11.16.2 The DPFGSE NOE experiment	421
	387	11.1	7 Further reading	423
	388		8 Exercises	425
	389	~		
	389	12 Hov	v the spectrometer works	429
	390	12.1	The magnet	429
	390		12.1.1 Shims	430
	390		12.1.2 The lock	431
	391	12.2	2 The probe	432
	391 392	8	3 The transmitter	432
	393		12.3.1 Power levels and 'dB'	433
	393 393	12.4	The receiver	434
	393 394		Digitizing the signal	435
	394 395		12.5.1 The analogue to digital converter	435
	395 395		12.5.2 Sampling rates	436
			12.5.3 Mixing down to a lower frequency	437
	395	12.6	Quadrature detection	437
	396	8	The pulse programmer	438
	396		Further reading	439
	396		Exercises	440
	397			
	399	A Son	ne mathematical topics	441
radients	401	A.1	The exponential function and logarithms	441
	400	A.2	Complex numbers	443
	402		A.2.1 The complex exponential	444
	403	A.3		445
	403	A.4		446
	405	_	-	
	405	Index		447
en				
	405			
	406			
	407			

<u>]</u>]#