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Abstract
We develop a connectionist approach to processing in quasi-regular domains,

as exemplified by English word reading. A consideration of the shortcomings

of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.)
in reading nonwords leads to the development of orthographic and phonologi-

cal representations that capture better the relevant structure among the written

and spoken forms of words. In a number of simulation experiments, networks

using the new representations learn to read both regular and exception words,

including low-frequency exception words, and yet are still able to read pro-

nounceable nonwords as well as skilled readers. A mathematical analysis of

the effects of word frequency and spelling-sound consistency in a related but

simpler system serves to clarify the close relationship of these factors in influ-

encing naming latencies. These insights are verified in subsequent simulations,

including an attractor network that reproduces the naming latency data directly

in its time to settle on a response. Further analyses of the network’s ability to

reproduce data on impaired reading in surface dyslexia support a view of the

reading system that incorporates a graded division-of-labor between semantic

and phonological processes. Such a view is consistent with the more general

Seidenberg and McClelland framework and has some similarities with—but

also important differences from—the standard dual-route account.

Many aspects of language can be characterized as quasi-
regular—the relationship between inputs and outputs is sys-

tematic but admits many exceptions. One such task is the

mapping between the written and spoken forms of English

words. Most words are regular (e.g., GAVE, MINT) in that

their pronunciations adhere to standard spelling-sound corre-

spondences. There are, however, many irregular or excep-
tion words (e.g., HAVE, PINT) whose pronunciations violate

the standard correspondences. To make matters worse, some

spelling patterns have a range of pronunciations with none

clearly predominating (e.g., OWN in DOWN, TOWN, BROWN,�
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CROWN vs. KNOWN, SHOWN, GROWN, THROWN, or OUGH in

COUGH, ROUGH, BOUGH, THOUGH, THROUGH). Nonetheless, in

the face of this complexity, skilled readers pronounce written

words quickly and accurately, and can also use their knowl-

edge of spelling-sound correspondences to read pronounceable

nonwords (e.g., MAVE, RINT).

An important debate within cognitive psychology is how

best to characterize knowledge and processing in quasi-regular

domains in order to account for human language performance.

One view (e.g., Pinker, 1984, 1991) is that the systematic as-

pects of language are represented and processed in the form of

an explicit set of rules. A rule-based approach has considerable

intuitive appeal because much of human language behavior can

be characterized at a broad scale in terms of rules. It also pro-

vides a straightforward account of how language knowledge

can be applied productively to novel items (Fodor & Pylyshyn,

1988). However, as illustrated above, most domains are only

partially systematic; accordingly, a separate mechanism is re-

quired to handle the exceptions. This distinction between a

rule-based mechanism and an exception mechanism, each op-

erating according to fundamentally different principles, forms

the central tenet of so-called “dual-route” theories of language.

An alternative view comes out of research on connectionist

or parallel distributed processing networks, in which computa-

tion takes the form of cooperative and competitive interactions

among large numbers of simple, neuron-like processing units

(McClelland, Rumelhart, & the PDP research group, 1986;

Rumelhart, McClelland, & the PDP research group, 1986).

Such systems learn by adjusting weights on connections be-

tween units in a way that is sensitive to how the statistical

structure of the environment influences the behavior of the net-

work. As a result, there is no sharp dichotomy between the

items that obey the rules and the items that do not. Rather,

all items coexist within a single system whose representations

and processing reflect the relative degree of consistency in the

mappings for different items. The connectionist approach is

particularly appropriate for capturing the rapid, online nature

of language use, as well as for specifying how such processes

might be learned and implemented in the brain (although still at
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a somewhat abstract level; seeSejnowski, Koch, & Churchland,

1989, for discussion). Perhaps more fundamentally, connec-

tionist modeling provides a rich set of general computational

principles that can lead to new and useful ways of thinking

about human performance in quasi-regular domains.

Much of the initial debate between these two views of the

language system focused on the relatively constrained domain

of English inflectional morphology—specifically, forming the

past-tense of verbs. Past-tense formation is a rather simple

quasi-regular task: there is a single regular “rule” (add –

ed; e.g., WALK
✁

“walked”) and only about 100 exceptions,

grouped into several clusters of similar items that undergo a

similar change (e.g., SING
✁

“sang”, DRINK
✁

“drank”) along

with a very small number of very high-frequency, arbitrary

forms (e.g., GO
✁

“went”; Bybee & Slobin, 1982). Rumelhart

and McClelland (1986) attempted to reformulate the issue away

from a sharp dichotomy between explicit rules and exceptions,

and toward a view that emphasizes the graded structure relat-

ing verbs and their inflections. They developed a connectionist

model that learned a direct association between the phonology

of all types of verb stems and the phonology of their past-tense

forms. Pinker and Prince (1988) and Lachter and Bever (1988),

however, pointed out numerous deficiencies in the model’s ac-

tual performance and in some of its specific assumptions, and

argued more generally that the applicability of connectionist

mechanisms in language is fundamentally limited (also see

Fodor & Pylyshyn, 1988). However, many of the specific lim-

itations of the Rumelhart and McClelland model have been

addressed in subsequent simulation work (Cottrell & Plun-

kett, 1991; Daugherty & Seidenberg, 1992; Hoeffner, 1992;

MacWhinney & Leinbach, 1991; Marchman, 1993; Plunkett &

Marchman, 1991, 1993). Thus, the possibility remains strong

that a connectionist model could provide a full account of past-

tense inflection. Furthermore, some recent applications to as-

pects of language disorders (Hoeffner & McClelland, 1993;

Marchman, 1993) and language change (Hare & Elman, 1992,

in press) demonstrate the ongoing extension of the approach to

account for a wider range of language phenomena.

Very similar issues arise in the domain of oral reading,

where there is a much richer empirical database with which

to make contact. As in the domain of inflectional morphol-

ogy, many researchers assume that accounting for the wealth

of existing data on both normal and impaired word reading

requires postulating multiple mechanisms. In particular, dual-

route theorists (e.g., Besner & Smith, 1992; Coltheart, 1978,

1985; Coltheart, Curtis, Atkins, & Haller, 1993; Coltheart &

Rastle, 1994; Marshall & Newcombe, 1973; Meyer, Schvan-

eveldt, & Ruddy, 1974; Morton & Patterson, 1980; Paap &

Noel, 1991) have claimed that pronouncing exception words

requires a lexical lookup mechanism that is separate from the

sublexical spelling-sound correspondence rules that apply to

regular words and nonwords (also see Humphreys & Evett,

1985, and the accompanying commentaries for discussion of

the properties of dual-route theories). The separation of lexical

and sublexical procedures is motivated primarily by evidence

that they can be independently impaired, either by abnormal

reading acquisition (developmental dyslexia) or by brain dam-

age in a previously literate adult (acquired dyslexia). Thus,

phonological dyslexics, who can read words but not nonwords,

appear to have a selective impairment of the sublexical proce-

dure, whereas surface dyslexics, who can read nonwords but

who “regularize” exception words (e.g., SEW
✁

“sue”), appear

to have a selective impairment of the lexical procedure.

Seidenberg and McClelland (1989, hereafter SM89) chal-

lenged the central claim of dual-route theories by developing

a connectionist simulation that learned to map representations

of the written forms of words (orthography) to representations

of their spoken forms (phonology). The network success-

fully pronounces both regular and exception words and yet

is not an implementation of two separate mechanisms (see

Seidenberg & McClelland, 1992, for a demonstration of this

last point). The simulation was put forward in support of a

more general framework for lexical processing in which or-

thographic, phonological, and semantic information interact

in gradually settling on the best representations for a given

input (see Stone & Van Orden, 1989, 1994; Van Orden &

Goldinger, 1994; Van Orden, Pennington, & Stone, 1990, for

a similar perspective on word reading). A major strength of

the approach is that it provides a natural account of the graded

effects of spelling-sound consistency among words (Glushko,

1979; Jared, McRae, & Seidenberg, 1990) and how this consis-

tency interacts with word frequency (Andrews, 1982; Seiden-

berg, 1985; Seidenberg, Waters, Barnes, & Tanenhaus, 1984;

Taraban & McClelland, 1987; Waters & Seidenberg, 1985).1

Furthermore, SM89 demonstrated that undertrained versions

of the model exhibit some aspects of developmental surface

dyslexia, and Patterson (1990, Patterson, Seidenberg, & Mc-

Clelland, 1989) showed how damaging the normal model can

reproduce some aspects of acquired surface dyslexia. The

SM89 model also contributes to the broader enterprise of con-

nectionist modeling of cognitive processes, in which a com-

mon set of general computational principles are being applied

successfully across a wide range of cognitive domains.

However, the SM89 work has a serious empirical limitation

that undermines its role in establishing a viable connectionist

alternative to dual-route theories of word reading in particu-

lar, and in providing a satisfactory formulation of the nature

of knowledge and processing in quasi-regular domains more

generally. Specifically, the implemented model is significantly

worse than skilled readers at pronouncing nonwords (Besner,

Twilley, McCann, & Seergobin, 1990). This limitation has

broad implications for the range of empirical phenomena that

can be accounted for by the model (Coltheart et al., 1993).

Poor nonword reading is exactly what would be predicted from

the dual-route claim that no single system—connectionist or

otherwise—can read both exception words and pronounceable

1The findings of these studies have often been cast as effects of regularity
rather than consistency—we will address this distinction in the next section.
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nonwords adequately. Under this interpretation, the model

had simply approximated a lexical look-up procedure: it could

read both regular and exception words, but had not separately

mastered the sublexical rules necessary to read nonwords. An

alternative interpretation, however, is that the empirical short-

comings of the SM89 simulation stem from specific aspects of

its design and not from inherent limitations on the abilities of

connectionist networks in quasi-regular domains. In particular,

Seidenberg and McClelland (1990) suggested that the model’s

nonword reading might be improved—without adversely af-

fecting its other properties—by using either a larger training

corpus or different orthographic and phonological representa-

tions.

A second limitation of the SM89 work is that it did not

provide a very extensive examination of underlying theoretical

issues. SM89’s main emphasis was on demonstrating that a

network which operated according to fairly general connec-

tionist principles could account for a wide range of empiri-

cal findings on normal and developmentally-impaired reading.

Relatively little attention was paid in that paper to articulating

the general principles themselves or to evaluating their rel-

ative importance. Thus, much of the underlying theoretical

foundation of the work remained implicit. Despite subsequent

efforts in explicating these principles (Seidenberg, 1993), there

remains considerable confusion with regard to the role of con-

nectionist modeling in contributing to a theory of word reading

(or of any other cognitive process). Thus, some researchers

(e.g., Forster, 1994; McCloskey, 1991) have claimed that the

SM89 demonstration, while impressive in its own right, has

not extended our understanding of word reading because the

operation of the model itself—and of connectionist networks

more generally—is too complex to understand. Consequently,

“connectionist networks should not be viewed as theories of hu-

man cognitive functions, or as simulations of theories, or even

as demonstrations of specific theoretical points” (McCloskey,

1991, p. 387; also see Massaro, 1988; Olsen & Caramazza,

1991). Although we reject the claim that connectionist mod-

eling is atheoretical (see Seidenberg, 1993), and that there are

no bases for analyzing and understanding networks (see, e.g.,

Hanson & Burr, 1990), we agree that the theoretical princi-

ples and constructs for developing connectionist explanations

of empirical phenomena are in need of further elaboration.

The current work develops a connectionist account of knowl-

edge representation and cognitive processing in quasi-regular

domains, in the specific context of normal and impaired word

reading. The work draws on an analysis of the strengths and

weaknesses of the SM89 work, with the dual aim of providing

a more adequate account of the relevant empirical phenomena,

and of articulating in a more explicit and formal manner the

theoretical principles that underlie the approach. We explore

the use of alternative representations that make the regularities

between written and spoken words more explicit. In the first

simulation experiment, a network using the new representa-

tions learns to read both regular and exception words, includ-

ing low-frequency exception words, and yet is still able to read

pronounceable nonwords as well as skilled readers. The results

open up the range of possible architectures that might plausibly

underlie human word reading. A mathematical analysis of the

effects of word frequency and spelling-sound consistency in a

simpler but related system serves to clarify the close relation-

ship of these factors in influencing naming latencies. These

insights are verified in a second simulation. Simulation 3 de-

velops an attractor network that reproduces the naming latency

data directly in its time to settle on a response, obviating the

need to use error as a proxy for reaction time. The implica-

tion of the semantic contribution to reading is considered in

the fourth and final simulation, in the context of accounting

for the impaired reading behavior of acquired surface dyslexic

patients with brain damage. Damage to the attractor network

provides only a limited account of the relevant phenomena; a

better account is provided by the performance of a network that

learns to map orthography to phonology in the context of sup-

port from semantics. The findings lead to a view of the reading

system that incorporates a graded division-of-labor between

semantic and phonological processes. Such a view is consis-

tent with the more general SM89 framework and has some

similarities with—but also important differences from—the

standard dual-route account. The General Discussion artic-

ulates these differences, and clarifies the implications of the

current work for a broader range of empirical findings, includ-

ing those raised by Coltheart et al. (1993) as challenges to the

connectionist approach.

We begin with a brief critique of the SM89 model, in which

we try to distinguish its central computational properties from

less central aspects of its design. An analysis of its repre-

sentations leads to the design of new representations that are

employed in a series of simulations analogous to the SM89

simulation.

The Seidenberg and McClelland Model

The General Framework

Seidenberg and McClelland’s (1989) general framework for

lexical processing is shown in Figure 1. Orthographic, phono-

logical, and semantic information is represented in terms of

distributed patterns of activity over separate groups of sim-

ple neuron-like processing units. Within each domain, similar

words are represented by similar patterns of activity. Lexical

tasks involve transformations between these representations—

for example, oral reading requires the orthographic pattern for

a word to generate the appropriate phonological pattern. Such

transformations are accomplished via the cooperative and com-

petitive interactions among units, including additional hidden
units that mediate between the orthographic, phonological, and

semantic units. Unit interactions are governed by weighted

connections between them, which collectively encode the sys-

tem’s knowledge about how the different types of information
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Orthography Phonology

MAKE /mAk/
✂

Context

Meaning

Figure 1. Seidenberg and McClelland’s (1989) general

framework for lexical processing. Each oval represents a group

of units and each arrow represents a group of connections. The

implemented model is shown in bold. (Adapted from Seiden-

berg & McClelland, 1989, p. 526)

are related. The specific values of the weights are derived by

an automatic learning procedure on the basis of the system’s

exposure to written words, spoken words, and their meanings.

The SM89 framework is broadly consistent with a more gen-

eral view of information processing that has been articulated by

McClelland (1991, 1993) in the context of GRAIN networks.

These networks embody the following general computational

principles:✄ Graded: Propagation of activation is not all-or-none but

rather builds up gradually over time.✄ Random: Unit activations are subject to intrinsic stochas-

tic variability.✄ Adaptive: The system gradually improves its perfor-

manceby adjusting weights on connections betweenunits.✄ Interactive: Information flows in a bidirectional manner

between groups of units, allowing their activity levels to

constrain each other and be mutually consistent.✄ Nonlinear: Unit outputs are smooth, nonlinear functions

of their total inputs, significantly extending the computa-

tional power of the entire network beyond that of purely

linear networks.

The acronym GRAIN is also intended to convey the notion that

cognitive processes are expressed at a finer grain of analysis,

in terms of interacting groups of neuron-like units, than is typ-

ical of most “box-and-arrow” information processing models.

Further computational principles that are central to the SM89

framework but not captured by the acronym are:✄ Distributed Representations: Items in the domain are rep-

resented by patterns of activity over groups of units that

participate in representing many other items.✄ Distributed Knowledge: Knowledge about the relation-

ship between items is encoded across large numbers of

connection weights that also encode many other map-

pings.

Much of the controversy surrounding the SM89 framework,

and the associated implementation, stems from the fact that

it breaks with traditional accounts of lexical processing (e.g.,

Coltheart, 1985; Morton & Patterson, 1980) in two fundamen-

tal ways. The first is in the representational status of words.

Traditional accounts assume that words are represented in the

structure of the reading system—in its architecture. Morton’s

(1969) “logogens” are well-known instances of this type of

word representation. By contrast, within the SM89 framework

the lexical status of a string of letters or phonemes is not re-

flected in the structure of the reading system. Rather, words

are distinguished from nonwords only by functional proper-

ties of the system—the way in which particular orthographic,

phonological, and semantic patterns of activity interact (also

see Van Orden et al., 1990).

The SM89 framework’s second major break with tradition

concerns the degree of uniformity in the mechanism(s) by

which orthographic, phonological, and semantic representa-

tions interact. Traditional accounts assume that pronouncing

exception words and nonwords require separate lexical and

sublexical mechanisms, respectively. By contrast, the SM89

framework employs far more homogeneous processes in oral

reading. In particular, it eschews separate mechanisms for

pronouncing nonwords and exception words. Rather, all of

the system’s knowledge of spelling-sound correspondences

is brought to bear in pronouncing all types of letter strings.

Conflicts among possible alternative pronunciations of a letter

string are resolved, not by structurally distinct mechanisms,

but by cooperative and competitive interactions based on how

the letter string relates to all known words and their pronun-

ciations. Furthermore, the semantic representation of a word

participates in oral reading in exactly the same manner as do

its orthographic and phonological representations, although

the framework leaves open the issue of how important these

semantic influences are in skilled oral reading.

Regularity versus Consistency. An issue that is inti-

mately related to the tension between the SM89 framework

and traditional dual-route theories concerns the distinction be-

tween regularity and consistency. Broadly speaking, a word is

regular if its pronunciation can be generated “by rule” and it

is consistent if its pronunciation agrees with those of similarly
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spelt words. Of course, to be useful these definitions must be

operationalized in more specific terms. The most commonly

proposed pronunciation rules are based on the most frequent

grapheme-phonemecorrespondencesin the language, although

such GPC rules must be augmented with considerable context-

sensitivity to operate adequately (see Coltheart et al., 1993;

Seidenberg, Plaut, Petersen, McClelland, & McRae, 1994, for

discussion). Consistency, on the other hand, has typically been

defined with respect to the orthographic body and the phono-

logical rime (i.e., the vowel plus any following consonants).

This choice can be partly justified on the grounds of empirical

data: for example, Treiman, Mullennix, Bijeljac-Babic, and

Richmond-Welty (in press) have recently demonstrated that,

in naming data for all 1329 monosyllabic words in English

with a CVC pronunciation, the consistency of the body (VC)

accounts for significantly more variance in naming latency than

the consistency of the onset plus vowel (CV). There are also

pragmatic reasons for restricting consideration to body-level

consistency—bodies constitute a manageable manipulation in

designing experimental lists. If experimenters had to consider

consistency across orthographic neighborhoods at all possible

levels, from individual graphemes up to the largest sub-word

sized chunks, their selection of stimulus words would be an

even more agonizing process than it already is. Nonetheless,

the general notion of consistency is broader than a specific

instantiation in terms of body consistency, just as the general

notion of regularity is broader than that defined by any partic-

ular set of spelling-sound correspondence rules.

Based on the frequent observation (e.g., Coltheart, 1978;

Parkin, 1982; Waters & Seidenberg, 1985) that words with reg-

ular or typical spelling-sound correspondences (such as MINT)

produce shorter naming latencies and lower error rates than

words with exceptional correspondences (such as PINT), regu-

larity was originally considered to be the critical variable. In

1979, however, Glushko argued that consistency provided a

better account of empirical results. Although MINT may be a

regular word according to GPC rules, its spelling-sound rela-

tionship is inconsistent with that of its orthographic neighbor,

PINT. To the extent that the process of computing phonol-

ogy from orthography is sensitive to the characteristics of the

neighborhood, performance on a regular but inconsistent word

like MINT may also be adversely affected. Glushko (1979)

did indeed demonstrate longer naming latencies for regular in-

consistent words than for regular words from consistent body

neighborhoods, though this result was not always obtained in

subsequent experiments (e.g., Stanhope & Parkin, 1987).

In 1990, Jared, McRae, and Seidenberg offered a more so-

phisticated hypothesis that captures aspects of results not han-

dled by previous accounts referring solely to either regularity

or consistency. According to Jared and colleagues, the mag-

nitude of the consistency effect for a given word depends on

the summed frequency of that word’s friends (words with a

similar spelling pattern and similar pronunciation) and of its

enemies (words with a similar spelling pattern but a discrepant

pronunciation). For example, an inconsistent word like MINT

has a number of friends (e.g., LINT, TINT, PRINT, etc.) and just a

single enemy, PINT. Against the strength of friends, the single

enemy cannot exert a marked influence (especially when, as

is true of PINT, the enemy is of relatively low frequency); its

negative impact on computing the pronunciation of MINT will

thus be small and perhaps undetectable. By contrast, an in-

consistent word like GOWN, with many enemies (e.g., BLOWN,

SHOWN, GROWN, etc.) as well as friends (e.g., DOWN, BROWN,

TOWN), gives rise to a more substantial effect. Such words,

with roughly balanced support from friends and enemies, have

been termed ambiguous (with respect to the pronunciation of

their body; Backman, Bruck, Hébert, & Seidenberg, 1984; Sei-

denberg et al., 1984).

The commonly observed effect of regularity also finds a

natural explanation within Jared et al.’s (1990) account, be-

cause most regular words (as defined by GPC rules) have many

friends and few if any enemies, whereas words with irregular

spelling-sound correspondences (such as PINT or SEW) typi-

cally have many enemies and few if any friends. Given this

correspondence, and following Glushko (1979) and Taraban

and McClelland (1987), we will refer to words with many

enemies and few if any friends as exception words, acknowl-

edging that this definition excludes many words that would

be considered exceptional according to GPC rules (e.g., many

ambiguous words). Jared et al.’s hypothesis and supporting

data also mesh well with other results demonstrating the inad-

equacy of a simple regular/irregular dichotomy, such as the

“degrees of regularity” effect observed in acquired surface

dyslexia (Shallice, Warrington, & McCarthy, 1983, also see

Plaut, Behrmann, Patterson, & McClelland, 1993, for more

direct evidence of consistency effects in surface dyslexia).

It must be kept in mind, however, that a definition of consis-

tency based solely on body neighborhoods, even if frequency-

weighted, can provide only a partial account of the consistency

effects that would be expected to operate over the full range

of spelling-sound correspondences. Thus, for example, the

word CHEF could not be considered inconsistent on a body-

level analysis as all the words in English with the body EF

(i.e., CLEF, REF) agree with its pronunciation. On a broader

definition of consistency, however, CHEF is certainly inconsis-

tent, since the overwhelmingly most common pronunciation

of CH in English is the one appropriate to CHIEF, not CHEF.

This broad view of consistency is also important when con-

sidering what might be called irregular consistent words—that

is, words such as KIND, BOLD, and TOOK that have highly con-

sistent body neighborhoods but that are nonetheless irregular

according to GPC rules such as those of Coltheart et al. (1993).

The processing of such items would be expected to be sensi-

tive to the conflict between consistency at the body-rime level

and inconsistency at the grapheme-phoneme level. In all of

what follows, therefore, although we will adopt the standard

practice of using body-level manipulations for empirical tests,

this should be interpreted as providing only an approximation
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of the true range of consistency effects.

Relationship to Other Approaches. A cursory inspection

of Figure 1 might suggest that the SM89 framework is, in fact,

a dual-route system: orthography can influence phonology ei-

ther directly or via semantics. To clarify this possible source of

confusion, we must be more explicit about typical assumptions

in dual-route theories concerning the structure and operation

of the different procedures. As described earlier, the central

distinction in such theories is between lexical and sublexical

procedures. The sublexical procedure applies GPC rules to

produce correct pronunciations for regular words, reasonable

pronunciations for nonwords, and incorrect, “regularized” pro-

nunciations for exception words. The lexical procedure pro-

duces correct pronunciations for all words, and no response for

nonwords. When the outputs of the two procedures conflict, as

they do for exception words, some models (e.g., Paap & Noel,

1991) assume a “horse race” with the faster (typically lexi-

cal) procedure generating the actual response. Others (e.g.,

Monsell, Patterson, Graham, Hughes, & Milroy, 1992) sug-

gest that output from the two procedures is pooled until a

phonological representation sufficient to drive articulation is

achieved (although the specific means by which this pooling

occurs is rarely made explicit). The lexical procedure is often

subdivided into a direct route that maps orthographic word rep-

resentations directly onto phonological word representations,

and an indirect route that maps via semantics. In these for-

mulations, the “dual-route” model is in a sense a three-route

model, although researchers typically assume that the indirect,

semantic route would be too slow to influence skilled word

pronunciation (Coltheart, 1985; Patterson & Morton, 1985).

By contrast, the nonsemantic portion of the SM89 frame-

work does not operate by applying GPC rules, but by the simul-

taneous interaction of units. It is also capable of pronouncing

all types of input, including exception words, although the time

it takes to do so depends on the type of input. Furthermore, the

semantic portion of the framework does not operate in terms of

whole-word representations, but rather in terms of interacting

units, each of which participates in the processing of many

words. In addition, nonwords may engage semantics to some

degree, although the extent to which this occurs is likely to be

minimal (see the discussion of lexical decision in the General

Discussion). Thus, the structure and operation of the SM89

framework is fundamentally different from existing dual-route

theories.

It may also help to clarify the relationship between the SM89

framework and approaches to word reading other than dual-

route theories. The two main alternatives are lexical-analogy

theories and multiple-levels theories. Lexical-analogy theo-

ries (Henderson, 1982; Marcel, 1980) dispense with the sub-

lexical procedure, and propose that the lexical procedure can

pronounce nonwords by synthesizing the pronunciations of or-

thographically similar words. Unfortunately, the way in which

these pronunciations are generated and synthesized is rarely

fully specified. Multiple-levels theories (Shallice & McCarthy,

1985; Shallice et al., 1983) dispense with the (direct) lexical

route (or rather, incorporate it into the sublexical route) by

assuming that spelling-sound correspondences are represented

for segments of all sizes, ranging from single graphemes and

phonemes to word bodies and entire morphemes.

In a way, the SM89 framework can be thought of as an inte-

gration and more detailed specification of lexical-analogy and

multiple-level theories (also see Norris, 1994, for a connec-

tionist implementation of the latter). The pronunciations of

nonwords are generated on the basis of the combined influence

of all known word pronunciations, with those most similar

to the nonword having the strongest effect. In order for the

system to pronounce exception words as well as nonwords,

the hidden units must learn to be sensitive to spelling-sound

correspondences of a range of sizes. The framework is also

broadly consistent with Van Orden et al.’s (1990) proposal that

orthography and phonology are strongly associated via co-

variant learning, although the SM89 framework incorporates

direct interaction between orthography and semantics, which

Van Orden and colleagues dispute.

The Implemented Model
The SM89 framework clearly represents a radical departure

from widely held assumptions about lexical processing, but

is it plausible as an account of human word reading? In the

service of establishing the framework’s plausibility, SM89 im-

plemented a specific connectionist network that, they implicitly

claimed, embodies the central theoretical tenets of the frame-

work.

The network, highlighted in bold in Figure 1, contains three

groups of units: 400 orthographic units, 200 hidden units, and

460 phonological units. The hidden units receive connections

from all of the orthographic units and, in turn, send connec-

tions to all of the phonological units as well as back to all of

the orthographic units. The network contains no semantic or

context information.

Orthographic and phonological forms are represented as pat-

terns of activity over the orthographic and phonological units,

respectively. These patterns are defined in terms of context-

sensitive triples of letters and phonemes (Wickelgren, 1969).

It was computationally infeasible for SM89 to include a unit

for each possible triple, so they used representations that re-

quire fewer units but preserve the relative similarities among

patterns. In orthography, the letter triples to which each unit

responds are defined by a table of 10 randomly selected letters

(or a blank) in each of three positions. In the representation

of a letter string, an orthographic unit is active if the string

contains one of the letter triples than can be generated by sam-

pling from each of the three positions of that unit’s table. For

example, GAVE would activate all orthographic units capable

of generating GA, GAV, AVE, or VE .

Phonological representations are derived in an analogous

fashion, except that a phonological unit’s table entries at each

position are not randomly selected phonemes, but rather all
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phonemes containing a particular phonemic feature (as defined

by Rumelhart & McClelland, 1986). A further constraint is that

the features for the first and third positions must come from the

same phonetic dimension (e.g., place of articulation). Thus,

each unit in phonology represents a particular ordered triple

of phonemic features, termed a Wickelfeature. For example,

the pronunciation /gAv/ would activate phonological units rep-

resenting the Wickelfeatures [back, vowel, front], [stop, long,

fricative], and many others (given that /g/ has back and stop
among its features, /A/ has vowel and long, and /v/ has front
and fricative). On average, a word activates 81 (20.3%) of the

400 orthographic units, and 54 (11.7%) of the 460 phonolog-

ical units. We will return to an analysis of the properties of

these representations after summarizing the SM89 simulation

results.

The weights on connections between units were initialized

to small random values. The network then was repeatedly

presented with the orthography of each of 2897 monosyllabic

words, and trained both to generate the phonology of the word

and to regenerate its orthography (see Seidenberg & McClel-

land, 1989, for details). During eachsweep through the training

set, the probability that a word was presented to the network

was proportional to a logarithmic function of its frequency

(Kuçera & Francis, 1967). Processing a word involved setting

the states of the orthographic units (as defined above), comput-

ing hidden unit states based on states of the orthographic units

and the weights on connections from them, and then comput-

ing states of the phonological and orthographic units based on

those of the hidden units. Back-propagation (Rumelhart, Hin-

ton, & Williams, 1986a, 1986b) was used to calculate how to

adjust the weights to reduce the differences between the correct

phonological and orthographic representations of the word and

those generated by the network. These weight changes were

accumulated during each sweep through the training set; at the

end, the changes were carried out and the process was repeated.

The network was considered to have named a word correctly

when the generated phonological activity was closer to the rep-

resentation of the correct pronunciation of the word than to that

of any pronunciation which differed from the correct one by a

single phoneme. For the example GAVE
✁

/gAv/, the compet-

ing pronunciations are all those among / ☎ Av/, /g ☎ v/, or /gA ☎ /,

where / ☎ / is any phoneme. After 250 training sweeps through

the corpus, amounting to about 150,000 word presentations,

the network correctly named all but 77 words (97.3% correct),

most of which were low-frequency exception words.

A considerable amount of empirical data on oral reading

concerns the time it takes to name words of various types.

A natural analogue in a model to naming latency in subjects

would be the amount of computing time required to produce

an output. SM89 could not use this measure because their

network takes exactly the same amount of time—one update of

each unit–to compute phonological output for any letter string.

Instead, they approximated naming latency with a measure

of the accuracy of the phonological activity produced by the
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Figure 2. Mean phonological error scores produced by the

Seidenberg and McClelland (1989) network for words with

various degrees of spelling-sound consistency (listed in Ap-

pendix 1) as a function of frequency. Regenerated from Fig-

ure 16 of Seidenberg and McClelland (1989, p. 542).

network—the phonological error score. SM89 showed that the

network’s distribution of phonological error scores for various

words replicates the effects of frequency and consistency in

naming latencies found in a wide variety of empirical studies

using the samewords. Figure 2 presents particularly illustrative

results in this regard, using high- and low-frequency words at

four levels of consistency (listed in Appendix 1 and used in the

current simulations):✄ Exception words from Experiments 1 and 2 of Taraban

and McClelland (1987); they have an average of 0.73

friends in the SM89 corpus (not counting the word itself),

and 9.2 enemies;✄ Ambiguous words generated by SM89 to be matched in

Kuçera and Francis (1967) frequency with the exception

words; they average 8.6 friends and 8.0 enemies;✄ Regular inconsistent words, also from Taraban and Mc-

Clelland (1987), which average 7.8 friends and only 2.1

enemies;✄ Regular consistent words which are the control items for

the exception words in the Taraban and McClelland study;

they have an average of 10.7 friends and 0.04 enemies

(the foreign word COUP for the item GROUP, and one of

the pronunciations of BASS for the item CLASS).

The relevant empirical effects in naming latency exhibited by

the SM89 model are, specifically:

1. High-frequency words are named faster than low-

frequency words (e.g., Forster & Chambers, 1973; Fred-

eriksen & Kroll, 1976).
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2. Consistent words arenamedfaster than inconsistent words

(Glushko, 1979), and latencies increase monotonically

with increasing spelling-sound inconsistency (as approx-

imated by the relative proportion of friends vs. enemies;

Jared et al., 1990). Thus, regular inconsistent words like

MOTH (cf. BOTH) are slower to be named than regular con-

sistent words like MUST (Glushko, 1979), and exception

words like PINT and SEW are the slowest to be named (Sei-

denberg et al., 1984). Performance on ambiguous words

like GOWN (cf. GROWN) falls between that on regular in-

consistent words and that on exception words, although

this has been investigated directly only with respect to

reading acquisition (Backman et al., 1984).

3. Frequency interacts with consistency (Seidenberg, 1985;

Seidenberg et al., 1984; Waters & Seidenberg, 1985),

such that the consistency effect is much greater among

low-frequency words than among high-frequency words

(where it may even be absent; see, e.g., Seidenberg, 1985),

or equivalently, the frequency effect decreases with in-

creasingly consistency (perhaps being absent among reg-

ular words; see, e.g., Waters & Seidenberg, 1985).

In considering these empirical and simulation results, it is im-

portant to keep in mind that the use of a four-way classification

of consistency is not intended to imply the existence of four

distinct subtypes of words; rather, it is intended to help illus-

trate the effects of what is actually an underlying continuum of

consistency (Jared et al., 1990).2

The model also shows analogous effects of consistency in

nonword naming latency. In particular, nonwords derived from

regular consistent words (e.g., NUST from MUST) are faster to

name than nonwords derived from exception words (e.g., MAVE

from HAVE; Glushko, 1979; Taraban & McClelland, 1987).

As mentioned in the Introduction, however, the model’s non-

word naming accuracy is much worse than that of skilled read-

ers. Besner et al. (1990) reported that, on nonword lists from

Glushko (1979) and McCann and Besner (1987), the model is

only 59% and 51% correct, whereas skilled readers are 94%

and 89% correct, respectively. Seidenberg and McClelland

(1990) pointed out that the scoring criterion used for the net-

work was more strict than that used for the subjects. We will

return to the issue of scoring nonword reading performance—

for the present purposes, it suffices to acknowledge that, even

2This is particularly true with respect to the distinction between regular

inconsistent words and ambiguous words, which differ only in the degree of

balance between friends and enemies. In fact, a number of previous studies,

including Taraban and McClelland (1987), failed to make this distinction.

As a result, some of the Taraban and McClelland regular inconsistent words

contain bodies that we categorize as ambiguous (e.g., DEAR, GROW). This has

the unfortunate consequence that, occasionally,words with identical bodies are

assigned into different consistency classes. However, in the current context,

we are not concerned with individual items but solely with using the pattern

of means across classes to illustrate overall consistency effects. In this regard,

the word classes differ in the appropriate manner in their average relative

numbers of friends and enemies. Thus, for continuity with earlier work, we

will continue to use the Taraban and McClelland stimuli.

taking differences in scoring into account, the performance of

the SM89 model on nonwords is inadequate.

The SM89 model replicates the effects of frequency and

consistency in lexical decision (Waters & Seidenberg, 1985)

when responses are based on orthographic error scores, which

measure the degree to which the network succeeds at recre-

ating the orthography of each input string. Again, however,

the model is not as accurate at lexical decision under some

conditions as are normal subjects (Besner et al., 1990; Fera &

Besner, 1992).

Consistency also influences the ease with which word nam-

ing skills are acquired. Thus, less skilled readers—whether

younger or developmentally dyslexic—show larger consis-

tency effects than more skilled readers (Backman et al., 1984;

Vellutino, 1979). The model shows similar effects both early in

the course of learning and when trained with limited resources

(e.g., too few hidden units).

Finally, damaging the model by removing units or connec-

tions results in a pattern of errors that is somewhat similar to

that of brain-injured patients with one form of surface dyslexia

(Patterson, 1990; Patterson et al., 1989). Specifically, low-

frequency exception words become particularly prone to be-

ing regularized (see Patterson, Coltheart, & Marshall, 1985).

Overall, however, attempts to model surface dyslexia by le-

sioning the SM89 model have been less than satisfactory (see

Behrmann & Bub, 1992; Coltheart et al., 1993, for criticism).

We will consider this and other types of developmental and ac-

quired dyslexia in more detail after presenting new simulation

results on normal skilled reading.

Evaluation of the Model
In evaluating the SM89 results, it is important to bear in mind

the relationship between the implemented model and the more

general framework for lexical processing from which it was

derived. In many ways, the implemented network is a poor ap-

proximation to the general framework: it contains no semantic

representations or knowledge, it was trained on a limited vo-

cabulary, and its feedforward architecture severely restricts the

way in which information can interact within the system. In

addition, as a working implementation, the network inevitably

embodies specific representational and processing details that

are not central to the overall theoretical framework. Such

details include the specific orthographic and phonological rep-

resentation schemes, the logarithmic frequency compression

used in training, the use of error scores to model naming la-

tencies, and the use of a supervised, error-correcting training

procedure (but see Jordan & Rumelhart, 1992). Nonetheless,

the implemented network is faithful to most of the central

theoretical tenets of the general framework (see also Seiden-

berg, 1993): (a) the network employs distributed orthographic

and phonological representations that reflect the similarities of

words within each domain, (b) the computation of orthogra-

phy and phonology involve nonlinear cooperative and com-

petitive influences governed by weighted connections between
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units, (c) these weights encode all of the network’s knowledge

about how orthography and phonology are related, and (d) this

knowledge is acquired gradually on the basis of the network’s

exposure to written words and their pronunciations. It is im-

portant to note that two central principles are lacking in the

implemented network: interactivity and intrinsic variability.

We consider the implications of these principles later.

Before we focus on the limitations of SM89’s work, it is

important to be clear about its strengths. First and foremost, the

general framework is supported by an explicit computational

model that actually implements the mapping from orthography

to phonology. Of course, implementing a model does not make

it any more correct, but it does, among other things, allow it

to be more thoroughly and adequately evaluated (Seidenberg,

1993). Many models of reading are no more explicit than “box-

and-arrow” diagrams accompanied by descriptive text on how

processing would occur in each component (a notable recent

exception to this is the implementation of Coltheart et al., 1993;

Coltheart & Rastle, 1994, which is compared in detail with the

current approach by Seidenberg et al., 1994). In fact, the SM89

general framework amounts to such a description. By taking

the further step of implementing a portion of the framework

and testing it on the identical stimuli used in empirical studies,

SM89 enabled the entire approach to be evaluated in much

greater detail than has been possible with previous, less explicit

models.

Furthermore, it should not be overlooked that the im-

plemented model succeeds in accounting for a considerable

amount of data on normal and impaired word reading. The

model reproduces the quantitative effects found in over 20

empirical studies on normal reading, as well as some basic

findings on developmental and acquired dyslexia. No other

existing implementation covers anything close to the same

range of results.

Finally, it is important to bear in mind that the basic compu-

tational properties of the SM89 framework and implementa-

tion were not developed specifically for word reading. Rather,

they derive from the much broader enterprise of connectionist

modeling in cognitive domains. The same principles of dis-

tributed representations, interactivity, distributed knowledge,

and gradient-descent learning are also being applied success-

fully to problems in high-level vision, learning and memory,

speech and language, reasoning and problem solving, and

motor planning and control (see Hinton, 1991; McClelland,

Rumelhart, & the PDP research group, 1986; Quinlan, 1991,

for examples). Two distinctive aspects of the connectionist

approach are its strong emphasis on general learning princi-

ples, and its attempt to make contact with neurobiological as

well as cognitive phenomena. Neurally plausible learning is

particularly critical to understanding reading as it is unlikely

that the brain has developed innate, dedicated circuitry for such

an evolutionarily recent skill. Thus, the SM89 work not only

makes specific contributions to the study of reading, but also

fits within a general computational approach for understanding

how cognitive processes are learned and implemented in the

brain.

The SM89 implementation does, however, have serious lim-

itations in accounting for some empirical data. Some of these

limitations no doubt stem from the lack of unimplemented por-

tions of the framework—most importantly, the involvement of

semantic representations, but also perhaps visual and articula-

tory procedures. A full consideration of the range of relevant

empirical findings will be better undertaken in the General

Discussion in the context of the new simulation results. Con-

sideration of the poor nonword reading performance of the

SM89 network, however, cannot be postponed. This limitation

is fundamental as nonword reading is unlikely to be improved

by the addition of semantics. Furthermore, Coltheart et al.

(1993) have argued that, primarily as a result of its poor pro-

cessing of nonwords, the model is incapable of accounting for

five of six central issues in normal and impaired word reading.

More fundamentally, by not reading nonwords adequately, the

model fails to refute the claim of dual-route theorists that read-

ing nonwords and reading exception words requires separate

mechanisms.

Seidenberg and McClelland (1990) argued that the model’s

poor nonword reading was not a fundamental problem with

the general framework, but rather was the result of two specific

limitations in the implementation. Thefirst is the limited sizeof

the training corpus. The model was exposed to only about 3000

words, whereas the skilled readers with whom it is compared

know approximately ten times that number. Given that the only

knowledge that the model has available for reading nonwords

is what it has derived from words, a limited training corpus is

a serious handicap.

Coltheart et al. (1993) have argued that limitations of the

SM89 training corpus cannot explain the model’s poor non-

word reading because a system that learns GPC rules using

the same corpus performs much better. This argument is falla-

cious, however, because the effectiveness of a training corpus

depends critically on other assumptions built into the training

procedure. In fact, Coltheart and colleagues’ procedure for

learning GPC rules has built into it a considerable amount of

knowledge that is specific to reading, concerning the possi-

ble relationships between graphemes and phonemes in various

contexts. In contrast, SM89 applied a general learning pro-

cedure to representations that encode only ordered triples of

letters and phonemic features, but nothing of their correspon-

dences. A demonstration that the SM89 training corpus is

sufficient to support good nonword reading in the context of

strong, domain-specific assumptions does not invalidate the

claim that the corpus may be insufficient in the context of

much weaker assumptions.

The second aspect of the SM89 simulation that contributed

to its poor nonword reading was the use of Wickelfeatures to

represent phonology. This representational scheme has known

limitations, many of which are related to how well the scheme

could be extended to more realistic vocabularies (see Lachter &
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Bever, 1988; Pinker & Prince, 1988, for detailed criticism). In

the current context, Seidenberg and McClelland (1990) pointed

out that the representations do not adequately capture phone-

mic structure. Specifically, the features of a phoneme are

not bound with each other, but only with features of neigh-

boring phonemes. As a result, the surrounding context can

too easily introduce inappropriate features, producing many

single-feature errors in nonword pronunciations (e.g., TIFE
✁

/tIv/).

Neither the specific training corpus nor the Wickelfeature

representation are central to the SM89 general framework for

lexical processing. If Seidenberg and McClelland (1990) are

correct in suggesting that it is these aspects of the simulation

that are responsible for its poor nonword reading, their more

general framework remains viable. On the other hand, the ac-

tual performance of an implementation is the main source of

evidence that SM89 put forward in support of their view of the

reading system. As McCloskey (1991) has recently pointed

out, it is notoriously difficult both to determine whether a im-

plementation’s failings are due to fundamental or incidental

properties of its design, and to predict how changes to its de-

sign would affect its behavior. Thus, to support the SM89

connectionist framework as a viable alternative to rule-based,

dual-route accounts, it is critical to develop further simulations

that account for same range of findings as the original imple-

mentation and yet also pronounce nonwords as well as skilled

readers. This paper presents such simulations.

Orthographic and Phonological
Representations

Wickelfeatures and the Dispersion Problem
For the purposes of supporting good nonword reading, the

Wickelfeature phonological representation has a more funda-

mental drawback. The problem stems from the general issue of

how to represent structured objects, such as words composed of

ordered strings of letters and phonemes, in connectionist net-

works. Connectionist researchers would like their networks to

have three properties (Hinton, 1990):

1. All the knowledge in a network should be in connection

weights between units.

2. To support good generalization, the network’s knowledge

should capture the important regularities in the domain.

3. For processing to be fast, the major constituents of an item

should be processed in parallel.

The problem is that these three properties are difficult to rec-

oncile with each other.

Consider first the standard technique of using of position-

specific units, sometimes called a slot-based representation

(e.g., McClelland & Rumelhart, 1981). The first letter goes in

the first slot, the second letter in the second slot, etc. Similarly

Table 1

The Dispersion Problem

Slot-based representations

Left-justified

1 2 3 4 5

L O G
G L A D
S P L I T

Vowel-centered☛ 3 ☛ 2 ☛ 1 0 1

S U N
S W A M

S P L I T
Context-sensitive triples (“Wickelgraphs”)

LOG: LO LOG OG
GLAD: GL GLA LAD AD
SPLIT: SP SPL PLI LIT IT

for the output, the first phoneme goes in the first slot, and so

on. With enough slots, words up to any desired length can be

represented.

This scheme satisfies properties (1) and (3) but at a cost to

property (2). That is, processing can be done in parallel across

letters and phonemes using weighted connections, but at a cost

of dispersing the regularities of how letters and phonemes are

related. The reason is that there must be a separate copy of

each letter (and phoneme) for each slot, and because the rele-

vant knowledge is embedded in connections that are specific to

these units, this knowledge must be replicated in the connec-

tions to and from each slot. To some extent this is useful in the

domain of oral reading because the pronunciation of a letter

may depend on whether it occurs at the beginning, middle, or

end of a word. However, the slot-based approach carries this

to an extreme, with unfortunate consequences. Consider the

words LOG, GLAD, and SPLIT. The fact that the letter L corre-

sponds to the phoneme /l/ in these words must be learned and

stored three separate times in the system. There is no gener-

alization of what is learned about letters in one position to the

same letter in other positions. The problem can be alleviated

to some degree by aligning the slots in various ways (e.g., cen-

tered around the vowel; Daugherty & Seidenberg, 1992) but it

is not eliminated completely (see Table 1). Adequate general-

ization still requires learning the regularities separately across

several slots.

An alternative scheme is to apply the network to a single let-

ter at a time, as in Sejnowski and Rosenberg’s (1987) NETtalk

model.3 Here, the same knowledge is applied to pronouncing

a letter regardless of where it occurs in a word, and words

of arbitrary length can be processed. Unfortunately, proper-

ties (1) and (2) are now being traded off against property (3).

Processing becomes slow and sequential, which may be satis-

3Bullinaria (1995) has recently developed a series of networks of this form

that exhibit impressive performance in reading nonwords, although only very

weak effects of word frequency. Coltheart et al. (1993) also take a sequential

approach to solving the dispersion problem, in that a correspondence learned

from a position is applied to all positions unless a different correspondence is

learned elsewhere.
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factory in many domains but not in word reading. Note that the

common finding of small but significant effects of word length

on naming latency (e.g., Butler & Hains, 1979; Frederiksen &

Kroll, 1976; Richardson, 1976) does not imply that the com-

putation from orthography to phonology operates sequentially

over letters; a parallel implementation of this mapping may

also exhibit small length effects (as will be demonstrated in

Simulation 3).

The representations used by SM89 were an attempt to avoid

the specific limitations of the slot-based approach, but in the

end turn out to have a version of the same problem. Elements

such as letters and phonemes are represented, not in terms

of their absolute spatial position, or relative position within

the word, but in terms of the adjacent elements to the left

and right. This approach, which originated with Wickelgren

(1969), makes the representation of each element context sen-

sitive without being rigidly tied to position. Unfortunately,

however, the knowledge of spelling-sound correspondences is

still dispersed across a large number of different contexts, and

adequate generalization still requires that the training effec-

tively covers them all. Returning to Table 1, although the

words LOG, GLAD, and SPLIT share the correspondence L
✁

/l/,

they have no triples of letters in common. A similar property

holds in phonology among triples of phonemes or phonemic

features. Thus, as in the slot-based approach, although the

same correspondence is present in these three cases, different

units are activated. As a result, the knowledge that is learned in

one context—encoded as connection weights—does not apply

in other contexts, thereby hindering generalization.

Notice that the effect of dispersing regularities is much like

the effect of limiting the size of the training corpus. The contri-

bution that an element makes to the representation of the word

is specific to the context in which it occurs. As a result, the

knowledge learned from one item is beneficial only to other

items which share that specific context. When representations

disperse the regularities in the domain, the number of trained

mappings that support a given pronunciation is effectively re-

duced. As a result, generalization to novel stimuli, as in the

pronunciation of nonwords, is based on less knowledge and

suffers accordingly. In a way, Seidenberg and McClelland’s

(1990) two suggestions for improving their model’s nonword

reading performance—enlarge the training corpus and improve

the representations—amount to the same thing. By using im-

proved representations that minimize the dispersion problem,

the effective size of the training corpus for a given pronuncia-

tion is increased.

Condensing Spelling-Sound Regularities
The hypothesis guiding the current work was the idea that the

dispersion problem prevented the SM89 network from exploit-

ing the structure of the English spelling-to-sound system as

fully as human readers do. We set out, therefore, to design

representations that minimize this dispersion.

The limiting case of our approach would be to have a single

set of letter units, one for each letter in the alphabet,and a single

set of phoneme units, one for each phoneme. Such a scheme

satisfies all three of Hinton’s (1990) desired properties: All of

the letters in a word map to all of its phonemes simultaneously

via weighted connections (and presumably hidden units), and

the spelling-sound regularities are condensed because the same

units and connections are involved whenever a particular letter

or phoneme is present. Unfortunately, this approach has a

fatal flaw: it does not preserve the relative order of letters and

phonemes. Thus, it cannot distinguish TOP from POT or SALT

from SLAT.

It turns out, however, that a scheme involving only a small

amount of replication is sufficient to provide a unique rep-

resentation of virtually every uninflected monosyllabic word.

By definition, a monosyllable contains only a single vowel, so

only one set of vowel units is needed. A monosyllable may

contain both an initial and a final consonant cluster, and al-

most every consonant can occur in either cluster, so separate

sets of consonant units are required for each of these clusters.

The remarkable thing is that this is nearly all that is necessary.

The reason is that, within an initial or final consonant cluster,

there are strong phonotactic constraints that arise in large part

from the structure of the articulatory system. At both ends

of the syllable, each phoneme can occur only once, and the

order of phonemes is strongly constrained. For example, if

the phonemes /s/, /t/ and /r/ all occur in the onset cluster, they

must be in that order, /str/. Given this, all that is required

to specify a pronunciation is which phonemes are present in

each cluster—the phonotactic constraints uniquely determine

the order in which these phonemes occur.

The necessary phonotactic constraints can be expressed sim-

ply by grouping phonemes into mutually exclusive sets, and

ordering these sets from left to right in accordance with the left-

to-right ordering constraints within consonant clusters. Once

this is done, reading out a pronunciation involves simply con-

catenating the phonemes that are active in sequence from left

to right, including at most one phoneme per mutually exclusive

set (see Table 2).

There are a few cases in which two phonemes can occur in

either order within a consonant cluster (e.g., /p/ and /s/ in CLASP

and LAPSE). To handle such cases, it is necessary to add units

to disambiguate the order (e.g., /ps/). The convention is that,

if /s/ and /p/ are both active, they are taken in that order unless

the /ps/ unit is active, in which case the order is reversed.

To cover the pronunciations in the SM89 corpus, only three

such units are required: /ps/, /ks/ and /ts/. Interestingly, these

combinations are sometimes written with single letters (e.g.,

English X, German Z) and are closely related to other stop-

fricative combinations, like /C/ (/tS/) and /j/ (/dZ/), that are

typically considered to be single phonemes called affricates.

In fact, /ts/ is often treated as an affricate and, across languages,

is among the most common (see Maddieson, 1984), and post-

vocalic /ps/ and /ks/ behave similarly to affricates (Lass, 1984).

This representational scheme applies almost as well to or-
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Table 2

Phonological and Orthographic Representations Used in the Simulations

Phonology ☞
onset s S C z Z j f v T D p b t d k g m n h l r w y

vowel a e i o u @ ✌ A E I O U W Y

coda r l m n N b g d ps ks ts s z f v p k t S Z T D C j

Orthography

onset Y S P T K Q C B D G F V J Z L M N R W H CH GH GN PH PS RH SH TH TS WH

vowel E I O U A Y AI AU AW AY EA EE EI EU EW EY IE OA OE OI OO OU OW OY UE UI UY

coda H R L M N B D G C X F V J S Z P T K Q BB CH CK DD DG FF GG GH GN KS LL NG

NN PH PP PS RR SH SL SS TCH TH TS TT ZZ U E ES ED☞ /a/ in POT, /@/ in CAT, /e/ in BED, /i/ in HIT, /o/ in DOG, /u/ in GOOD, /A/ in MAKE, /E/ in KEEP, /I/ in BIKE, /O/ in

HOPE, /U/ in BOOT, /W/ in NOW, /Y/ in BOY, / ✍ / in CUP, /N/ in RING, /S/ in SHE, /C/ in CHIN /Z/ in BEIGE, /T/ in

THIN, /D/ in THIS. All other phonemes are represented in the conventional way (e.g., /b/ in BAT). The groupings

indicate sets of mutually exclusive phonemes.

Note: The notation for vowels is slightly different from that used by Seidenberg and McClelland (1989). Also,

the representations differ slightly from those used by Plaut and McClelland (1993, Seidenberg et al., 1994).

In particular, /C/ and /j/ have been added for /tS/ and /dZ/, the ordering of phonemes is somewhat different,

the mutually exclusive phoneme sets have been added, and the consonantal graphemes U, GU and QU have been

eliminated. These changes better capture the relevant phonotactic constraints and simplify the encoding procedure

for converting letter strings into activity patterns over grapheme units.

thography as it does to phonology because English is an al-

phabetic language (i.e., parts of the written form of a word

correspond to parts of its spoken form). However, the spelling

units that correspond to phonemes are not necessarily single

letters. Rather, they are what Venezky (1970) termed rela-
tional units, sometimes called graphemes, that can consist

of from one to four letters (e.g., L, TH, TCH, EIGH). As the

spelling-sound regularities of English are primarily grapheme-

phoneme correspondences, the regularities in the system are

most elegantly captured if the orthographic units represent the

graphemes present in the string rather than simply the letters

that make up the word.

Unfortunately, it is not always clear what graphemes are

present in a word. Consider the word SHEPHERD. In this

case, there is a P next to an H, so we might suppose that the

word contains a PH grapheme, but in fact it does not; if it

did it would be pronounced “she-ferd.” It is apparent that

the input is ambiguous in such cases. Because of this, there

is no simple procedure for translating letter strings into the

correct sequence of graphemes. It is, however, completely

straightforward to translate a letter sequence into a pattern of

activity representing all possible graphemes in the string. Thus,

whenever a multiletter grapheme is present, its components

are also activated. This procedure is also consistent with the

treatment of /ps/, /ks/, and /ts/ in phonology.

To this point, the orthographic and phonological represen-

tations have been motivated purely by computational consid-

erations: to condense spelling-sound regularities in order to

improve generalization. Before turning to the simulations,

however, it is important to be clear about the empirical as-

sumptions that are implicit in the use of these representations.

Certainly, a full account of reading behavior would have to

include a specification of how the representations themselves

develop prior to and during the course of reading acquisition.

Such a demonstration is beyond the scope of the current work.

In fact, unless we are to model everything from the eye to the

mouth, we cannot avoid making assumptions about the reading

system’s inputs and outputs, even though, in actuality, these are

learned, internal representations. The best we can do is to en-

sure that these representations are at least broadly consistent

with the relevant developmental and behavioral data.

The relevant assumptions about the phonological represen-

tations are that they are segmental (i.e., they are composed of

phonemes) and that they are strongly constrained by phonotac-

tics. We presume that this phonological structure is learned,

for the most part, prior to reading acquisition, on the basis of

speech comprehension and production. This is not to deny that

phonological representations may become further refined over

the course of reading acquisition, particularly under the influ-

ence of explicit phoneme-based instruction (see, e.g., Morais,

Cary, Alegria, & Bertelson, 1979; Morais, Bertelson, Cary, &

Alegria, 1986). For simplicity, however, our modeling work

uses fully developed phonological representations from the

outset of training.

Analogous assumptions apply with regard to the ortho-

graphic representations. We assume that they are based on

letters and letter combinations, and that the ordering of these

obeys graphotactic constraints (although in English such con-

straints are generally weaker than those in phonology). While

these properties are not particularly controversial per se, ortho-

graphic representations must develop concurrently with read-

ing acquisition. Thus, the use of fully-articulated orthographic
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representations from the outset of reading acquisition is cer-

tainly suspect.

Again, a complete account of how orthographic represen-

tations develop from more primitive visual representations is

beyond the scope of the current work. Here we provide only

a general characterization of such an account. We suppose

that children first learn visual representations for individual

letters, perhaps much like those of other visual objects. In

learning to read, they are exposed to words that consist of

these familiar letters in various combinations. Explicit repre-

sentations gradually develop for letter combinations that occur

often or have unusual consequences (see Mozer, 1990). In the

context of oral reading, many of these combinations are pre-

cisely those whose pronunciations are not predicted by their

components (e.g., TH, PH), corresponding to Venezky’s (1970)

relational units. Of course, explicit representations may de-

velop for other, regularly-pronounced letter combinations. In

the limit, the orthographic representation might contain all

the letter combinations that occur in the language. Expand-

ing our orthographic representation with multiletter units for

all of these additional combinations would have little conse-

quence because there would be little pressure for the network

to learn anything about them, given that the correspondences

of their components are already learned. In this way, the par-

ticular set of multiletter graphemes we employ can be viewed

as an efficient simplification of a more general orthographic

representation that would develop through exposure to letter

combinations in words.

To be clear, we do not claim that the orthographic and phono-

logical representations we use are fully general. Some of their

idiosyncrasies stem from the fact that their design took into

account specific aspects of the SM89 corpus. Nonetheless,

we do claim that the principles on which the representations

were derived—in particular, the use of phonotactic and grapho-

tactic constraints to condense spelling-sound regularities—are

general.

Simulation 1: Feedforward Network

The first simulation is intended to test the hypothesis that the

use of representations which condensed the regularities be-

tween orthography and phonology would improve the nonword

reading performance of a network trained on the SM89 cor-

pus of monosyllabic words. Specifically, the issue is whether

a single mechanism, in the form of a connectionist network,

can learn to read a reasonably large corpus of words, includ-

ing many exception words, and yet also read pronounceable

nonwords as well as skilled readers. If such a network can be

developed, it would undermine the claims of dual-route theo-

rists that skilled word reading requires the separation of lexical

and sublexical procedures for mapping print to sound.

100 hidden units

61 phoneme units

105 grapheme units

Figure 3. The architecture of the feedforward network. Ovals

represent groups of units, and arrows represent complete con-

nectivity from one group to another.

Method
Network Architecture. The architecture of the network,

shown in Figure 3, consists of three layers of units. The input

layer of the network contains 105 grapheme units, one for each

grapheme in Table 2. Similarly, the output layer contains 61

phoneme units. Between these two layers is an intermediate

layer of 100 hidden units. Each unit ✎ has a real-valued activity

level or state, ✏✒✑ , that ranges between 0 and 1, and is a smooth,

nonlinear (logistic) function of the unit’s total input, ✓✔✑ .✓ ✑✖✕ ✗✙✘ ✏ ✘✛✚✜✘ ✑✣✢✥✤✛✑ (1)✏ ✑✦✕ ✧✜★ ✓ ✑✪✩✫✕ 1

1 ✢ exp ★ ☛ ✓ ✑ ✩ (2)

where
✚✜✘ ✑ is the weight from unit ✬ to unit ✎ , ✤✛✑ is the real-

valued bias of unit ✎ , and exp ✭✯✮✱✰ is the exponential function.

Each hidden unit receives a connection from each grapheme

unit, and in turn sends a connection to each phoneme unit.

In contrast to the SM89 network, the grapheme units do not

receive connections back from the hidden units. Thus, the

network only maps from orthography to phonology, not also

from orthography to orthography (also see Phillips, Hay, &

Smith, 1993). Weights on connections are initialized to small,

random values, uniformly distributed between ✲ 0.1. The bias

terms for the hidden and phoneme units can be thought of as

the weight on an additional connection from a unit whose state

is always 1.0 (and so can be learned in the same way as other

connection weights). Including biases, the network has a total

of 17,061 connections.

Training Procedure. The training corpus consists of the

2897 monosyllabic words in the SM89 corpus, augmented by

101 monosyllabic words missing from that corpus but used as

word stimuli in various empirical studies, for a total of 2998

words.4 Among these are 13 sets of homographs (e.g., READ

4The Plaut and McClelland (1993, Seidenberg et al., 1994) network was

also trained on 103 isolated grapheme-phoneme correspondences, as an ap-

proximation to the explicit instruction many children receive in learning to

read. These correspondences were not included in the training of any of the

networks reported in this paper.
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/rEd/ and READ

✁
/red/)—for these, both pronunciations are

included in the corpus. Most of the words are uninflected,

although there are a few inflected forms that have been used

in some empirical studies (e.g., ROLLED, DAYS). Although the

orthographic and phonological representations are not intended

to handle inflected monosyllables, they happen to be capable

of representing those in the training corpus and so these were

left in. It should be kept in mind, however, that the network’s

exposure to inflected forms is extremely impoverished relative

to that of skilled readers.

A letter string is presented to the network by clamping the

states of the grapheme units representing graphemes contained

in the string to 1.0, and the states of all other grapheme units

to 0. In processing the input, hidden units compute their states

based on those of the grapheme units and the weights on con-

nections from them (according to Equations 1 and 2) and then

phoneme units compute their states based on those of the hid-

den units. The resulting pattern of activity over the phoneme

units represents the network’s pronunciation of the input letter

string.

After each word is processed by the network during train-

ing, back-propagation (Rumelhart, Hinton, & Williams, 1986a,

1986b) is used to calculate how to change the connection

weights so as to reduce the discrepancy between the pattern

of phoneme activity generated by the network and the correct

pattern for the word (i.e., the derivative of the error with re-

spect to each weight). A standard measure of this discrepancy,

and the one used by SM89, is the summed squared error, E,

between the generated and correct output (phoneme) states.✳ ✕ ✗ ✘ ( ✏ ✘ ☛✵✴ ✘ )2 ✭ 3 ✰
where ✏ ✘ is the state of phoneme unit ✬ and ✴ ✘ is its correct (tar-

get) value. However, in the new representation of phonology,

each unit can be interpreted as an independent hypothesis that

a particular phoneme is present in the output pronunciation.5

In this case, a more appropriate error measure is the cross-
entropy, C, between the generated and correct activity patterns

(see Hinton, 1989; Rumelhart, Durbin, Golden, & Chauvin,

in press), also termed the asymmetric divergence or Kullback-

Leibler distance (Kullback & Leibler, 1951).✶ ✕ ☛ ✗ ✘ ✴ ✘ log2 ( ✏ ✘ ) ✢ (1 ☛✷✴ ✘ ) log2 (1 ☛ ✏ ✘ ) ✭ 4 ✰
Notice that the contribution to cross-entropy of a given unit✬ is simply ☛ log2 ( ✏ ✘ ) if its target is 1, and ☛ log2 (1 ☛ ✏ ✘ ) if

its target is 0. From a practical point of view, cross-entropy

has an advantage over summed squared error when it comes

5This is not precisely true because the procedure for determining the pro-

nunciation based on phoneme unit activities, soon to be described, does not

consider these units independently, and their states are not determined inde-

pendently but are based on the same set of hidden unit states. Nonetheless,

the approximation is sufficient to make cross-entropy a more appropriate error

measure than summed squared error.

to correcting output units that are completely incorrect (i.e.,

on the opposite flat portion of the logistic function). This is

a particular concern in tasks in which output units are off for

most inputs—the network can eliminate almost all of its error

on the task by turning all of the output units off regardless of

the input, including those few that should be on for this input.

The problem is that, when a unit’s state falls on a flat portion of

the logistic function, very large weight changes are required to

change its state substantially. As a unit’s state diverges from its

target, the change in cross-entropy increases much faster than

that of summed squared error (exponentially vs. linearly) so

that cross-entropy is better able to generate sufficiently large

weight changes.6

During training, weights were also given a slight tendency

to decay towards zero. This was accomplished by augment-

ing the cross-entropy error function with a term proportional

(with a constant of 0.0001 in the current simulation) to the

sum of the squares of each weight, ✸ ✘✺✹ ✑ ✚ 2
✘ ✑ . Although not

critical, weight decay tends to aid generalization by constrain-

ing weights to grow only to the extent that they are needed to

reduce the error on the task (Hinton, 1989).

In the SM89 simulation, the probability that a word was

presented to the network for training during an epoch was a

logarithmic function of its written frequency (Kuçera & Fran-

cis, 1967). In the current simulation, the same compressed

frequency values are used instead to scale error derivatives

calculated by back-propagation. This manipulation has essen-

tially the same effect: more frequent words have a stronger

impact than less frequent words on the knowledge learned by

the system. In fact, using frequencies is this manner is exactly

equivalent to updating the weights after each sweep through an

expanded training corpus in which the number of times a word

is presented is proportional to its (compressed) frequency. The

new procedure was adopted for two reasons. First, by pre-

senting the entire training corpus every epoch, learning rates

on each connection could be adapted independently (Jacobs,

1988; but see Sutton, 1992, for a recently developed on-line

version).7 Second, by implementing frequencies with multi-

plication rather than sampling, any range of frequencies can

be used; later we will investigate the effects of using the actual

Kuçera and Francis (1967) frequencies in simulations. SM89

were constrained to use a logarithmic compression because

6The derivative of cross-entropy with respect to an output unit’s total input

is simply the difference between the unit’s state and its target.✻✽✼✻✿✾❁❀❃❂ ✻✽✼✻✔❄✺❀❆❅ ❄✺❀❅ ✾❁❀❇❂❉❈ 1 ❊●❋ ❀
1 ❊ ❄❍❀ ❊ ❋ ❀❄✺❀❏■ ❄❍❀▲❑ 1 ❊ ❄✺❀◆▼ ❂ ❄✺❀ ❊❇❋ ❀

7The procedure for adjusting the connection-specific learning rates, called

delta-bar-delta (Jacobs, 1988), works as follows. Each connection’s learning

rate is initialized to 1.0. At the end of each epoch, the error derivative for

that connection calculated by back-propagation is compared with its previous

weight change. If they are both in the same direction (i.e., have the same sign),

the connection’s learning rate is incremented (by 0.1 in the current simulation);

otherwise, it is decreased multiplicatively (by 0.9 in the current simulation).
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less-severe compressions would have meant that the lowest

frequency words might never have been presented to their net-

work.

The actual weight changes administered at the end of

an epoch are a combination of the accumulated frequency-

weighted error derivatives and a proportion of the previous

weight changes.

∆
✚P❖ ◗❙❘✘ ✑ ✕❯❚❱❚ ✘ ✑ ❈❳❲ ✶❲ ✚✜✘ ✑ ✢❳❨ ∆

✚P❖ ◗✛❩
1
❘✘ ✑ ■ ✭ 5 ✰

where ✴ is the epoch number, ❚ is the global learning rate

(0.001 in the current simulation), ❚ ✘ ✑ is the connection-specific

learning rate,
✶

is the cross-entropy error function with weight

decay, and ❨ is the contribution of past weight changes, some-

times termed momentum (0.9 after the first 10 epochs in the

current simulation). Momentum is introduced only after the

first few initial epochs to avoid magnifying the effects of the

initial weight gradients, which are very large because, for each

word, any activity of all but a few phoneme units—those that

should be active—produces a large amount of error (Plaut &

Hinton, 1987).

Testing Procedure. The network, as described above,

learns to take activity patterns over the grapheme units and pro-

duce corresponding activity patterns over the phoneme units.

The behavior of human subjects in oral reading, however, is

better described in terms of producing phoneme strings in re-

sponse to letter strings. Accordingly, for a direct comparison

of the network’s behavior with that of subjects, we need a pro-

cedure for encoding letter strings as activity patterns over the

grapheme units, and another procedure for decoding activity

patterns over the phoneme units into phoneme strings.

The encoding procedure is the one used to generate the input

to the network for each word in the training corpus. To con-

vert a letter string into an activity pattern over the grapheme

units, the string is parsed into onset consonant cluster, vowel,

and final (coda) consonant cluster. This involves simply lo-

cating in the string the leftmost contiguous block composed

of the letters A, E, I, O, U, or (non-initial) Y. This block of

letters is encoded using vowel graphemes listed in Table 2—

any grapheme contained in the vowel substring is activated;

all others are left inactive. The substrings to the right and left

of the vowel substring are encoded similarly using the onset

and coda consonant graphemes, respectively. For example,

the word SCHOOL activates the onset units S, C, H, and CH,

the vowel units O and OO, and the coda unit L. Notice that,

in words like GUEST, QUEEN, and SUEDE, the U is parsed as a

vowel although it functions as a consonant (cf. GUST, QUEUE,

and SUE; Venezky, 1970). This is much like the issue with PH

in SHEPHERD—such ambiguity is left for the network to cope

with. The analogous encoding procedure for phonemes used

to generate the training patterns for words is even simpler as

monosyllabic pronunciations must contain exactly one vowel.

The decoding procedure for producing pronunciations from

phoneme activities generated by the network is likewise

straightforward. As shown in Table 2, phonemes are grouped

into mutually exclusive sets, and these sets are ordered left to

right (and top to bottom in the Table). This grouping and or-

dering encode the phonotactic constraints that are necessary to

disambiguate pronunciations. The response of the network is

simply the ordered concatenation of all active phonemes (i.e.,

with state above 0.5) that are the most active in their set. There

are only two exceptions to this rule. The first is that, as mono-

syllabic pronunciations must contain a vowel, the most active

vowel is included in the network’s response regardless of its

activity level. The second exception relates to the affricate-like

units, /ps/, /ks/ and /ts/. As described earlier, if one of these

units is active along with its components, the order of those

components in the response is reversed.

The simplicity of these encoding and decoding procedures is

a significant advantage of the current representations over those

used by SM89. In the latter case, reconstructing a unique string

of phonemes corresponding to a pattern of activity over triples

of phonemic features is exceedingly difficult, and sometimes

impossible (also see Rumelhart & McClelland, 1986; Mozer,

1991). In fact, SM89 did not confront this problem—rather,

they simply selected the best among a set of alternative pro-

nunciations based on their error scores. In a sense, the SM89

model does not produce explicit pronunciations; it enables an-

other procedure to select among alternatives. In contrast, the

current decoding procedure does not require externally gen-

erated alternatives; every possible pattern of activity over the

phoneme units corresponds directly and unambiguously to a

particular string of phonemes. Nonetheless, it should be kept

in mind that the encoding and decoding procedures are external

to the network and, hence, constitute additional assumptions

about the nature of the knowledge and processing involved in

skilled reading, as discussed earlier.

Results
Word Reading. After 300 epochs of training, the network

correctly pronounces all of the 2972 nonhomographic words

in the training corpus. For each of the 13 homographs, the

network produces one of the correct pronunciations, although

typically the competing phonemes for the alternatives are about

equally active. For example, the network pronounces LEAD as

/lEd/; the activation of the /E/ is 0.56 while the activation of

/e/ is 0.44. These differences reflect the relative consistency of

the alternatives with the pronunciations of other words.

Given the nature of the network, this level of performance on

the training corpus is optimal. As the network is deterministic,

it always produces the same output for a given input. Thus, in

fact, it is impossible for the network to learn to produce both

pronunciations of any of the homographs. Note that this deter-

minacy is not an intrinsic limitation of connectionist networks

(see, e.g., Movellan & McClelland, 1993). It merely reflects

the fact that the general principle of intrinsic variability was

not included in the present simulation for practical reasons—to

keep the computational demands of the simulation reasonable.
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For the present purposes, the important finding is that the

trained network reads both regular and exception words cor-

rectly. We are also interested in how well the network replicates

the effects of frequency and consistency on naming latency.

However, we will return to this issue after we consider the

more pressing issue of the network’s performance in reading

nonwords.

Nonword Reading. We tested the network on three lists of

nonwords from two empirical studies. The first two lists come

from an experiment by Glushko (1979), in which he compared

subjects’ reading of 43 nonwords derived from regular words

(e.g., HEAN from DEAN) with their reading of 43 nonwords

derived from exception words (e.g., HEAF from DEAF). Al-

though Glushko originally termed these regular nonwords and

exception nonwords, respectively, they are more appropriately

characterized in terms of whether their body neighborhood is

consistent or not, and hence we will refer to them as consistent
or inconsistent nonwords. The third nonword list comes from a

study by McCann and Besner (1987), in which they compared

performance on a set of 80 pseudohomophones (e.g., BRANE)

with a set of 80 control nonwords (e.g., FRANE). We used only

their control nonwords in the present investigation as we be-

lieve pseudohomophone effects are mediated by aspects of the

reading system, such as semantics and the articulatory system,

that are not implemented in our simulation (see the General

Discussion).

As nonwords are, by definition, novel stimuli, exactly what

counts as the “correct” pronunciation of a nonword is a matter

of considerable debate (see, e.g., Masterson, 1985; Seidenberg

et al., 1994). The complexity of this issue will become apparent

momentarily. For the purposes of an initial comparison, we

will consider the pronunciation of a nonword to be correct if it

is regular, as defined by adhering to the GPC rules outlined by

Venezky (1970).

Table 3 presents the correct performance of skilled readers

reported by Glushko (1979) and by McCann and Besner (1987)

on their nonword lists, and the corresponding performance of

the network. Table 4 lists the errors made by the network on

these lists.

First consider Glushko’s consistent nonwords. The network

makes only a single minor mistake on these items, just failing

to introduce the transitional /y/ in MUNE. In fact, this inclu-

sion varies across dialects of English (e.g., DUNE
✁

/dUn/ vs.

/dyUn/). In the training corpus, the four words ending in UNE

(DUNE, JUNE, PRUNE, TUNE) are all coded without the /y/. In

any case, overall both the network and subject have no difficult

on these relatively easy nonwords.

The situation is rather different for the inconsistent non-

words. Both the network and subjects produce non-regular

pronunciations for a significant subset of these items, with the

network being slightly more prone to do so. However, a closer

examination of the responses in these cases reveals why. Con-

sider the nonword GROOK. The grapheme OO most frequently

corresponds to /U/, as in BOOT, and so the correct (regular)

pronunciation of GROOK is /grUk/. However, the body OOK is

almost always pronounced /u/, as in TOOK. The only exception

to this among the 12 words ending in OOK in the training

corpus is SPOOK
✁

/spUk/. This suggests that /gruk/ should be

the correct pronunciation.

Actually, the issue of whether the network’s pronunciation

is correct or not is less relevant than the issue of whether

the network behaves similarly to subjects. In fact, both the

subjects and the network are sensitive to the context in which

vowels occur, as evidenced by their much greater tendency to

produce non-regular pronunciations for inconsistent nonwords

as compared with consistent nonwords. Glushko (1979) found

that 80% of subject’s non-regular responses to inconsistent

nonwords were consistent with some other pronunciation of

the nonword’s body that occurs in the Kuçera and Francis

(1967) corpus, leaving only 4.1% of all responses as actual

errors. In the network, all of the non-regular responses to

inconsistent nonwords match some other pronunciation in the

training corpus for the same body, with half of these being

the most frequent pronunciation of the body. None of the

network’s responses to inconsistent nonwords are actual errors.

Overall, the network performs as well if not slightly better than

subjects on the Glushko nonword lists. Appendix 2 lists all of

the pronunciations accepted as correct for each of the Glushko

nonwords.

Both the subjects and the network find McCann and Besner’s

(1987) control nonwords more difficult to pronounce, which is

not surprising as the lists contain a number of orthographically

unusual nonwords (e.g., JINJE, VAWX). Overall, the network’s

performance is slightly worse than that of subjects. However,

many of the network’s errors can be understood in terms of

specific properties of the training corpus and network design.

First, although there is no word in the training corpus with the

body OWT, medial OW is often pronounced /O/ (e.g., BOWL✁
/bOl/) and so KOWT

✁
/kOt/ should be considered a rea-

sonable response. Second, two of the errors are on inflected

forms, SNOCKS and LOKES, and as previously acknowledged,

the network has minimal experience with inflections and is

not intended to apply to them. Finally, there are no instances

in the training corpus of words containing the grapheme J in

the coda, and so the network cannot possibly have learned

to map it to /j/ in phonology. In a way, for a nonword like

JINJE, the effective input to the network is JINE, to which the

network’s response /jIn/ is correct. This also applies to the non-

word FAIJE. Excluding these and the inflected forms from the

scoring, and considering KOWT
✁

/kOt/ correct, the network

performs correctly on 69/76 (90.8%) of the remaining control

nonwords, which is slightly better than the subjects. Most of

the remaining errors of the network involve correspondences

that are infrequent or variable in the training corpus (e.g., PH✁
/f/, U

✁
/yU/).

It must be acknowledged that the failure of the model on

inflected forms and on those with J in the coda are real short-

comings that would have to be addressed in a completely ade-
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Table 3

Percent of Regular Pronunciations of Nonwords

Glushko (1979) McCann and Besner (1987)

Consistent Inconsistent Control
Nonwords Nonwords Nonwords

Subjects 93.8 78.3 88.6

Network 97.7 72.1 85.0

Table 4

Errors by the Feedforward Network in Pronouncing Nonwords

Glushko (1979) McCann and Besner (1987)

Nonword Correct Response Nonword Correct Response

Consistent Nonwords (1/43) Control Nonwords (12/80)

MUNE /myUn/ /m(y 0.43)Un/ *PHOYCE /fYs/ /(f 0.42)Y(s 0.00)/

Inconsistent Nonwords (12/43) *TOLPH /tolf/ /tOl(f 0.12)/

BILD /bild/ /bIld/ *ZUPE /zUp/ /zyUp/

BOST /bost/ /bOst/ SNOCKS /snaks/ /snask(ks 0.31)/

COSE /kOz/ /kOs/ LOKES /lOks/ /lOsk(ks 0.02)/

GROOK /grUk/ /gruk/ *YOWND /yWnd/ /(y 0.47)and/

LOME /lOm/ /l ✌ m/ KOWT /kWt/ /kOt/

MONE /mOn/ /m ✌ n/ FAIJE /fAj/ /fA(j 0.00)/

PILD /pild/ /pIld/ *ZUTE /zUt/ /zyUt/

PLOVE /plOv/ /pl ✌ v/ *VEEZE /vEz/ /(v 0.40)Ez/

POOT /pUt/ /put/ *PRAX /pr@ks/ /pr@sk(ks 0.33)/

SOOD /sUd/ /sud/ JINJE /jinj/ /jIn(j 0.00)/

SOST /sost/ /s ✌ st/

WEAD /wEd/ /wed/

Note: /a/ in POT, /@/ in CAT, /e/ in BED, /i/ in HIT, /o/ in DOG, /u/ in GOOD, /A/ in MAKE, /E/ in KEEP, /I/ in BIKE,

/O/ in HOPE, /U/ in BOOT, /W/ in NOW, /Y/ in BOY, / ✍ / in CUP, /N/ in RING, /S/ in SHE, /C/ in CHIN /Z/ in BEIGE, /T/

in THIN, /D/ in THIS. The activity levels of correct but missing phonemes are listed in parentheses. In these cases,

the actual response is what falls outside the parentheses. Words marked with “*” remain errors after considering

properties of the training corpus (as explained in the text).
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quate account of word reading. Our purpose in separating out

these items in the above analysis simply acknowledges that the

model’s limitations are easily understood in terms of specific

properties of the training corpus.

Is it a Dual-Route Model? One possibility, consistent

with dual-route theories, is that the network has partitioned

itself into two sub-networks, one that reads regular words, and

another that reads exception words. If this were the case, some

hidden units would contribute to exception words but not to

nonwords, while others would contribute to nonwords but not

to exception words. To test this possibility, we measured the

contribution a hidden unit makes to pronouncing a letter string

by the amount of increase in cross-entropy error when the unit

is removed from the network. If the network had partitioned it-

self, there would be a negative correlation across hidden units

between the number of exception words and the number of

nonwords to which each hidden unit makes a substantial con-

tribution (defined as greater than 0.2). In fact, for the Taraban

and McClelland (1987) exception words and a set of ortho-

graphically matched nonwords (listed in Appendix 1), there

is a moderate positive correlation between the numbers of ex-

ception words and nonwords to which hidden units contribute

( ❬ ✕❪❭ 25, ✴ 98 ✕ 2 ❭ 59, ❫ ✕❴❭ 011; see Figure 4). Thus, some

units are more important for the overall task and some are less

important, but the network has not partitioned itself into one

system that learns the rules and another system that learns the

exceptions.

Frequency and Consistency Effects. It is important to

verify that, in addition to producing good nonword reading,

the new model replicates the basic effects of frequency and

consistency in naming latency. Like the SM89 network, the

current network takes the same amount of time to compute the

pronunciation of any letter string. Hence, we must also resort

to using an error score as an analogue of naming latency. In

particular, we will use the cross entropy between the network’s

generated pronunciation of a word and its correct pronunci-

ation, as this is the measure that the network was trained to

minimize. Later we will examine the effects of frequency

and consistency directly in the settling time of an equivalently

trained recurrent network when pronouncing various types of

words.

Figure 5 shows the mean cross entropy error of the net-

work in pronouncing words of varying degrees of spelling-

sound consistency as a function of frequency. Overall, high-

frequency words produce less error than low-frequency words

( ❵ 1 ❛ 184=17.1, p ❜ .001). However, frequency interacts signifi-

cantly with consistency ( ❵ 3 ❛ 184=5.65, p=.001). Post-hoc com-

parisons within each word type separately reveal that the effect

of frequency reaches significance at the 0.05 level only for

exception words (although the effect for regular inconsistent

words is significant at 0.053). The effect of frequency among

all regular words (consistent and inconsistent) just fails to reach

significance ( ❵ 1 ❛ 94=3.14, p=.08).

There is also a main effect of consistency in the error made
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by the network in pronouncing words ( ❵ 3 ❛ 184=24.1, p ❜ .001).

Furthermore, collapsed across frequency, all post-hoc pair-

wise comparisons of word types are significant. Specifically,

regular consistent words produce less error than regular incon-

sistent words, which in turn produce less error than ambiguous

words, which in turn produce less error than exception words.

Interestingly, the effect of consistency is significant consid-

ering only high-frequency words ( ❵ 3 ❛ 92=12.3, p ❜ .001). All

pairwise comparisons are also significant except between ex-

ception words and ambiguous words. This contrasts with the

performance of normal subjects, who typically show little or

no effect of consistency among high frequency words (e.g.,

Seidenberg, 1985; Seidenberg et al., 1984).

Summary
A feedforward connectionist network was trained on an ex-

tended version of the SM89 corpus of monosyllabic words,

using orthographic and phonological representations that con-

dense the regularities between these domains. After train-

ing, the network reads regular and exception words flawlessly

and yet also reads pronounceable nonwords (Glushko, 1979;

McCann & Besner, 1987) essentially as well as skilled read-

ers. Minor discrepancies in performance can be ascribed to

nonessential aspects of the simulation. Critically, the net-

work had not segregated itself over the course of training into

separate mechanisms for pronouncing exception words and

nonwords. Thus, the network directly refutes the claims of

dual-route theorists that skilled word reading requires the sep-

aration of lexical and sublexical procedures for mapping print

to sound.

Furthermore, the error produced by the network on various

types of words, as measured by the cross entropy between

the generated and correct pronunciations, replicates the stan-

dard findings of frequency, consistency, and their interaction

in the naming latencies of subjects (Andrews, 1982; Seiden-

berg, 1985; Seidenberg et al., 1984; Taraban & McClelland,

1987; Waters & Seidenberg, 1985). A notable exception, how-

ever, is that, unlike subjects and the SM89 network, the cur-

rent network exhibits a significant effect of consistency among

high-frequency words.

Analytic Account of Frequency and
Consistency Effects

The empirical finding that naming latencies for exception

words are slower and far more sensitive to frequency than

those for regular words has often been interpreted as requiring

explicit lexical representations and grapheme-phoneme cor-

respondence rules. By recasting regularity effects in terms of

spelling-sound consistency (Glushko, 1979; Jared et al., 1990),

the SM89 network and the one presented in the previous section

reproduce the empirical phenomena without these properties.

What, then, are the properties of these networks (and of the

human language system, on our account) that give rise to the

observed pattern of frequency and consistency effects?

The relevant empirical pattern of results can be described

in the following way. In general, high-frequency words are

namedfaster than low-frequency words, and words with greater

spelling-sound consistency are named faster than words with

less consistency. However, the effect of frequency diminishes

as consistency is increased, and the effect of consistency di-

minishes as frequency is increased. A natural interpretation of

this pattern is that frequency and consistency contribute inde-

pendently to naming latency, but that the system as a whole

is subject to what might be termed a gradual ceiling effect:

the magnitude of increments in performance decreases as per-

formance improves. Thus, if either the frequency or the con-

sistency of a set of words is sufficiently high on its own to

produce fast naming latencies, increasing the other factor will

yield little further improvement.

A close analysis of the operation of connectionist networks

reveals that these effects are a direct consequence of properties

of the processing and learning in these networks—specifically,

the principles of Nonlinearity, Adaptivity,and Distributed Rep-

resentations and Knowledge referred to earlier. In a connec-

tionist network, the weight changes induced by a word during

training serve to reduce the error on that word (and hence, by

definition, its naming latency). The frequency of a word is

reflected in how often it is presented to the network (or, as in

the previous simulation, in the explicit scaling of the weight

changes it induces). Thus, word frequency directly amplifies

weight changes that are helpful to the word itself.

The consistency of the spelling-sound correspondences of

two words is reflected in the similarity of the orthographic and

phonological units that they activate. Furthermore, two words

will induce similar weight changes to the extent that they acti-

vate similar units. Given that the weight changes induced by

a word are superimposed on the weight changes for all other

words, a word will tend to be helped by the weight changes for

words whose spelling-sound correspondences are consistent

with its own (and, conversely, hindered by the weight changes

for inconsistent words). Thus, frequency and consistency ef-

fects contribute independently to naming latency because they

both arise from similar weight changes that are simply added

together during training.

Over the course of training, the magnitudes of the weights in

the network increase in proportion to the accumulated weight

changes. These weight changes result in corresponding in-

creases in the summed input to output units that should be ac-

tive, and decreases in the summed input to units that should be

inactive. However, due to the nonlinearity of the input-output

function of units, these changes do not translate directly into

proportional reductions in error. Rather, as the magnitude of

the summed inputs to output units increases, their states grad-

ually asymptote towards 0 or 1. As a result, a given increase in

the summed input to a unit yields progressively smaller decre-

ments in error over the course of training. Thus, although
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Figure 6. A simple network for analyzing frequency and con-

sistency effects and the sigmoidal input-output function of its

units.

frequency and consistency each contribute to the weights, and

hence to the summed input to units, their effect on error is

subjected to a gradual ceiling effect as unit states are driven

towards extremal values.

The Frequency-Consistency Equation
To see the effects of frequency and consistency in connectionist

networks more directly, it will help to consider a network that

embodies some of the same general principles as the SM89 and

feedforward networks, but which is simple enough to permit a

closed-form analysis (following Anderson, Silverstein, Ritz, &

Jones, 1977, also see Stone, 1986). In particular, consider a

nonlinear network without hidden units and trained with a

correlational (Hebbian) rather than error-correcting learning

rule (see Figure 6). Such a network is a specific instantiation

of Van Orden et al.’s (1990) covariant learning hypothesis. To

simplify the presentation, we will assume that input patterns

are composed of 1’s and 0’s, output patterns are specified in

terms of ✢ 1’s and ☛ 1’s, connection weights are all initialized to

zero, and units have no bias terms. We will derive an equation

that expresses in concise form the effects of frequency and

consistency in this network on its response to any given input.

A learning trial involves setting the states of the input units

to the input pattern (e.g., orthography) for a word, setting the

output units to the desired output pattern (e.g., phonology) for

the word, and adjusting the weight from each input unit to each

output unit according to♦ ✚✜✘ ✑❃✕❯❚ ✏ ✘ ✏ ✑ ✭ 6 ✰
where ❚ is a learning rate constant, ✏ ✘ is the state of input unit✬ , ✏ ✑ is the state of output unit ✎ , and

✚✜✘ ✑ is the weight on

the connection between them. After each input-output training

pattern is presented once in this manner, the value of each

connection weight is simply the sum of the weight changes for

each individual pattern:✚✜✘ ✑♣✕❉❚ ✗◆q ✏ ❖ q ❘✘ ✏ ❖ q ❘✑ ✭ 7 ✰
where ❫ indexes individual training patterns.

After training, the network’s performance on a given test

pattern is determined by setting the states of the input units to

the appropriate input pattern and having the network compute

the states of the output units. In this computation, the state of

each output unit is assumed to be a nonlinear, monotonically

increasing function of the sum, over input units, of the state of

the input unit times the weight on the connection from it:✏ ❖ ◗❙❘✑ ✕❯✧●rs✗ ✘❉✏ ❖ ◗❙❘✘ ✚✜✘ ✑❁t ✭ 8 ✰
where ✴ is the test pattern and ✧ ✭✯✮✱✰ is the nonlinear input-unit

function. An example of such a function, the standard logistic

function commonly used in connectionist networks, is shown

in Figure 6. The input-output function of the output units need

not be this particular function, but it must have certain of its

properties: it must vary monotonically with input, and it must

approach its extremal values (here, ✲ 1) at a diminishing rate

as the magnitude of the summed input increases (positively or

negatively). We call such functions sigmoid functions.

We can substitute the derived expression for each weight
✚✜✘ ✑

from Equation 7 into Equation 8, and pull the constant term ❚
out of the summation over ✬ to obtain✏ ❖ ◗❙❘✑ ✕✉✧ r ❚ ✗ ✘ ✏ ❖ ◗❙❘✘ ✗◆q ✏ ❖ q ❘✘ ✏ ❖ q ❘✑ t ✭ 9 ✰
This equation indicates that the activation of each output unit

reflects a sigmoid function of the learning rate constant ❚ times

a sum of terms, each consisting of the activation of one of the

input units in the test pattern times the sum, over all training

patterns, of the activation of the input unit times the activation

of the output unit. In our present formulation, where the input

unit’s activation is 1 or 0, this sum reflects the extent to which

the output unit’s activation tends to be equal to 1 when the

input unit’s activation is equal to 1. Specifically, it will be

exactly equal to the number of times the output unit is equal

to 1 when the input unit is equal to 1, minus the number of

times the output unit is equal to ☛ 1 when the input unit is

equal to 1. We can see from Equation 9 that if, over an entire

ensemble of training patterns, there is a consistent value of

the activation of an output unit when an input unit is active,

then the connection weights between them will come to reflect

this. If the training patterns come from a completely regular

environment, such that each output’s activation depends on

only one input unit and is completely uncorrelated with the



Understanding Normal and Impaired Word Reading 21

activation of every other input unit, then all the weights to each

output unit will equal 0 except the weight from the particular

input unit on which it depends. (If the training patterns are

sampled randomly from a larger space of patterns, the sample

will not reflect the true correlations exactly, but will be scattered

approximately normally around the true value.) Thus, the

learning procedure discovers which output units depend on

which input units, and sets the weights accordingly. For our

purposes in understanding quasi-regular domains, in which the

dependencies are not so discrete in character, the weights will

come to reflect the degree of consistency between each input

unit and each output unit, over the entire ensemble of training

patterns.

Equation 9 can be written a different way to reflect a relation-

ship that is particularly relevant to the word reading literature,

in which the frequency of a particular word and the consis-

tency of its pronunciation with the pronunciations of other,

similar words are known to influence the accuracy and latency

of pronunciation. The rearrangement expresses a very reveal-

ing relationship between the output at test and the similarity of

the test pattern to each input pattern:✏ ❖ ◗❙❘✑ ✕❉✧●rs❚ ✗ q ✏ ❖ q ❘✑ ✗ ✘❉✏ ❖ q ❘✘ ✏ ❖ ◗❙❘✘ t ✭ 10 ✰
This expression shows the relationship between the state of

an output unit at test as a function of its states during train-

ing and the similarity between the test input pattern and each

training input pattern, measured in terms of their dot product,✸ ✘ ✏ ❖ q ❘✘ ✏ ❖ ◗❙❘✘ . For input patterns consisting of 1’s and 0’s, this

measure amounts to the number of 1’s the two patterns have in

common, which we refer to as the overlap of training pattern❫ and test pattern ✴ and designate ✈ ❖ q ◗✇❘ . Substituting into the

previous expression, we find that the state of an output unit

at test reflects the sum over all training patterns of the unit’s

output for that pattern times the overlap of the pattern with the

test pattern. ✏ ❖ ◗❙❘✑ ✕❉✧●rs❚ ✗◆q ✏ ❖ q ❘✑ ✈ ❖ q ◗❙❘ t ✭ 11 ✰
Notice that the product ✏ ❖ q ❘✑ ✈ ❖ q ◗❙❘ is a measure of the input-

output consistency of the training and test patterns. To see this,

suppose that the inputs for the training and testing patterns have

considerable overlap. Then the contribution of the training

pattern depends on the sign of the output unit’s state for that

pattern. If this sign agrees with that of the appropriate state for

the test pattern (i.e., the two patterns are consistent) the training

pattern will help to move the state of the output unit towards

the appropriate extremal value for the test pattern. However, if

the signs of the states for the training and test patterns disagree

(i.e., the patterns are inconsistent), performance on the test

pattern is worse for having learned the training pattern. As the

input for the training pattern becomes less similar to that of the

test pattern, reducing ✈ ❖ q ◗❙❘ , the impact of their consistency on

test performance diminishes.

To clarify the implications of the above equation, it will help

to consider some simple cases. First, suppose that the network

is trained on only one pattern, and tested with a variety of

patterns. Then the state of each output unit during testing will

be a monotonic function of its value in the training pattern times

the overlap of the training and test input patterns. As long as

there is any overlap in these patterns, the test output will have

the same sign as the training output, and its magnitude will

increase with the overlap between the test pattern and training

pattern. Thus, the response of each output unit varies with the

similarity of the test pattern to the pattern used in training.

As a second example, suppose we test only on the training

pattern itself, but vary the number of training trials on the

pattern. In this case, the summation over the ❫ training patterns

in the above equation reduces to a count of the number of

training presentations of the pattern. Thus, the state of the

output unit on this pattern will approach its correct asymptotic

value of ✲ 1 as the number of training presentations increases.

Finally, consider the more general case in which several dif-

ferent input-output patterns are presented during training, with

each one presented some number of times. Then, elaborating

Equation 11, the state of an output unit at test can be written as✏ ❖ ◗❙❘✑ ✕❯✧●rs❚ ✗◆q ❵ ❖ q ❘ ✏ ❖ q ❘✑ ✈ ❖ q ◗✇❘ t ✭ 12 ✰
where ❵ ❖ q ❘ is the number (frequency) of training presentations

of pattern ❫ .

We will refer to Equation 12 as the frequency-consistency

equation. Relating this equation to word and nonword read-

ing simply involves identifying the input to the network with

a representation of the spelling of a word, and the output of

the network with a representation of its pronunciation. Given

the assumption that stronger activations correspond to faster

naming latencies, we can use the frequency-consistency equa-

tion to derive predictions about the relative naming latencies of

different types of words. In particular, the equation provides

a basis for understanding why naming latency depends on the

frequency of a word, ❵ ❖ q ❘ , and the consistency of its spelling-

sound correspondences with those of other words, ✏ ❖ q ❘✑ ✈ ❖ q ◗❙❘ . It

also accounts for the fact that the effect of consistency dimin-

ishes as the frequency of the word increases (and vice versa),

since high-frequency words push the value of the sum out into

the tail of the input-output function, where influences of other

factors are reduced (see Figure 7).

Quantitative Results with a Simple Corpus
To make the implications of the frequency-consistency equa-

tion more concrete, suppose a given output unit should have a

value of ✢ 1 if a word’s pronunciation contains the vowel /I/ (as

in DIVE) and ☛ 1 if it contains the vowel /i/ (as in GIVE). Sup-

pose further that we have trained the network on a set of words
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Figure 7. A frequency-by-consistency interaction arising out

of applying an asymptoting output activation function to the

additive input contributions of frequency (solid arrows) and

consistency (dashed arrows). Notice in particular that the iden-

tical contribution from consistency has a much weaker effect

on high-frequency words than on low-frequency words. Only

the top half of the logistic activation function is shown. HF =

high frequency; LF = low frequency; RC = regular consistent;

E = exception.

ending in IVE which all contain either /I/ or /i/ as the vowel.

Then the frequency-consistency equation tells us immediately

that the response to a given test input should reflect the influ-

ence of every one of these words to some degree. Holding all

else constant, the higher the frequency of the word, the more

closely the output will approach the desired value. Holding the

frequency of the word itself constant, the more other similar

words agree with its pronunciation (and the higher their fre-

quency), the more closely the output will approach the correct

extremal value. The distance from the desired value will vary

continuously with the difference between the total influence of

the neighbors that agree with the word and the neighbors that

disagree, with the contribution of each neighbor weighted by

its similarity to the word and its frequency. When the word

itself has a high frequency, it will tend to push the activation

close to the correct extreme. Near the extremes, the slope

of the function relating the summed input to the state of the

output unit becomes relatively shallow, so the influence of the

neighbors is diminished.

To illustrate these effects, Figure 8 shows the cross-entropy

error for a particular output unit as we vary the frequency of

the word being tested and its consistency with 10 other, over-

lapping words (also see Van Orden, 1987). For simplicity, we

assume that all ten words have a frequency of 1.0 and an over-

lap of 0.75 with the test word—this would be true, for example,

if input units represented letters and words differed in a single
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Figure 8. The effects of frequency and consistency in a net-

work without hidden units trained with correlational (Hebbian)

learning ( ❚⑧✕ 0 ❭ 2 in Equation 12).

letter out of four. Four degrees of consistency are examined:

(a) exception words (e.g., GIVE), for which all but one of the

ten neighbors disagree with the test word on the value of the

output unit; (b) ambiguous words (e.g., PLOW), for which the

neighbors are split evenly between those that agree and those

that disagree; (c) regular inconsistent words (e.g., DIVE), for

which most neighbors agree but two disagree (namely GIVE and

LIVE); and (d) regular consistent words (e.g., DUST), for which

all neighbors agree on value of the output unit. In the present

analysis, these different cases are completely characterized in

terms of a single variable: the consistency of the pronunciation

of the vowel in the test word with its pronunciation in other

words with overlapping spellings. The analysis clearly reveals

a graded effect of consistency that diminishes with increasing

frequency.

Error Correction and Hidden Units

It should be noted that the Hebbian approach described here

does not, in fact, provide an adequate mechanism for learn-

ing the spelling-sound correspondences in English. For this,

we require networks with hidden units trained using an error-

correcting learning rule such as back-propagation. In this sec-

tion we take some steps in the direction of extending the anal-

yses to these more complex cases.

First we consider the implications of using an error-

correcting learning rule rather than Hebbian learning, still

within a network with no hidden units. Back-propagation

is a generalization of one such rule, known as the delta rule
(Widrow & Hoff, 1960). The first observation is that, when

using the delta rule, the change in weight
✚✜✘ ✑ due to training on

pattern ❫ is proportional to the state of the input unit, ✏ ❖ q ❘✘ , times

the partial derivative of the error on pattern ❫ with respect to
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the summed input to the output unit ✎ , ⑨ ❖ q ❘✑ , rather than simply

times the correct state of unit ✎ , ✏ ❖ q ❘✑ (cf. Equation 6). As a

result, Equation 12 becomes✏ ❖ ◗❙❘✑ ✕❯✧●rs❚❱✗◆q ❵ ❖ q ❘ ⑨ ❖ q ❘✑ ✈ ❖ q ◗❙❘ t ✭ 13 ✰
Matters are more complex here because ⑨ ❖ q ❘✑ depends on the

actual performance of the network on each trial. However, ⑨ ❖ q ❘✑
will always have the same sign as ✏ ❖ q ❘✑ , because an output unit’s

error always has the same sign as its target as long as the target

is an extremal value of the activation function ( ✲ 1 here), and

because only unit ✎ is affected by a change to its input. Thus, as

in the Hebbian case, training on a word that is consistent with

the test word will always help unit ✬ to be correct, and training

on an inconsistent word will always hurt, thereby giving rise

to the consistency effect.

The main difference between the Hebb rule and the delta

rule is that, with the latter, if a set of weights exists that allows

the network to produce the correct output for each training

pattern, the learning procedure will eventually converge to it.8

This is generally not the case with Hebbian learning, which

often results in responses for some cases that are incorrect. To

illustrate this, we consider applying the two learning rules to

a training set for which a solution does exist. The solution is

found by the delta rule and not by the Hebb rule.

The problem is posed within the framework we have already

been examining. The specific network consists of 11 input

units (with values of 0 and 1) representing letters of a word.

The input units send direct connections to a single output unit

that should be ✢ 1 if the pronunciation of the word contains the

vowel /I/ but ☛ 1 if it contains the vowel /i/. Table 5 shows the

input patterns and the target output for each case, as well as the

net inputs and activations that result from training with each

learning rule. There are 10 items in the training set, six with

the body INT and four with the body INE. The INE words all

take the vowel /I/, so for these the vowel has a target activation

of ✢ 1; five of the INT words take /i/, so the vowel has a target

of ☛ 1. The INT words also include the exception word PINT

that takes the vowel /I/. For this analysis, each word is given

an equal frequency of 1.

Table 6 lists the weights from each input unit to the output

unit that are acquired after training with each learning rule.

For the Hebb rule, this involved 5 epochs of training using

a learning rate ❚⑩✕ 0 ❭ 1. The resulting weights are equal to

8Actually, given the use of extremal targets and an asymptoting activation

function, no set of finite weights will reduce the error to zero. In this case,

a “solution” consists of a set of weights that produces outputs that are within

some specified tolerance (e.g., 0.1) of the target value for every output unit in

every training pattern. If a solution exists that produces outputs that all have

the correct sign (i.e., tolerance of 1.0, given targets of ❶ 1), then a solution

also exists for any smaller tolerance because multiplying all the weights by a

large enough constant will push the output of the sigmoid arbitrarily close to

its extreme values without affecting its sign.

0.5 (the number of epochs times the learning rate) times the

number of training items in which the letter is present and the

vowel is /I/, minus the number of items in which the letter is

present and the vowel is /i/. Specifically, the letters L and M

occur once with /I/ and once with /i/, so their weight is 0; the

letters I and N occur five times with /I/ and five time with /i/,

so their weights are also 0. Final E and final T have the largest

magnitude weights; E is strongly positive because it occurs

four times with /I/ and never with /i/, and T is strongly negative

because it occurs five times with /i/ and only once with /I/. F

is weakly positive since it occurs once with /I/, and D, H and

onset T are weakly negative since each occurs once with /i/. P

is moderately positive, since it occurs twice with /I/—once in

PINE and once in PINT. Thus, these weights directly reflect the

co-occurrences of letters and phonemes.

The outputs of the network when using the weights produced

by the Hebb rule, shown in Table 5, illustrate the consistency

effect, both in net inputs and in activations. For example,

the net input for FINE is stronger than for LINE, because LINE is

more similar to the inconsistent LINT; and the net input for PINE

is stronger than for LINE, since PINE benefits from its similarity

with PINT, which has the same correspondence. However, the

weights do not completely solve the task: For the word PINT,

the net input is ☛ 1 ❭ 0 (1.0 from the P minus 2.0 from the T), and

passing this through the logistic function results in an activation

of ☛ 0 ❭ 46, which is quite different from the target value of ✢ 1.

What has happened is that PINT’s neighbors have cast slightly

more votes for /i/ than for /I/.

Now consider the results obtained using the delta rule. In

this case, we trained the network for 20 epochs, again with a

learning rate of 0.1. The overall magnitude of the weights is

comparable to the Hebb rule case with only 5 epochs because,

with the delta rule, the weight changes get smaller as the error

gets smaller, and so the cumulative effect generally tends to be

less. More importantly, though, when the delta rule is used,

the same general effects of consistency are observed, but now

the response to PINT, though weaker than other responses, has

the right sign. The reason for this is that the cumulative weight

changes caused by PINT are actually larger than those caused

by other items, because after the first epoch, the error is larger

for PINT than for other items. Error-correcting learning even-

tually compensates for this but, before learning has completely

converged, the effects of consistency are still apparent.

The error-correcting learning process causes an alteration in

the relative weighting of the effects of neighbors, by assigning

greater relative weight to those aspects of each input pattern

that differentiate it from inconsistent patterns (see Table 6).

This is why the weight tends to accumulate on P, which dis-

tinguishes PINT from the inconsistent neighbors DINT, HINT,

LINT, MINT, and TINT. Correspondingly, the weights for D, H,

and T are slightly more negative (relative to the Hebb weights)

to accentuate the differentiation of DINT, HINT, and TINT from

PINT. The effect of consistency, then, is still present when the

delta rule is used but, precisely because it makes the biggest
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Table 5

Input Patterns, Targets, and Activations after Training with Hebb Rule and Delta Rule

Letter Inputs Hebb Rule Delta Rule

Word D F H L M P T I N E T Target Net Act Net Act

DINT 1 0 0 0 0 0 0 1 1 0 1 ☛ 1 ☛ 2 ❭ 5 ☛ 0 ❭ 85 ☛ 2 ❭ 35 ☛ 0 ❭ 82

HINT 0 0 1 0 0 0 0 1 1 0 1 ☛ 1 ☛ 2 ❭ 5 ☛ 0 ❭ 85 ☛ 2 ❭ 29 ☛ 0 ❭ 82

LINT 0 0 0 1 0 0 0 1 1 0 1 ☛ 1 ☛ 2 ❭ 0 ☛ 0 ❭ 76 ☛ 1 ❭ 70 ☛ 0 ❭ 69

MINT 0 0 0 0 1 0 0 1 1 0 1 ☛ 1 ☛ 2 ❭ 0 ☛ 0 ❭ 76 ☛ 1 ❭ 70 ☛ 0 ❭ 69

PINT 0 0 0 0 0 1 0 1 1 0 1 ✢ 1 ☛ 1 ❭ 0 ☛ 0 ❭ 46 0.86 0.41

TINT 0 0 0 0 0 0 1 1 1 0 1 ☛ 1 ☛ 2 ❭ 5 ☛ 0 ❭ 85 ☛ 2 ❭ 25 ☛ 0 ❭ 81

FINE 0 1 0 0 0 0 0 1 1 1 0 ✢ 1 2.5 0.85 3.31 0.93

LINE 0 0 0 1 0 0 0 1 1 1 0 ✢ 1 2.0 0.76 2.52 0.85

MINE 0 0 0 0 1 0 0 1 1 1 0 ✢ 1 2.0 0.76 2.52 0.85

PINE 0 0 0 0 0 1 0 1 1 1 0 ✢ 1 3.0 0.91 5.09 0.98

Note: “Net” is the net input of the output unit; “Act” is its activation.

Table 6

Weights from Letter Units to Output Unit after Training with Hebb Rule and Delta Rule

Letter Units

D F H L M P T I N E T

Hebb Rule ☛ 0 ❭ 50 0.50 ☛ 0 ❭ 50 0.00 0.00 1.00 ☛ 0 ❭ 50 0.00 0.00 2.00 ☛ 2 ❭ 00

Delta Rule ☛ 0 ❭ 84 0.59 ☛ 0 ❭ 77 ☛ 0 ❭ 19 ☛ 0 ❭ 18 2.37 ☛ 0 ❭ 73 0.24 0.24 2.23 ☛ 1 ❭ 99
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changes where the errors are greatest, the delta rule tends to

counteract the consistency effect.

A related implication of using error-correcting learning con-

cerns the degree to which an output unit comes to depend on

different parts of the input. If a particular input-output cor-

respondence is perfectly consistent (e.g., onset B
✁

/b/), so

that the state of a given output unit is predicted perfectly by

the states of particular input units, the delta rule will set the

weights from all other input units to 0, even if they are par-

tially correlated with the output unit. By contrast, when a

correspondence is variable (e.g., vowel I
✁

/i/ vs. /I/), so that

no input unit on its own can predict the state of the output unit,

the delta rule will develop significant weights from the other

parts of the input (e.g., consonants) that disambiguate the cor-

respondence. Thus, if there is a componential correspondence,

as for most consonants, other partial correspondences will not

be exploited; however, when componentiality breaks down, as

it often does with vowels, there will be a greater reliance on

context and therefore a greater consistency effect.

For some tasks, including English word reading, no set of

weights in a two-layer network that maps letters to phonemes

will work for all of the training patterns (see Minsky & Pa-

pert, 1969). In such cases, hidden units that mediate be-

tween the input and output units are needed to achieve ade-

quate performance.9 Things are considerably more complex

in networks with hidden units, but Equation 13 still provides

some guidance. The complexity comes from the fact that, for

an output unit, ✈ ❖ q ◗❙❘
reflects the similarities of the patterns

of activation for training pattern ❫ and test pattern ✴ over the

hidden units rather than over the input units. Even so, hidden

units have the same tendency as output units to give similar

output to similar inputs, as they use the same activation func-

tion. In fact, Equation 13 applies to them as well if ⑨ ❖ q ❘✑ is

interpreted as the partial derivative of the error over all output

units with respect to the summed input to the hidden unit ✎ .

The values of particular weights and the nonlinearity of the

activation function can make hidden units relatively sensitive

to some dimensions of similarity and relatively insensitive to

others, and can even allow hidden units to respond to particular

combinations of inputs and not to other, similar combinations.

Thus, from the perspective of the output units, hidden units

re-represent the input patterns so as to alter their relative sim-

ilarities. This is critical for learning complex mappings like

those in the English spelling-to-sound system. Phoneme units

respond on the basis of hidden-layer similarity, and they must

respond quite differently to exception words than to their in-

9An alternative strategy for increasing the range of tasks that can be solved

by a two-layer network is to add additional input units that explicitly code

relevant combinations of the original input units (see Gluck & Bower, 1988;

Marr, 1969; Rumelhart, Hinton, & Williams, 1986a, for examples). In the

domain of word reading, such higher-order units have been hand-specified by

the experimenter as input units (Norris, 1994), hand-specified but activated

from the input units as a separate pathway (Reggia, Marsland, & Berndt,

1988), or learned as hidden units in a separate pathway (Zorzi, Houghton, &

Butterworth, 1995).

consistent neighbors in order for all of them to be pronounced

correctly. Thus, by altering the effective similarities among

input patterns, a network with hidden units can overcome the

limitations of one with only input and output units. The pro-

cess of learning to be sensitive to relevant input combinations

occurs relatively slowly, however, because it goes against the

network’s inherent tendency toward making similar responses

to similar inputs.

The fact that hidden units can be sensitive to higher-order

combinations of input units has important implications for un-

derstanding body-level consistency effects. In a one-layer

network without hidden units, the contribution of an input

unit to the total signal received by an output unit summed

over all its input is unconditional; that is the contribution of

each input unit is independent of the state of the other input

units. As mentioned earlier, however, the pronunciations of

vowels cannot typically be predicted from individual letters or

graphemes. Rather, the correlations between vowel graphemes

and phonemes are highly conditional on the presence of par-

ticular consonant graphemes. For example, the mapping from

I to /i/ is inconsistent, but the mapping from I to /i/ is perfectly

reliable in the context of a coda consisting only of the letter N

(e.g., PIN, WIN, THIN, etc.). In English, the predictiveness of

vowels conditional on codas is generally greater than that of

vowels conditional on onsets (Treiman et al., in press). Con-

sequently, a multi-layer network will be aided in generating

appropriate vowel pronunciations by developing hidden units

that respond to particular combinations of orthographic vowels

and codas (i.e., word bodies). Even when the coda is taken into

account, however, its correlation with the vowel pronunciation

may be less than perfect (e.g., I in the context of NT in MINT vs.

PINT). In this case, the choice of vowel must be conditioned by

both the onset and coda for the correspondence to be reliable.

Because of the fact that hidden units tend to make similar re-

sponses to similar inputs, hidden units that respond to an entire

input pattern and contribute to a nonstandard vowel pronuncia-

tion (e.g., I
✁

/I/ in the context of P NT) will tend to be partially

active when similar words are presented (e.g., MINT). These

will tend to produce interference at the phoneme level, giving

rise to a consistency effect. It is important to note, however,

that a multi-layer network will exhibit consistency effects only

when trained on tasks that are at least partially inconsistent—

that is, quasi-regular; as in one-layer networks using the delta

rule, if the training environment involves only componential

correspondences, hidden units will learn to ignore irrelevant

aspects of the input.

In summary, a broad range of connectionist networks, when

trained in a quasi-regular environment, exhibit the general

trends that have been observed in human experimental data:

robust consistency effects that tend to diminish with experi-

ence, both with specific items (i.e., frequency) and with the

entire ensemble of patterns (i.e., practice). These factors are

among the most important determinants of the speed and ac-

curacy with which people read words aloud.
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Balancing Frequency and Consistency

The results of these analyses concur with the findings in empir-

ical studies and in the SM89 and feedforward network simula-

tions: there is an effect of consistency that diminishes with in-

creasing frequency. Furthermore, details of the analytic results

are also revealing. In particular, the extent to which the effect

of consistency is eliminated in high frequency words depends

on just how frequent they are relative to words of lower fre-

quency. In fact, this effect may help to explain the discrepancy

between the findings in the feedforward network and those in

the SM89 network—namely, the existence of consistency ef-

fects among high-frequency words in the former but not in the

latter (and not generally in empirical studies). At first glance,

it would appear that the pattern observed in the feedforward

network matches one in which the high-frequency words are

of lower frequency relative to the low-frequency words (e.g., a

frequency of 10 in Figure 8) than in the SM89 network (e.g.,

a frequency of 20). This is not literally true, however, because

the same (logarithmically compressed) word frequencies were

used in the two simulations.

A better interpretation is that, in the feedforward network,

the effect of consistency is stronger than in the SM89 network

and, relative to this, the effect of frequency appears weaker. As

described earlier, the orthographic and phonological represen-

tations used by SM89, based on context-sensitive triples of let-

ters and phonemes, disperse the regularities between the writ-

ten and spoken forms of words. This has two relevant effects

in the current context. The first is to reduce the extent to which

the training on a given word improves performance on other

words that share the same spelling-sound correspondences,

and impairs performance on words that violate those corre-

spondences. As illustrated earlier with the words LOG, GLAD,

and SPLIT, even though a correspondence may be the same in

a set of words, they may activate different orthographic and

phonological units. As mentioned above, the weight changes

induced by one word will help another only to the extent that

they activate similar units (i.e., as a function of their overlap✈ ❖ q ◗❙❘
). This effect is particularly important for low-frequency

regular words, for which performance depends primarily on

support from higher frequency words rather than from train-

ing on the word itself. In contrast, the new representations

condense the regularities between orthography and phonology,

so that weight changes for high-frequency words also improve

performance on low-frequency words with the same spelling-

sound correspondences to a greater extent. Thus, there is an

effect of frequency among regular words in the SM89 network

but not in the feedforward network. For the same reason, in

the SM89 network, performance on an exception word is less

hindered by training on regular words that are inconsistent with

it. It is almost as if regular words in the SM89 network behave

like regular inconsistent words in the feedforward network, and

exception words behave like ambiguous words: the support or

interference they receive from similar words is somewhat re-

duced (see Figure 9).

The SM89 representations also reduce the effect of con-

sistency in an indirect manner, by improving performance on

exception words. This arises because the orthographic repre-

sentations contain units that explicitly indicate the presence of

context-sensitive triples of letters. Some of these triples corre-

spond to onset-vowel combinations and to word bodies (e.g.,

PIN, INT) that can directly contribute to the pronunciation of

exception words (PINT). In contrast, although the new ortho-

graphic representations contain multiletter graphemes, none of

them include both consonants and vowels, or consonants from

both the onset and coda. Thus, for example, the orthographic

units for P, I, N, and T contribute independently to the hidden

representations. It is only at the hidden layer that the network

can develop context-sensitive representations in order to pro-

nounce exception words correctly, and it must learn to do this

only on the basis of its exposure to words of varying frequency.

Nonetheless, it remains true that the pattern of frequency and

consistency effects in the SM89 network better replicates the

findings in empirical studies than does the pattern in the feed-

forward network. Yet the same skilled readers exhibit a high

level of proficiency at reading nonwords that is not matched in

the SM89 network, but only in one using alternative represen-

tations that better capture the spelling-sound regularities. How

can the effect of frequency and consistency be reconciled with

good nonword reading?

The answer may lie in the fact that both the SM89 and

the feedforward networks were trained using word frequency

values that are logarithmically compressed from their true fre-

quencies of occurrence in the language. Thus, the SM89 net-

work replicates the empirical naming latency pattern because it

achieves the appropriate balance between the influence of fre-

quency and that of consistency, although both are suppressed

relative to the effects in subjects. This suppression is revealed

when nonword reading is examined, because on this task it is

primarily the network’s sensitivity to consistency that dictates

performance. In contrast, by virtue of the new representations,

the feedforward network exhibits a sensitivity to consistency

that is comparable to that of subjects, as evidenced by its good

nonword reading. But now, using logarithmic frequencies,

the effects of frequency and consistency are unbalanced in the

network and it fails to replicate the precise pattern of naming

latencies of subjects.

This interpretation leads to the prediction that the feedfor-

ward network should exhibit both good nonword reading and

the appropriate frequency and consistency effects if it is trained

on words using their actual frequencies of occurrence. The next

simulation tests this prediction.

Simulation 2: Feedforward Network with
Actual Frequencies

The most frequent word in the Kuçera and Francis (1967) list,

THE, has a frequency of 69971 per million, while the least
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Figure 9. Data from the frequency-consistency equation

(Equation 12 and Figure 8) for test words of frequencies 1

and 10, plotted separately for regular inconsistent and ambigu-

ous words (upper graph) and regular consistent and exception

words (lower graph). The upper pattern is similar to that found

for regular and exception words in the SM89 network (see

Figure 2) while the lower one is similar to the pattern for the

feedforward network (see Figure 5). The correspondences are

only approximate due to the simplifying assumptions of the

frequency-consistency equation.

frequent words have a frequency of 1 per million. In the train-

ing procedure used by SM89, the probability that a word was

presented to the network for training was proportional to the

logarithm of its frequency rather than its actual frequency. This

compresses the effective frequency range from about 70000:1

to about 16:1. Thus, the network experiences much less vari-

ation in the frequency of occurrence of words than do normal

readers.

SM89 put forward a number of arguments in favor of us-

ing logarithmically compressed frequencies rather than actual

frequencies in training their network. Beginning readers have

yet to experience enough words to approximate the actual fre-

quency range in the language. Also, low-frequency words dis-

proportionately suffer from the lack of inflectional and deriva-

tional forms in the training corpus. However, the main reason

for compressing the frequency range was a practical consid-

eration based on limitations of the available computational

resources. If the highest frequency word was presented ev-

ery epoch, the lowest frequency words would be presented on

average only about once every 70,000 epochs. Thus, if ac-

tual frequencies were used, SM89 could not have trained their

network long enough for it to have had sufficient exposure on

low-frequency words.

To compound matters, as SM89 point out, basic properties

of the network and training procedure already serve to pro-

gressively weaken the impact of frequency over the course of

training. In an error-correcting training procedure like back-

propagation, weights are changed only to the extent that doing

so reduces the mismatch between the generated and correct

output. As high-frequency words become mastered, they pro-

duce less mismatch and so induce progressively smaller weight

changes. This effect is magnified by the fact that, due to the

asymptotic nature of the unit input-output function, weight

changes have smaller and smaller impact as units approach

their correct extremal values. As a result, learning becomes

dominated mostly by lower frequency words that are still inac-

curate, effectively compressing the range of frequency driving

learning in the network.

Thus, SM89 considered it important to verify that their re-

sults did not depend critically on the use of such a severe

frequency compression. They trained a version of the net-

work in which the probability that a word is presented during

an epoch is based on the square-root of its frequency rather

than the logarithm (resulting in a frequency range of about

265:1 rather than 16:1). They found the same basic pattern

of frequency and consistency effects in naming latency for the

Taraban and McClelland (1987) words, although there was a

larger effect of frequency among regular words, and virtually

no effect of consistency among high-frequency words even

early in training. This shift corresponds predictably to a pat-

tern in which the influence of frequency is stronger relative

to the influence of consistency. However, SM89 presented no

data on the network’s accuracy in reading words or nonwords.

In the current simulation, we train a version of the feedfor-
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ward network (with the new representations) using the actual

frequencies of occurrence of words. The training procedure in

the current work avoids the problem of sampling low-frequency

words by using frequency directly to scale the magnitude of

the weight changes induced by a word—this is equivalent to

sampling in the limit of a small learning rate, and it allows

any range of frequencies to be employed. The goal is to test

the hypothesis that, by balancing the strong influence of con-

sistency that arises from the use of representations that better

capture spelling-sound regularities with a realistically strong

influence of frequency, the network should exhibit the appro-

priate pattern of frequency and consistency effects in naming

latency while also producing accurate performance on word

and nonword pronunciation.

Method

Network Architecture. The architecture of the network

is the same as in the Simulation 1 (see Figure 3).

Training Procedure. The only major change in the train-

ing procedure from Simulation 1 is that, as described above,

the values used to scale the error derivatives computed by

back-propagation are proportional to the actual frequencies of

occurrence of the words (Kuçera & Francis, 1967) rather than

to a logarithmic compression of their frequencies. Following

SM89, the 82 words in the training corpus that are not listed

in Kuçera and Francis (1967) were assigned a frequency of

2, and all others were assigned their listed frequency plus 2.

These values were then divided by the highest value in the

corpus (69973 for THE) to generate the scaling values used

during training. Thus, the weight changes produced by the

word THE are unscaled (i.e., scaling value of 1.0). For com-

parison, AND, the word with the next highest frequency (28860

occurrences per million), has a value of 0.412. By contrast, the

relative frequencies of most other words is extremely low. The

mean scaling value across the entire training corpus is 0.0020,

while the median value is 0.00015. Taraban and McClelland’s

(1987) high-frequency exception words have an average value

of 0.014 while the low-frequency exception words average

0.00036. Words not in the Kuçera and Francis (1967) list have

a value just under 3 ➃ 10
❩

5.

In addition, two parameters of the training procedure were

modified to compensate for the changes in word frequencies.

First, the global learning rate, ❚ in Equation 5, was increased

from 0.001 to 0.05, to compensate for the fact that the summed

frequency for the entire training corpus is reduced from 683.4

to 6.05 when using actual rather than logarithmic frequencies.

Second, the slight tendency for weights to decay towards zero

was removed, to prevent the very small weight changes in-

duced by low-frequency words (due to their very small scaling

factors) from being overcome by the tendency of weights to

shrink towards zero.

Other than for these modifications, the network was trained

in exactly the same way as in Simulation 1.

Testing Procedure. The procedure for testing the net-

work’s procedure on words and nonwords is the same as in

Simulation 1.

Results
Word Reading. As the weight changes caused by low-

frequency words are so small, considerably more training is

required to reach approximately the same level of performance

as when using logarithmically compressed frequencies. After

1300 epochs of training, the network mispronounces only 7

words in the corpus: BAS, BEAU, CACHE, CYST, GENT, TSAR,

and YEAH (99.8% correct, where homographs were considered

correct if they elicited either correct pronunciation). These

words have rather inconsistent spelling-sound correspondences

and have very low frequencies (i.e., an average scaling value of

9 ❭ 0➃ 10
❩

5). Thus, the network has mastered all of the exception

words except a few of the very lowest in frequency.

Nonword Reading. Table 7 lists the errors made by the

network in pronouncing the lists of nonwords from Glushko

(1979) and from McCann and Besner (1987). The network

produces “regular” responses to 42/43 (97.7%) of Glushko’s

consistent nonwords, 39/43 (67.4%) of the inconsistent non-

words, and 66/80 (82.5%) of McCann and Besner’s control

nonwords. Using a criterion that more closely corresponds to

that used with subjects—considering a response correct if it

is consistent with the pronunciation of a word in the training

corpus (and not considering inflected nonwords or those with

J in the coda)—the network achieves 42/43 (97.7%) correct

on both the consistent and inconsistent nonwords, and 68/76

(89.5%) correct on the control nonwords. Thus, the network’s

performance on these sets of nonwords is comparable to that

of subjects and to that of the network trained on logarithmic

frequencies.

Frequencyand Consistency Effects. Figure 10 shows the

mean cross entropy error of the network in pronouncing words

of varying degrees of spelling-sound consistency as a function

of frequency. There is a main effect of frequency ( ❵ 1 ❛ 184=22.1,

p ❜ .001), a main effect of consistency ( ❵ 3 ❛ 184=6.49, p ❜ .001),

and an interaction of frequency and consistency ( ❵ 1 ❛ 184=5.99,

p ❜ .001). Post hoc comparisons show that the effect of fre-

quency is significant at the 0.05 level among words of each

level of consistency when considered separately.

The effect of consistency is significant among low frequency

words ( ❵ 3 ❛ 92=6.25, p=.001) but not among high-frequency

words ( ❵ 3 ❛ 92=2.48, p=.066). Post hoc comparisons among

low-frequency words revealed that the difference in error be-

tween exception words and ambiguous words is significant

( ❵ 1 ❛ 46=4.09, p=.049), the difference between regular consistent

and inconsistent words is marginally significant ( ❵ 1 ❛ 46=3.73,

p=.060), but the difference between ambiguous words and reg-

ular inconsistent words fails to reach significance ( ❵ 1 ❛ 46=2.31,

p=.135).

Overall, this pattern of results matches the one found in

empirical studies fairly well. Thus, with a training regime
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Table 7

Errors by the Feedforward Network Trained with Actual Frequencies in Pronouncing
Nonwords

Glushko (1979) McCann and Besner (1987)

Nonword Correct Response Nonword Correct Response

Consistent Nonwords (1/43) Control Nonwords (14/80)

*WOSH /waS/ /woS/ TUNCE /t ✌ ns/ /tUns/

Inconsistent Nonwords (14/43) *TOLPH /tolf/ /tOl(f 0.13)/

BLEAD /blEd/ /bled/ *ZUPE /zUp/ /(z 0.09)yUp/

BOST /bost/ /bOst/ SNOCKS /snaks/ /snask(ks 0.31)/

COSE /kOz/ /kOs/ *GOPH /gaf/ /gaT/

GROOK /grUk/ /gruk/ *VIRCK /vurk/ /(v 0.13)urk/

*HEAF /hEf/ /h@f/ LOKES /lOks/ /lOsk(ks 0.00)/

HOVE /hOv/ /h ✌ v/ *YOWND /yWnd/ /(y 0.04)and/

LOME /lOm/ /l ✌ m/ KOWT /kWt/ /kOt/

PILD /pild/ /pIld/ *FUES /fyUz/ /fyU(z 0.45)/

PLOVE /plOv/ /pl ✌ v/ *HANE /hAn/ /h@n/

POOT /pUt/ /put/ FAIJE /fAj/ /fA(j 0.00)/

POVE /pOv/ /p ✌ v/ *ZUTE /zUt/ /(z 0.01)yUt/

SOOD /sUd/ /sud/ JINJE /jinj/ /jIn(j 0.00)/

WEAD /wEd/ /wed/

WONE /wOn/ /w ✌ n/

Note: /a/ in POT, /@/ in CAT, /e/ in BED, /i/ in HIT, /o/ in DOG, /u/ in GOOD, /A/ in MAKE, /E/ in KEEP, /I/ in

BIKE, /O/ in HOPE, /U/ in BOOT, /W/ in NOW, /Y/ in BOY, / ✍ / in CUP, /N/ in RING, /S/ in SHE, /C/ in CHIN /Z/ in

BEIGE, /T/ in THIN, /D/ in THIS. The activity levels of correct but missing phonemes are listed in parentheses.

In these cases, the actual response is what falls outside the parentheses. Words marked with “*” remain errors

after considering properties of the training corpus (as explained in the text).
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Figure 10. Mean cross-entropy error produced by the feed-

forward network trained on actual frequencies for words with

various degrees of spelling-sound consistency (listed in Ap-

pendix 1) as a function of frequency.

that balances the influence of frequency and consistency, the

network replicates the pattern of interaction of these variables

on naming latency while also reading words and nonwords as

accurately as skilled readers.

Training with a Moderate Frequency Compres-
sion
As SM89 argued, training with the actual frequencies of mono-

syllabic words might not provide the best approximation to

the experience of readers. For example, since many multisyl-

labic words have consistent spelling-sound correspondences—

both in their base forms and with their various inflections and

derivations—training with only monosyllabic words will un-

derestimate a reader’s exposure to spelling-sound regularities.

Training with a compressed frequency range compensates for

this bias because exception words tend to be of higher fre-

quency than regular words and, thus, are disproportionately

affected by the compression.

We have seen that a very severe (logarithmic) compression

reduces the effect of frequency to such an extent that a network

using representations that amplify consistency effects fails to

exhibit the exact pattern of naming latencies found in empir-

ical studies. Nonetheless, it would seem appropriate to test

whether a less severe compression results in a better match

to the empirical findings. As mentioned earlier, SM89 found

that presenting words during training with a probability pro-

portional to the square-root of their frequency replicates the

basic frequency and consistency effects in their network, but

they presented no data on the accuracy of the network’s per-

formance. Accordingly, it seemed worthwhile for comparison

purposes to train a network with the new representations also

using a square-root compression of word frequencies.

Analogous to the use of actual frequencies, the scaling value

for each word was the square-root of its Kuçera and Francis

(1967) frequency plus 2, divided by the square-root of the

frequency of THE plus 2 (264.5). The value for AND is 0.642.

The mean for the corpus is 0.023 and the median is 0.012.

Taraban and McClelland’s (1987) high-frequency exception

words average 0.097 while the low-frequency exception words

average 0.017. Words not in the Kuçera and Francis (1967) list

have a value of 0.0053. Thus, the compression of frequency

is much less severe than when using logarithms but it is still

substantial.

The summed frequency of the training corpus is 69.8; ac-

cordingly, the global learning rate, ➋ , was adjusted to 0.01.

The training procedure is otherwise identical to that used when

training on the actual word frequencies.

Word Reading. After 400 epochs, the network pro-

nounces correctly all words in the training corpus except for

the homograph HOUSE, for which the states of both the final

/s/ and the final /z/ just fail to be active (/s/: 0.48, /z/: 0.47).

Thus, the network’s word reading is essentially perfect.

Nonword Reading. The network makes no errors on

Glushko’s (1979) consistent nonwords. On the inconsistent

nonwords, 14 of the network’s responses are non-regular, but

all but one of these (POVE ➌ /pav/) are consistent with some

word in the training corpus (97.7% correct). The network

mispronounces 13 of McCann and Besner’s (1987) control

nonwords. However, only 7 of these remain as errors when

using the same scoring criterion as was used with subjects and

ignoring inflected forms and those with J in the coda (90.8%

correct). Thus, the network trained with square-root frequen-

cies pronounces nonwords as well, if not slightly better, than

the network trained with actual frequencies.

Frequencyand Consistency Effects. Figure 11 shows the

mean cross entropy error of the network in pronouncing words

of varying degrees of spelling-sound consistency as a function

of frequency. Overall, there is a significant effect of frequency

( ➍ 1 ➎ 184=47.7, p ➏ .001), consistency, ( ➍ 1 ➎ 184=14.9, p ➏ .001),

and interaction of frequency and consistency ( ➍ 3 ➎ 184=8.409,

p ➏ .001). The effect of frequency is also significant at the

0.05 level among words of each level of consistency when

considered separately. Among high-frequency words, regular

inconsistent, ambiguous, and exception words are significantly

different from regular consistent words but not from each other.

Among low-frequency words, the difference between regu-

lar inconsistent words and ambiguous words is not significant

( ➍ 1 ➎ 46=1.18, p=.283) but all other pairwise comparisons are.

Thus, this network also replicates the basic empirical findings

of the effects of frequency and consistency on naming latency.

Summary
The SM89 simulation replicates the empirical pattern of fre-

quency and consistency effects by appropriately balancing the

relative influences of these two factors. Unfortunately, both are

reduced relative to their strength in skilled readers. The fact
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Figure 11. Mean cross-entropy error produced by the feed-

forward network trained on square-root frequencies for words

with various degrees of spelling-sound consistency (listed in

Appendix 1) as a function of frequency.

that the orthographic and phonological representations disperse

the regularities between spelling and sound serves to diminish

the relative impact of consistency. Likewise, the use of a log-

arithmic compression of the probability of word presentations

serves to diminish the impact of frequency. As a result of the

reduced effectiveness of consistency, nonword reading suffers.

The current work uses representations that better capture

spelling-sound regularities, thereby increasing the relative in-

fluenceof consistency. One effect of this is to improve nonword

reading to a level comparable to that of skilled readers. How-

ever, if a logarithmic frequency compression continues to be

used, the relative impact of frequency is too weak and the net-

work exhibits consistency effects among high-frequency words

not found in empirical studies.

The appropriate relative balance of frequency and consis-

tency can be restored, while maintaining good nonword read-

ing, by using the actual frequencies of words during training.

In fact, a square-root frequency compression that is much more

moderate that a logarithmic one also replicates the empirical

naming latency pattern, although a consistency effect among

high-frequency words begins to emerge. In this way, the three

networks presented thus far—trained on logarithmic frequen-

cies, square-root frequencies, or actual frequencies—provide

clear points of comparison of the relative influences of word

frequency and spelling-sound consistency on naming latency.

Together with the analytical results from the previous section,

these findings suggest that the central empirical phenomena

in word and nonword reading can be interpreted naturally in

terms of the basic principles of operation of connectionist net-

works that are exposed to an appropriately structured training

corpus.

Simulation 3: Interactivity,
Componential Attractors, and

Generalization

As outlined earlier, the current approach to lexical processing is

basedon a number of general principles of information process-

ing, loosely expressed by the acronym GRAIN (for Graded,

Random, Adaptive, Interactive, and Nonlinear). Together with

the principles of distributed representations and knowledge,

the approach constitutes a substantial departure from tradi-

tional assumptions about the nature of language knowledge

and processing (e.g., Pinker, 1991). It must be noted, however,

that the simulations presented so far involve only determin-

istic, feedforward networks, and thus fail to incorporate two

important principles: interactivity and randomness (intrinsic

variability). In part, this simplification has been necessary

for practical reasons; interactive, stochastic simulations are

far more demanding of computational resources. More im-

portantly, including only some of the relevant principles in a

given simulation enables more detailed analysis of the specific

contribution that each makes to the overall behavior of the sys-

tem. This has been illustrated most clearly in the current work

with regard to the nature of the distributed representations used

for orthography and phonology, and the relative influences of

frequency and consistency on network learning (adaptivity).

Nonetheless, each such network constitutes only an approxi-

mation or abstraction of a more complete simulation that would

incorporate all of the principles. The methodology of consid-

ering sets of principles separately relies on the assumption that

there are no unforeseen, problematic interactions among the

principles, such that the findings with simplified simulations

would not generalize to more comprehensive ones.

The current simulation investigates the implications of in-

teractivity for the process of pronouncing written words and

nonwords. Interactivity plays an important role in connection-

ist explanations of a number of cognitive phenomena (McClel-

land & Elman, 1986; McClelland & Rumelhart, 1981; McClel-

land, 1987), and constitutes a major point of contention with al-

ternative theoretical formulations (Massaro, 1988, 1989). Pro-

cessing in a network is interactive when units can mutually

constrain each other in settling on the most consistent interpre-

tation of the input. For this to be possible, the architecture of

the network must be generalized to allow feedback or recur-
rent connections among units. For example, in the Interactive

Activation model of letter and word perception (McClelland &

Rumelhart, 1981; Rumelhart & McClelland, 1982), letter units

and word units are bidirectionally connected so that the partial

activation of a word unit can feed back to support the activation

of letter units with which it is consistent.

A common way in which interactivity has been employed in

networks is in making particular patterns of activity into stable

attractors. In an attractor network, units interact and update

their states repeatedly in such a way that the initial pattern of
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activity generated by an input gradually settles to the nearest

attractor pattern. A useful way of conceptualizing this process

is in terms of a multidimensional state space in which the

activity of each unit is plotted along a separate dimension. At

any instant in time, the pattern of activity over all of the units

corresponds to a single point in this space. As units change

their states in response to a given input, this point moves in state

space, eventually arriving at the (attractor) point corresponding

to the network’s interpretation. The set of initial patterns that

settle to this same final pattern corresponds to a region around

the attractor, called its basin of attraction. To solve a task,

the network must learn connection weights that cause units to

interact in such a way that the appropriate interpretation of each

input is an attractor whose basin contains the initial pattern of

activity for that input.

In the domain of word reading, attractors have played a

critical role in connectionist accounts of the nature of normal

and impaired reading via meaning (Hinton & Sejnowski, 1986;

Hinton & Shallice, 1991; Plaut & Shallice, 1993). According

to these accounts, the meanings of words are represented in

terms of patterns of activity over a large number of semantic

features. These features can support structured, frame-like rep-

resentations (e.g.,Minsky, 1975) if units represent conjunctions

of roles and properties of role-fillers (Hinton, 1981; Derthick,

1990). As only a small fraction of the possible combinations

of features correspond to the meanings of actual words, it is

natural for a network to learn to make these semantic patterns

into attractors. Then, in deriving the meaning of a word from

its orthography, the network need only generate an initial pat-

tern of activity that falls somewhere within the appropriate

semantic attractor basin; the settling process will clean up this

pattern into the exact meaning of the word.10 If, however,

the system is damaged, the initial activity for a word may fall

within a neighboring attractor basin, typically corresponding

to a semantically-related word. The damaged network will

then settle to the exact meaning of that word, resulting in a se-

mantic error (e.g., CAT read as “dog”). In fact, the occurrence

of such errors is the hallmark symptom of a type of acquired

reading disorder known as deep dyslexia (see Coltheart, Pat-

terson, & Marshall, 1980, for more details on the full range

of symptoms of deep dyslexia, and Plaut & Shallice, 1993,

for connectionist simulations replicating these symptoms). In

this way, attractors obviate the need for word-specific units

in mediating between orthography and semantics (see Hinton,

McClelland, & Rumelhart, 1986, for discussion).

When applied to the mapping from orthography to phonol-

ogy, however, the use of interactivity to form attractors would

10This characterization of deriving word meanings is necessarily oversim-

plified. Words with multiple, distinct meanings would map to one of a number

of separate semantic attractors. Shades of meaning across contexts could be

expressed by semantic attractors that are regions in semantic space instead

of single points. Notice that these two conditions can be seen as ends of a

continuum involving various degrees of similarity and variability among the

semantic patterns generated by a word across contexts (also see McClelland,

St. John, & Taraban, 1989).

appear problematic. In particular, the correct pronunciation of

a nonword typically does not correspond to the pronunciation

of some word. If the network develops attractors for word

pronunciations, one might expect that the input for a nonword

would often be captured within the attractor basin for a similar

word, resulting in many incorrect lexicalizations. More gen-

erally, attractors would seem to be appropriate only for tasks,

such as semantic categorization or object recognition, in which

the correct response to a novel input is a familiar output. By

contrast, in oral reading, the correct response to a novel input

is typically a novel output. If it is true that attractors can-

not support this latter sort of generalization, their applicability

in reading specifically, and cognitive science more generally,

would be fundamentally limited.

The current simulation demonstrates that these concerns are

ill-founded, and that, with appropriately structured represen-

tations, the principle of interactivity can operate effectively in

the phonological pathway as well as in the semantic pathway

(see Figure 1). The reason is that, in learning to map orthog-

raphy to phonology, the network develops attractors that are

componential—they have substructure that reflects common

sublexical correspondences between orthography and phonol-

ogy. This substructure applies not only to most words but also

to nonwords, enabling them to be pronounced correctly. At

the same time, the network develops attractors for exception

words that are far less componential. Thus, rather than be-

ing a hindrance, attractors are a particularly effective style of

computation for quasi-regular tasks such as word reading.

A further advantage of an attractor network over a feed-

forward network in modeling word reading is that the former

provides a more direct analogue of naming latency. Thus far,

we have followed SM89 in using an error measure in a feedfor-

ward network to account for naming latency data from subjects.

SM89 offer two justifications for this approach. The first is

based on the assumption that the accuracy of the phonological

representation of a word would directly influence the execution

speed of the corresponding articulatory motor program (see

Lacouture, 1989; Zorzi et al., 1995, for simulations embody-

ing this assumption). This assumption is consistent with the

view that the time required by the orthography-to-phonology

computation itself does not vary systematically with word fre-

quency or spelling-sound consistency. If this were the case, a

feedforward network of the sort SM89 and we have used,which

takes the same amount of time to process any input, would be a

reasonable rendition of the nature of the phonological pathway

in subjects.

An alternative justification for the use of error scores to

model naming latencies, mentioned only briefly by SM89, is

based on the view that the actual computation from orthog-

raphy to phonology involves interactive processing, such that

the time to settle on an appropriate phonological representation

does vary systematically with word type. The naming latencies

exhibited by subjects are a function of this settling time, per-

haps in conjunction with articulatory effects. Accordingly, a
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Figure 12. The architecture of the attractor network. Ovals

represent groups of units, and arrows represent complete con-

nectivity from one group to another.

feedforward implementation of the mapping from orthography

to phonology should be viewed as an abstraction of a recurrent

implementation that would more accurately approximate the

actual word reading system. Studying the feedforward imple-

mentation is still informative because many of its properties,

including its sensitivity to frequency and consistency, depend

on computational principles of operation that would also apply

to a recurrent implementation—namely, adaptivity, distributed

representations and knowledge, and nonlinearity. These prin-

ciples merely manifest themselves differently: influences that

reduce error in a feedforward network serve to accelerate set-

tling in a recurrent network. Thus, error in a feedforward

network is a valid approximation of settling time in a recur-

rent network because they both arise from the same underlying

causes: additive frequency and consistency effects in the con-

text of a nonlinear gradual ceiling effect. Nonetheless, even

given these arguments, it is important to verify that a recurrent

implementation that reads words and nonwords as accurately

as skilled readers also reproduces the relevant empirical pat-

tern of naming latencies directly in the time it takes to settle in

pronouncing words.

Method

Network Architecture. The architecture of the attractor

network is shown in Figure 12. The numbers of grapheme,

hidden, and phoneme units are the same as in the feedforward

networks, but the attractor network has some additional sets

of connections. Each input unit is still connected to each

hidden unit which, in turn, is connected to each phoneme

unit. In addition, each phoneme unit is connected to each

other phoneme unit (including itself), and each phoneme unit

sends a connection back to each hidden unit. The weights on

the two connections between a pair of units (e.g., a hidden

unit and a phoneme unit) are trained separately and need not

have identical values. Including the biases of the hidden and

phoneme units, the network has a total of 26,582 connections.

The states of units in the network change smoothly over time

in response to influences from other units. In particular, the
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Figure 13. The state over time of a continuous unit, initialized

to 0.5 and governed by Equation 14, when presented with fixed

external input from other units of varying magnitude. The

curves of state values for negative external input are the exact

mirror images of these curves, approaching 0 instead of 1.

instantaneous change over time ➔ of the input →✽➣ to unit ↔ is

proportional to the difference between its current input and the

summed contribution from other units.

d →✔➣
d➔➙↕➜➛❱➝➟➞ ➝➡➠✜➝ ➣➤➢✥➥✛➣➧➦➨→✽➣ ➩ 14 ➫

The state ➞ ➣ of unit ↔ is ➭✜➯➡→ ➣❁➲ , the standard logistic func-

tion of its integrated input, that ranges between 0 and 1 (see

Equation 2). For clarity, we will call the summed input from

other units ➳ (plus the bias) the external input to each unit, to

distinguish it from the integrated input that governs the unit’s

state.

According to Equation 14, when a unit’s integrated in-

put is perfectly consistent with its external input (i.e., → ➣ =➵ ➝ ➞ ➝ ➠ ➝ ➣ ➢✥➥ ➣ ), the derivative is zero and the unit’s integrated

input, and hence its state, ceases to change. Notice that its

activity at this point, ➭✜➯ ➵ ➝ ➞ ➝ ➠ ➝ ➣ ➢➸➥ ➣▲➲ , is exactly the same as

it would be if it were a standard unit that computes its state

from the external input instantaneously (as in a feedforward

network; see Equations 1 and 2). To illustrate this, and to

provide some sense of the temporal dynamics of units in the

network, Figure 13 shows the activity over time of a single unit,

initialized to 0.5 and governed by Equation 14, in response to

external input of varying magnitude. Notice that, over time,

the unit state gradually approaches an asymptotic value equal

to the logistic function applied its external input.

For the purposes of simulation on a digital computer, it is

convenient to approximate continuous units with finite differ-

ence equations, in which time is discretized into ticks of some
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duration ➺ : ➻ →✔➣ ↕ ➺➧➼ ➛ ➝❉➞ ➝✛➠✜➝ ➣➤➢➽➥✛➣➾➦➚→✔➣▲➪
where

➻ →✔➣ ↕ →❱➶ ➹❙➘➣ ➦✉→➴➶ ➹✛➷➮➬✯➘➣ . Using explicit superscripts for

discrete time, this can be rewritten as→ ➶ ➹❙➘➣ ↕ ➺➧➼ ➛ ➝❉➞ ➝✛➠✜➝ ➣➤➢➽➥✛➣❁➪✉➢ (1 ➦❳➺ ) → ➶ ➹✛➷s➬✒➘➣ ➩ 15 ➫
According to this equation, a unit’s input at each time tick is

a weighted average of its current input and that dictated by

other units, where ➺ is the weighting proportion.11 Notice

that, in the limit (as ➺⑧➱ 0) this discrete computation becomes

identical to the continuous one. Thus, adjustments to ➺ affect

the accuracy with which the discrete system approximates the

continuous one, but do not alter the underlying computation

being performed. This is of considerable practical importance,

as the computational time required to simulate the system is

inversely proportional to ➺ . A relatively larger ➺ can be used

during the extensive training period (0.2 in the current simula-

tion), when minimizing computation time is critical, whereas a

much smaller ➺ can be used during testing (e.g., 0.01), when a

very accurate approximation is desired. As long as ➺ remains

sufficiently small for the approximations to be adequate, these

manipulations do not fundamentally alter the behavior of the

system.

Training Procedure. The training corpus for the network

is the same as used with the feedforward network trained on

actual word frequencies. As in that simulation, the frequency

value of each word is used to scale the weight changes induced

by the word.

The network is trained with a version of back-propagation

designed for recurrent networks, known as back-propagation
through time (Rumelhart, Hinton, & Williams, 1986a, 1986b;

Williams & Peng, 1990), further adapted for continuous

units (Pearlmutter, 1989). In understanding back-propagation

through time, it may help to think of the computation in stan-

dard back-propagation in a three layer feedforward network as

occurring over time. In the forward pass, the states of input

units are clamped at time ➔ ↕ 0. Hidden unit states are com-

puted at ➔ ↕ 1 from these input unit states, and then output

unit states are computed at ➔ ↕ 2 from the hidden unit states.

In the backward pass, error is calculated for the output units

based on their states ( ➔ ↕ 2). Error for the hidden units and

weight changes for the hidden-to-output connections are cal-

culated based on the error of the output units ( ➔ ↕ 2) and the

states of hidden units ( ➔ ↕ 1). Finally, the weight changes for

11These temporal dynamics are somewhat different from those of the Plaut

and McClelland (1993, Seidenberg et al., 1994) network. In that network,

each unit’s input was set instantaneously to the summed external input from

other units; the unit’s state was a weighted average of its current state and the

one dictated by its instantaneous input.

the input-to-hidden connections are calculated based on the

hidden unit error (➔ ↕ 1) and the input unit states (➔ ↕ 0).

Thus, feedforward back-propagation can be interpreted as in-

volving a pass forward in time to compute unit states, followed

by a pass backward in time to compute unit error and weight

changes.

Back-propagation through time has exactly the same form,

except that, because a recurrent network can have arbitrary

connectivity, each unit can receive contributions from any unit

at any time, not just from those in earlier layers (for the forward

pass) or later layers (for the backward pass). This means that

each unit must store its state and error at each time tick, so

that these values are available to other units when needed. In

addition, the states of non-input units affect those of other units

immediately, so they need to be initialized to some neutral

value (0.5 in the current simulation). In all other respects,

back-propagation through time is computationally equivalent

to feedforward back-propagation. In fact, back-propagation

through time can be interpreted as “unfolding” a recurrent

network into a much larger feedforward network with a layer

for each time tick composed of a separate copy of all the units in

the recurrent network (see Minsky & Papert, 1969; Rumelhart,

Hinton, & Williams, 1986a, 1986b).

In order to apply back-propagation through time to contin-

uous units, the propagation of error in the backward pass must

be made continuous as well (Pearlmutter, 1989). If we use ✃ ➣
to designate the derivative of the error with respect to the input

of unit ↔ , then, in feedforward back-propagation:✃ ➣ ↕❴❐➴❒❐ ➞ ➣ ➭❱❮ ➯ → ➣ ➲
where ❒ is the cross-entropy error function and ➭ ❮ ➩✯❰✱➫ is the

derivative of the logistic function. In the discrete approxima-

tion to back-propagation through time with continuous units,

this becomes✃✪➶ ➹✇➘➣ ↕ ➺ ❐➴❒❐ ➞ ➶ ➹ÐÏs➬✒➘➣ ➭❱❮❁Ñ▲→❱➶ ➹ÐÏs➬✯➘➣ Ò ➢ (1 ➦❳➺ ) ✃✪➶ ➹ÐÏs➬✒➘➣
Thus, ✃✛➣ is a weighted average backwards in time of its current

value and the contribution from the current error of the unit. In

this way, as in standard back-propagation, ✃Ó➣ in the backward

pass is analogous to →✽➣ in the forward pass (cf. Equation 15).

As output units can interact with other units over the course

of processing a stimulus, they can indirectly affect the error

for other output units. As a result, the error for an output

unit becomes the sum of two terms: the error due to the dis-

crepancy between its own state and its target, and the error

back-propagated to it from other units. The first term is often

referred to as error that is injected into the network by the

training environment, while the second term might be thought

of as error that is internal to the network.

Given that the states of output units vary over time, they

can have targets that specify what states they should be in at
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particular points in time. Thus, in back-propagation through

time, error can be injected at any or all time ticks, not just at

the last one as in feedforward back-propagation. Targets that

vary over time define a trajectory that the output states will

attempt to follow (see Pearlmutter, 1989, for a demonstration

of this type of learning). If the targets remain constant over

time, however, the output units will attempt to reach their

targets as quickly as possible and remain there. In the current

simulation, we use this technique to train the network to form

stable attractors for the pronunciations of words in the training

corpus.

It is possible for the states of units to change quickly if

they receive a very large summed input from other units (see

Figure 13). However, even for rather large summed input,

units typically require some amount of time to approach an

extremal value, and may never completely reach it. As a

result, it is practically impossible for units to achieve targets

of 0 or 1 immediately after a stimulus has been presented. For

this reason, in the current simulation, a less stringent training

regime is adopted. Although the network is run for 2.0 units

of time, error is injected only for the second unit of time; units

receive no direct pressure to be correct for the first unit of

time (although back-propagated internal error causes weight

changes that encourage units to move towards the appropriate

states as early as possible). In addition, output units are trained

to targets of 0.1 and 0.9 rather than 0 and 1, although no error is

injected if a unit exceeds its target (e.g., reaches a state of 0.95

for a target of 0.9). This training criterion can be achieved by

units with only moderately large summed input (see the curve

for input = 4 in Figure 13).

As with the feedforward network using actual frequencies,

the attractor network was trained with a global learning rate ➋ ↕
0 Ô 05 (with adaptive connection-specific rates) and momentumÕ ↕ 0 Ô 9. Furthermore, as mentioned above, the network was

trained using a discretization ➺ ↕ 0 Ô 2. Thus, units update their

states 10 times (2 Ô 0 Ö 0 Ô 2) in the forward pass, and they back-

propagate error 10 times in the backward pass. As a result, the

computational demands of the simulation are about 10 times

that of one of the feedforward simulations. In an attempt to

reduce the training time, momentum was increased to 0.98

after 200 epochs. To improve the accuracy of the network’s

approximation to a continuous system near the end of training,➺ was reduced from 0.2 to 0.05 at epoch 1800, and reduced

further to 0.01 at epoch 1850 for an additional 50 epochs of

training. During this final stage of training, each unit updated

its state 200 times over the course of processing each input.

Testing Procedure. A fully adequate characterization of

response generation in distributed connectionist networks

would involve stochastic processing (see McClelland, 1991)

and, thus, is beyond the scope of the present work. As an

approximation in a deterministic attractor network, we use a

measure of the time it takes the network to compute a stable

output in response to a given input. Specifically, the network

responds when the average change in the states of the phoneme

units falls below some criterion (0.00005 with ➺ ↕ 0 Ô 01 for the

results below).12 At this point, the network’s naming latency

is the amount of continuous time that has passed in processing

the input, and its naming response is generated on the basis of

the current phoneme states using the same procedure as for the

feedforward networks.

Results
Word Reading. After 1900 epochs of training, the net-

work pronounces correctly all but 25 of the 2998 words in the

training corpus (99.2% correct). About half of these errors are

regularizations of low-frequency exception words (e.g., SIEVE➌ /sEv/, SUEDE ➌ /swEd/, TOW ➌ /tW/). Most of the remaining

errors would be classified as visual errors (e.g., FALL ➌ /folt/,

GORGE ➌ /grOrj/, HASP ➌ /h@ps/) although four merely have

consonants that failed to reach threshold (ACHE ➌ /A/, BEIGE➌ /bA/, TZAR ➌ /ar/, WOUND ➌ /Und/). All in all, the network

has come close to mastering the training corpus, although its

performance is slightly worse than that of the equivalent feed-

forward network.

Even though the network settles to a representation of the

phonemes of a word in parallel, the time it takes to do so in-

creases with the length of the word. To demonstrate this, we

entered the naming latencies of the network for the 2973 words

it pronounces correctly into a multiple linear regression, using

as predictors (a) orthographic length (i.e., number of letters),

(b) phonological length (i.e., number of phonemes), (c) loga-

rithmic word frequency, and (d) a measure of spelling-sound

consistency equal to the number of friends (including the word

itself) divided by the total number of friends and enemies; thus,

highly consistent words have values near 1 and exception words

have values near 0. Collectively, the four factors account for

15.9% of the variance in the latency values ( ➍ 4 ➎ 2968=139.92;

p ➏ .001). More importantly, all four factors account for signif-

icant unique variance after factoring out the other three (9.9%,

5.6%, 0.8%, and 0.1% for consistency, log-frequency, ortho-

graphic length, and phonological length, respectively, p ➏ .05

for each). In particular, orthographic length is positively cor-

related with naming latency (semipartial r=.089) and accounts

uniquely for 0.8% of its variance ( ➍ 1 ➎ 2968=40.0, p ➏ .001). To

convert this correlation into an increase in RT per letter, the

network’s mean RTs for the Taraban and McClelland (1987)

high- and low-frequency exception words and their regular

consistent controls were regressed against the subject means

reported by Taraban and McClelland, resulting in a scaling

of 188.5 msec per unit of simulation time (with an intercept

of 257 msec). Given this scaling, the effect of orthographic

length in the network is 4.56 msec/letterbasedon its semipartial

correlation with RT (after factoring out the other predictors),

and 7.67 msec/letter based on its direct correlation with RT

(r=.139). Length effects of this magnitude are at the low end

12This specific criterion was chosen because it gives rise to mean response

times that are within the 2.0 units of time over which the network was trained;

other criteria produce qualitatively equivalent results.
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of the range found in empirical studies, although such effects

can vary greatly with subjects’ reading skill (Butler & Hains,

1979) and with the specific stimuli and testing conditions used

(see Henderson, 1982).

Nonword Reading. Table 8 lists the errors made by the

network in pronouncing the lists of nonwords from Glushko

(1979) and from McCann and Besner (1987). The network pro-

duces “regular” pronunciations to 40/43 (93.0%) of Glushko’s

consistent nonwords, 27/43 (62.8%) of the inconsistent non-

words, and 69/80 (86.3%) of McCann and Besner’s control

nonwords. If we accept as correct any pronunciation that is

consistent with that of a word in the training corpus with the

same body (and ignore inflected words and those with J in

the coda), the network pronounces correctly 42/43 (97.7%) of

the inconsistent nonwords, and 68/76 (89.5%) of the control

nonwords. Although the performance of the network on the

consistent nonwords is somewhat worse than that of the feed-

forward networks, it is about equal to the level of performance

Glushko (1979) reported for subjects (93.8%; see Table 3).

Thus, overall, the ability of the attractor network to pronounce

nonwords is comparable to that of skilled readers.

Frequency and Consistency Effects. Figure 14 shows

the mean latencies of the network in pronouncing words of

varying degrees of spelling-sound consistency as a function of

frequency. One of the low-frequency exception words from

the Taraban and McClelland (1987) list was withheld from

this analysis as it is pronounced incorrectly by the network

(SPOOK ➌ /spuk/). Among the remaining words, there are

significant main effects of frequency ( ➍ 3 ➎ 183=25.0, p ➏ .001)

and consistency ( ➍ 3 ➎ 183=8.21, p ➏ .001), and a significant in-

teraction of frequency and consistency ( ➍ 3 ➎ 183=3.49, p=.017).

These effects also obtain in a comparison of only regular and

exception words (frequency: ➍ 1 ➎ 91=10.2, p=.002; consistency:➍ 1 ➎ 91=22.0, p ➏ .001; frequency-by-consistency: ➍ 1 ➎ 91=9.31,

p=.003). Considering each level of consistency separately,

the effect of frequency is significant for exception words

( ➍ 1 ➎ 45=11.9, p=.001) and for ambiguous words ( ➍ 1 ➎ 46=19.8,

p=.001) and marginally significant for regular inconsistent

words ( ➍ 1 ➎ 46=3.51, p=.067). There is no effect of frequency

among regular words (F ➏ 1).

The naming latencies of the network show a significant effect

of consistency for low-frequency words ( ➍ 3 ➎ 91=6.65, p ➏ .001)

but not for high-frequency words ( ➍ 3 ➎ 91=1.71, p=.170). Among

low-frequency words, regular consistent words are signifi-

cantly different from each of the other three types at p ➏ .05,

but regular inconsistent, ambiguous, and exception words are

not significantly different from each other (although the com-

parison between regular inconsistent and exception words is

significant at p=.075). Among high-frequency words, none of

the pairwise comparisons is significant except between regular

and exception words ( ➍ 1 ➎ 46=4.87, p=.032). Thus, overall, the

naming latencies of the network replicate the standard effects

of frequency and consistency as found in empirical studies.
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Figure 14. Naming latency of the attractor network trained on

actual frequencies for words with various degrees of spelling-

sound consistency (listed in Appendix 1) as a function of fre-

quency.

Network Analyses

The network’s success at word reading demonstrates that,

through training, it has developed attractors for the pronun-

ciations of words. How then is it capable of reading nonwords

with novel pronunciations? Why isn’t the input for a nonword

(e.g., MAVE) captured by the attractor for an orthographically

similar word (e.g., GAVE, MOVE, MAKE)? We carried out a

number of analyses of the network to gain a better understand-

ing of its ability to read nonwords. Because nonword reading

involves recombining knowledge derived from word pronunci-

ation, we were primarily concerned with how separate parts of

the input contribute to (a) the correctness of parts of the output,

and (b) the hidden representation for the word. As with naming

latency, the item SPOOK was withheld from these analyses as it

is mispronounced by the network.

Componential Attractors. The first analysis measures

the extent to which each phonological cluster (onset, vowel,

coda) depends on the input from each orthographic cluster.

Specifically, for each word, the activity of the active grapheme

units in a particular orthographic cluster was gradually reduced

until, when the network was rerun, the phonemes in a particular

phonological cluster were no longer correct.13 This boundary
activity level measures how important input from a particular

orthographic cluster is to the correctness of a particular phono-

logical cluster; a value of 1 means that the graphemes in that

cluster must be completely active; a value of 0 means that the

phonemes are completely insensitive to the graphemes in that

cluster. In state space, the boundary level corresponds to the

radius of the word’s attractor basin along a particular direction

(assuming state space includes dimensions for the grapheme

13Final E was considered to be part of the orthographic vowel cluster.
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Table 8

Errors by the Attractor Network in Pronouncing Nonwords

Glushko (1979) McCann and Besner (1987)

Nonword Correct Response Nonword Correct Response

Consistent Nonwords (3/43) Control Nonwords (11/80)

*HODE /hOd/ /hOdz/ *KAIZE /kAz/ /skwAz/

*SWEAL /swEl/ /swel/ *ZUPE /zUp/ /zyUp/

*WOSH /waS/ /wuS/ *JAUL /jol/ /jOl/

Inconsistent Nonwords (16/43) *VOLE /vOl/ /vOln/

BLEAD /blEd/ /bled/ *YOWND /yWnd/ /(y 0.04)Ond/

BOST /bost/ /bOst/ KOWT /kWt/ /kOt/

COSE /kOz/ /kOs/ *VAWX /voks/ /voNks/

COTH /koT/ /kOT/ FAIJE /fAj/ /fA(j 0.00)/

GROOK /grUk/ /gruk/ *ZUTE /zUt/ /zyUt/

LOME /lOm/ /l Ý m/ *YOME /yOm/ /yam/

MONE /mone/ /m Ý n/ JINJE /jinj/ /jIn(j 0.00)/

PLOVE /plOv/ /plUv/

POOT /pUt/ /put/

*POVE /pOv/ /pav/

SOOD /sUd/ /sud/

SOST /sost/ /sOst/

SULL /s Ý l/ /sul/

WEAD /wEd/ /wed/

WONE /wOn/ /w Ý n/

WUSH /w Ý S/ /wuS/

Note: /a/ in POT, /@/ in CAT, /e/ in BED, /i/ in HIT, /o/ in DOG, /u/ in GOOD, /A/ in MAKE, /E/ in KEEP, /I/

in BIKE, /O/ in HOPE, /U/ in BOOT, /W/ in NOW, /Y/ in BOY, / Þ / in CUP, /N/ in RING, /S/ in SHE, /C/ in

CHIN /Z/ in BEIGE, /T/ in THIN, /D/ in THIS. The activity levels of correct but missing phonemes are listed

in parentheses. In these cases, the actual response is what falls outside the parentheses. Words marked

with “*” remain errors after considering properties of the training corpus (as explained in the text).
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units).

This procedure was applied to the Taraban and McClel-

land (1987) regular consistent, regular inconsistent, and ex-

ception words, as well as to the corresponding set of ambigu-

ous words (see Appendix 1). Words were excluded from the

analysis if they lacked an orthographic onset or coda (e.g.,

ARE, DO). The resulting boundary values for each combination

of orthographic and phonological clusters were subjected to

an ANOVA with frequency and consistency as between-item

factors and orthographic cluster and phonological cluster as

within-item factors.

With regard to frequency, high-frequency words have lower

boundary values than low-frequency words (0.188 vs. 0.201,

respectively; ➍ 1 ➎ 162=6.48, p=.012). However, frequency does

not interact with consistency ( ➍ 3 ➎ 162=2.10, p=.102) nor with

orthographic or phonological cluster ( ➍ 2 ➎ 324=1.49, p=.227; and➍ 2 ➎ 324=2.46, p=.087, respectively). Thus, we will consider

high- and low-frequency words together in the remainder of

the analysis.

There is a strong effect of consistency on the boundary values

( ➍ 3 ➎ 162=14.5, p ➏ .001), and this effect interacts both with ortho-

graphic cluster ( ➍ 6 ➎ 324=16.1, p ➏ .001) and with phonological

cluster ( ➍ 6 ➎ 324=20.3, p ➏ .001). Figure 15 presents the average

boundary values of each orthographic cluster as a function of

phonological cluster, separately for words of each level of con-

sistency. Thus, for each type of word, the set of bars for each

phonological cluster indicates how sensitive that cluster is to

input from each orthographic cluster. Considering regular con-

sistent words first, the figure shows that each phonological clus-

ter depends almost entirely on the corresponding orthographic

cluster, and little if at all on the other clusters. For instance, the

vowel and coda graphemes can be completely removed without

affecting the network’s pronunciation of the onset. There is a

slight interdependence among the vowel and coda, consistent

with the fact that word bodies capture important information

in pronunciation (see, e.g., Treiman & Chafetz, 1987; Treiman

et al., in press). Nonetheless, neither the phonological vowel

nor coda cluster depends on the orthographic onset cluster.

Thus, for a regular word like MUST, an alternative onset (e.g.,

N) can be substituted and pronounced without depending on or

affecting the pronunciation of the body (producing the correct

pronunciation of the nonword NUST).

Similarly, for regular inconsistent, ambiguous, and excep-

tion words, the correctness of the phonological onset and coda

is relatively independent of non-corresponding parts of the

orthographic input. The pronunciation of the vowel, how-

ever, is increasingly dependent on the orthographic conso-

nants as consistency decreases (main effect of consistency:➍ 3 ➎ 166=47.7, p ➏ .001; p ➏ .05 for all pairwise comparisons). In

fact, most spelling-sound inconsistency in English involves

unusual vowel pronunciations. Interestingly, for exception

words, the vowel pronunciation is less sensitive to the ortho-

graphic vowel itself than it is to the surrounding (consonant)

context (orthographic onset vs. vowel: ➍ 1 ➎ 41=8.39, p=.006;
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Figure 15. The degree of activity in each orthographic clus-

ter required to activate each phonological cluster correctly,

for words of various spelling-sound consistency (listed in Ap-

pendix 1). Words lacking either an onset or coda consonant

cluster in orthography were excluded from the analysis.
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coda vs. vowel: ➍ 1 ➎ 41=6.97, p=.012). This makes sense, as the

orthographic vowel in an exception word is a misleading indi-

cator of the phonological vowel. Thus, in contrast to regular

consistent words, words with ambiguous or exceptional vowel

pronunciations depend on the entire orthographic input to be

pronounced correctly.

These effects can be understood in terms of the nature of

the attractors that develop when training on different types of

words. The relative independence of the onset, vowel, and coda

correspondences indicates that the attractor basins for regular

words consist of three separate, orthogonal sub-basins (one for

each cluster). When a word is presented, the network settles

into the region in state space where these three sub-basins over-

lap, corresponding to the word’s pronunciation. However, each

sub-basin can apply independently, so that “spurious” attractor

basins exist where the sub-basins for parts of words overlap

(see Figure 16). Each of these combinations corresponds to

a pronounceable nonword that the network will pronounce

correctly if presented with the appropriate orthographic input.

This componentiality arises directly out of the degree to which

the network’s representations make explicit the structure of the

task. By minimizing the extent to which information is repli-

cated, the representations condense the regularities between

orthography and phonology. Only small portions of the input

and output are relevant to a particular regularity, allowing it to

operate independently of other regularities.

The attractor basins for exception words, by contrast, are far

less componential than those for regular words (unfortunately,

this cannot be depicted adequately in a two-dimensional di-

agram such as Figure 16). In this way, the network can

pronounce exception words and yet still generalize well to

nonwords. It is important to note, however, that the attrac-

tors for exception words are noncomponential only in their

exceptional aspects—not in a monolithic way. In particular,

while the consonant clusters in (most) exception words com-

bine componentially, the correct vowel phoneme depends on

the entire orthographic input. Thus, a word like PINT is in

some sense three-quarters regular, in that its consonant corre-

spondences contribute to the pronunciations of regular words

and nonwords just like those of other items. The traditional

dual-route characterization of a lexical “look-up” procedure

for exception words fails to do justice to this distinction.

The Development of Componentiality in Learning. We

can gain insight into the development of this componentiality

by returning to the simple, two-layer Hebbian network that

formed the basis for the frequency-consistency equation (see

Figure 6; also see Van Orden et al., 1990, for related discus-

sion). As expressed by Equation 7, the value of each weight➠✜➝ ➣ in the network is equal to the sum over training patterns,

weighted by the learning rate, of the product of the state of

input unit ➳ and the state of output unit ↔ . Patterns for which

the input state is 0 do not contribute to the sum, and those for

which it is 1 contribute the value of the output state, which is

either ➢ 1 or ➦ 1 in this formulation. Thus, the value of the

trained attractor (word)

spurious attractor (nonword)
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"by"

"ny"
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Figure 16. A depiction of how componential attractors for

words can recombine to support pronunciations of nonwords.

The attractor basins for words consist of orthogonal sub-basins

for each of its clusters (only two are depicted here). Spurious

attractors for nonwords exist where the sub-basins for parts

of words overlap. To support the noncomponential aspects of

attractors for exception words (e.g., DO), the sub-basins for

vowels in the region of the relevant consonant clusters must be

distorted somewhat (into dimensions in state space other than

the ones depicted).



Understanding Normal and Impaired Word Reading 40

weight can be re-expressed in terms of two counts: the number

of consistent patterns, ñ ➶ òsó ô✺➘ , in which the states of units ➳ and↔ are both positive, and the number of inconsistent patterns,ñ ➶ õ ó ô ➘ , in which ➳ is positive but ↔ is negative.➠✜➝ ➣ ↕ ➋öÑ◆ñ ➶ ò ó ô ➘ ➦÷ñ ➶ õ ó ô ➘ Ò
If patterns differ in their frequency of occurrence, these counts

simply become cumulative frequencies (see Equation 12); for

clarity of presentation, we leave this out here (see Reggia et al.,

1988, for a simulation based directly on these frequencies).

Now consider a word like PINT ➌ /pInt/. Over the entire set

of words, the onset P and /p/ typically co-occur (but not always;

cf. PHONE), so that ñ ➶ òøó ôÓ➘ is large and ñ ➶ õùó ô✛➘ is small, and the

weight between these two units becomes strongly positive. By

contrast, /p/ never co-occurs with, for example, an onset K

(i.e., ñ ➶ òøó ô✺➘ ↕ 0 and ñ ➶ õùó ô✛➘ is large), leading to a strongly

negative weight between them. For onset letters that can co-

occur with /p/ and P, such as L, ñ ➶ òøó ôÓ➘ is positive and the

resulting weight is thus less negative. Going a step further,

onset /p/ can co-occur with virtually any orthographic vowel

and coda, so ñ ➶ òøó ôÓ➘ for each relevant connections is larger and

the weight is closer to zero. Actually, given that each phoneme

is inactive for most words, its weights from graphemes in

non-corresponding clusters will tend to become moderately

negative when using Hebbian learning. With error-correcting

learning, however, these weights remain near zero because

the weights between corresponding clusters are sufficient—

and more effective, due to the higher unit correlations—for

eliminating the error. These same properties hold for /n/ and /t/

in the coda. Thus, the unit correlations across the entire corpus

give rise to a componential pattern of weights for consonant

phonemes, with significant values only on connections from

units in the corresponding orthographic cluster (see Brousse &

Smolensky, 1989, for additional relevant simulations).

The situation is a bit more complicated for vowels. First

of all, there is far more variability across words in the

pronunciation of vowels as compared with consonants (see

Venezky, 1970). Consequently, for connections between vowel

graphemes and phonemes, generally ñ ➶ òøó ôÓ➘ is smaller andñ ➶ õùó ôÓ➘ is larger than for the corresponding onset and coda con-

nections. The more critical issue concerns exceptional vowel

pronunciations in words like PINT. Here, for the I—/I/ cor-

respondence, the small ñ ➶ òøó ôÓ➘ is overwhelmed by the largeñ ➶ õùó ôÓ➘ that comes from the much more common I—/i/ corre-

spondence (in which /I/ has a state of ➦ 1). Furthermore, with

Hebbian learning, the correlations of /i/ with the consonants

P, N, and T are too weak to help. Error-correcting learning

can compensate to some degree, by allowing the weights from

these consonant units to grow larger than dictated by corre-

lation under the pressure to eliminate error. Note that this

reduces the componentiality of the vowel phoneme weights.

Such cross-cluster weights cannot provide a general solution

to pronouncing exception words, however, because, in a di-

verse corpus, the consonants must be able to co-exist with

many other vowel pronunciations (e.g., PUNT, PANT). In order

for a network to achieve correct pronunciations of exception

words while still maintaining the componentiality for regu-

lar words (and nonwords), error-correction must be combined

with the use of hidden units in order to re-represent the simi-

larities among the words in a way that reduces the interference

from inconsistent neighbors (as discussed earlier).

Internal Representations. The first analysis established

the componentiality of the attractors for regular words behav-

iorally, and the second showed how it arises from the nature of

learning in a simpler, related system. We know that simultane-

ously supporting the less componential aspects of word reading

in the same system requires hidden units and error correction,

but we have yet to characterize how this is accomplished. The

most obvious possibility would be the one raised for the feed-

forward networks—that the network has partitioned itself into

two sub-networks: a fully componential one for regular words

(and nonwords), and a much less componential one for excep-

tion words. As before, however, this does not seem to be the

case. If we apply the criterion that a hidden unit is important

for pronouncing an item if its removal increases the total er-

ror on the item by more than 0.1, then there is a significant

positive correlation between the numbers of exception words

and the numbers of orthographically-matched nonwords (listed

in Appendix 1) for which hidden units are important ( ú =.71,➔ 98=9.98, p ➏ .001). Thus, the hidden units have not become

specialized for processing particular types of items.

The questions remains, then, as to how the attractor

network—as a single mechanism—implements componential

attractors for regular words (and nonwords) and less com-

ponential attractors for exception words. A second analysis

attempts to characterize the degree to which hidden represen-

tations for regular versus exception words reflect the differ-

ences in the componentiality of their attractors. Specifically,

we attempted to determine the extent to which the contribution

that an orthographic cluster makes to the hidden representa-

tion depends on the context in which it occurs—this should be

less for words with more componential representations. For

example, consider the onset P in an exception word like PINT.

When presented by itself, the onset need only generate its own

pronunciation. When presented in the context of INT, the P

must also contribute to altering the vowel from /i/ to /I/. By

contrast, in a regular word like PINE, the onset P plays the

same role in the context of INE as when presented in isolation.

Thus, if the hidden representations of regular words are more

componential than those of exception words, the contribution

of an onset (P) should be more greatly affected by the presence

of an exception context ( INT) than by a regular context ( INE).

We measured the contribution of an orthographic cluster in

a particular context by first computing the hidden representa-

tion generated by the cluster with the context (e.g., PINT), and

subtracting from this (unit by unit) as a baseline condition,

the hidden representation generated by the context alone (e.g.,

INT). The contribution of a cluster in isolation was computed
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Figure 17. The similarity (correlations) of the contribution

that each orthographic cluster makes to the hidden representa-

tion in the context of the remaining clusters versus in isolation,

for the Taraban and McClelland (1987) exception words and

their regular consistent control words.

similarly, except that the baseline condition in this case is the

representation generated by the network when presented with

no input (i.e., all grapheme units are set to 0). The correlation

between these two vector differences was used as a measure

of the similarity of the contribution of the cluster in the two

conditions. A high correlation indicates that the contribution

of a cluster to the hidden representation is independent of the

presence of other clusters, and hence, reflects a high degree of

componentiality.

These contribution correlations were computed separately

for the onset, vowel, and coda clusters of the Taraban and Mc-

Clelland (1987) exception words and their frequency-matched

regular consistent control words. Words lacking either an onset

or a coda were withheld from the analysis. The correlations

for the remaining words were subjected to an ANOVA with

frequency and consistency as between-item factors and ortho-

graphic cluster as a within-item factor. There was no main

effect of frequency ( ➍ 1 ➎ 85, p=.143) nor any significant inter-

action of frequency with consistency or orthographic cluster

(F ➏ 1 for both) so this factor is not considered further. Fig-

ure 17 shows the average correlations for regular and exception

words as a function of orthographic cluster.

There is no significant interaction of consistency with ortho-

graphic cluster (F ➏ 1). There is, however, a significant main

effect of cluster ( ➍ 2 ➎ 170=16.1, p ➏ .001), with the vowel clus-

ter producing lower correlations than either consonant clus-

ter (vowel vs. onset: ➍ 1 ➎ 88=26.8, p ➏ .001; vowel vs. coda:➍ 1 ➎ 88=21.0, p ➏ .001). More importantly, regular words have

higher correlations than exception words [means (standard

deviations): 0.828 (0.0506) vs. 0.795 (0.0507), respectively;➍ 1 ➎ 85=20.7, p ➏ .001]. Thus, the contributions of orthographic

clusters to the hidden representations are more independent of

context in regular words than in exception words. In this sense,

the representations of regular words are more componential.

What is surprising, however, is that the average correlations

for exception words, though lower than those of regular words,

are still quite high, and there is considerable overlap between

the distributions. Furthermore, the representations for regu-

lar words are not completely componential, given that their

correlations are significantly less than 1.0.

Apparently, the hidden representations of words only

slightly reflect their spelling-sound consistency. An alterna-

tive possibility is that these representations capture predom-

inantly orthographic information across a range of levels of

structure (from individual graphemes to combinations of clus-

ters; cf. Shallice & McCarthy, 1985). If this were the case, the

low-order orthographic structure about individual graphemes

and clusters could support componential attractors for regular

words. The presence of higher-order structure would make the

representation of clusters in both regular and exception words

somewhat sensitive to context in which they occur. More im-

portantly, this higher-order structure would be particular useful

for pronouncing exception words, by overriding at the phono-

logical layer the standard spelling-sound correspondences of

individual clusters. In this way, noncomponential aspects of

the attractors for exception words could co-exist with compo-

nential attractors for regular words.

To provide evidence bearing on this explanation, a final

analysis was carried out to determine the extent to which the

hidden representations are organized on the basis of ortho-

graphic (as opposed to phonological) similarity. The hidden

representations for a set of items are organized orthographi-

cally (or phonologically) to the extent that pairs of items with

similar hidden representations have similar orthographic (or

phonological) representations. Put more generally, the sets

representations over two groups of units have the same struc-

ture to the extent that they induce the same relative similarities

among items.

To control for the contribution of orthography as much as

possible, the analysis involved 48 triples, each consisting of a

nonword, a regular inconsistent word, and an exception word

that all share the same body (e.g., PHINT, MINT, PINT; listed

in Appendix 1). For each item in a triple, we computed the

similarity of its hidden representation with the hidden repre-

sentations of all of the other items of the same type (mea-

suring similarity by the correlation of unit activities). The

similarities among orthographic representations and among

phonological representations were computed analogously. The

orthographic, hidden, and phonological similarity values for

each item were then correlated in a pairwise fashion (i.e.,

orthographic-phonological, hidden-orthographic, and hidden-

phonological). Figure 18 presents the means of these correla-

tion values for nonwords, regular words, and exception words,

as a function of each pair of representation types.

First consider the correlation between the orthographic and
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Figure 18. The correlations among orthographic, hidden, and

phonological similarities for body-matched nonwords, regular

inconsistent words,and exception words (listed in Appendix 1).

phonological similarities. These values reflect the relative

amounts of structure in the spelling-sound mappings for dif-

ferent types of items. All of the values are relatively high

because of the systematicity of English word pronunciations;

even within exception words, the consonant clusters tend to

map consistently. Nonetheless, the mappings for exception

words are less structured than for nonwords or regular words

(paired ➔ 47=5.48, p ➏ .001; and ➔ 47=5.77, p ➏ .001, respectively).

In other words, orthographic similarity is less related to phono-

logical similarity for exception words than for the other items.

In a sense, this is the defining characteristic of exception words

and, thus, the finding simply verifies that the representations

used in the simulations have the appropriate similarity struc-

ture.

The more interesting comparisons are those that involve the

hidden representations. As Figure 18 shows, the similarities

among the hidden representations of all types of items are much

more highly correlated with their orthographic similarities than

with their phonological similarities (p ➏ .001 for all pairwise

comparisons). The representations of nonwords and regular

words behave equivalently in this regard. The representations

of exception words show the effect even more strongly, having

significantly less phonological structure than the other two

item types (exception vs. nonword: paired ➔ 47=2.81, p=.007;

exception vs. regular: paired ➔ 47=3.22, p=.002). This may be

due to the reliance of these words on high-order orthographic

structure to override standard spelling-sound correspondences.

Overall, consistent with the explanation offered above, the

hidden representations are organized more orthographically

than phonologically.

Summary
Interactivity, and its use in implementing attractors, is an im-

portant computational principle in connectionist accounts of a

wide range of cognitive phenomena. Although the tendency of

attractors to capture similar patterns might appear to make them

inappropriate for tasks in which novel inputs require novel re-

sponses, such as pronouncing nonwords in oral reading, the

current simulation shows that using appropriately structured

representations leads to the development of attractors with

componential structure that supports effective generalization

to nonwords. At the same time, the network also develops

less componential attractors for exception words that violate

the regularities in the task. A series of analyses suggests that

both the componential and noncomponential aspects of attrac-

tors are supported by hidden representations that reflect ortho-

graphic information at a range of levels of structure. In this

way, attractors provide an effective means of capturing both

the regularities and the exceptions in a quasi-regular task.

A further advantage of an attractor network in this domain

is that its temporal dynamics in settling to a response provide a

more direct analogue of subjects’ naming latencies than error in

a feedforward network. In fact, the time it takes the network to

settle to a stable pronunciation in response to words of varying

frequency and consistency replicates the standard pattern found

in empirical studies.

Simulation 4: Surface Dyslexia and the
Division of Labor Between the

Phonological and Semantic Pathways
A central theme of the current work is that the processing of

words and nonwords can co-exist within connectionist net-

works that employ appropriately structured orthographic and

phonological representations and operate according to certain

computational principles. It must be kept in mind, however,

that SM89’s general lexical framework—on which the current

work is based—contains two pathways by which orthographic

information can influence phonological information: a phono-
logical pathway and a semantic pathway (see Figure 1). Thus

far, we have ignored the semantic pathway in order to focus

on the principles that govern the operation of the phonological

pathway. However, on our view, the phonological and semantic

pathways must work together to support normal skilled read-

ing. For example, semantic involvement is clearly necessary

for correct pronunciation of homographs like WIND and READ.

Furthermore, a semantic variable—imageability—influences

the strength of the frequency-by-consistency interaction in the

naming latencies and errors of skilled readers (Strain, Patter-

son, & Seidenberg, in press). Even in traditional dual-route

theories (see, e.g., Coltheart et al., 1993; Coltheart & Rastle,

1994), the lexical procedure must influence the output of the

sublexical procedure to account for consistency effects among

regular words and nonwords (Glushko, 1979).
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The SM89 framework (and the implied computational prin-

ciples) provides a natural formulation of how contributions

from both the semantic and phonological pathways might be

integrated in determining the pronunciation of a written word.

Critically, when formulated in connectionist terms, this inte-

gration has important implications for the nature of learning
in the two pathways. In most connectionist systems, learning

is driven by some measure of the discrepancy or error between

the correct response and the one generated by the system. To

the extent that the contribution of one pathway reduces the

overall error, the other pathway will experience less pressure

to learn. As a result, on its own, it may master only those items

it finds easiest to learn. Specifically, if the semantic pathway

contributes significantly to the pronunciation of words, then

the phonological pathway need not master all of the words by

itself. Rather, it will tend to learn best those words high in

frequency and/or consistency; low-frequency exception words

may never be learned completely. This is especially true if

there is some intrinsic pressure within the network to prevent

overlearning—for example, if weights have a slight bias toward

staying small. Of course, the combination of the semantic and

phonological pathways will be fully competent. But readers

of equivalent overt skill may differ in their division of labor

between the two pathways (see, e.g., Baron & Strawson, 1976).

In fact, if the semantic pathway continues to improve with ad-

ditional reading experience, the phonological pathway would

become increasingly specialized for consistent spelling-sound

mappings at the expense of even higher-frequency exception

words. At any point, brain damage that reduced or eliminated

the semantic pathway would lay bare the latent inadequacies of

the phonological pathway. In this way, a detailed consideration

of the division of labor between the phonological and seman-

tic pathways is critical to understanding the specific patterns

of impaired and preserved abilities of brain-damaged patients

with acquired dyslexia.

Of particular relevance in this context is the finding that brain

damage can selectively impair either nonword reading or ex-

ception word reading while leaving the other (relatively) intact.

Thus, phonological dyslexic patients (Beauvois & Derouesné,

1979) read words (both regular and exception) much better

than nonwords, whereas surface dyslexic patients (Marshall &

Newcombe, 1973; Patterson et al., 1985) read nonwords much

better than (exception) words.

Phonological dyslexia has a natural interpretation within the

SM89 framework in terms of selective damage to the phono-

logical pathway (or perhaps within phonology itself; see Patter-

son & Marcel, 1992), so that reading is accomplished primarily

(perhaps even exclusively in some patients) by the semantic

pathway. This pathway can pronounce words but is unlikely

to provide much useful support in pronouncing nonwords as,

by definition, these items have no semantics. Along these

lines, as mentioned in the previous section, Plaut and Shal-

lice (1993, also see Hinton & Shallice, 1991) used a series

of implementations of the semantic route to provide a com-

prehensive account of deep dyslexia (Coltheart et al., 1980;

Marshall & Newcombe, 1966), a form of acquired dyslexia

similar to phonological dyslexia but also involving the pro-

duction of semantic errors (see Friedman, in press; Glosser &

Friedman, 1990, for arguments that deep dyslexia is simply the

most severe form of phonological dyslexia). The question of

the exact nature of the impairment that gives rise to reading via

semantics in phonological dyslexia, and whether this interpre-

tation can account for all of the relevant findings, is taken up

in the General Discussion.

Surface dyslexia, on the other hand, would seem to in-

volve reading primarily via the phonological pathway due to

an impairment of the semantic pathway. It its purest, fluent
form (e.g., MP, Behrmann & Bub, 1992; Bub, Cancelliere, &

Kertesz, 1985; KT, McCarthy & Warrington, 1986; HTR, Shal-

lice et al., 1983), patients exhibit normal accuracy and latency

in reading words with consistent spelling-sound correspon-

dences and in reading nonwords, but often misread exception

words, particularly those of low frequency, by giving a pronun-

ciation consistent with more standard correspondences (e.g.,

SEW ➌ “sue”). Although we ascribe such errors to influences

of consistency, they are conventionally termed regularizations
(Coltheart, 1981) and we have retained this terminology. Thus,

there is a frequency-by-consistency interaction in accuracy that

mirrors the interaction in latency exhibited by normal skilled

readers (Andrews, 1982; Seidenberg, 1985; Seidenberg et al.,

1984; Taraban & McClelland, 1987; Waters & Seidenberg,

1985). The relevance of the semantic impairment in surface

dyslexia is supported by the finding that, in some cases of

semantic dementia (Graham, Hodges, & Patterson, 1994; Pat-

terson & Hodges, 1992; Schwartz, Marin, & Saffran, 1979) and

of Alzheimer’s type dementia (Patterson, Graham, & Hodges,

1994), the surface dyslexic reading pattern emerges as lexical

semantic knowledge progressively deteriorates.

Theprevious simulations of the phonological pathway,along

with that of SM89, are similar to surface dyslexic patients in

that they read without the aid of semantics. The simulations

do not provide a direct account of surface dyslexia, however,

as they all read exception words as well as skilled readers.

One possibility is that surface dyslexia arises from partial im-

pairment of the phonological pathway in addition to severe

impairment of the semantic pathway. A more interesting pos-

sibility, based on the division-of-labor ideas above, is that the

development and operation of the phonological pathway is

shaped in an important way by the concurrent development of

the semantic pathway, and that surface dyslexia arises when

the intact phonological pathway operates in isolation due to an

impairment of the semantic pathway.

Two sets of simulations are employed to test the adequacy of

these two accountsof surfacedyslexia. Thefirst set investigates

the effects of damage in the attractor network developed in

the previous simulation. The second involves a new network

trained in the context of support from semantics.
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Phonological Pathway Lesions

Patterson et al. (1989) investigated the possibility that surface

dyslexia might arise from damage to an isolated phonological

pathway. They lesioned the SM89 model, by removing dif-

ferent proportions of units or connections, and measured its

performance on regular and exception words of various fre-

quencies. The damaged network’s pronunciation of a given

word was compared with the correct pronunciation and with

a plausible alternative—for exception words, this was the reg-

ularized pronunciation. Patterson and colleagues found that,

after damage, regular and exception words produce about equal

amounts of error, and there was no effect of frequency in read-

ing exception words. Exception words were much more likely

than regular words to produce the alternative pronunciation,but

a comparison of the phonemic features in errors revealed that

the network showed no greater tendency to produce regulariza-

tions than other errors that differ from the correct pronunciation

by the same number of features. Thus, the damaged network

failed to show the frequency-by-consistency interaction and

the high proportion of regularization errors on exception words

characteristic of surface dyslexia.

Using a more detailed procedure for analyzing responses,

Patterson (1990) found that removing 20% of the hidden

units produced better performance on regular versus exception

words and a (nonsignificant) trend towards a frequency-by-

consistency interaction. Figure 19 shows analogous data from

100 instances of lesions to a replication of the SM89 network,

in which each hidden unit had a probability ✆ of either 0.2 or 0.4

of being removed. Plotted for each severity of damage is the

percent correct on the Taraban and McClelland’s (1987) high-

and low-frequency exception words and their regular consis-

tent control words, the percent of errors on the exception words

that are regularizations, and the percent correct on Glushko’s

(1979) nonwords, counting as correct any pronunciation con-

sistent with that of some word with the same body in the

training corpus. Also shown in the figure are the correspond-

ing data for two surface dyslexic patients: MP (Behrmann &

Bub, 1992; Bub et al., 1985) and KT (McCarthy & Warrington,

1986).

The milder lesions (✆ ↕ 0 Ô 2) produce a good match to MP’s

performance on the Taraban and McClelland words. How-

ever, the more severe lesions (✆ ↕ 0 Ô 4) fail to simulate the

more dramatic effects shown by KT. Instead, while the dam-

aged network and KT perform about equally well on the high-

frequency exception words, the network is not as impaired on

the low-frequency exception words and is much more impaired

on both high- and low-frequency regular words. In addition,

with the less severe damage, only about a third of the net-

work’s errors to exception words are regularizations and only

just above half of the nonwords are pronounced correctly; for

more severe damage, these figures are even lower. By contrast,

both MP and KT produce regularization rates around 85-90%

and are near perfect at nonword reading. Overall, the attempts
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Figure 19. Performance of two surface dyslexic patients (MP,

Behrmann & Bub, 1992; Bub et al., 1985; and KT, McCarthy &

Warrington, 1986) and of a replication of the SM89 model

when lesioned by removing each hidden unit with probability✆ ↕ 0 Ô 2 or 0.4 (results are averaged over 100 such lesions).

Correct performance is given for Taraban and McClelland’s

(1987) high-frequency (HF) and low-frequency (LF) regular

consistent words (Reg) and exception words (Exc), and for

Glushko’s (1979) nonwords. “Reg’s” is the approximate per-

centage of errors on the exception words that are regulariza-

tions.

to account for surface dyslexia by damaging the SM89 model

have been less than satisfactory (see Behrmann & Bub, 1992;

Coltheart et al., 1993, for further criticisms).

One possible explanation of this failing parallels our ex-

planation of the SM89 model’s poor nonword reading: it is

due to the use of representations that do not make the relevant

structure between orthography and phonology sufficiently ex-

plicit. In essence, the influence of spelling-sound consistency

in the model is too weak. This weakness also seems to be

contributing to its inability to simulate surface dyslexia after

severe damage: regular word reading, nonword reading, and

regularization rates are all too low. This interpretation leads to

the possibility that a network trained with more appropriately

structured representations would, when damaged, successfully

replicate the surface dyslexic reading pattern.

Method. The attractor network was lesioned either by re-

moving each hidden unit or each connection between two

groups of units with some probability ✆ , or by adding normally-

distributed noise to the weights on connections between two

groups of units. In the latter case, the severity of the damage

depends on the standard deviation sd of the noise—a higher sd
constitutes a more severe impairment. This form of damage has

the advantage over the permanent removal of units or connec-

tions of reducing the possibility of idiosyncratic effects from

lesions to particular units/connections. As Shallice (1988) has

pointed out, such effects in a network simulation are of little
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interest to the study of the cognitive effects of damage to the

brain given the vast difference in scale between the two sys-

tems (also see Plaut, in press). In general, simulation studies

comparing the effects of adding noise to weights with the ef-

fects of removing units or connections (e.g., Hinton & Shallice,

1991) have found that the two procedures yield qualitatively

equivalent results.14

Fifty instances of each type of lesion of a range of severities

were administered to each of the main sets of connections in the

attractor network (graphemes-to-hidden, hidden-to-phonemes,

phonemes-to-hidden, and phonemes-to-phonemes), and to the

hidden units. After a given lesion, the operation of the network

when presented with an input and the procedure for determin-

ing its response are exactly the same as in Simulation 3.

To evaluate the effects of lesions, the network was tested on

Taraban and McClelland’s (1987) high- and low-frequency reg-

ular consistent words and exception words and on Glushko’s

(1979) nonwords. For the words, in addition to measuring

correct performance, we calculated the percentage of errors

on the exception words that correspond to a regularized pro-

nunciation. The full list of responses that were accepted as

regularizations is given in Appendix 3. As the undamaged
network mispronounces the word SPOOK, this item was not

included in the calculation of regularization rates. For the

nonwords, a pronunciation was accepted as correct if it was

consistent with the pronunciation of some word in the training

corpus with the same body (see Appendix 2).

Results and Discussion. Figure 20 shows the data from

the attractor network after the weights of each of the four main

sets of connections were corrupted by noise of varying sever-

ities. The milder lesions to the graphemes-to-hidden connec-

tions (on the top left of the Figure) produce clear interactions

of frequency and consistency in correct performance on word

reading. For instance, after adding noise with sd=0.4, the

network pronounces correctly over 96% of regular words and

93% of high-frequency exception words, but only 77% of low-

frequency exception words. In addition, for these lesions, 68%

of errors on exception words are regularizations, and 89% of the

nonwords are pronounced correctly. Compared with the results

from lesions of 20% of the hidden units in the SM89 network,

these show a stronger effect of consistency and are a better

match to the performance of MP (although the regularization

rate is somewhat low; see Figure 19). Thus, as predicted, the

use of representations that better capture spelling-sound struc-

ture produces a stronger frequency-by-consistency interaction,

more regularizations, and better nonword reading.

14To see why this should be the case, imagine a much larger network in

which the role of each weight in a smaller network is accomplished by the

collective influence of a large set of weights. For instance, we might replace

each connection in the small network by a set of connections whose weights

are both positive and negative and sum to the weight of the original connection.

Randomly removing some proportion of the connections in the large network

will shift the mean of each set of weights; this will have the same effect as

adding a random amount of noise to the value of the corresponding weight in

the small network.

As found for the SM89 network, however, more severe le-

sions do not replicate the pattern shown by KT. Lesions that re-

duce correct performance on high-frequency exception words

to equivalent levels (sd=1.0; network: 46%; KT: 47%) do not

impair low-frequency exception words sufficiently (network:

38%; KT: 26%) and, unlike KT, impair both high- and low-

frequency regular words (network: 65% and 60%; KT: 100%

and 89%, respectively). Furthermore, and even more unlike

KT, there is a substantial drop in both the regularization rate

(network: 32%; KT: 85%) and in performance on nonwords

(network: 60%; KT: 100%).

Lesions to the other sets of connections produce broadly

similar but even weaker results: the frequency-by-consistency

interactions are weaker (especially for severe lesions), the im-

pairment of regular words is more severe (except for phoneme-

to-hidden lesions), and the regularization rates are much lower

(note that a different range of lesion severities was used for the

hidden-to-phonemes connections as they are much more sen-

sitive to noise). Thus, in summary, mild grapheme-to-hidden

lesions in the attractor network can account for MP’s behavior,

but more severe lesions cannot reproduce KT’s behavior.

These negative findings are not specific to the use of noise in

lesioning the network; removing units or connections produces

qualitatively equivalent results, except that the regularization

rates are even lower. To illustrate this, Table 9 presents data

for the two patients and for the attractor network after either

mild or severe lesions of the graphemes-to-hidden connections,

the hidden units, or the hidden-to-phonemes connections. The

levels of severity were chosen to approximate the performance

of MP and KT on low-frequency exception words.

In summary, some types of lesion to a network implementa-

tion of the phonological pathway may be able to approximate

the less-impaired pattern of performance shown by MP, but

are unable to account for the more dramatic pattern of re-

sults shown by KT. These findings suggest that impairment to

the phonological pathway may play a role in the behavior of

some surface dyslexic patients, but seems unlikely to provide a

complete explanation of some patients—particular those with

normal nonword reading and severely impaired exception word

reading.

Phonological and Semantic Division of Labor
We now consider an alternative view of surface dyslexia: that

it reflects the behavior of an undamaged but isolated phono-

logical pathway that had learned to depend on support from

semantics in normal reading. All of the previous simulations

of the phonological pathway have been trained to be fully

competent on their own. Thus, if this explanation for surface

dyslexia holds, it entails a reappraisal of the relationship be-

tween those simulations and the normal skilled word reading

system.

The current simulation involves training a new network in

the context of an approximation to the contribution of seman-

tics. Including a full implementation of the semantic pathway
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Figure 20. Performance of the attractor network after lesions of various severities to each of the main sets of connections,

in which weights are corrupted by noise with mean zero and standard deviation “sd” as indicated. Correct performance is

given for Taraban and McClelland’s (1987) high-frequency (HF) and low-frequency (LF) regular consistent words (Reg) and

exception words (Exc), and for Glushko’s (1979) nonwords. “Reg’s” is the percentage of errors on the exception words that are

regularizations.
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Table 9

Performance of the Attractor Network after Lesions of Units or Connections

Correct Performance

HF Reg LF Reg HF Exc LF Exc Reg’s Nonwords

Patient MP ✑ 95 98 93 73 90 ✒ 95.5

Patient KT
✓

100 89 47 26 85 ✒ 100

Attractor Network Lesions

Graphemes-to-Hidden✆ ↕ Ô 05 95.8 94.4 88.9 75.8 65.6 89.6✆ ↕ Ô 3 49.0 42.8 37.8 27.9 26.0 45.3

Hidden Units✆ ↕ Ô 075 93.9 93.5 85.6 75.8 51.4 85.6✆ ↕ Ô 3 54.5 49.4 45.3 31.7 18.0 48.4

Hidden-to-Phonemes✆ ↕ Ô 02 89.0 89.2 81.0 70.0 48.3 82.4✆ ↕ Ô 1 36.3 31.8 26.4 24.8 13.3 35.5

Note: p is the probability that each of the specified units or connections is removed from the network for a

lesion; results are averaged over 50 instances of such lesions. Correct performance is given for the Taraban and

McClelland’s (1987) high-frequency (HF) and low-frequency (LF) regular consistent words (Reg) and exception

words (Exc), and for Glushko’s (1979) nonwords. “Reg’s” is the percentage of errors on the exception words that

are regularizations.✔
From Bub et al. (1985, see also Behrmann & Bub, 1992).✕
From Patterson (1990, based on McCarthy & Warrington, 1986).✖
Approximate (from Patterson, 1990).

is, of course, beyond the scope of the present work. Rather,

we will characterize the operation of this pathway solely in

terms of its influence on the phoneme units within the phono-

logical pathway. Specifically, to the extent that the semantic

pathway has learned to derive the meaning and pronunciation

of a word, it provides additional input to the phoneme units,

pushing them toward their correct activations. Accordingly,

we can approximate the influence of the semantic pathway on

the development of the phonological pathway by training the

latter in the presence of some amount of appropriate external

input to the phoneme units.

A difficult issue arises immediately in the context of this

approach, concerning the time-course of development of the

semantic contribution during the training of the phonological

pathway. Presumably, the mapping between semantics and

phonology develops, in large part, prior to reading acquisition,

as part of speech comprehension and production. By contrast,

the orthography-to-semantics mapping, like orthography-to-

phonology mapping, obviously can develop only when learn-

ing to read. In fact, it is likely that the semantic pathway makes

a substantial contribution to oral reading only once the phono-

logical pathway has developed to somedegree—in part because

of the phonological nature of typical reading instruction, and in

part because, in English, the orthography-to-phonology map-

ping is far more structured than the orthography-to-semantics

mapping. The degree of learning within the semantic path-

way is also likely to be sensitive to the frequency with which

words are encountered. Accordingly, as a coarse approxima-

tion, we will assume that the strength of the semantic contri-

bution to phonology in reading increases gradually over time

and is stronger for high-frequency words.

It must be acknowledged that this characterization of seman-

tics fails to capture a number of properties of the actual word

reading system that are certainly important in some contexts:

other lexical factors, such as imageability, that influence the

contribution of semantics to phonology, interactivity between

phonology and semantics, and the relative time-course of pro-

cessing in the semantic and phonological pathways. Nonethe-

less, the manipulation of external input to the phoneme units

allows us to investigate the central claim in the proposed ex-

planation of surface dyslexia: that partial semantic support

for word pronunciations alleviates the need for the phonolog-

ical pathway to master all words, such that, when the support

is eliminated by brain damage, the surface dyslexic reading

pattern emerges.

Method. As will become apparent below, the necessary

simulation requires 4–5 times more training epochs than the

corresponding previous simulation. Thus, an attractor network

trained on actual word frequencies could not be developed due

to the limitations of available computational resources. Rather,

the simulation involved training a feedforward network using a

square-root compression of word frequencies. Such a network
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produces a pattern of results in word and nonword reading that

is quite similar to the attractor network (see Simulation 2).

More importantly, there is nothing specific about the feed-

forward nature of the network that is necessary to produce the

results reported below; an attractor network trained under anal-

ogous conditions would be expected to produce qualitatively

equivalent results.

The network was trained with the same learning parameters

as the corresponding network from Simulation 2 except for

one change: a small amount of weight decay was reintroduced,

such that each weight experiences a slight pressure to decay

towards zero, proportional (with constant 0.001) to its current

magnitude. As mentioned in the context of Simulation 1, this

provides a bias towards small weights that prevents the network

from overlearning and thereby encourages good generalization

(see Hinton, 1989). As is demonstrated below, the introduction

of weight decay does not alter the ability of the network to

replicate the patterns of normal skilled performance on words

and nonwords.

Over the course of training, the magnitude ✗ of the input

to phoneme units from the (putative) semantic pathway for a

given word was set to be✗ ↕ ✘ log ( ✙❇➢ 2) ➔
log ( ✙ ➢ 2) ➔ø➢✛✚ ➩ 16 ➫

where ✙ is the Kuçera and Francis (1967) frequency of the

word, and ➔ is the training epoch. The parameters ✘ and ✚
determine the asymptotic level of input and the time to asymp-

tote, respectively. Their values ( ✘ ↕ 5, ✚ ↕ 2000 in the current

simulation), and, more generally, the specific analytic function

used to approximate the development of the semantic pathway,

affect the quantitative but not the qualitative aspects of the re-

sults reported below. Figure 21 shows the mean values of this

function over training epochs for the Taraban and McClelland

(1987) high- and low-frequency words. If, for a given word,

the correct state of a phoneme unit was 1.0, then its external

input was positive; otherwise it was the same magnitude but

negative.

For the purposes of comparison, a second version of the

network was trained without semantics, using exactly the same

learning parameters and initial random weights.

Results and Discussion. Learning in the network trained

without semantics reached asymptote by epoch 500, at which

point it pronounced correctly all but 9 of the 2998 words in

the training corpus (99.7% correct). Figure 22 shows the per-

formance of the network on Taraban and McClelland’s (1987)

high- and low-frequency exception words and their regular

consistent control words, and on Glushko’s (1979) nonwords,

over the course of training. Performance on regular words and

on nonwords improves quite rapidly over the first 100 epochs,

reaching 97.9% for the words and 96.5% for the nonwords

at this point. Performance on high-frequency exception words

improves somewhat more slowly. By contrast, performance on

the low-frequency exception words improves far more slowly,

0
✜

200
✜

400
✜

600
✜

800
✜

1000
✜

1200
✜

1400
✜

1600
✜

1800
✜

2000
✜

Training Epoch✢0.0

1.0

2.0

3.0

4.0

5.0

E
x
te

rn
al

 I
n
p
u
t 

to
 P

h
o
n
em

es

✣
Contribution of Semantic Pathway✤

High Frequency (1222/million)
✥
Low Frequency  (20/million)
✦

Figure 21. The magnitude of the additional external input

supplied to phoneme units by the putative semantic pathway,

as a function of training epoch, for the Taraban and McClelland

(1987) high- and low-frequency words.

only becoming perfect at epoch 400. At this point, all of

the words are read correctly. Even so, there are significant

main effects of frequency ( ✧ 1 ★ 92=35.9, p ✩ .001) and consis-

tency ( ✧ 1 ★ 92=64.3, p ✩ .001), and a significant interaction of

frequency and consistency in the cross-entropy error produced

by the words (means: HFR 0.031, LFR 0.057, HFE 0.120,

LFE 0.465; ✧ 1 ★ 92=26.4, p ✩ .001). Thus, the network exhibits

the standard pattern of normal skilled readers; the use of weight

decay during training has not substantially altered the basic in-

fluences of frequency and consistency in the network.

In the current context, the network trained with a concur-

rently increasing contribution from semantics (as shown in

Figure 21) is the more direct analogue of a normal reader.

Not surprisingly, overall performance improves more rapidly

in this case. All of the regulars and the high-frequency ex-

ceptions are pronounced correctly by epoch 110, and low-

frequency exceptions are at 70.8% correct. By epoch 200,

all of the low-frequency exceptions are correct, and nonword

reading is 95.4% correct (where we assume nonwords receive

no contribution from semantics). At this point, the network

with semantics exhibits the standard effects of frequency and

consistency in cross-entropy error (means: HFR 0.021, LFR

0.025, HFE 0.102, LFE 0.382; frequency: ✧ 1 ★ 92=19.0, p ✩ .001;

consistency: ✧ 1 ★ 92=45.0, p ✩ .001; frequency-by-consistency:✧ 1 ★ 92=17.8, p ✩ .001). Even after a considerable amount of

additional training (epoch 2000), during which the division

of labor between the semantic and phonological pathways

changes considerably (as shown below), the overt behavior

of the normal “combined” network shows the same pattern of

effects (nonword reading: 97.7% correct; word cross-entropy

error means: HFR 0.013, LFR 0.014, HFE 0.034, LFE 0.053;

frequency: ✧ 1 ★ 92=13.6, p ✩ .001; consistency: ✧ 1 ★ 92=125.1,

p ✩ .001; frequency-by-consistency: ✧ 1 ★ 92=9.66, p=.003).

This last finding may help explain why, as in previous sim-
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Figure 22. Correct performance of the network trained with-

out semantics, as a function of training epoch, on Taraban and

McClelland’s (1987) high-frequency (HF) and low-frequency

(LF) regular consistent words (Reg) and exception words

(Exc), and on Glushko’s (1979) nonwords.

ulations, networks that are trained to be fully competent on

their own replicate the effects of frequency and consistency

in naming latency, even though, from the current perspective,

such simulations are not fully adequate characterizations of the

isolated phonological pathway in skilled readers. The reason

is that, when performance is near asymptote—due either to

extended training or to semantic support—word frequency and

spelling-sound consistency affect the relative effectiveness of

processing different words in the same way. This asymptotic

behavior follows from the frequency-consistency equation (see

Equation 12 and Figure 8). Increasing training (by increasing

each ✰✲✱ ✳✵✴ in the equation) or adding an additional semantic

term to the sum serves equally to drive units further towards

their extremal values (also see the General Discussion).

Figure 23 shows the performance of the network at each

point in training when the contribution from semantics is

eliminated—that is, after a complete semantic “lesion.” These

data reflect the underlying competence of the phonological

pathway when trained in the context of a concurrently develop-

ing semantic pathway. First notice that the simulation involves

training for 2000 epochs, even though the bulk of “overt” read-

ing acquisition occurs in the first 100 epochs. Thus, the effects

in the network should be thought of as reflecting the grad-

ual improvement of skill from reading experience that, in the

human system, spans perhaps many decades.

Initially, performance on nonwords and all types of words

improves as the phonological pathway gains competence in

the task, much as when the network is trained without seman-

tics (see Figure 22). But as the semantic pathway increases

in strength (as characterized by the curves in Figure 21), the
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Figure 23. Performance of the network trained with seman-

tics after a semantic “lesion,” as a function of the training epoch

at which semantics is eliminated, for Taraban and McClelland’s

(1987) high-frequency (HF) and low-frequency (LF) regular

consistent words (Reg) and exception words (Exc), and for

Glushko’s (1979) nonwords, and the approximate percentage

of errors on the exception words that are regularizations.
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accuracy of the combined network’s pronunciations of words

improves even faster (recall that the combined network is per-

fect on the Taraban and McClelland words by epoch 200).

The pressure to continue to learn in the phonological path-

way is thereby diminished. Eventually, at about epoch 400,

this pressure is balanced by the bias for weights to remain

small. At this point, most of the error that remains comes

from low-frequency exception words. This error is reduced

as the semantic pathway continues to increase its contribu-

tion to the pronunciation of these (and other) words. As a

result, the pressure for weights to decay is no longer balanced

by the error, and the weights becomes smaller. This causes

a deterioration in the ability of the phonological pathway to

pronounce low-frequency exception words by itself. With fur-

ther semantic improvement, the processing of high-frequency

exception words in the phonological pathway also begins to

suffer. Virtually all of the errors on exception words that

result from this process are regularizations (plotted as aster-

isks in Figure 23). Larger weights are particularly important

for exception words because they must override the standard

spelling-sound correspondences that are implemented by many

smaller weights. Furthermore, high-frequency words are less

susceptible to degradation because any decrement in overt per-

formance induces much larger weight changes to compensate.

By contrast, the processing of regular words and nonwords is

relatively unaffected by the gradual reduction in weight mag-

nitudes. Low-frequency regular words just begin to be affected

at epoch 1900.

Thus, with extended reading experience, there is a redis-
tribution of labor within the model between the semantic and

phonological pathways. As the semantic pathway gains in

competence, the phonological pathway increasingly special-

izes for consistent spelling-sound correspondences at the ex-

pense of exception words. Notice, however, that even with

extended training, the phonological pathway continues to be

able to read some exception words—particularly those of high-

frequency. In this way it is quite unlike the sublexical proce-

dure in a traditional dual-route theory, which can read only

regular words and no exception words. It is also important to

keep in mind that normal overt performance—as supported by

the combination of the phonological and semantic pathways—

becomes fully accurate very early on and continues to improve

in naming latency (as reflected indirectly by error).

On this interpretation of surface dyslexia, differences among

patients in their ability to read exception words may not reflect

differences in the severities of their brain damage. Rather, they

may reflect differences in their premorbid division of labor be-

tween pathways, with the patients exhibiting the more severe

impairment being those who had relied to a greater extent on

semantic support. To illustrate this more directly, Figure 24

presents data from MP and KT as well as data from the net-

work at two different points in training, when semantics was

eliminated. Overall, the network at epoch 400 provides a close

match to MP’s performance, while the network at epoch 2000
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Figure 24. Performance of two surface dyslexic patients (MP,

Behrmann & Bub, 1992; Bub et al., 1985; and KT, McCarthy &

Warrington, 1986) and the network at different points in train-

ing when semantics is eliminated. Correct performance is

given for Taraban and McClelland’s (1987) high-frequency

(HF) and low-frequency (LF) regular consistent words (Reg)

and exception words (Exc), and for Glushko’s (1979) non-

words. “Reg’s” is the approximate percentage of errors on the

exception words that are regularizations.

matches KT’s performance. The only substantial discrepancy

is that, in both conditions, the network’s rate of regularizations

is higher than that of the corresponding patient (although the

patient data are only approximate; see Patterson, 1990).

Thus far, we have assumed that surface dyslexic patients,

at least those of the fluent type, have a lesion that completely

eliminates any contribution of the semantic pathway in reading.

This assumption may be reasonable for MP and KT, as both

patients had very severe impairments in written word compre-

hension. MP was at chance at selecting which of four written

words was semantically related to a given word or picture (Bub

et al., 1985, also see Bub, Black, Hampson, & Kertesz, 1988).

KT’s severe word comprehension deficit prevented him from

scoring on either the Vocabulary or Similarities subtests of the

Wechsler Adult Intelligence Scale (WAIS) (e.g., “bed, bed, I

do not know what a bed is;” McCarthy & Warrington, 1986,

p. 361).

However, some patients with fluent surface dyslexia ap-

pear to have only a partial impairment in the semantic path-

way. In particular, among patients with semantic dementia

whose reading has been tested in detail, the large majority

also exhibit a surface dyslexic pattern such that severity of

the reading disorder is correlated with the degree of seman-

tic deterioration (Graham et al., 1994; Patterson & Hodges,

1992, but see Cipolotti & Warrington, 1995). A similar find-

ing applies among patients with Alzheimer’s type dementia

(Patterson et al., 1994). Such cases have a natural interpreta-

tion in the current context in terms of the performance of the
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Figure 25. The effect of gradual elimination of semantics on

the correct performance of the network after 2000 epochs of

training with semantics, for Taraban and McClelland’s (1987)

high-frequency (HF) and low-frequency (LF) regular consis-

tent words (Reg) and exception words (Exc), and for Glushko’s

(1979) nonwords, and approximate percentage of errors on the

exception words that are regularizations.

network with partial rather than complete elimination of the

contribution of the putative semantic pathway. To illustrate

this effect, Figure 25 shows the performance of the network

trained with semantics to epoch 2000, as the strength of the

semantic contribution to the phoneme units—the parameter ●
in Equation 16—is gradually reduced. As semantics degrades,

performance on the low-frequency exceptions is the first to be

affected, followed by the high-frequency exceptions. By con-

trast, performance on regular words and nonwords is relatively

unaffected by semantic deterioration, although performance

on low-frequency regular words is somewhat impaired as se-

mantics is completely eliminated (for ●■❍ 0 ❏ 0, the data are

identical to those in Figure 23 for epoch 2000). In fact, se-

mantic dementia patients also exhibit a drop in performance on

low-frequency regular words when their semantic impairment

becomes very severe (Patterson & Hodges, 1992). Of course, a

patient with progressive dementia may also have some amount

of deterioration within the phonological pathway itself. As

Figure 20 and Table 9 illustrate, such impairment would tend

to degrade performance on exception words even further, but

also would affect performance on regular words and nonwords

to some degree.

The observation of surface dyslexic reading in association

with either degraded semantics or a disrupted mapping from

semantics to phonology (which, on our account, should have

the same effect) is common, and indeed has been reported in

several languages other than English, including Dutch (Dies-

feldt, 1992), Italian (Miceli & Caramazza, 1993) and Japanese

(Patterson, Suzuki, Wydell, & Sasanuma, in press). It is im-

portant to note, however, that there are cases that suggest there

may be individual differences in the extent to which the pro-

nunciation of low-frequency exceptions depends on contribu-

tions from semantics. The first is patient WLP (Schwartz,

Saffran, & Marin, 1980), one of the most thoroughly studied

cases of neurodegenerative disease in the history of cognitive

neuropsychology. Although WLP began to make regulariza-

tion errors on low-frequency exception words at a later stage of

her disease, there was a period of testing at which her semantic

disorder was already marked but her exception-word reading

was still largely intact. Even more dramatically, Cipolotti

and Warrington (1995) have recently reported a patient, DRN,

with a substantial loss of meaning for low-frequency words,

though his comprehension of high-frequency words (as mea-

sured by the difficult task of producing word definitions) was

still intact. DRN’s performance in reading low-frequency ex-

ception words was, however, almost perfectly intact, with only

two or three reported regularization errors (CANOE ❑ “kano”,

SHOE ❑ “show”). On our account, these observations suggest

that, in these individuals, the phonological pathway had devel-

oped a relatively high degree of competence without assistance

from semantics; but this post-hoc interpretation clearly requires

some future, independent source of evidence.

One final comment, with respect to phonological dyslexia,

seems appropriate. Recall that phonological dyslexic patients

are able to read words much better than nonwords. In the cur-

rent simulation, the external input to the phoneme units that

represents the contribution of the semantic pathway is suffi-

cient, on its own, to support accurate word reading (but not

nonword reading). On the other hand, severe damage to the

phonological pathway certainly impairs nonword reading (see

Figure 20 and Table 9). In the limit of a complete lesion

between orthography and phonology, nonword reading would

be impossible. Thus, a lesion to the network that severely im-

paired the phonological pathway while leaving the contribution

of semantics to phonology (relatively) intact would replicate

the basic characteristics of phonological dyslexia.

Summary
The detailed patterns of behavior of acquired dyslexic patients

provide important constraints on the nature of the normal word

reading system. The most relevant patients in the current

context are those with (fluent) surface dyslexia, as, like the

networks, they would seem to read without the aid of seman-

tics. These patients read nonwords normally, but exhibit a

frequency-by-consistency interaction in word reading accu-

racy, such that low-frequency exception words are particularly

error-prone and typically produce regularization errors. Patter-

son et al. (1989; Patterson, 1990) were relatively unsuccessful

in replicating the surface dyslexia reading pattern by damag-

ing the SM89 model. Although the current simulations employ

more appropriately structured representations, when damaged,

they too fail to produce surface dyslexia—particularly the more

severe form exhibited by KT (McCarthy & Warrington, 1986).
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These findings call into question the interpretation of surface

dyslexia as arising from a partial impairment of the phonologi-

cal pathway in addition to extensive impairment of the semantic

pathway. Rather, a better match to the surface dyslexic reading

pattern—in both its mild and severe forms—is produced by the

normal operation of an isolated phonological pathway that had

developed in the context of support from the semantic pathway.

This finding supports a view of the normal word reading system

in which there is a division of labor between the phonologi-

cal and semantic pathways, such that neither pathway alone

is completely competent and the two must work together to

support skilled word and nonword reading.

General Discussion
The current work develops a connectionist approach to process-

ing in quasi-regular domains, as exemplified by English word

reading. The approach derives from the general computational

principles that processing is graded, random, adaptive, interac-

tive, and nonlinear, and that representations and knowledge are

distributed (McClelland, 1991, 1993). When instantiated in the

specific domain of oral reading, these principles lead to a view

in which the reading system learns gradually to be sensitive to

the statistical structure among orthographic, phonological, and

semantic representations, and that these representations simul-

taneously constrain each other in interpreting a given input.

In support of this view, we have presented a series of con-

nectionist simulations of normal and impaired word reading.

A consideration of the shortcomings of a previous implemen-

tation (Seidenberg & McClelland, 1989) in reading nonwords

led to the development of orthographic and phonological rep-

resentations that capture better the relevant structure among the

written and spoken forms of words. In Simulation 1, a feed-

forward network employing these representations learned to

pronounce all of a large corpus of monosyllabic words, includ-

ing the exception words, and yet also pronounced nonwords as

well as skilled readers.

An analysis of the effects of word frequency and spelling-

sound consistency in a related but simpler system formed the

basis for understanding the empirical pattern of naming laten-

cies as reflecting an appropriate balance between these factors.

In Simulation 2, a feedforward network trained with actual

word frequencies exhibited good word and nonword reading,

and also replicated the frequency-by-consistency interaction in

the amount of error it produced for words of various types.

In Simulation 3, a recurrent network replicated the effects

of frequency and consistency on naming latency directly in

the time required to settle on a stable pronunciation. More

critically, the attractors that the network developed for words

over the course of training had componential structure that also

supported good nonword reading.

Finally, in Simulation 4, the role of the semantic pathway in

oral reading was considered in the context of acquired surface

dyslexia, in which patients read nonwords well but exhibit

a frequency-by-consistency interaction in naming accuracy,

typically regularizing low-frequency exception words. The

view that these symptoms—particularly in their most severe

form—reflect the operation of a partially impaired phonologi-

cal pathway was not supported by the behavior of the attractor

network after a variety of types of damage. A further simula-

tion supported an alternative interpretation of surface dyslexia:

that it reflects the normal operation of a phonological pathway

that is not fully competent on its own because it learned to rely

on support from the semantic pathway (which is subsequently

impaired by brain damage).

Alternative Perspectives on Word Reading
We can now raise, and then consider in the light of the results

summarized above, several issues concerning the nature of the

reading process. There is general agreement that (at least) two

pathways contribute to reading words and nonwords aloud,

but this still leaves open a number of fundamental questions.

What are the underlying explanatory principles that determine

the existence and the character of these different pathways?

How does the operation of each arise from the fundamental

principles, and what are the particular principles to which each

pathway adheres? How do the different pathways combine to

contribute to word and nonword reading? We consider here

two very different approaches to these questions.

One view—the so-called dual-route view—holds that the

fundamental explanatory principle in the domain of word read-

ing is that distinctly different mechanisms are necessary for

reading nonwords on the one hand and exception words on the

other. The two mechanisms operate in fundamentally different

ways. One assembles pronunciations from phonemes gener-

ated by the application of grapheme-phoneme correspondence

rules. The other maps whole (orthographic) inputs to whole

(phonological) outputs, using either a lexical lookup proce-

dure or, in more recent formulations, an associative network

(Pinker, 1991) or McClelland and Rumelhart’s (1981) Inter-

active Activation model (Coltheart et al., 1993; Coltheart &

Rastle, 1994).

The alternative view—our connectionist approach—holds

that the fundamental explanatory principle in the domain of

word reading is that the underlying mechanism employs a non-

linear, similarity-based activation process in conjunction with

a frequency-sensitive connection weight adjustment process.

Two pathways are necessary in reading, not because different

principles apply to items of different types, but because dif-

ferent tasks must be performed. One pathway—here termed

the phonological pathway—performs the task of transforming

orthographic representations into phonological representations

directly. The other—the semantic pathway—actually performs

two tasks. The first is specific to reading; namely, the trans-

formation of orthographic representations into semantic repre-

sentations. The second is a more general aspect of language;

namely, the transformation of semantic representations into

phonological representations.
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At first glance, these two views may appear so similar that

deciding between them hardly seems worth the effort. After

all, both the lexical procedure in the dual-route account and

the semantic pathway in the connectionist account can read

words but not nonwords, and both the sublexical procedure

and the phonological pathway are critical for nonword reading

and work better for regular words than for exception words.

It is tempting to conclude that these two explanatory perspec-

tives are converging on essentially the same processing system.

Such a conclusion, however, neglects subtle but important dif-

ferences in the theoretical and empirical consequences of the

two approaches.

As a case in point, the sublexical GPC procedure in the dual-

route account cannot be sensitive to whole-word frequency, as

it eschews storage of whole lexical items. By contrast, in

the connectionist approach, the phonological pathway main-

tains an intrinsic and incontrovertible sensitivity to both word

frequency and spelling-sound consistency (also see Monsell,

1991). This sensitivity is captured in approximate form by

the frequency-consistency equation (Equation 12), which ex-

presses the strength of the response of a simple two-layer net-

work to a given test pattern in terms of the frequency and

overlap of the training patterns. The connectionist approach,

as reflected by this equation, predicts that there can never be a

complete dissociation of frequency and consistency effects; the

phonological pathway must always exhibit sensitivity to both.

This sensitivity takes a specific form, however: Items that are

frequent, consistent or both will have an advantage over items

that are neither frequent nor consistent, but items that are fre-

quent and consistent may not enjoy a large additional advantage

over those that are only frequent or only consistent; as either

frequency or consistency increases, sensitivity to differences

in the other decreases.15

This relationship, as we have previously discussed, is ap-

proximately characterized by the frequency-consistency equa-

tion, which we reproduce here in a form that is elaborated to

include a term for the contribution of the semantic pathway,

and by separating out the contributions of training patterns

whose outputs are consistent with that of the test pattern (i.e.,

so-called friends; Jared et al., 1990) from those whose outputs

are inconsistent (i.e., enemies). Accordingly, the state ▲ ✱ ▼◆✴❖ of

an output (phoneme) unit P that should be on in test pattern ◗
15Recently, Balota and Ferraro (1993) have reported an apparent dissoci-

ation of frequency and consistency in the naming latencies of patients with

Alzheimer’s type dementia, over increasing levels of severity of impairment.

However, these patients make substantial numbers of errors, and the usual

relationship of frequency and consistency holds in their accuracy data (also

see Patterson et al., 1994). Furthermore, the dissociation was not found in

naming latencies of younger or older normal subjects.

can be written as16

▲ ✱ ▼◆✴❖ ❍❙❘ ❚❯❲❱ ✱ ▼◆✴❨❳❬❩ ❚❯ ✧ ✱ ▼❭✴❪❳❴❫❛❵ ✧ ✱ ❵ ✴❝❜❞✱ ❵ ▼◆✴❢❡❣❫✐❤ ✧ ✱ ❤ ✴❥❜❦✱ ❤ ▼◆✴❥❧♠♥❧♠♦
17 ♣

in which the logistic activation function ❘ ( q ) is applied to the

contribution of the semantic pathway,

❱ ✱ ▼◆✴ , plus the contribu-

tion of the phonological pathway, which itself is the sum of

three terms (scaled by the learning rate, ❩ ): (1) the cumulative

frequency of training on the pattern itself, (2) the sum of the

frequencies of the friends (indexed by f) times their overlap

with the test pattern, and (3) the sum of the frequencies of

the enemies (indexed by r ) times their overlap with the test

pattern. It must be kept in mind, however, that this equation is

only approximate for networks with hidden units and trained

by error correction. These two aspects of the implemented

networks are critical in that they help to overcome interference

from enemies (i.e., the negative terms in Equation 17), thereby

enabling the networks to achieve correct performance on ex-

ception words—that is, words with many enemies and few if

any friends—as well as on regular words and nonwords.

Many of the basic phenomena in the domain of word read-

ing can be seen as natural consequences of adherence to this

frequency-consistency equation. In general, any factor that

serves to increase the summed input to the activation function,❘ ♦ qs♣ in Equation 17, improves performance, as measured by

naming accuracy and/or latency. Thus, more frequent words

are read better (e.g., Forster & Chambers, 1973; Frederiksen &

Kroll, 1976) because they have higher values of ✧t✱ ▼◆✴ , and

words with greater spelling-sound consistency are read bet-

ter (Glushko, 1979; Jared et al., 1990) because the positive

sum from friends outweighs the negative sum from enemies.

The nonlinear, asymptoting nature of the activation function,

however, dictates that the contributionsof these factors are sub-

ject to “diminishing returns” as performance improves. Thus,

as reading experience accumulates—thereby increasing ✧t✱ ▼❭✴ ,✧t✱ ❵ ✴ , and ✧t✱ ❤ ✴ proportionally; or equivalently, increasing ❩ —
the absolute magnitudes of the frequency and consistency ef-

fects diminish (see, e.g., Backman et al., 1984; Seidenberg,

1985). The same principle applies among different types of

stimuli for a reader at a given skill level: performance on

stimuli that are strong in one factor is relatively insensitive to

variation in other factors. Thus, regular words show little effect

of frequency, and high-frequency words show little effect of

consistency (as shown in Figure 7). The result is the standard

pattern of interaction between frequency and consistency, in

which the naming of low-frequency exception words is dispro-

portionately slow or inaccurate (Andrews, 1982; Seidenberg,

1985; Seidenberg et al., 1984; Taraban & McClelland, 1987;

Waters & Seidenberg, 1985).

16For a unit with a target of ✉ 1, the signs would simply be reversed.

Alternatively, the equation can be interpreted as reflecting the correlation of

the activation of output unit ✈ with its target, which may in that case be either✇
1 or ✉ 1.
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The elaborated version of the frequency-consistency equa-

tion also provides a basis for understanding the effects of se-

mantics on naming performance. In the approximation ex-

pressed by Equation 17, the contribution of the semantic path-

way for a given word,

❱ ✱ ▼◆✴ , is simply another term in the

summed input to each output (phoneme) unit. Just as with

frequency and consistency, then, a stronger semantic contri-

bution moves the overall input further along the asymptoting

activation function, thereby diminishing the effects of other

factors. As a result, words with a relatively weak semantic

contribution (e.g., abstract or low-imageability words; Jones,

1985; Saffran, Bogyo, Schwartz, & Marin, 1980) exhibit a

stronger frequency-by-consistency interaction—in particular,

naming latencies and error rates are disproportionately high

for items that are weak on all three dimensions: abstract, low-

frequency exception words (Strain et al., in press).

Of course, as the simulations demonstrate, networks with

hidden units and trained with error correction can learn to

pronounce correctly all types of words without any help from

semantics. In the context of the more general framework, how-

ever, full competence is required only from the combination of

semantic and phonological influences. Thus, as the semantic

pathway develops and

❱ ✱ ▼◆✴ increases, the contribution required

from the other, phonological terms in Equation 17 to achieve

the same level of performance is correspondingly reduced.

With the additional assumption that the system has an intrinsic

bias against unnecessary complexity (e.g., by limiting its ef-

fective degrees of freedom with weight decay), extended read-

ing experience leads to a redistribution of labor. Specifically,

as the semantic pathway improves, the phonological pathway

gradually loses its ability to process the words it learned most

weakly: those that are low in both frequency and consistency.

If, in this context, the contribution from semantics is severely

weakened or eliminated (by brain damage), the summed input

to each output unit will be reduced by as much as

❱ ✱ ▼◆✴ . For

output units with significant negative terms in their summed

input—that is, for those in words with many enemies—this

manipulation may cause their summed input (and hence their

output) to change sign. The result is an incorrect response.

Such errors tend to be regularizations because the reduced

summed input affects only those output units whose correct

activations are inconsistent with those of the word’s neighbors.

Furthermore, as frequency makes an independent positive con-

tribution to the summed inputs, errors are more likely for low-

than for high-frequency exception words. By contrast, a re-

duction in the contribution from semantics has little if any

effect on correct performance on regular words because the

positive contribution from their friends is sufficient on its own

to give output units the appropriately signed summed input.

The resulting pattern of behavior, corresponding to fluent sur-

face dyslexia (Bub et al., 1985; McCarthy & Warrington, 1986;

Shallice et al., 1983), can thus be seen as an exaggerated man-

ifestation of the same influences of frequency and consistency

that give rise to the normal pattern of naming latencies.

The pattern of joint, nonlinear sensitivity to the combined ef-

fects of frequency and consistency in the connectionist account,

along with assumptions on the contribution of semantics, lead

to a number of predictions not shared by traditional dual-route

accounts. First, frequency and consistency can trade off against

each other, so that the detrimental effects of spelling-sound in-

consistency can always be overcome by sufficiently high word

frequency. Consequently, the connectionist account makes a

strong prediction: there cannot be an (English-language) sur-

face dyslexic patient who reads no exception words; if regular

words can be read normally, there must also be some sparing

of performance on high-frequency exceptions. By contrast, a

dual-route framework could account for such a patient quite

easily, in terms of damage that eliminates the lexical route(s)

while leaving the GPC route in operation. In fact, given the

putative separation of these routes, the framework would seem

to predict the existence of such patients. The connectionist

account also differs from the dual-route account in claiming

that consistency rather than regularity per se (i.e., adherence

to GPC rules) is the determining variable in “regularization”

errors (where, as formulated here, consistency depends on all

types of orthographic overlap rather than solely on word bod-

ies; cf. Glushko, 1979). Finally, the connectionist account

predicts a close relationship between impairments in the con-

tribution of semantics to phonology and the surface dyslexic

reading pattern (Graham et al., 1994; Patterson & Hodges,

1992), although this relationship will be subject to premorbid

individual differences in reading skill and division-of-labor

between the semantic and phonological pathways. Thus, pa-

tients with highly developed phonological pathways may not

exhibit the pattern unless the semantic impairment is very se-

vere (Cipolotti & Warrington, 1995; Schwartz et al., 1980).

By contrast, dual-route theories that include a lexical, non-

semantic pathway (e.g., Coltheart, 1978, 1985; Coltheart et al.,

1993) predict that selective semantic damage should never af-

fect naming accuracy.

Our connectionist account, we believe, also has an important

advantage of simplicity over the dual-route approach. This

advantage goes well beyond the basic point that it provides

a single set of computational principles that can account for

exception word and nonword reading, while the dual-route

model must rely on separate sets of principles. The additional

advantage lies in the fact that the boundary between regular

and exception words is not clear, and all attempts to draw

such boundaries lead to unfortunate consequences. First, the

marking of items as exceptions which must be looked up as

wholes in the lexicon ignores the fact that most of the let-

ters in these items will take their standard grapheme-phoneme

correspondences. Thus, in PINT, 3/4 of the letters take their

regular correspondence. Second, the marking of such items

as exceptions ignores the fact that even the parts that are ex-

ceptional admit of some regularity, so that, for example, the

exceptional pronunciation of the I in PINT also occurs in many

other words containing an I (e.g., most of those ending in I ① E,
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IND or ILD, where the / ① / represents any consonant). Third,

exceptions often come in clusters that share the same word

body. Special word-body rules may be invoked to capture

these clusters, but then any word that conforms to the more

usual correspondence becomes exceptional. Thus, we could

treat OO ❑ /u/ when followed by K as regular, but this would

make SPOOK, which takes the more common correspondence

OO ❑ /U/, an exception. The explicit treatment of virtually

any word as an exception, then, neglects its partial regularity

and prevents the word both from benefitting from this partial

regularity and from contributing to patterns of consistency it

enters into with other items. Our connectionist approach, by

contrast, avoids the need to impose such unfortunate divisions,

and leaves a mechanism that exhibits sensitivity to all these

partially regular aspects of so-called exception words.

The fact that exceptions are subject to the same processes

as all other items in our system allows us to explain why there

are virtually no completely arbitrary exceptions. On the other

hand, the dual-route approach leaves this fact of the spelling-

sound system completely unexplained. Nor, in fact, do some

dual-route models even provide a basis for accounting for ef-

fects of consistency in reading words and nonwords. Recent

dual-route theorists (e.g., Coltheart et al., 1993; Coltheart &

Rastle, 1994) have appealed to partial activation of other lex-

ical items as a basis for such effects. Such an assumption

moves part-way toward our view that consistency effects arise

from the influence of all lexical items. We would only add that

our connectionist model exhibits these effects as well as the

requisite sensitivity to general grapheme-phoneme correspon-

dences, without stipulating a separate rule system over and

above the system that exhibits the broad range of consistency

effects.

Additional Empirical Issues
Proponents of dual-route theories have raised a number of

empirical issues that they believe challenge our connectionist

account of normal and impaired word reading. For exam-

ple, Coltheart et al. (1993, also see Besner et al., 1990) raise

six questions concerning the reading process, all but one of

which—exception word reading—they deem problematic for

the SM89 framework. Two of the remaining five—nonword

reading and acquired surface dyslexia—have been addressed

extensively in the current work. Here we discuss how the re-

maining three issues—acquired phonological dyslexia, devel-

opmental dyslexia, and lexical decision—may be accounted

for in light of these findings. We also consider three other

empirical findings that have been interpreted as providing ev-

idence against the current approach—pseudohomophone ef-

fects (Buchanan & Besner, 1993; Fera & Besner, 1992; Mc-

Cann & Besner, 1987; Pugh, Rexer, & Katz, 1994), stimulus

blocking effects (Baluch & Besner, 1991; Coltheart & Rastle,

1994; Monsell et al., 1992), and the recent finding that naming

latencies for exception words are influenced by the position of

the exceptional correspondence (Coltheart & Rastle, 1994).

Acquired Phonological Dyslexia. As mentioned earlier,

it is straightforward within the SM89 framework to account for

the central characteristic of acquired phonological dyslexia—

substantially better word reading than nonword reading—in

terms of a relatively selective impairment of the phonologi-

cal pathway. The apparent difficult arises when considering

patients who (a) are virtually unable to read nonwords, sug-

gesting a complete elimination of the phonological pathway,

and (b) have an additional semantic impairment that seems to

render the semantic pathway insufficient to account for the ob-

served proficiency at word reading. Two such patients have

been described in the literature: WB (Funnell, 1983) and WT

(Coslett, 1991). To explain the word reading of these patients,

dual-route theorists claim that it is necessary to introduce a

third route that is lexical but nonsemantic.

In point of fact, Coltheart et al. (1993) explicitly considered

an alternative explanation and (we think too hastily) rejected

it.

Perhaps a patient with an impaired semantic sys-

tem, who therefore makes semantic errors in reading

comprehension and who also has a severely impaired

nonsemantic reading system, could avoid making se-

mantic errors in reading aloud by making use of even

very poor information about the pronunciation of a

word yielded by the nonsemantic reading system.

The semantic system may no longer be able to dis-

tinguish the concept orange from the concept lemon;

however, to avoid semantic errors in reading aloud,

all the nonsemantic route needs to deliver is just the

first phoneme of the written word, not a complete

representation of its phonology. (p. 596)

Coltheart and colleagues argued against this account entirely

on the basis of two findings of Funnell (1983): WB did not

pronounce correctly any of a single list of 20 written nonwords,

and he did not give the correct phonemic correspondence to

any of 12 single printed letters. Thus, they claimed, “WB’s

nonsemantic reading route was not just severely impaired, it

was completely abolished” (p. 596).

This argument is unconvincing. First of all, it would seem

unwise to base such a strong theoretical claim on so few em-

pirical observations, especially given how little information is

required of the phonological pathway on the above account. To

pronounce a nonword correctly, however, all of its phonemes

must be derived accurately. Thus, WB’s inability to read 20

nonwords cannot be taken as definitive evidence that his phono-

logical pathway is completely inoperative. Furthermore, WB

did, in fact, make semantic errors in oral reading (e.g., TRAIN ❑
“plane”, GIRL ❑ “boy”; see Appendix 1 of Funnell, 1983). Al-

though such errors were relatively rare, comprising only 7.5%

(5/67) of all lexical error responses, there were no error re-

sponses that were completely unrelated to the stimulus. Thus,

the effect of semantic relatedness in errors is difficult to ascribe

to chance responding (see Ellis & Marshall, 1978; Shallice &
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McGill, 1978). More generally, fully 38.8% (26/67) of WB’s

lexical errors had a semantic component, typically in combi-

nation with visual/phonemic or morphological relatedness.

More critically, Coltheart and colleagues fail to take into

account the fact that WB exhibited deficits on purely phono-

logical tasks, such as nonword repetition (Funnell, 1983) and

phoneme stripping and blending (Patterson & Marcel, 1992),

suggesting an additional impairment within phonology itself.

Funnell had argued that such a phonological impairment could

not explain WB’s nonword reading deficit, because (a) he re-

peated nonwords more successfully (10/20) than he read them

(0/20), and (b) he achieved some success (6/10) in blending

three-phoneme words from auditory presentation of their in-

dividual phonemes. We note, however, that the failure to re-

peat fully half of a set of simple, single-syllable, word-like

nonwords (e.g., COBE, NUST) certainly represents a promi-

nent phonological deficit. Moreover, since Funnell’s auditory

blending test used only words as target responses, WB’s par-

tial success on this task is not especially germane to the issue.

Patterson and Marcel (1992) assessed WB’s blending perfor-

mance with nonword targets and found that he was unable to

produce a single correct response, whether the auditory presen-

tation consisted of the three individual phonemes of a simple

nonword (such as COBE) or its onset and rime. Patterson and

Marcel argued that this phonological deficit in a non-reading
task was sufficient to account for WB’s complete inability to

read nonwords.

Thus, the pattern of performance exhibited by WB can be

explained within the SM89 framework in terms of a mildly

impaired semantic reading pathway, possibly an impaired

phonological reading pathway but, in particular, an impair-

ment within phonology itself. A similar explanation applies

to WT (Coslett, 1991): although this patient’s performance on

phonological blending tasks is not reported, she was severely

and equally impaired in her ability to read and to repeat the

same set of 48 nonwords.

We point out in passing that deep dyslexia (Coltheart

et al., 1980), the remaining major type of acquired central

dyslexia and closely related to phonological dyslexia (see, e.g.,

Glosser & Friedman, 1990), can be accounted for in terms of

the same computational principles that are employed in the

current work (see Plaut & Shallice, 1993).

Developmental Dyslexia. Our focus in the current work

has been on characterizing the computational principles gov-

erning normal skilled reading and acquired dyslexia following

brain damage in premorbidly literate adults. Even so, we be-

lieve that the same principles provide insight into the nature of

reading acquisition, both in its normal form and in developmen-

tal dyslexia, in which children fail to acquire age-appropriate

reading skills.

There is general agreement that a number of distinct pat-

terns of developmental dyslexia exist, although exactly what

these patterns are and what gives rise to them is a matter of

ongoing debate. A common viewpoint is that there are de-

velopmental analogues to the acquired forms of dyslexia (see,

e.g., Baddeley, Ellis, Miles, & Lewis, 1982; Harris & Coltheart,

1986; Marshall, 1984). Perhaps the clearest evidence comes

from Castles and Coltheart (1993), who compared 53 dyslexic

children with 56 age-matched normal readers in their ability

to pronounce exception words and nonwords. The majority

(32) of the dyslexic children were abnormally poor on both

sets of items. However, 10 were selectively impaired at ex-

ception word reading, corresponding to developmental surface

dyslexia, and 8 were selectively impaired at nonword read-

ing, corresponding to developmental phonological dyslexia.

Castles and Coltheart interpret their findings as supporting a

dual-route theory of word reading, in which either the lexical

or the sublexical procedure can selectively fail to develop prop-

erly (although they offer no suggestion as to why this might

be).

More recently, Manis, Seidenberg, Doi, McBride-Chang,

and Peterson (in press) compared 51 dyslexic children with

51 controls matched for age and 27 matched for reading level.

They confirmed the existence of separate surface and phono-

logical dyslexic patterns although, again, most of the dyslexic

children showed a general reading impairment. Critically,

the performance of the developmental surface dyslexic chil-

dren was remarkably similar to that of reading-level matched

controls, suggesting a developmental delay. By contrast, the

phonological dyslexic children performed unlike either set of

controls, suggesting a deviant developmental pattern. While

these findings are not incompatible with the dual-route ac-

count, Manis and colleagues contend that they are more nat-

urally accounted for in terms of different impediments to the

development of a single (phonological) pathway. Specifically,

they suggest (following SM89) that the delayed acquisition in

developmental surface dyslexia may arise from limitations in

the available computational resources within the phonological

route. Consistent with this interpretation, SM89 found that a

version of their network, trained with only half the normal num-

ber of hidden units, showed a disproportionate impairment on

exception words compared with regular words (although per-

formance on all items was poorer, consistent with finding that

generalized deficits are most common). However, the nonword

reading capability of the network was not tested, and Coltheart

et al. (1993) point out that it was not likely to be very good,

given that overall performance was worse than in the normal

network which itself was impaired on nonword reading.

Just as for normal skilled reading, this limitation of the SM89

model stems from its use of inappropriately structured ortho-

graphic and phonological representations. To demonstrate this,

we trained a feedforward network with only 30 hidden units

in an identical fashion to the one with 100 hidden units from

Simulation 4 (without semantics). This network was chosen

for comparison simply because it is the only one for which the

relevant acquisition data has already been presented, in Fig-

ure 22—the other networks would be expected to show similar

effects. The corresponding data for the version with 30 hidden
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Figure 26. Correct performance of a feedforward network

with only 30 hidden units on Taraban and McClelland’s (1987)

high- and low-frequency exception words and their regular

consistent control words, and on Glushko’s (1979) nonwords,

as a function of training epoch. The network was trained

exactly as the one whose corresponding data are shown in

Figure 22.

units are given in Figure 26. As a comparison of the figures

reveals, limiting the number of hidden units selectively impairs

performance on exception words, particularly those of low fre-

quency. By contrast, nonword reading is affected only very

slightly. Notice that the performance of the dyslexic network

at epoch 500 is quite similar to that of the normal network at

about epoch 150. Thus, limiting the computational resources

that are available for learning the spelling-to-sound task re-

produces the basic delayed pattern of developmental surface

dyslexia. Other manipulations that impede learning, such as

weak or noisy weight changes, would be expected to yield

similar results.

With regard to developmental phonological dyslexia, Manis

et al. (in press) suggest that a selective impairment in nonword

reading may arise from the use of phonological representa-

tions that are poorly articulated, perhaps due to more peripheral

disturbances (also see, e.g., Liberman & Shankweiler, 1985;

Rack, Snowling, & Olson, 1992). A consideration of the nor-

mal SM89 model is instructive here. That network employed

representations that, we have argued, poorly capture the rele-

vant structure within and between orthography and phonology.

As a result, the model was over 97% correct at reading words,

both regular and exception, but only 75% correct on a subset of

Glushko’s (1979) nonwords (when scored appropriately; see

Seidenberg & McClelland, 1990). Thus, in a sense, the model

behaved like a mild phonological dyslexic (see Besner et al.,

1990, for similar arguments). In this way, the performance

of the model provides evidence that a system with adequate

computational resources, but which fails to develop appropri-

ately componential orthographic and (particularly) phonologi-

cal representations, will also fail to acquire normal proficiency

in sublexical spelling-sound translation. It should also be kept

in mind that, to whatever extent the semantic pathway devel-

ops and contributes during reading acquisition, the dissociation

between word and nonword reading would be exacerbated.

A final point of contention with regard to the implications

of developmental reading disorders for the SM89 framework

concerns the existence of children whose oral reading ability,

even on exception words, far surpasses their comprehension—

as in so-called hyperlexia (Huttenlocher & Huttenlocher, 1973;

Mehegan & Dreifuss, 1972; Metsala & Siegel, 1992; Silver-

berg & Silverberg, 1967). Typically, these children are mod-

erately to severely retarded on standardized intelligence tests,

and may totally lack conversational speech. They also tend to

devote a considerable amount of time and attention to reading,

although this has not been studied thoroughly. We suggest that,

perhaps due to abnormally poor development in the semantic

pathway, such children may have phonological pathways that

are like our networks trained without semantics. In the limit,

such networks learn to pronounce all types of words and non-

words accurately with no comprehension.

Lexical Decision. The final of Coltheart et al.’s (1993)

objections to the SM89 model concerns its ability to perform

lexical decisions. While SM89 establish that, under some

stimulus conditions, the model can discriminate words from

nonwords on the basis of a measure of its accuracy in regen-

erating the orthographic input, Besner and colleagues (Besner

et al., 1990; Fera & Besner, 1992) have demonstrated that its

accuracy in doing so is worse than that of human subjects

in many conditions. Coltheart et al. (1993) mistakenly claim

that the SM89 orthographic error scores yield a false-positive

rate of over 80% on Waters and Seidenberg’s (1985) nonwords

when word error rates are equated with subjects’ at 6.1%—

in fact, these numbers result from using phonological error

scores (Besner et al., 1990), which SM89 do not employ (al-

though they do suggest that learning phonological attractors

for words might help). While the actual false-positive rate

is much lower—Besner and colleagues report a rate of 28%

when orthographic and phonological error scores are summed

and orthographically strange words are excluded—it is still

unsatisfactory.

Of course, SM89 never claimed that orthographic and

phonological information are completely sufficient to account

for lexical decision performance under all conditions, point-

ing out that “there may be other cases in which subjects must

consult information provided by the computation from orthog-

raphy to semantics” (p. 552). Semantics is a natural source

of information on which to distinguish words from nonwords,

given that, in fact, a string of letters or phonemes is defined
to be a word by virtue of it having a meaning. Coltheart and

colleagues raise the concern that, in a full implementation of

the SM89 framework, the presentation of an orthographically
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regular nonword (e.g., SARE) would activate semantics to the

same degree as a word (e.g., CARE), thereby precluding lexical

decision.

While further simulation work is clearly required to ad-

dress the full range of lexical decision data adequately, a few

comments may serve to allay this specific concern. We imag-

ine that the semantic representations for words are relatively

sparse, meaning that each word activates very few of the pos-

sible semantic features, and each semantic feature participates

in the meanings of a very small percentage of words. Con-

nectionist networks of the sort we are investigating learn to

set the base activation level of each output unit to the expected

value of its correct activations across the entire training corpus,

because these values minimize the total error in the absence of

any information about the input. In the case of sparse seman-

tic representations, this means that semantic features would

be almost completely inactive without specific evidence from

the orthographic input that they should be active. Notice that

the nature of this evidence must be very specific in order to

prevent the semantic features of a word like CARE from being

activated by the presentation of orthographically similar words

like ARE, SCARE, CAR, etc. This extreme sensitivity to small

orthographic distinctions would also prevent semantic features

from being activated by a nonword like SARE. Thus, on this

account, the computational requirements of a connectionist

system that maps orthography to semantics veritably entail the

ability to perform lexical decision.

Pseudohomophone and Blocking Effects. Two other,

somewhat overlapping sets of empirical findings have been

viewed as problematic for the current approach: pseudoho-

mophone effects (Buchanan & Besner, 1993; Fera & Besner,

1992; McCann & Besner, 1987; Pugh et al., 1994) and block-

ing effects (Baluch & Besner, 1991; Coltheart & Rastle, 1994;

Monsell et al., 1992). Thefirst set involves demonstrations that,

under a variety conditions, pseudohomophones (i.e., nonwords

with pronunciations that match that of a word; e.g., BRANE) are

processed differently than orthographically-matched nonpseu-

dohomophonic nonwords (e.g., FRANE). For example, subjects

are faster to name pseudohomophones and slower (and less ac-

curate) to reject them in lexical decision (McCann & Besner,

1987). The second set of problematic findings involves demon-

strations that subjects’ performance is sensitive to the context

in which orthographic stimuli occur, usually operationalized

in terms of how stimuli are blocked together during an ex-

periment. For example, subjects are slower and make more

regularization errors when pronouncing exception words inter-

mixed with nonwords than when pronouncing pure blocks of

exception words (Monsell et al., 1992).

Neither of these sets of phenomena is handled particu-

larly well by the SM89 implementation, but both have nat-

ural formulations within the more general framework that in-

cludes semantics. Pseudohomophone effects may stem from

an articulatory advantage in initiating familiar pronunciations

(Seidenberg, Petersen, MacDonald, & Plaut, in press) and/or

from interactions between phonology and semantics that do

not occur for control nonwords. Blocking effects may reflect

adjustments—either stimulus-driven or under the strategic con-

trol of subjects—in the relative contribution of the semantic and

phonological pathways in lexical tasks. These interpretations

are supported by recent findings of Pugh et al. (1994), who

investigated effects of spelling-sound consistency and seman-

tic relatedness in lexical decision, as a function of whether or

not the nonword foils include pseudohomophones. They found

faster latencies for consistent words than for inconsistent words

only in the context of purely nonpseudohomophonic nonwords;

there was no effect of consistency when pseudohomophones

were present. Similarly, in a dual lexical decision paradigm,

they obtained facilitation for visually similar word pairs that are

phonological consistent (e.g., BRIBE–TRIBE) and inhibition for

those that are inconsistent (e.g., COUCH–TOUCH; Meyer et al.,

1974) only when no pseudohomophones were present; the in-

troduction of pseudohomophones eliminated the consistency

effect. However, semantic relatedness (e.g., OCEAN–WATER)

yielded facilitation regardless of nonword context. These find-

ings suggest that subjects normally use both the semantic and

phonological pathways in lexical decision, but avoid the use of

the phonological pathway when this would lead to inappropri-

ate semantic activity, as when pseudohomophones are included

as foils.

Effects of Position of Exceptional Correspondence.
Coltheart and Rastle (1994) argue that one of the determi-

nants of naming RT for exception words is the position—-

counting graphemes and phonemes from left to right—at which

the word deviates from rule-governed correspondences. They

claim that such an effect is incompatible with any parallel

approach to word naming, whereas the Dual-Route Cascaded

(DRC) model of Coltheart et al. (1993) both predicts and simu-

lates this effect, because the GPC procedure of the DRC model

operates serially across an input string. The three monosyl-

labic words for which they provide simulation data from the

DRC model are CHEF, TOMB and GLOW. By their account, the

critical factor is that CHEF—for which the model requires the

largest number of processing cycles—is irregular at its first

grapheme/phoneme; TOMB, requiring an intermediate number

of cycles, breaks the rules at the second grapheme/phoneme;

and GLOW, which yields the fastest time from the model, only

becomes irregular at the third position.

By our account, the critical difference between these three

words may not be the position of irregularity but rather the

proportion of other known words with similar spelling patterns

that agree or conflict with the target word’s pronunciation (see

Jared & Seidenberg, 1990, for an elaboration of this argu-

ment). The Concise Oxford Dictionary lists 72 monosyllabic

words starting with CH ; 63 of these have the pronunciation

/tS/ as in CHAIR; 5 have the pronunciation /S/ as in CHEF; 4

are pronounced /k/ as in CHORD. CHEF is therefore a highly

inconsistent word. For the word TOMB, it is somewhat difficult

to know what neighborhood of words to choose for a similar
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analysis. If we take words beginning with TO , although the

two most common pronunciations are /a/ as in TOP and /O/ as in

TONE, the third most likely pronunciation, with 7 exemplars, is

/U/ as in TO, TOO, and TOMB; other pronunciations (as in TON,

TOOK, TOIL) are less common. At the body level, TOMB has

one friend, WOMB, and two enemies, BOMB and COMB. TOMB

is therefore a moderately inconsistent word. Finally, for words

ending in OW, although the GPC procedure of Coltheart et al.

(1993) considers OW ❑ /W/ (as in NOW) regular and OW ❑ /O/

as in GLOW irregular, in fact 17 of the 29 monosyllabic words

in English ending in OW rhyme with GLOW, whereas only 12

have Coltheart and colleagues’ “regular” pronunciation as in

NOW. Thus, GLOW is inconsistent but has the more frequent

correspondence. Consistent with this interpretation, the at-

tractor network developed in Simulation 3 produces naming

latencies of 2.00 for CHEF, 1.92 for TOMB, and 1.73 for GLOW.

The experiment with human readers performed by Coltheart

and Rastle (1994) revealed their predicted relationship between

position of irregularity and naming RT, with slowest RTs to

words like CHAOS with an irregular first grapheme-phoneme

correspondence and fastest RTs to words like BANDAGE which

do not become irregular until position 5. All of the stimulus

words had two syllables, which prevents us from evaluating the

performance of our networks on their materials. Inspection of

these words in their appendix, however, again suggests a con-

founding between position and degree of consistency. Take the

items which, by their analysis, become irregular at position 5;

almost half of these words (6/14) were two-syllable words with

first-syllable stress and with second syllables ending in silent

E (e.g., BANDAGE and FESTIVE). Since the GPC procedure of

Coltheart et al. (1993) applies the same rules independent of

syllable position, it assigns the vowel /A/ to the grapheme A E

in the second syllable of BANDAGE and the vowel /I/ to the

grapheme I E in the second syllable of FESTIVE. Despite the

fact that our model is not yet able to treat multisyllabic words,

the nature of its operation ensures that it would be sensitive to

the fact that words with this sort of pattern do not have tense

(long) vowels in second syllable. The great majority of two-

syllable words ending in IVE (e.g., ACTIVE, PASSIVE, MOTIVE,

NATIVE) have the same final vowel as FESTIVE, making FESTIVE

a relatively consistent word. Whether this reinterpretation of

the Coltheart and Rastle effect turns out to give an adequate

account of their results remains to be seen from future em-

pirical and modeling work. Furthermore, even if a position

effect is found using properly controlled stimuli, it may very

well be consistent with a parallel computation of phonology

from orthography in which the decision to initiate articulation

depends only on the initial phoneme(s) (Kawamoto, Kello, &

Jones, 1994, 1995). Thus, rather than being incompatible with

our approach, Coltheart and Rastle’s findings may in fact relate

to simple properties of networks that develop representations

over time.

Extensions of the Approach

The approach we have taken can be extended in a number of

different directions. The most obvious and natural extension

is to the reading of multisyllabic words. The pronunciation of

these words exhibits the same kind of quasi-regular structure

found at the level of monosyllables (Jared & Seidenberg, 1990),

but these regularities now apply not just to grapheme-phoneme

correspondences but to the assignment of stress as well, and

they involve sensitivity to linguistic variables such as the form-

class of the word, its derivational status, and several other

factors (Smith & Baker, 1976).

One challenge that arises in extending our approach to mul-

tisyllabic words is finding a better method for condensing reg-

ularities across positions within a word. The representations

we have used condense regularities within the onset or the coda

of a monosyllabic word, but experience with particular corre-

spondences in the onset do not affect processing of the same

correspondence in the coda or vice versa. Indeed, our model

has two completely separate sets of weights for implementing

these correspondences, and most of its failures (e.g., with the

consonant J in the coda) are attributable to the fact that its

knowledge cannot be transferred between onsets and codas.

Ultimately, it seems likely that the solution to the problem

of condensing regularities will involve sequential processing at

some level. The paradigm case of this is the approach used in

NETtalk (Sejnowski & Rosenberg, 1987, also see Bullinaria,

1995), in which the letters are processed sequentially, proceed-

ing through a text from left to right. The input is shifted through

a window that is several slots wide and each letter is mapped

to its corresponding phoneme when it falls in the central slot.

This allows each successive letter to be processed by the same

set of units, so the regularities extracted in processing letters in

any position are available for processing letters in every other

position. At the same time, the presence of other letters in the

slots flanking the central slot allows the network to be context

sensitive and to exhibit consistency effects.

One drawback of such a letter-by-letter approach is that the

onset of pronunciation of a word is completely insensitive to

the consistency of its vowel; consistency does affect the vowel

correspondences, but these only come into play after the pro-

nunciation of the onset has been completed. This presents a

problem because the empirical finding of consistency effects

in naming latencies is one of the main motivations of a connec-

tionist approach to word reading. For this reason, and because

there is a great deal of coarticulation of successive phonemes,

we have taken the view that fluent, skilled reading involves

a parallel construction of a pronunciation of at least several

phonemes at a time. One possibility is that skilled readers

attempt to process as much of the word as they can in parallel,

then redirect attention to the remaining part and try again (see

Plaut, McClelland, & Seidenberg, in press, for a simulation

illustrating this approach). In this way, early on in learning,

reading is strictly sequential, as in NETtalk, but as skill de-
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velops, it becomes much more parallel, as in the models we

have presented here. The result is that the system can always

fall back on a sequential approach, which allows the applica-

tion of knowledge of regularities acquired in reading units of

any size to be applied across the entire length of the utterance

(Skoyles, 1991). The approach extends naturally to words of

any length, with the size of the window of parallel computation

being completely dependent on experience.

Moving beyond single word reading, the approach taken

here is applicable, we believe, to a wide range of linguistic

and cognitive domains—essentially, to all those with quasi-

regular structure, in the sense that there is systematicity that

coexists with some arbitrariness and many exceptions. The

first domain to which the approach was applied was that of

inflectional morphology (Rumelhart & McClelland, 1986). As

stated in the Introduction, this application certainly remains

controversial; Pinker and his colleagues (Marcus et al., 1992;

Pinker, 1991; Pinker & Prince, 1988) continue to maintain that

no single mechanism can fully capture the behavior of the reg-

ular inflectional process and the handling of exceptions. While

we do not claim that the existing connectionist simulations

have fully addressed all valid criticisms raised, at this point

we see little in these criticisms that stands against the applica-

bility of the connectionist approach in principle. Indeed, the

arguments raised in these papers do not, in general, reflect a

full appreciation of the capabilities of connectionist networks

in quasi-regular domains. For example, Pinker (1991) does

not acknowledge that connectionist models of both spelling-

to-sound (as shown here and in SM89) and of inflectional

morphology (Daugherty & Seidenberg, 1992) show the very

frequency-by-regularity interaction that he takes as one of the

key indicators of the operation of a (frequency insensitive) rule

system and a (frequency sensitive) lexical lookup mechanism.

Indeed, there are several aspects of the empirical data in the

domain of inflectional morphology that appear at this point

to favor an interpretation in terms of a single, connectionist

system that is sensitive to both frequency and consistency.

We will consider here one such aspect, namely the historical

evolution of the English past tense system. Hare and Elman

(in press) have reviewed the pattern of change from the early

Old English (EOE) period (circa 870) to the present. In EOE,

there were two main types of verbs—strong and weak—each

consisting of several subtypes. Over the period between 870

and the present, the different types of weak verbs coalesced into

a single type: the current “regular” past. Many of the strong

verbs “regularized,” but several of them persist to this day as the

various irregular verbs of modern English. The coalescence

of the various types of weak verbs into a single type, the

pattern of susceptibility to regularization among the strong

verbs, and the occasional occurrence of “irregularization,” in

which a particular weak verb took on the characteristics of a

cluster of strong verbs, are all traced to workings of a single

connectionist system that is sensitive both to frequency and

consistency. In Hare and Elman’s approach, language change

is cast as the iterative application of a new generation of learners

(simulated by new, untrained networks) to the output of the

previous generation of learners (simulated by old networks,

trained on the output of even older networks). Each generation

imposes its own distortions on the corpus: among these are

the elimination of subtle differences between variations of the

weak past that apply to similar forms, and the regularization

of low-frequency irregular forms with few friends. Gradually

over the course of generations, the system is transformed from

the highly complex system of circa 870 to the much simpler

system that is in use today. The remaining irregular verbs are

either highly consistent with their neighbors, highly frequent,

or both; less frequent and less consistent strong verbs have been

absorbed by the regular system. Crucially for our argument,

both the “regular” (or weak) system and the “exception” (or

strong) system show effects of frequency and consistency, as

would be expected on a single-system account.

Derivational morphology presents another rich quasi-regular

domain to which our approach would apply. First of all, there

are many morphemes that are partially productive in ways

that are similar to quasi-regular correspondences in inflectional

morphology and spelling-to-sound: that is, they appear to be

governed by a set of “soft” constraints. Second, the meaning

of a morphologically complex word is related to, but not com-

pletely determined by, its constituent morphemes; thus, there

is partial, but not complete, regularity in the mapping from

meaning to sound (see Bybee, 1985, for a discussion of these

points).

Graded influences of frequency and consistency appear to

operate not just at the level of individual words but also at the

level of sentences, as evidenced by recent findings of lexical,

semantic and contextual effects in syntactic ambiguity reso-

lution (see, e.g., MacDonald, 1994; Taraban & McClelland,

1988; Trueswell, Tanenhaus, & Garnsey, 1994). For example,

consider the temporary main verb/reduced relative ambiguity

associated with the word EXAMINED in the sentence THE EVI-

DENCE EXAMINED BY THE LAWYER WAS USELESS (Ferreira &

Clifton, 1986). The degree to which subjects are slowed in sen-

tence comprehension when encountering such ambiguities is

subject to a number of influences, including a previous disam-

biguating context (Trueswell et al., 1994), the semantic plausi-

bility of the head noun in the main-verb reading (cf. EVIDENCE

vs. an animate noun like WITNESS), and the relative frequency

with which the verb is used as a simple past tense (e.g., THE

PERSON EXAMINED THE OBJECT) as opposed to a passivized past

participle (e.g., THE OBJECT WAS EXAMINED BY THE PERSON;

MacDonald, 1994). Verbs that are consistently used in the sim-

ple past tense lead to much stronger garden path effects when

a reduced relative interpretation is required than do verbs that

are more ambiguous in their usage. These effects have a nat-

ural interpretation in terms of a constraint-satisfaction process

in which a variety of sources of lexical knowledge conspire to

produce a coherent sentence interpretation, including graded

influences whose strength depends on the consistency of a
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word-form’s usage (see Juliano & Tanenhaus, in press; Mac-

Donald, Pearlmutter, & Seidenberg, 1994, for discussion, and

Kawamoto, 1993; Pearlmutter, Daugherty, MacDonald, & Sei-

denberg, 1994; St. John & McClelland, 1990, for connectionist

simulations illustrating some of these principles).

Even more generally, the domains encompassed by seman-

tic, episodic, and encyclopedic knowledge are all quasi-regular,

in that facts and experiences are partially arbitrary, but also par-

tially predictable from the characteristics of other, related facts

and experiences (see McClelland, McNaughton, & O’Reilly,

in press, for discussion). Consider the robin, for example. Its

properties are largely predictable from the properties of other

birds, but its color and exact size, the sound that it makes, the

color of its eggs, etc, are relatively arbitrary. Rumelhart (1990;

Rumelhart & Todd, 1993) shows how a connectionist network

can learn the contents of a semantic network, capturing both

the shared structure that is present in the set of concepts—

so as to allow generalization to new examples—while at the

same time mastering the idiosyncratic properties of particular

examples. As another example, consider John F. Kennedy’s

assassination. There were several arbitrary aspects, such as

the date and time of the event, etc. But our understanding

of what happened depends on knowledge derived from other

events involving presidents, motorcades, rifles, spies, etc. Our

understanding of these things informs, indeed pervades, our

memory of Kennedy’s assassination. And our understanding

of other similar events is ultimately influenced by what we

learn about Kennedy’s assassination. St. John (1992) provides

an example of a connectionist network that learns the charac-

teristics of events and applies them to other, similar events,

using just the same learning mechanism, governed by the same

principles of combined frequency and consistency sensitivity,

as our spelling-to-sound simulations.

In summary, quasi-regular systems like that found in the

English spelling-to-sound system appear to be pervasive, and

there are several initial indications that connectionist networks

sensitive to frequency and consistency will provide insight into

the way such systems are learned and represented.

Conclusions
At the end of their paper, Coltheart et al. (1993) reach a con-

clusion that seems to them “inescapable.”

Our ability to deal with linguistic stimuli we have not

previously encountered . . . can only be explained by

postulating that we have learned systems of general

linguistic rules, and our ability at the same time to

deal correctly with exceptions to these rules . . .

can only be explained by postulating the existence

of systems of word-specific lexical representations.

(p. 606)

We have formulated a connectionist approach to knowledge

and processing in quasi-regular domains, instantiated it in the

specific domain of English word reading, and demonstrated

that it can account for the basic abilities of skilled readers to

handle correctly both regular and exception items while still

generalizing well to novel items. Within the approach, the pro-

ficiency of humans in quasi-regular domains stems not from the

existence of separate rule-based and item-specific mechanisms,

but from the fact that the cognitive system adheres to certain

general principles of computation in neural-like systems.

Our connectionist approach not only addresses these general

reading abilities, but also provides insight into the detailed

effects of frequency and consistency both in the naming latency

of normal readers, and in the impaired naming accuracy of

acquired and developmental dyslexic readers. A mathematical

analysis of a simplified system, incorporating only some of

the relevant principles, forms the basis for understanding the

intimate relationship between these factors and, in particular,

the inherently graded nature of spelling-sound consistency.

The more general lexical framework for word reading on

which the current work is based contains a semantic pathway

in addition to a phonological pathway. In contrast to the lex-

ical and sublexical procedures in dual-route theories, which

operate in fundamentally different ways, the two pathways in

the current approach operate according to a common set of

computational principles. As a result, the nature of processing

in the two pathways is intimately related. In particular, a con-

sideration of the pattern of impaired and preserved abilities in

acquired surface dyslexia leads to a view in which there is a

partial division of labor between the two pathways. The con-

tribution of the phonological pathway is a graded function of

frequency and consistency; items weak on both measures are

processed particularly poorly. Overt accuracy on these items

is not compromised, however, because the semantic pathway

also contributes to the pronunciation of words (but not non-

words). The relative capabilities of the two pathways is open

to individual differences, and these differences may become

manifest in the pattern and severity of reading impairments

following brain damage.

Needless to say, much remains to be done. The current

simulations have specific limitations, such as the restriction

to uninflected monosyllables and lack of attention paid to the

development of orthographic representations, that need to be

remedied in future work. Furthermore, the nature of processing

within the semantic pathway has been characterized only in the

coarsest way. Finally, a wide range of related empirical issues,

including phonological dyslexia, developmental dyslexia, lexi-

cal decision, and pseudohomophone and blocking effects, have

been addressed only in very general terms. Nonetheless, the

results reported here, along with those of others taking similar

approaches, clearly suggest that the computational principles

of connectionist modeling can lead to a deeper understanding

of the central empirical phenomena in word reading in partic-

ular, and in quasi-regular domains more generally.
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Appendix 1: Stimuli Used in Simulation Studies
Regular Regular
Consistent Inconsistent Ambiguous Exception Nonword

High Frequency

BEST BASE BROWN ARE LARE

BIG BONE CLEAR BOTH FOTH

CAME BUT DEAD BREAK DEAK

CLASS CATCH DOWN CHOOSE BOOSE

DARK COOL FOUR COME POME

DID DAYS GONE DO MO

FACT DEAR GOOD DOES POES

GOT FIVE HEAD DONE RONE

GROUP FLAT HOW FOOT POOT

HIM FLEW KNOW GIVE MIVE

MAIN FORM KNOWN GREAT REAT

OUT GO LOVE HAVE MAVE

PAGE GOES LOW MOVE BOVE

PLACE GROW NEAR PULL RULL

SEE HERE NOW PUT SUT

SOON HOME ONE SAID HAID

STOP MEAT OUR SAYS TAYS

TELL PAID OWN SHALL NALL

WEEK PLANT SHOW WANT BANT

WHEN ROLL SHOWN WATCH NATCH

WHICH ROOT STOOD WERE LERE

WILL SAND TOWN WHAT DAT

WITH SMALL YEAR WORD TORD

WRITE SPEAK YOUR WORK BORK

Low Frequency

BEAM BROOD BLOWN BOWL NOWL

BROKE COOK BROW BROAD BOAD

BUS CORD CONE BUSH FUSH

DEED COVE CROWN DEAF MEAF

DOTS CRAMP DIVE DOLL FOLL

FADE DARE DREAD FLOOD BOOD

FLOAT FOWL FLOUR GROSS TROSS

GRAPE GULL GEAR LOSE MOSE

LUNCH HARM GLOVE PEAR LEAR

PEEL HOE GLOW PHASE DASE

PITCH LASH GOWN PINT PHINT

PUMP LEAF GROVE PLOW CLOW

RIPE LOSS HOOD ROUSE NOUSE

SANK MAD LONE SEW TEW

SLAM MOOSE PLEAD SHOE CHOE

SLIP MOTH POUR SPOOK STOOK

STUNT MOUSE PRONE SWAMP DRAMP

SWORE MUSH SHONE SWARM STARM

TRUNK PORK SPEAR TOUCH MOUCH

WAKE POSE STOVE WAD NAD

WAX POUCH STRIVE WAND MAND

WELD RAVE SWEAR WASH TASH

WING TINT THREAD WOOL BOOL

WIT TOAD ZONE WORM PORM

Note: The “Regular Consistent” words, “Regular Inconsistent” words, and “Exception” words are from Experi-

ments 1 and 2 of Taraban and McClelland (1987). In those studies, the regular consistent words are the control

words for the exception words. In addition, each regular inconsistent word shares a body with some exception

word. The “Ambiguous” words contain bodies associated with two or more pronunciations, each of which occurs

in many words. They were generated by Seidenberg and McClelland (1989) to be matched in frequency (Kuçera &

Francis, 1967) with the Taraban and McClelland high- and low-frequency regular consistent and exception words.

The “Nonwords” were generated by altering the onsets of the exception words.
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Appendix 2: Accepted Pronunciations of Glushko’s (1979) Nonwords
Consistent Nonwords Inconsistent Nonwords

Nonword Pronunciation(s) Nonword Pronunciation(s)

BEED /bEd/ BILD /bIld/, /bild/

BELD /beld/ BINT /bInt/, /bint/

BINK /biNk/ BLEAD /blEd/, /bled/

BLEAM /blEm/ BOOD /bUd/, /b ③ d/, /bud/

BORT /bOrt/ BOST /bOst/, /b ③ st/, /bost/

BROBE /brOb/ BROVE /brOv/, /brUv/, /br ③ v/

CATH /k@T/, /kaT/ COSE /kOs/, /kOz/, /kUz/

COBE /kOb/ COTH /kOT/, /koT/

DOLD /dOld/, /dald/ DERE /dAr/, /dEr/, /dur/

DOON /dUn/ DOMB /dOm/, /dUm/, /dam/, /damb/

DORE /dOr/ DOOT /dUt/, /dut/

DREED /drEd/ DROOD /drUd/, /dr ③ d/, /drud/

FEAL /fEl/ FEAD /fEd/, /fed/

GODE /gOd/ GOME /gOm/, /g ③ m/

GROOL /grUl/, /grul/ GROOK /grUk/, /gruk/

HEAN /hEn/ HAID /h@d/, /hAd/, /hed/

HEEF /hEf/ HEAF /hEf/, /hef/

HODE /hOd/ HEEN /hEn/, /hin/

HOIL /hYl/ HOVE /hOv/, /hUv/, /h ③ v/

LAIL /lAl/ LOME /lOm/, /l ③ m/

LOLE /lOl/ LOOL /lUl/, /lul/

MEAK /mAk/, /mEk/ MEAR /mAr/, /mEr/

MOOP /mUp/ MONE /mOn/, /m ③ n/, /mon/

MUNE /mUn/, /myUn/ MOOF /mUf/, /muf/

NUST /n ③ st/ NUSH /n ③ S/, /nuS/

PEET /pEt/ PILD /pIld/, /pild/

PILT /pilt/ PLOVE /plOv/, /plUv/, /pl ③ v/

PLORE /plOr/ POMB /pOm/, /pUm/, /pam/, /pamb/

PODE /pOd/ POOT /pUt/, /put/

POLD /pOld/, /pald/ POVE /pOv/, /pUv/, /p ③ v/

PRAIN /prAn/ PRAID /pr@d/, /prAd/, /pred/

SHEED /SEd/ SHEAD /SEd/, /Sed/

SOAD /sOd/, /sod/ SOOD /sUd/, /s ③ d/, /sud/

SPEET /spEt/ SOST /sOst/, /s ③ st/, /sost/

STEET /stEt/ SPEAT /spAt/, /spEt/, /spet/

SUFF /s ③ f/ STEAT /stAt/, /stEt/, /stet/

SUST /s ③ st/ SULL /s ③ l/, /sul/

SWEAL /swEl/ SWEAK /swAk/, /swEk/

TAZE /tAz/ TAVE /t@v/, /tAv/, /tav/

WEAT /wAt/, /wEt/, /wet/ WEAD /wEd/, /wed/

WOSH /waS/ WONE /wOn/, /w ③ n/, /won/

WOTE /wOt/ WULL /w ③ l/, /wul/

WUFF /w ③ f/ WUSH /w ③ S/, /wuS/

Note: /a/ in POT, /@/ in CAT, /e/ in BED, /i/ in HIT, /o/ in DOG, /u/ in GOOD, /A/ in MAKE, /E/ in KEEP, /I/ in

BIKE, /O/ in HOPE, /U/ in BOOT, /W/ in NOW, /Y/ in BOY, / ④ / in CUP, /N/ in RING, /S/ in SHE, /C/ in CHIN /Z/

in BEIGE, /T/ in THIN, /D/ in THIS. All other phonemes are represented in the conventional way (e.g., /b/ in

BAT).
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Appendix 3: Regularizations of Taraban and McClelland’s (1987) Exception Words
High-Frequency Exceptions Low-Frequency Exceptions

Word Correct Regularization(s) Word Correct Regularization(s)

ARE /ar/ /Ar/ BOWL /bOl/ /bWl/

BOTH /bOT/ /boT/ BROAD /brod/ /brOd/

BREAK /brAk/ /brEk/ BUSH /buS/ /b ③ S/

CHOOSE /CUz/ /CUs/ DEAF /def/ /dEf/

COME /k ③ m/ /kOm/ DOLL /dal/ /dOl/

DO /dU/ /dO/, /da/ FLOOD /fl ③ d/ /flUd/, /flud/

DOES /d ③ z/ /dOz/, /dOs/ GROSS /grOs/ /gros/, /gras/

DONE /d ③ n/ /dOn/ LOSE /lUz/ /lOs/, /lOz/

FOOT /fut/ /fUt/ PEAR /pAr/ /pEr/

GIVE /giv/ /gIv/ PHASE /fAz/ /fAs/

GREAT /grAt/ /grEt/ PINT /pInt/ /pint/

HAVE /hav/ /hAv/ PLOW /plW/ /plO/

MOVE /mUv/ /mOv/ ROUSE /rWz/ /rWs/

PULL /pul/ /p ③ l/ SEW /sO/ /sU/

PUT /put/ /p ③ t/ SHOE /SU/ /SO/

SAID /sed/ /sAd/ SPOOK /spUk/ /spuk/

SAYS /sez/ /sAz/, /sAs/ SWAMP /swamp/ /sw@mp/

SHALL /Sal/ /Sol/ SWARM /swOrm/ /swarm/

WANT /want/ /w@nt/ TOUCH /t ③ C/ /tWC/

WATCH /waC/ /w@C/ WAD /wad/ /w@d/

WERE /wur/ /wEr/ WAND /wand/ /w@nd/

WHAT /w ③ t/ /w@t/ WASH /woS/ /w@S/

WORD /wurd/ /wOrd/ WOOL /wul/ /wUl/

WORK /wurk/ /wOrk/ WORM /wurm/ /wOrm/

Note: /a/ in POT, /@/ in CAT, /e/ in BED, /i/ in HIT, /o/ in DOG, /u/ in GOOD, /A/ in MAKE, /E/ in KEEP, /I/ in

BIKE, /O/ in HOPE, /U/ in BOOT, /W/ in NOW, /Y/ in BOY, / ④ / in CUP, /N/ in RING, /S/ in SHE, /C/ in CHIN /Z/ in

BEIGE, /T/ in THIN, /D/ in THIS. All other phonemes are represented in the conventional way (e.g., /b/ in BAT).
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